• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

激光剥蚀电感耦合等离子体质谱法测定碳酸盐矿物中元素组成

罗涛, 卿丽媛, 刘金雨, 张文, 何焘, 胡兆初

罗涛,卿丽媛,刘金雨,等. 激光剥蚀电感耦合等离子体质谱法测定碳酸盐矿物中元素组成[J]. 岩矿测试,2023,42(5):996−1006. DOI: 10.15898/j.ykcs.202308020117
引用本文: 罗涛,卿丽媛,刘金雨,等. 激光剥蚀电感耦合等离子体质谱法测定碳酸盐矿物中元素组成[J]. 岩矿测试,2023,42(5):996−1006. DOI: 10.15898/j.ykcs.202308020117
LUO Tao,QING Liyuan,LIU Jinyu,et al. Accurate Determination of Elemental Contents in Carbonate Minerals with Laser Ablation Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis,2023,42(5):996−1006. DOI: 10.15898/j.ykcs.202308020117
Citation: LUO Tao,QING Liyuan,LIU Jinyu,et al. Accurate Determination of Elemental Contents in Carbonate Minerals with Laser Ablation Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis,2023,42(5):996−1006. DOI: 10.15898/j.ykcs.202308020117

激光剥蚀电感耦合等离子体质谱法测定碳酸盐矿物中元素组成

基金项目: 国家重点研发计划项目(2021YFC2903003)课题“战略性矿产微区原位分析技术及应用”;国家自然科学基金项目(41903015);地质过程与矿产资源国家重点实验室专项
详细信息
    作者简介:

    罗涛,博士,副研究员,主要从事激光剥蚀等离子体质谱机理、元素及同位素分析和副矿物U-Th-Pb年代学研究。E-mail:luotao11@cug.edu.cn

  • 中图分类号: P575;P578.6;O657.63

Accurate Determination of Elemental Contents in Carbonate Minerals with Laser Ablation Inductively Coupled Plasma-Mass Spectrometry

  • 摘要:

    碳酸盐中微量元素信息可为探究古环境、古气候演化、壳幔相互作用以及成岩成矿等重要地质作用过程提供关键约束,其微量元素含量的准确测定一直备受学者关注。激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)可提供碳酸盐矿物中微量元素含量的精细信息,而常规激光测试方法严重制约着碳酸盐矿物微量元素分析的空间分辨率和低含量元素的检测能力。相比于常规剥蚀池条件时的低频率分析,本研究通过采用气溶胶局部提取快速清洗剥蚀池结合高频率激光剥蚀的方式,快速提升激光微区分析瞬时信号强度,有效地提升峰形信号灵敏度(约13倍),碳酸盐激光微区元素检出限降低5~10倍。在此激光分析模式下,分别采用纳秒和飞秒激光剥蚀联用四极杆等离子体质谱仪(LA-Q-ICP-MS),以NIST610玻璃为外标,Ca为内标开展了较小激光剥蚀束斑(32μm)条件下碳酸盐矿物中微量元素(亲石元素、亲铁和亲硫元素)分析。结果表明,纳秒和飞秒激光分析碳酸盐矿物标样CGSP-A、CGSP-B、CGSP-C、CGSP-D和MACS-3获得的亲石元素(如Sc、Sr、Y、Ba、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Th等)测试值与推荐值在误差范围内一致;而亲铁和亲硫元素(如Ni、Cu、Zn、As、Cd、Sn、Sb和Pb)测试结果则存在较大偏差(大于20%),这可能与本研究选用的高频激光剥蚀和较小剥蚀束斑(32µm)造成显著的“Downhole”分馏效应有关。本研究通过研制新型激光剥蚀池,改变激光剥蚀方式,即采用气溶胶局部提取剥蚀池和高频率剥蚀方法可有效地提升碳酸盐矿物微量元素(如亲石元素)分析的空间分辨率和低含量元素检测能力,有利于促进碳酸盐矿物在地质环境等领域的广泛应用。

  • 磷灰石是各种地质环境中广泛存在的副矿物1,通常含有一定数量的铀(几μg/g到数百μg/g以上)2-3,因此磷灰石U-Pb定年常用于限定成岩成矿和化石形成等重要地质作用时代4-8。激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)因其样品制备简单、分析效率高、可提供微区原位信息等优点9-11,是开展副矿物U-Pb年龄微区分析的重要手段之一412-14。对于LA-ICP-MS磷灰石U-Pb定年测定,Chew等12于2011年采用激光线扫描剥蚀法联合溶液校正建立LA-ICP-MS磷灰石U-Pb定年方法,此后该技术在磷灰石U-Pb年龄微区分析中应用广泛15-19

