Accurate Determination of Elemental Contents in Carbonate Minerals with Laser Ablation Inductively Coupled Plasma-Mass Spectrometry
-
摘要:
碳酸盐中微量元素信息可为探究古环境、古气候演化、壳幔相互作用以及成岩成矿等重要地质作用过程提供关键约束,其微量元素含量的准确测定一直备受学者关注。激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)可提供碳酸盐矿物中微量元素含量的精细信息,而常规激光测试方法严重制约着碳酸盐矿物微量元素分析的空间分辨率和低含量元素的检测能力。相比于常规剥蚀池条件时的低频率分析,本研究通过采用气溶胶局部提取快速清洗剥蚀池结合高频率激光剥蚀的方式,快速提升激光微区分析瞬时信号强度,有效地提升峰形信号灵敏度(约13倍),碳酸盐激光微区元素检出限降低5~10倍。在此激光分析模式下,分别采用纳秒和飞秒激光剥蚀联用四极杆等离子体质谱仪(LA-Q-ICP-MS),以NIST610玻璃为外标,Ca为内标开展了较小激光剥蚀束斑(32μm)条件下碳酸盐矿物中微量元素(亲石元素、亲铁和亲硫元素)分析。结果表明,纳秒和飞秒激光分析碳酸盐矿物标样CGSP-A、CGSP-B、CGSP-C、CGSP-D和MACS-3获得的亲石元素(如Sc、Sr、Y、Ba、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Th等)测试值与推荐值在误差范围内一致;而亲铁和亲硫元素(如Ni、Cu、Zn、As、Cd、Sn、Sb和Pb)测试结果则存在较大偏差(大于20%),这可能与本研究选用的高频激光剥蚀和较小剥蚀束斑(32µm)造成显著的“Downhole”分馏效应有关。本研究通过研制新型激光剥蚀池,改变激光剥蚀方式,即采用气溶胶局部提取剥蚀池和高频率剥蚀方法可有效地提升碳酸盐矿物微量元素(如亲石元素)分析的空间分辨率和低含量元素检测能力,有利于促进碳酸盐矿物在地质环境等领域的广泛应用。
-
关键词:
- 激光剥蚀电感耦合等离子体质谱法 /
- 碳酸盐矿物 /
- 微量元素 /
- 气溶胶局部提取 /
- 高频率激光剥蚀
Abstract:BACKGROUNDTrace element information in carbonates provides key constraints for investigating ancient environments, paleoclimate evolution, shell-mantle interactions, diagenesis and mineralization processes. The accurate determination of trace element content in carbonate minerals have always been a primary focus. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) can provide detailed information on trace element content in carbonate minerals. However, the elemental concentrations in carbonate minerals are usually extremely low (from hundreds of pg/g to tens of ng/g). A large spot size (from 44 to 100μm) is often used for trace element measurements in carbonate minerals. Therefore, the detection capability of low-content elements in carbonate minerals and the spatial resolution of LA determination still need to be improved.
OBJECTIVESTo develop a new analytical method for determination of low-content trace elements in carbonate minerals with LA-ICP-MS.
METHODSA new local aerosol extraction ablation cell was proposed in this study. Laser ablation was performed using high-repetition rates with the new designed ablation cell. The elemental contents in carbonate reference materials MACS-3, CGSP-A, CGSP-B, CGSP-C, and CGSP-D were determined with both ns and fs LA-Q-ICP-MS with a spot size of 32μm. Here, NIST 610 glass was used as an external calibration material and Ca was used as an internal standard.
RESULTSThe obtained peak height of a single laser shot was enhanced by a factor of 13 with the local aerosol extraction ablation cell because of the rapid washout time. The signal intensities were increased by 1.5 times under high-repetition rate laser ablation mode. Therefore, the detection limits of trace elements in carbonate minerals obtained from nanosecond laser ablation at high repetition rates (20Hz) were reduced by 5-8 times compared to conventional analysis (6Hz). The detection limits of trace elements were reduced by 5-10 times with the frequency of femtosecond laser ablation increased from 10Hz to 100Hz. The elemental contents in carbonate reference materials were measured with both ns and fs LA-Q-ICP-MS with a spot size of 32μm. The obtained results of lithophile elements (e.g., Sc, Sr, Y, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Th) in carbonate CGSP series and carbonate MACS-3 showed good agreement with their reference values. However, the measured results of siderophile and chalcophile elements (e.g., Ni, Cu, Zn, As, Cd, Sn, Sb, and Pb) showed systematic bias (>20%), which may be related to the “downhole” fractionation effect caused by the high-repetition rate laser ablation used in this study.
CONCLUSIONSThe new designed local aerosol extraction ablation cell combined with high-repetition rate laser ablation mode significantly improved the spital resolution and determination ability of low-content elements in carbonate minerals. The obtained results of lithophile elements in carbonate CGSP series and carbonate MACS-3 showed good agreement with their reference values using ns- and fs-LA-Q-ICP-MS with a spot size of 32m. It is worth noting that the spatial resolution and the detection capability of ultra-low-content elements in carbonate minerals could be further improved with the proposed LA method combined with high-sensitivity magnetic sector mass spectrometry.