    由于磷灰石中铀含量通常较低3,采用激光微束分析时进样量少,其Pb/U分析精度是首要考虑的问题。Thomson等20采用激光剥蚀联用MC-ICP-MS分析,分别用法拉第杯接收238U、232Th、208Pb、207Pb和206Pb,在激光剥蚀束斑65μm时获得的磷灰石标准样品MAD的206Pb/238U单点分析精度为4%~40%(2SD)。Chew等21采用四极杆电感耦合等离子体质谱开展磷灰石U-Pb年龄分析,在剥蚀束斑50μm时获得的Durango磷灰石206Pb/238U单点分析精度为8%~10% (2SD),而在束斑130μm时才达到满足激光分析要求的精度(约2%)。因此,开展激光微区磷灰石U-Pb定年分析时,评估仪器灵敏度对分析精度的影响是获得准确精密分析结果的基础。另一方面,磷灰石在结晶过程中矿物晶格中可能混入Pb元素,此类Pb不由U、Th等放射性衰变产生,即初始铅或普通铅4。不同成因的磷灰石普遍含有普通铅,已报道的用于磷灰石U-Pb定年微区分析的标准样品也均含有不同程度的普通铅20-21。U-Pb定年分析标样需具有均匀的206Pb/238U和207Pb/206Pb比值,当磷灰石标样中有不同含量的普通铅时,标样实测的206Pb/238U和207Pb/206Pb比值是其放射性成因比值和不同含量普通铅的混合信息,若直接用于Pb/U分馏和仪器漂移校正,则会对磷灰石样品的定年结果和初始铅组成造成影响。前人开展磷灰石U-Pb定年分析时均采用基体匹配的磷灰石MAD20作外标校正分析未知样品年龄,研究者多采用207Pb法先对MAD进行普通铅校正16。由于MAD标样普通铅含量低(约1%的年龄不谐和)20,采用207Pb法可获得准确的分析结果,但该方法不适用于普通铅含量较高的标样分析。随着磷灰石原位U-Pb定年技术的发展和微区分析实验室数量的增加,低普通铅磷灰石MAD逐渐缺乏。为获得准确的激光微区U-Pb定年结果,因此需要对磷灰石标样中普通铅校正方法进行系统研究和开发非基体匹配分析方法。对当前特定副矿物U-Pb年龄微区分析高质量标样极度匮乏的问题,部分学者尝试开发了非基体匹配分析方法4。如以储量丰富、不含普通铅的锆石标样校正分析榍石22和金红石23等。Luo等采用水蒸气辅助激光剥蚀方法实现以锆石或NIST玻璃作为外标分析榍石13、独居石13、磷钇矿13、氟碳铈矿24以及黑钨矿25等副矿物的U-Th-Pb年龄。采用非基体匹配分析方法,不仅可以有效地解决基体匹配标样缺乏的问题,也可一定程度地避免标样中普通铅组成对分析结果造成的偏差。

    因此,针对当前激光微区磷灰石U-Pb定年分析时标样中普通铅影响分析结果准确度和精密度等问题,本文将定量评估分析灵敏度对磷灰石U-Pb定年分析精度的影响,对比研究磷灰石标样中普通铅组成对分析结果造成的偏差;尝试建立磷灰石非基体匹配分析方法以消除普通铅对分析结果的影响,建立了准确的高精度激光微区磷灰石U-Pb定年新方法。

    本实验在中国地质大学(武汉)地质过程与矿产资源国家重点实验室进行,采用Agilent 7900四极杆等离子体质谱仪(Agilent Technology,Tokyo,Japan)联合相干公司的193nm准分子纳秒激光(GeoLas HD,MicroLas Göttingen,Germany)。详细的实验参数列于表1

    表  1  LA-ICP-MS磷灰石U-Pb定年实验仪器参数
    Table  1.  Instrumental parameters for LA-ICP-MS U-Pb dating of apatite.
    LA参数 GeoLas HD 193nm准分子激光
    波长193nm
    激光能量密度10J/cm2
    剥蚀频率5Hz
    剥蚀时间50s
    背景时间20s
    He流速650mL/min
    束斑直径60~90μm
    ICP-MS参数Agilent 7900型
    等离子体功率1400W
    样品气0.86L/min
    检测元素29Si, 42Ca,49Ti,51V,89Y, 93Nb, 139La,140Ce,
    141Pr,146Nd,147Sm,151Eu,157Gd,159Tb,163Dy,
    165Ho,166Er,169Tm,173Yb,175Lu,179Hf,181Ta,
    201Hg,204Pb,206Pb,207Pb,208Pb,232Th,238U
    下载: 导出CSV 
    | 显示表格

    MAD磷灰石来自于马达加斯加的“1st Mine Discovery”。ID-TIMS年龄测试出两个年龄486±0.85Ma和474.25±0.41Ma,Th/U值约为15~30。MAD磷灰石是目前激光微区磷灰石U-Pb年龄分析常用的外标226,本研究中基体匹配分析实验也采用MAD作为年龄校正标样。Durango磷灰石产于墨西哥杜兰戈市的露天铁矿中,磷灰石的形成与长英质侵入体有关,产出于火山口的两个熔结凝灰岩之间27,同时结晶的四个单晶透长-歪长石的40Ar-39Ar年龄为31.44±0.18Ma (2SD) 27。Durango磷灰石由于年轻且U含量较低,Pb同位素难以准确测定,在测试中需要采用大束斑测量,并固定初始铅组成,或分析较大范围区域从而获得更为广泛的Pb/U组成分布21。Otter Lake磷灰石产于加拿大魁北克省,该地区的岩石经历了多期构造活动,产自该地区的磷灰石样品通常呈深绿色-棕色长六角棱柱体,对同一磷灰石晶体使用溶液法测试其铅同位素,在207Pb/204Pb-206Pb/204Pb图解中获得的等时线年龄为913±7Ma (2SD,MSWD=0.24),该年龄作为Otter Lake磷灰石推荐年龄被广泛采用2128。为解决基体匹配标样缺乏的问题,研究者们常采用美国国家标准与技术研究所(NIST)的合成玻璃NIST610、NIST612或NIST61429作为U-Pb年龄分析时的外标校正仪器分馏和信号漂移1330-32,本研究选用U含量与磷灰石较为相当的NIST612玻璃作为非基体匹配分析时的外部校正标样。数据处理采用Iolite软件33和Excel程序,U-Pb谐和图由Isoplot R软件绘制34

    U-Pb定年的测试精度取决于U和Pb的信号强度,而信号强度与样品中U、Pb的含量及进样量有关。由于含普通铅矿物的U-Pb年龄需要对其进行普通铅校正,因此对于磷灰石U-Pb定年来说,除了关注Pb/U的分析不确定度外,还需注意Pb/Pb的分析不确定度。而U-Pb体系中的比值精度主要取决于低含量元素的信号强度。图1展示了在不同激光条件下同时测试磷灰石参考物质MAD和Durango获得U-Pb年龄的内部不确定度与Pb信号强度的关系。对于206Pb/238U,当206Pb计数达到6000cps时,其不确定度可以缩小到2%;当206Pb计数超过6000cps时,其不确定度下降变缓,超过20000cps时可以达到~1%的不确定度。对于207Pb/206Pb,其不确定度主要取决于含量更低的207Pb的信号强度,因此其不确定度较206Pb/238U相比偏高。当207Pb计数为~600cps时,其不确定度可以达到~5%,随后缓慢降低,直到~2400cps时达到~2%的水平。从图1还可以看到,对于年轻的样品Durango,由于其Pb含量过低,U-Pb年龄的内部精度始终较低。

    图  1  206Pb/238U和207Pb/206Pb年龄精度随Pb信号强度的变化
    (a)206Pb/238U年龄;(b) 207Pb/206Pb年龄。
    Figure  1.  The precision of 206Pb/238U and 207Pb/206Pb ages varing with Pb signal intensity: (a) 206Pb/238U age; (b) 207Pb/206Pb age.