-
碲和硒是稀散元素,在高新科技领域具有重要应用,已被中国和欧美国家列为战略性关键矿产资源[1-2]。一直以来全球碲、硒矿产资源主要采自斑岩-矽卡岩铜金矿床,如中国广东大宝山铜矿和江西城门山铜矿[3-4],研究斑岩矿床中碲、硒的产出情况对国家资源战略保障具有重要意义。云南普朗斑岩型铜金矿床位于三江特提斯成矿域义敦岛弧南部,属于超大型斑岩矿床,已探明铜资源储量4.31Mt,金资源量113t[5]。矿区内出露的地层为中三叠统尼汝组和上三叠统图姆沟组,侵入岩为普朗复式岩体,由石英闪长玢岩(~216Ma)、石英二长斑岩(~215Ma)和花岗闪长斑岩(~206Ma)组成,岩体出露总面积约为11km2(图1)。前人对普朗矿床的地质特征、成岩成矿时代、成矿物质来源、成矿流体性质等作了大量工作,但对矿床中碲硒的含量和赋存状态等研究还较为薄弱。本文报道了普朗矿床中产出的碲化物和硒化物,以期为斑岩矿床中碲硒的勘查和综合利用提供资料。
本次研究对象主要为普朗矿床中的铜精矿和钼精矿样品,测试分析均在东华理工大学核资源与环境国家重点实验室完成。样品的矿相学观察利用ZEISS Axio Scope A1光学显微镜及ZEISS Sigma 300场发射扫描电镜完成,扫描电镜的加速电压为20kV,发射电流为10μA[6]。矿物成分利用JXA-8530F Plus型电子探针分析完成,实验设定加速电压为15kV,电流为20nA,探针直径为1μm,使用ZAF方法对X射线强度进行校正。分析标样选择砷化镓(As),黄铜矿(Cu),黄铁矿(Fe、S),自然银(Ag),碲铋矿(Te、Bi),辉钼矿(Mo),自然铅(Pb),自然锑(Sb),硒化镉(Se),自然金(Au),自然铂(Pt),自然钯(Pd)。测试主量元素的精确度和准确度均小于2%。
普朗铜金矿床中的碲和硒含量高,并形成大量碲化物、硒化物和富硒矿物。矿床精矿中的碲和硒含量分别达74.3×10−6和270×10−6。碲在钾化带中的含量为0.3×10−6~0.43×10−6,较绢英岩化带中的高(0.02×10−6~0.12×10−6),由矿体中心向外,碲品位逐渐降低[7]。硒在钾化带和绢英岩化带的含量无明显差别,分别为1.49×10−6~2.44×10−6和1.04×10−6~3.00×10−6。矿石中的碲与金呈正相关关系,硒与银呈正相关关系。普朗铜矿床中,碲和硒主要以碲化物、硒化物和富硒矿物形式存在,形成辉碲铋矿、碲钯矿、硒银矿和富硒方铅矿等(图2)。辉碲铋矿是普朗含量最多的碲化物,反射光下为白色略带淡蓝色,矿物成分较均一,Bi含量为58.36%~61.24%,Te含量为31.03%~34.50%,S含量为3.76%~4.54%(图2e)。普朗辉碲铋矿中含有较高的Se(0.77%~3.63%)。辉碲铋矿的化学式为Bi2.02~2.08(Te1.74~1.93S0.85~1.01Se0.08~0.33)2.90~2.98。碲钯矿属于独立铂族元素矿物,在自然界很少见,中国斑岩矿床中仅江西德兴有报道[8],在全球其他斑岩矿床中非常少见。普朗碲钯矿粒径为1~5μm,反射光下呈亮白色(图2a)。碲钯矿中Pd和Pt可以类质同象取代,因此含量变化较大,Pd含量为16.26%~25.69%,Pt含量为4.82%~17.66%,Te含量为61.25%~66.76%(图2f)。碲钯矿化学式为(Pd0.64~0.98Pt0.09~0.37)0.98~1.03Te1.97~1.02。硒银矿是普朗含量最多的硒化物,反射光下为白色带微蓝绿色(图2c)。硒银矿中普遍含S,含量为0.55%~2.65%,Ag含量普遍偏低,为70.22%~72.77%,Se含量为24.09%~27.31%(图2g)。硒银矿化学式为Ag1.89~1.98(Se0.87~1.01S0.05~0.24)1.02~1.11。富硒方铅矿属于PbS1-xSex矿物,其中x值可在0~1之间连续变化。普朗富硒方铅矿S和Se的含量变化大,分别为4.01%~12.52%和1.85%~19.13%,Pb含量为73.91%~82.52%,大多数样品中含有Ag,最高含量达1.61%。普朗富硒方铅矿形成了较完整的PbS-PbSe固溶体系列(图2h),化学式为Pb0.98~1.01(S0.35~0.97Se0.07~0.67)0.99~1.02。
图 2 碲硒矿物显微照片及矿物元素含量三元图a—碲钯矿反射光镜下照片; b—碲钯矿BSE照片; c—硒银矿反射光镜下照片; d—硒银矿BSE照片; e— Bi-Te-S体系三元图; f— Te-Pd-Pt体系三元图; g—Ag-Se-S体系三元图; h—Pb-Se-S体系三元图。Mol—辉钼矿; Mrk—碲钯矿; Nau—硒银矿; Py—黄铁矿。Figure 2. Photomicrographs of tellurium and selenium minerals and ternary plots of element contents. a—Reflected light photomicrograph of merenskyite; b—BSE image of merenskyite; c—Reflected light photomicrograph of naumannite; d—BSE image of naumannite; e—Ternary plot of Bi-Te-S system; f—Ternary plot of Te-Pd-Pt system; g—Ternary plot of Ag-Se-S system; h—Ternary plot of Pb-Se-S system. Mol=Molybdenite, Mrk=Merenskyite, Nau=Naumannite, Py=Pyrite.矿床中的碲和硒可以指示物质来源和成矿过程。