    副矿物U-Pb定年测试一般采用标样、样品间插分析以校正元素分馏和仪器漂移。而当外部校正标样中含一定程度普通铅时,需要先对标样进行普通铅扣除,使用经过校正后的Pb/U比值对未知样品进行校正。本研究对比了磷灰石MAD作外标时直接校正和选用不同方法进行普通铅校正后对待测样品分析结果的影响。

    图2展示在不对标样MAD进行普通铅校正情况下,直接用其校正监控样品的结果。对于Otter Lake,在不固定普通铅组成得到的Tera-Wasserburg谐和图交点年龄与推荐值的偏差在1%内,但是初始铅组成与推荐值产生了较大偏差,偏低36%;固定Tera-Wasserburg谐和图普通铅组成(207Pb/206Pb=0.9,由地球铅同位素演化模型35确定),交点年龄偏差为2.5%。对于Durango磷灰石,在不固定初始铅组成(207Pb/206Pb=0.84)得到的Tera-Wasserburg谐和图交点年龄偏差达到了30%,初始铅组成与推荐值产生了较大偏差,偏低60%;固定Tera-Wasserburg谐和图普通铅组成,交点年龄偏差为6%。研究结果表明使用含普通铅的磷灰石标样作为外标时,若不对其进行普通铅校正,最终获得的被测样品年龄和初始铅组成均会产生较大的系统偏差。

    图  2  使用磷灰石MAD作为外标直接校正获得的磷灰石样品U-Pb年龄
    (a) 磷灰石Otter Lake,不固定初始铅同位素;(b) 磷灰石Otter Lake,固定初始铅同位素;(c) 磷灰石Durango,不固定初始铅同位素;(d) 磷灰石Durango,固定初始铅同位素。
    Figure  2.  U-Pb ages results obtained by calibrating with apatite MAD as the external standard: (a) Apatite Otter Lake, without anchored initial Pb isotopic composition; (b) Apatite Otter Lake, with anchored initial Pb isotopic composition; (c) Apatite Durango, without anchored initial Pb isotopic composition; (d) Apatite Durango, with anchored initial Pb isotopic composition.

    对含普通铅的标准样品,常需对标样进行普通铅校正,再采用经过校正后的各标样对未知样品进行元素分馏和仪器漂移校正4。本研究选用207Pb法先对磷灰石标样MAD进行校正4,其校正原理和操作步骤简述如下。用于分馏校正的磷灰石标样中含普通铅时,需先对标样中普通铅进行校正。

    若采用207Pb法校正:(a)先对每个标样测试点的U、Pb信号扣除背景;(b)对每个标样测试点进行普通铅校正,计算公式如下所示。

    $$ ^{206}\mathrm{P}\mathrm{b}_{\mathrm{r}}=^{206}\mathrm{P}\mathrm{b}_{\mathrm{m}}\times(1-\mathrm{\mathit{f}}_{206}) $$ (1)
    $$ ^{207}\mathrm{P}\mathrm{b}_{\mathrm{r}}=^{207}\mathrm{P}\mathrm{b}_{\mathrm{m}}-^{206}\mathrm{P}\mathrm{b}_{\mathrm{m}}\times\left(^{207}\mathrm{P}\mathrm{b}/^{206}\mathrm{P}\mathrm{b}\right)_{\mathrm{c}}\times f_{206} $$ (2)
    $$ \mathit{\mathrm{\mathit{f}}}_{206}=\frac{\left(^{207}\mathrm{Pb}/^{206}\mathrm{Pb}\right)_{\mathrm{m}}-\left(^{207}\mathrm{Pb}^*/^{206}\mathrm{Pb}^*\right)}{\left(^{207}\mathrm{Pb}/^{206}\mathrm{Pb}\right)_{\mathrm{c}}-\left(^{207}\mathrm{Pb}^*/^{206}\mathrm{Pb}^*\right)} $$ (3)

    式中:206Pbr为普通铅校正后的瞬时206Pb信号;206Pbm为测试的瞬时206Pb信号;207Pbr为普通铅校正后的瞬时207Pb信号;207Pbm为测试的瞬时207Pb信号;(207Pb/206Pb)m为测试的207Pb/206Pb比值( 207Pb/206Pb)c为初始的207Pb/206Pb比值。