碲和硒具有亲硫特点,碲会部分进入硫化物晶格,但更易形成碲的独立矿物;硒属于强亲硫元素,在较高温的条件下易于进入硫化物晶格,在中低温条件下,硫含量较低时,可形成硒的独立矿物。洋壳中的铁锰结壳、页岩及浮游沉积物等是自然界中碲和硒的重要储库[9],因此在洋陆俯冲过程中,大陆岩石圈地幔和洋壳的部分熔融会形成富碲、硒的岩浆[10-11]。碲和硒在硫化物熔体中的相容性很高(D硫化物/硅酸盐>600),碲倾向于存在液相硫化物(SL)中,而硒则更易进入单硫化物固熔体(MSS)(DTe SL/硅酸盐/DSe SL/硅酸盐为5~9,DTe MSS/硅酸盐/DSe MSS/硅酸盐为0.5~0.8)[12]。当富碲、硒的岩浆到达下地壳,会结晶分异形成富Co、Ni的硅酸盐矿物,碲、硒存在硫化物熔体中继续向上运移;当岩浆到达中地壳,温度低于900℃时,硫化物熔体与Te-Se熔体发生相分离;当岩浆到达上地壳,侵位形成班岩体及Cu矿床,Ag-Pt-Pd则高度集中在富Te-Se熔体中,并最终形成贵金属矿物[13]。普朗铜金矿床中的碲和硒可能与区内晚三叠世的俯冲造山密切相关,富碲和硒的岩浆也促进了铂族元素的富集成矿。
普朗斑岩铜金矿床中碲化物和硒化物的发现,对资源的综合利用及矿床成因研究具有重要意义。矿床中碲和硒的资源量规模大,大部分以独立矿物形式存在,且常与Au-Ag-PGE共生,具有较好的经济回收利用价值。碲化物和硒化物的产出也为成矿物质来源及岩浆演化过程提供了新的研究方向。
-
图 1 定量分析示意图
(a)飞秒激光高频率剥蚀碳酸盐标准样品MACS-3时Mg,Ca瞬时信号图;(b)线性回归拟合计算Mg/Ca比值。激光剥蚀束斑32µm,剥蚀频率50Hz。
Figure 1. Schematic drawing of calibration.
(a) Magnesium and calcium signal of fs-LA on carbonate MACS-3; (b) The Mg/Ca ratio calculated with linear regression method. Laser ablation was performed with a spot size of 32µm and a repetition rate of 50Hz.
图 2 气溶胶局部提取和常规剥蚀池纳秒激光单脉冲剥蚀NIST610玻璃时U元素瞬时信号对比图
(a)气溶胶局部提取;(b)常规剥蚀池。激光剥蚀束斑44µm。
Figure 2. Uranium signal profile of single shot ablation on NIST610 glass with local aerosol extraction and normal ablation cell.
(a) The local aerosol extraction ablation cell; (b) The normal ablation cell. Laser ablation was performed with a spot size of 44µm.
图 3 纳秒激光高频率剥蚀NIST610玻璃时气溶胶局部提取和常规剥蚀池U元素瞬时信号对比图
(a)气溶胶局部提取;(b)常规剥蚀池。激光剥蚀束斑32µm,剥蚀频率20Hz。
Figure 3. Uranium signal profile obtained with high repetition rates ns-laser ablation on NIST610 glass with local aerosol extraction and normal ablation cell.
(a) The local aerosol extraction ablation cell; (b) The normal ablation cell. Laser ablation was performed with a spot size of 32µm and a repetition rate of 20Hz.
图 4 不同激光剥蚀条件下元素检出限
(a)纳秒激光常规剥蚀(剥蚀频率6Hz)和气溶胶局部提取结合高频率剥蚀(20Hz);(b)飞秒激光常规剥蚀(剥蚀频率10Hz)和高频率剥蚀(100Hz)。
Figure 4. The limits of detection obtained under different laser ablation conditions.
(a) Nanosecond laser ablation with normal repetition rate (6Hz) and local aerosol extraction combined with high repetition rate (20Hz);(b) Femtosecond laser ablation with normal repetition rate (10Hz) and high repetition rate (100Hz).
图 5 以NIST610玻璃为外标,Ca为内标分析碳酸盐标样CGSP-A、CGSP-B、CGSP-C、CGSP-D和MACS-3结果
(a)纳秒激光气溶胶局部提取结合高频率剥蚀(20Hz);(b)飞秒激光高频率剥蚀(100Hz)。剥蚀束斑均为32µm。
Figure 5. The relative deviations of the measured average concentrations of carbonate reference materials (CGSP-A, CGSP-B, CGSP-C, CGSP-D and MACS-3). The NIST 610 glass was used as an external calibration material and Ca was used as an internal standard.
(a) Nanosecond laser ablation with local aerosol extraction combined with high repetition rate (20Hz);(b) Femtosecond laser ablation with high repetition rate (100Hz). The laser ablation spot size was 32µm.
表 1 LA-ICP-MS仪器操作参数
Table 1 Summary of instrumental operating parameters.
激光剥蚀系统 Agilent 7900 电感耦合等离子体质谱仪 工作参数 实验条件 实验条件 工作参数 实验条件 激光类型 193nm,
纳秒激光257nm,
飞秒激光RF功率 1500W 剥蚀频率 6Hz,20Hz 10Hz,100Hz 等离子体气流速 15.0L/min 脉冲宽度 15ns 300fs 辅助气流速 1.0L/min 能量密度 6J/cm2 2.5J/cm2 采样深度 5.0mm 束斑大小
剥蚀模式32µm
单点剥蚀32µm
单点剥蚀离子透镜设置 Typical 剥蚀时间 5s 5s 测量的同位素 43Ca,45Sc,51V,53Cr,55Mn,57Fe,59Co,60Ni,63Cu,66Zn,75As,88Sr,89Y,93Nb,111Cd,118Sn,121Sb,137Ba, 139La,140Ce,141Pr,143Nd,147Sm,151Eu,157Gd,159Tb, 163Dy,165Ho,166Er,169Tm,173Yb,175Lu,178Hf,181Ta, 208Pb,232Th,238U 驻留时间 4ms 检测器模式 Dual 表 2 碳酸盐标样LA-ICP-MS分析结果(n=11)
Table 2 Element concentrations of carbonate reference materials obtained with LA-ICP-MS analysis (n=11).
元素 CGSP-A CGSP-B CGSP-C CGSP-D MACS-3 推荐值(µg/g) 纳秒激光测定值
(µg/g)飞秒激光测定值
(µg/g)推荐值(µg/g) 纳秒激光测定值
(µg/g)飞秒激光测定值
(µg/g)推荐值(µg/g) 纳秒激光测定值
(µg/g)飞秒激光测定值
(µg/g)推荐值(µg/g) 纳秒激光测定值
(µg/g)飞秒激光测定值
(µg/g)推荐值(µg/g) 纳秒激光测定值
(µg/g)飞秒激光测定值
(µg/g)Sc 18.1±0.7 14.8±2.3 16.2±0.6 4.39±0.49 3.86±0.21 4.09±0.21 5.09±0.52 3.83±0.25 4.13±0.12 15.7±0.8 14.8±0.5 15.4±0.3 21.0±0.8 19.9±1.1 19.5±1.4 V 20.4±3.2 20.7±3.6 22.5±1.1 17.6±2.1 16.8±0.7 17.3±0.5 15.5±3.1 12.5±1.4 14.9±1.2 5.41±3.10 4.35±0.17 4.27±0.08 46.3±1.1 57.3±6.0 56.7±5.3 Cr 25.5±0.9 25.0±5.4 27.6±1.4 25±1 4.65±1.07 6.00±1.75 18.8±2.2 4.87±2.39 5.39±1.33 3.39±0.53 4.09±3.74 2.51±0.23 117±5 142±16 140±15 Mn 349±852 404±8721 390±1082 257±542 299±2639 287±837 267±232 294±515 306±945 189±232 213±1337 214±300 536±28 615±59 601±52 Fe 118±3378 818±13633 933±2872 219±3026 158±6282 172±4773 222±3448 137±13175 172±15173 792±1126 659±2973 644±551 112±300 124±1231 123±1146 Co 5.04±0.15 4.36±0.62 4.56±0.13 0.75±0.07 0.42±0.09 0.46±0.09 0.78±0.06 1.21±0.83 0.99±0.52 2.32±0.21 2.19±0.24 2.02±0.07 57.1±2.0 57.4±4.1 57.1±4.1 Ni 4.35±1.74 5.16±0.96 5.52±0.28 5.6±1.2 1.37±0.77 2.06±1.38 6.34±1.33 1.39±0.55 2.41±2.89 6.25±1.34 8.36±1.84 7.25±0.69 57.4±4.9 69±4 68.3±4.2 Cu 2.15±0.29 0.42±0.53 1.34±1.52 3.07±0.11 -1.186±3.266 0.62±0.16 2.26±0.19 0.76±1.20 1.15±0.22 1.37±0.28 0.79±2.93 0.30±0.09 120±5 141±15 137±14 Zn 517±20 473±65 520±32 36.9±2.2 29.9±6.6 36.7±2.1 92.1±3.0 77.3±8.1 86.4±5.3 17.2±2.7 16.8±5.2 16.7±1.1 111±6 170±19 165±18 As 3.68±0.41 10.0±2.0 10.4±1.3 5.44±0.49 8.33±0.65 7.42±0.46 3.42±0.34 6.42±0.79 6.42±0.55 3.39±0.35 3.34±0.63 3.39±0.34 44.2±1.4 61.1±7.1 59.8±7.1 Sr 255±74 251±148 247±110 261±111 289±88 285±76 293±89 302±83 313±85 246±72 263±141 265±38 676±350 711±192 697±368 Y 108±18 99.1±11.4 103±5 97.1±1.9 91.8±2.5 93.8±2.4 158±7 137±4 145±4 28.3±0.6 26.3±0.8 26.8±0.4 20.6±0.0 20.2±0.7 19.8±1.0 Nb 3.55±0.24 2.49±0.46 2.69±0.11 4.11±0.49 2.94±0.18 2.95±0.07 3.16±0.35 1.96±0.28 