    (c)经过普通铅校正后的各标样点再用于Pb/U分馏校正。具体校正步骤可在Iolite软件33中的VizualAge UComPbine功能实现。

    图3展示了MAD经过普通铅校正后分析磷灰石Otter Lake和Durango的结果。对于Otter Lake,在不固定普通铅组成得到的Tera-Wasserburg谐和图交点年龄偏差为−1.5%,普通铅组成与推荐值的偏差为−10%;固定Tera-Wasserburg谐和图普通铅组成,交点年龄偏小于1%。对于Durango磷灰石,在不固定普通铅组成得到的Tera-Wasserburg谐和图交点年龄偏差为−31.4%,普通铅组成与推荐值偏差为−45.4%;固定Tera-Wasserburg谐和图普通铅组成,交点年龄偏差为−1.7%。磷灰石标样MAD先经过普通铅校正,后校正获得的磷灰石Otter Lake和Durango年龄与其推荐值相比偏差均在±2%以内,达到了目前国际上激光剥蚀微区分析磷灰石U-Pb定年的普遍水平162136-37

    图  3  使用207Pb法校正MAD普通铅后获得的磷灰石样品的U-Pb年龄
    (a) 磷灰石Otter Lake,不固定初始铅同位素;(b) 磷灰石Otter Lake,固定初始铅同位素;(c) 磷灰石Durango,不固定初始铅同位素;(d) 磷灰石Durango,固定初始铅同位素。
    Figure  3.  U-Pb age results obtained after prior correction for common Pb in MAD with 207Pb method: (a) Apatite Otter Lake, without anchored initial Pb isotopic composition; (b) Apatite Otter Lake, with anchored initial Pb isotopic composition; (c) Apatite Durango, without anchored initial Pb isotopic composition; (d) Apatite Durango, with anchored initial Pb isotopic composition.

    207Pb法假定样品的206Pb/238U和207Pb/235U年龄谐和,其数学校正原理可在Tera-Wasserburg图解上清晰呈现4。因此有学者采用标样测试点构筑的不一致线在Tera-Wasserburg图解下交点与其推荐值之比进行未知样品的分馏校正432。其操作步骤为:①分别计算出由所有测试点构筑的不一致线与X轴的交点;②计算经过标样推荐年龄的不一致线与X轴的交点,两交点比值即为Pb/U分馏校正系数;③将该系数乘以待测样品的Pb/U比值便得到待测样品经过校正后的Pb/U比值,而未知样品的207Pb/206Pb比值则由Pb同位素组成均匀的标样(如NIST玻璃)直接校正获得。

    图4展示了使用Tera-Wasserburg图下交点法校正得到的结果。将未经普通铅校正的磷灰石MAD测试点固定上交点于0.87(由地球铅同位素演化模型35确定),其不一致线与X轴的交点为18.33,将MAD推荐年龄(475Ma)20也投入图中,得到经过推荐年龄的不一致线与X轴的交点为14.14 (图4a),将两者的比值(0.79)校正到磷灰石Otter Lake和Durango各测试点(图4中b,c),最终得到的Tera-Wasserburg谐和图交点年龄分别为929.0±7.1Ma (2σ,MSWD=1.2)和29.3±0.5Ma(2σ,MSWD=1.0),与其各自推荐值偏差分别为1.7%和6.6%。磷灰石Durango的结果呈现较大偏差,可能是由于其普通铅含量较高,分析获得的Pb/U比值不够分散,因此其下交点年龄出现较大偏差。这也说明为获得准确的分析结果,采用Tera-Wasserburg图解校正法时,分析样品需有较大范围的Pb/U比值。

    图  4  Tera-Wasserburg图解法校正获得磷灰石U-Pb年龄
    Figure  4.  U-Pb ages of apatite obtained by Tera-Wasserburg concordia correction method: (a) MAD; (b) Otter Lake; (c) Durango.
    (a) MAD; (b) Otter Lake; (c) Durango。

    水蒸气辅助激光剥蚀法现已广泛应用于榍石、独居石、磷钇矿和氟碳铈矿等副矿物U-Th-Pb年龄的非基体匹配分析413。为避免标样中普通铅对分析结果造成的影响,本研究也采用水蒸气辅助激光剥蚀方法,以NIST612玻璃作为外标,校正磷灰石MAD、Otter Lake和Durango的U-Pb年龄。水蒸气引入方法在本团队以往研究中已有详细介绍41324,本研究通过在剥蚀池前引入4.0mg/min水蒸气,选用NIST612玻璃作为外标直接校正磷灰石标样,分析结果如图5所示。磷灰石MAD、Otter Lake和Durango在Tera-Wasserburg图解下交点年龄分别为474.7±2.7Ma (2σ,MSWD=1.6)、934.8±2.1Ma(2σ,MSWD=2.1)和31.2±1.2Ma (2σ,MSWD=1.6),与其推荐值均在误差范围内一致。