2.47±0.23 0.44±0.07 0.29±0.03 0.28±0.01 35.2±3.1 56.9±5.2 56.6±4.9 Cd 4.81±0.49 2.66±0.47 3.45±0.51 0.22±0.02 0.1±0.2 0.38±0.32 0.63±0.08 0.26±0.21 0.52±0.08 1.05±0.15 0.49±0.20 0.78±0.10 54.6±2.2 62.4±10.0 60.1±9.2 Sn 10.1±0.9 12.2±2.7 11.5±0.7 2.7±0.1 3.47±0.32 3.65±0.16 2.26±0.12 2.78±0.47 3.20±0.39 0.39±0.12 1.44±0.42 1.24±0.14 58.1±8.8 56.3±4.8 55.0±4.4 Sb 0.43±0.12 0.28±0.09 0.27±0.03 1.84±0.22 1.98±0.34 1.87±0.11 0.21±0.04 0.21±0.05 0.22±0.06 0.09±0.05 0.057±0.024 0.051±0.012 20.6±1.1 28.2±3.0 27.6±2.8 Ba 68.6±1.9 64.8±10.7 62.5±4.4 31.6±1.4 29.4±1.3 29.0±0.9 18.1±0.7 16±1 17.8±0.9 283±17 291±14 290±4 58.7±2.0 63.3±3.0 62.1±3.0 La 109±36 916±110 966±55 124±4 118±3 117±3 225±6 203±7 217±6 62.3±1.7 57±2 61.0±0.7 10.4±0.5 11.9±0.6 11.6±0.7 Ce 260±29 231±282 242±142 437±14 414±11 411±12 750±24 679±17 719±19 132±2 130±12 132±1 11.2±0.3 12±0 11.8±0.7 Pr 388±10 295±34 304±16 81.3±2.6 69.4±2.0 67.4±1.6 137±7 114±3 118±3 17.3±0.4 15.3±1.0 15.0±0.1 12.1±0.2 11.9±0.8 11.5±0.8 Nd 153±48 121±144 125±61 407±12 351±10 349±8 675±23 562±17 596±16 63.9±2.8 57.7±2.2 59.3±0.8 11.0±0.4 11.4±0.5 11.0±0.7 Sm 154±5 127±15 131±6 79.9±2.6 71.4±3.1 71.0±1.5 136±4 117±4 122±3 9.17±0.24 8.25±1.18 8.39±0.17 11.0±0.3 11±1 10.8±0.9 Eu 32.3±1.1 27.6±3.1 28.5±1.5 24.0±0.5 23.3±1.0 22.9±0.4 40.9±1.5 37.4±0.8 38.8±0.9 2.73±0.10 2.55±0.11 2.60±0.06 11.8±0.1 11.9±0.7 11.8±0.6 Gd 77.0±15.9 59.2±7.2 56.8±2.9 58.3±2.8 56.1±1.9 56.4±1.3 97.0±1.3 91.1±2.5 94.2±2.0 6.94±0.70 5.94±0.41 5.95±0.08 10.8±0.3 9.96±0.52 9.83±0.54 Tb 8.37±0.78 5.88±0.65 5.89±0.34 7.72±0.33 6.99±0.22 6.98±0.24 12.8±0.7 10.8±0.2 11.2±0.3 1.09±0.06 0.87±0.06 0.91±0.02 10.4±0.0 9.96±0.46 9.76±0.57 Dy 30.9±1.1 25.5±2.9 26.5±1.3 31.2±1.0 28.7±1.1 28.8±0.7 50.4±2.2 44.1±1.7 46.7±1.2 5.61±0.17 5.14±0.23 5.46±0.14 10.7±0.5 10.2±0.5 9.91±0.67 Ho 4.70±0.11 3.96±0.50 4.07±0.27 4.28±0.14 4.10±0.17 3.98±0.09 6.52±0.09 5.90±0.19 6.18±0.14 1.31±0.10 1.04±0.06 1.08±0.03 11.3±0.1 10.6±0.5 10.2±0.7 Er 10.0±1.6 7.41±0.96 7.58±0.39 7.24±0.25 6.69±0.27 6.76±0.58 11.7±0.7 9.80±0.40 10.3±0.3 2.78±0.04 2.44±0.20 2.58±0.05 11.2±0.2 10±1 9.90±0.56 Tm 0.89±0.02 0.72±0.10 0.71±0.04 0.70±0.03 0.64±0.03 0.74±0.36 0.98±0.03 0.83±0.04 0.88±0.03 0.41±0.05 0.31±0.05 0.32±0.01 11.1±0.1 10.7±0.6 10.4±0.7 Yb 4.22±0.10 3.20±0.43 3.37±0.24 3.07±0.16 2.39±0.21 2.44±0.09 4.47±0.25 3.54±0.33 3.55±0.13 1.67±0.05 1.46±0.17 1.56±0.07 11.6±0.1 10.7±0.5 10.5±0.6 Lu 0.51±0.06 0.34±0.03 0.34±0.02 0.40±0.04 0.29±0.02 0.28±0.02 0.49±0.01 0.33±0.02 0.35±0.03 0.24±0.03 0.18±0.02 0.18±0.01 11.1±0.1 10±0 9.88±0.54 Hf 0.21±0.02 0.032±0.028 0.027±0.009 0.19±0.02 0.024±0.017 0.031±0.040 0.23±0.05 0.0093±0.0038 0.012±0.004 0.1±0.0 0.0024±0.0048 0.0026±0.0021 4.73±0.21 5.51±0.56 5.44±0.46 Ta 0.33±0.03 0.28±0.05 0.28±0.02 0.75±0.02 0.57±0.04 0.60±0.02 0.4±0.0 0.25±0.08 0.30±0.03 0.18±0.02 0.10±0.02 0.11±0.01 20.5±5.3 25±3 24.7±2.4 Pb 163±31 218±345 193±90 312±6 435±21 373±10 224±5 267±26 277±26 119±5 157±3 146±3 56.5±1.8 74.6±6.4 73.3±7.2 Th 167±7 132±18 144±9 7.76±0.44 6.94±0.24 7.26±0.19 9.97±0.42 9.21±0.24 9.68±0.24 1.96±0.16 1.63±0.10 1.73±0.03 55.4±1.1 53.6±2.6 52.9±3.1 U 0.07±0.01 0.063±0.019 0.063±0.005 0.03±0.01 0.0043±0.0039 0.0046±0.0011 0.02±0.01 0.0037±0.0026 0.0049±0.0024 0.02±0.01 0.039±0.107 0.0038±0.0017 1.52±0.04 1.67±0.39 1.79±0.42 -
[1] Hori M, Ishikawa T, Nagaishi K, et al. Rare earth elements in a stalagmite from Southwestern Japan: A potential proxy for chemical weathering[J]. Geochemical Journal, 2014, 48(1): 73−84. doi: 10.2343/geochemj.2.0287
[2] Chen W, Simonetti A. In-situ determination of major and trace elements in calcite and apatite, and U-Pb ages of apatite from the Oka carbonatite complex: Insights into a complex crystallization history[J]. Chemical Geology, 2013, 353: 151−172. doi: 10.1016/j.chemgeo.2012.04.022
[3] Chen C F, Liu Y S, Foley S F, et al. Carbonated sediment recycling and its contribution to lithospheric refertilization under the Northern North China Craton[J]. Chemical Geology, 2017, 466: 641−653. doi: 10.1016/j.chemgeo.2017.07.016
[4] Webb G E, Kamber B S. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta, 2000, 64(9): 1557−1565. doi: 10.1016/S0016-7037(99)00400-7
[5] Chen L, Liu Y S, Hu Z C, et al. Accurate determinations of fifty-four major and trace elements in carbonate by LA-ICP-MS using normalization strategy of bulk components as 100%[J]. Chemical Geology, 2011, 284(3-4): 283−295.
[6] Sun D Y, Liu J, Fan C Z, et al. New CGSP carbonate matrix reference materials for LA-ICP-MS analysis[J]. Geostandards and Geoanalytical Research, 2023, 47(1): 7−22. doi: 10.1111/ggr.12460
[7] Desmarchelier J M, Hellstrom J C, McCulloch M T. Rapid trace element analysis of speleothems by ELA-ICP-MS[J]. Chemical Geology, 2006, 231(1-2): 102−117. doi: 10.1016/j.chemgeo.2006.01.002
[8] Fairchild I J, Treble P C. Trace elements in speleothems as recorders of environmental change[J]. Quaternary Science Reviews, 2009, 28(5-6): 449−468. doi: 10.1016/j.quascirev.2008.11.007
[9] Treble P, Shelley J, Chappell J. Comparison of high resolution sub-annual records of trace elements in a modern (1911—1992) speleothem with instrumental climate data from Southwest Australia[J]. Earth and Planetary Science Letters, 2003, 216(1-2): 141−153. doi: 10.1016/S0012-821X(03)00504-1
[10] Smrzka D, Zwicker J, Bach W, et al. The behavior of trace elements in seawater, sedimentary pore water, and their incorporation into carbonate minerals: A review[J]. Facies, 2019, 65: 1−47. doi: 10.1007/s10347-018-0543-2
[11] Kawabe I, Kitahara Y, Naito K. Non-chondritic yttrium/holmium ratio and lanthanide tetrad effect observed in pre-Cenozoic limestones[J]. Geochemical Journal, 1991, 25(1): 31-44.
[12] 陈琳莹, 李崇瑛, 陈多福. 碳酸盐岩中碳酸盐矿物稀土元素分析方法进展[J]. 矿物岩石地球化学通报, 2012, 31(2): 177−183. doi: 10.3969/j.issn.1007-2802.2012.02.012 Chen L Y, Li C Y, Chen D F. Progress of analytical methods of rare earth elements of carbonate minerals in carbonate rocks[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31(2): 177−183. doi: 10.3969/j.issn.1007-2802.2012.02.012
[13] Akagi T, Hashimoto Y, Fu F, et al. Variation of the distribution coefficients of rare earth elements in modern coral-lattices: Species and site dependencies[J]. Geochimica et Cosmochimica Acta, 2004, 68(10): 2265−2273. doi: 10.1016/j.gca.2003.12.014
[14] Tan L, Shen C C, Cai Y, et al. Trace-element variations in an annually layered stalagmite as recorders of climatic changes and anthropogenic pollution in Central China[J]. Quaternary Research, 2014, 81(2): 181−188. doi: 10.1016/j.yqres.2013.12.001
[15] Arkhipkin A I, Schuchert P C, Danyushevsky L. Otolith chemistry reveals fine population structure and close affinity to the Pacific and Atlantic oceanic spawning grounds in the migratory southern blue whiting (Micromesistius Australis)[J]. Fisheries Research, 2009, 96(2-3): 188−194. doi: 10.1016/j.fishres.2008.11.002
[16] Jenner F E, Arevalo R D. Major and trace element analysis of natural and experimental igneous systems using LA-ICP-MS[J]. Elements, 2016, 12(5): 311−316. doi: 10.2113/gselements.12.5.311
[17] 刘勇胜, 胡兆初, 李明, 等. LA-ICP-MS 在地质样品元素分析中的应用[J]. 科学通报, 2013, 58(36): 3753−3769. doi: 10.1360/csb2013-58-36-3753 Liu Y S, Hu Z C, Li M, et al. Applications of LA-ICP-MS in the elemental analyses of geological samples[J]. Chinese Science Bulletin, 2013, 58(36): 3753−3769. doi: 10.1360/csb2013-58-36-3753
[18] 罗涛, 胡兆初. 激光剥蚀电感耦合等离子体质谱副矿物 U-Th-Pb 定年新进展[J]. 地球科学, 2022, 47(11): 4122−4144. Luo T, Hu Z C. Recent advances in U-Th-Pb dating of accessory minerals by laser ablation inductively coupled plasma mass spectrometry Earth Science[J]. Earth Science, 2022, 47(11): 4122−4144.
[19] Liao X H, Hu Z C, Luo T, et al. Determination of major and trace elements in geological samples by laser ablation solution sampling-inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(6): 1126−1134. doi: 10.1039/C9JA00027E
[20] Luo T, Wang Y, Li M, et al. Determination of major and trace elements in alloy steels by nanosecond and femtosecond laser ablation ICP-MS with non-matrix-matched calibration[J]. Atomic Spectroscopy, 2020, 41(1): 11−19. doi: 10.46770/AS.2020.01.002
[21] Mertz-Kraus R, Brachert T, Jochum K, et al. LA-ICP-MS analyses on coral growth increments reveal heavy winter rain in the Eastern Mediterranean at 9Ma[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 273(1-2): 25−40. doi: 10.1016/j.palaeo.2008.11.015
[22] Thompson J A, Thompson J M, Goemann K, et al. Use of non-matrix matched reference materials for the accurate analysis of calcium carbonate by LA-ICP-MS[J]. Geostandards and Geoanalytical Research, 2022, 46(1): 97−115. doi: 10.1111/ggr.12405
[23] Jochum K P, Scholz D, Stoll B, et al. Accurate trace element analysis of speleothems and biogenic calcium carbonates by LA-ICP-MS[J]. Chemical Geology, 2012, 318: 31−44.
[24] Strnad L, Ettler V, Mihaljevic M, et al. Determination of trace elements in calcite using solution and laser ablation ICP‐MS: Calibration to NIST SRM glass and USGS MACS carbonate, and application to real landfill calcite[J]. Geostandards and Geoanalytical Research, 2009, 33(3): 347−355. doi: 10.1111/j.1751-908X.2009.00010.x
[25] Bourdin C, Douville E, Genty D. Alkaline-earth metal and rare-earth element incorporation control by ionic radius and growth rate on a stalagmite from the Chauvet Cave, Southeastern France[J]. Chemical Geology, 2011, 290(1-2): 1−11. doi: 10.1016/j.chemgeo.2011.08.006
[26] Wu C C, Burger M, Günther D, et al. Highly-sensitive open-cell LA-ICPMS approaches for the quantification of rare earth elements in natural carbonates at parts-per-billion levels[J]. Analytica Chimica Acta, 2018, 1018: 54−61. doi: 10.1016/j.aca.2018.02.021
[27] Russo R E, Mao X, Gonzalez J J, et al. Femtosecond laser ablation ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2002, 17(9): 1072−1075. doi: 10.1039/B202044K
[28] Fernández B, Claverie F, Pécheyran C, et al. Direct analysis of solid samples by fs-LA-ICP-MS[J]. TrAC Trends in Analytical Chemistry, 2007, 26(10): 951−966. doi: 10.1016/j.trac.2007.08.008
[29] Bian Q, Garcia C C, Koch J, et al. Non-matrix matched calibration of major and minor concentrations of Zn and Cu in brass, aluminium and silicate glass using NIR femtosecond laser ablation inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2006, 21(2): 187−191. doi: 10.1039/B513690C
[30] Horn I, von Blanckenburg F. Investigation on elemental and isotopic fractionation during 196nm femtosecond laser ablation multiple collector inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2007, 62(4): 410−422. doi: 10.1016/j.sab.2007.03.034
[31] Neff C, Becker P, Günther D. Parallel flow ablation cell for short signal duration in LA-ICP-TOFMS element imaging[J]. Journal of Analytical Atomic Spectrometry, 2022, 37(3): 677−683. doi: 10.1039/D1JA00421B
[32] ,Becker P, Günther D. Reducing sample amount for forensic glass analysis using LA-ICP-TOFMS and multivariate statistics[J]. Journal of Analytical Atomic Spectrometry, 2023, 38: 1704-1712.
[33] Hu Z C, Liu Y S, Gao S, et al. A local aerosol extraction strategy for the determination of the aerosol composition in laser ablation inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(9): 1192−1203. doi: 10.1039/b803934h
[34] Luo T, Wang Y, Hu Z C, et al. Further investigation into ICP-induced elemental fractionation in LA-ICP-MS using a local aerosol extraction strategy[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(4): 941−949. doi: 10.1039/C4JA00483C
[35] 冯彦同, 张文, 胡兆初, 等. 激光剥蚀电感耦合等离子体质谱仪新分析模式及其在地球科学中的应用[J]. 中国科学: 地球科学, 2022, 52(1): 98-121. Feng Y T, Zhang W, Hu Z C, et al. A new analytical mode and application of the laser ablation inductively coupled plasma mass spectrometer in the Earth sciences[J]. Science China Earth Sciences, 2022, 65(1): 182−196.
[36] Luo T, Hu Z C, Zhang W, et al. Reassessment of the influence of carrier gases He and Ar on signal intensities in 193nm excimer LA-ICP-MS analysis[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(10): 1655−1663. doi: 10.1039/C8JA00163D
[37] Jochum K P, Weis U, Stoll B, et al. Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines[J]. Geostandards and Geoanalytical Research, 2011, 35(4): 397−429. doi: 10.1111/j.1751-908X.2011.00120.x
[38] Fietzke J, Liebetrau V, Günther D, et al. An alternative data acquisition and evaluation strategy for improved isotope ratio precision using LA-MC-ICP-MS applied to stable and radiogenic strontium isotopes in carbonates[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(7): 955−961. doi: 10.1039/b717706b
[39] Pettke T, Oberli F, Audétat A, et al. Quantification of transient signals in multiple collector inductively coupled plasma mass spectrometry: Accurate lead isotope ratio determination by laser ablation of individual fluid inclusions[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(3): 475−492. doi: 10.1039/C0JA00140F
[40] Kappel S, Boulyga S, Dorta L, et al. Evaluation strategies for isotope ratio measurements of single particles by LA-MC-ICPMS[J]. Analytical and Bioanalytical Chemistry, 2013, 405: 2943−2955. doi: 10.1007/s00216-012-6674-3
[41] 罗涛. LA-ICP-MS 分析过程中 ICP 引起的元素分馏效应研究[D]. 武汉: 中国地质大学(武汉), 2015. Luo T. Further investigation into ICP-induced elemental fractionation in LA-ICP-MS using a local aerosol extraction strategy[D]. Wuhan: China University of Geosciences (Wuhan), 2015.
[42] Hu Z C, Gao S, Liu Y S, et al. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(8): 1093−1101. doi: 10.1039/b804760j
[43] Hu Z C, Liu Y S, Gao S, et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(9): 1391−1399. doi: 10.1039/c2ja30078h
[44] Wu S T, Yang M, Yang Y H, et al. Improved in situ zircon U-Pb dating at high spatial resolution (5-16μm) by laser ablation-single collector-sector field-ICP-MS using Jet sample and X skimmer cones[J]. International Journal of Mass Spectrometry, 2020, 456: 116394. doi: 10.1016/j.ijms.2020.116394
[45] Yuan H L, Bao Z A, Chen K Y, et al. Improving the sensitivity of a multi-collector inductively coupled plasma mass spectrometer via expansion-chamber pressure reduction[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(5): 1011−1017. doi: 10.1039/C8JA00448J
[46] Longerich H P, Jackson S E, Günther D. Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation[J]. Journal of Analytical Atomic Spectrometry, 1996, 11(9): 899−904. doi: 10.1039/JA9961100899
-
期刊类型引用(2)
1. 王大钊,梁丰,王艳军,李凯旋,刘家军,冷成彪. 斑岩系统中低熔点亲铜元素与稀贵金属赋存状态和富集机制研究:以藏东南普朗超大型斑岩Cu-Au矿床为例. 岩石学报. 2025(02): 621-641 . 百度学术
2. 刘家军,王大钊,翟德高,高燊,郑波,王佳新,张斌,王冠智,王泽琳,汪林炜,翁国明. 低熔点亲铜元素(LMCE)在金成矿中的作用及促进金富集的机理. 矿床地质. 2024(04): 712-734 . 百度学术
其他类型引用(0)