    图  5  以NIST612玻璃作为外标分析获得的磷灰石U-Pb年龄
    Figure  5.  U-Pb ages of apatite obtained by using NIST612 glass as the external standard: (a) MAD; (b) Otter Lake; (c) Durango.
    (b) MAD; (b) Otter Lake; (c) Durango。

    本研究为获得准确的磷灰石U-Pb年龄,分别采用磷灰石MAD和NIST612玻璃作为外标校正分析,并对比了207Pb法和Tera-Wasserburg图解法对MAD标样中普通铅的校正结果(表2)。由于测试所得磷灰石Otter Lake和Durango的Pb/U比值较为集中,且含较高程度普通铅,此处仅列出固定普通铅时计算的年龄结果。磷灰石MAD作为外标直接校正时,固定初始铅组成,获得的Otter Lake下交点年龄与推荐值的偏差为2.5%;Durango磷灰石的下交点年龄与推荐值的偏差为6%。使用207Pb法先对磷灰石标样MAD进行普通铅校正,获得的Otter Lake和Durango的交点年龄与其推荐值的偏差分别为0.03%和1.7%。采用Tera-Wasserburg图解法校正MAD中普通铅后获得的Otter Lake和Durango的交点年龄与其推荐值的偏差分别为1.7%和6.6%,其中Durango的结果呈现较大偏差,可能因为分析点的Pb/U比值不够分散,获得的Tera-Wasserburg图解下交点有较大偏离导致。以NIST612玻璃作为外标,测试的磷灰石MAD、Otter Lake和Durango在Tera-Wasserburg图解下交点年龄分别为474.7±2.7Ma(2σ,MSWD=1.6)、934.8±2.1Ma(2σ,MSWD=2.1)和31.2±1.2Ma(2σ,MSWD=1.6),与其推荐值的偏差分别为0.1%、2.3%和0.8%。虽然本研究中采用207Pb法和Tera-Wasserburg图解法都可以获得磷灰石Otter Lake和Durango准确的U-Pb年龄,但在标样普通铅含量较高时,采用207Pb法可能会存在过校正或校正不足的情况,造成样品年龄偏差,因此207Pb法适用于普通铅含量较低的标样校正;而Tera-Wasserburg图解法需要测试标样的Pb/U比值分散程度较大,构筑不一致线以获得准确的下交点,因此Tera-Wasserburg图解法适用于标样Pb/U比值分散程度较大的情况,应用范围广,但操作较为复杂。采用水蒸气辅助激光剥蚀非基体匹配分析,可避免标样中普通铅对分析结果的影响,同时有效地克服磷灰石标样匮乏的瓶颈。

    表  2  不同测量条件下获得的磷灰石Tera-Wasserburg谐和图下交点年龄与推荐值的偏差
    Table  2.  Deviations of Tera-Wasserburg values and recommended values for apatite U-Pb age obtained under different measurement conditions.
    激光条件外标普通铅校正方法分析样品Tera-Wasserburg谐和图下交点年龄与
    推荐值的偏差(%)
    60μm,5HzMAD无普通铅校正Otter Lake2.5
    Durango6.0
    60μm,5HzMAD207PbOtter Lake0.03
    Durango1.7
    60μm,5HzMADTera-Wasserburg图解法Otter Lake1.7
    Durango6.6
    60μm,5HzNIST612无普通铅校正MAD0.1
    Otter Lake2.3
    Durango0.8
    下载: 导出CSV 
    | 显示表格

    系统评价了磷灰石标样中不可避免的普通铅组成对U-Pb定年分析结果的影响。采用磷灰石MAD作外标直接开展U-Pb年龄分析,获得的被测样品年龄和初始铅组成均会产生显著的系统偏差(6%)。分别采用207Pb法或Tera-Wasserburg图解法校正标样中普通铅,再使用校正后结果进行元素分馏和仪器漂移校正,最终获得准确的磷灰石U-Pb年龄,测试值与推荐值的相对偏差在2%误差范围内。此外,为完全消除标样中普通铅的影响,本文通过在剥蚀池前引入4.0mg/min水蒸气,实现了以NIST612玻璃作为外标校正磷灰石MAD、Otter Lake和Durango的U-Pb年龄。该方法简单有效,可以缓解激光微区磷灰石U-Pb定年分析高质量标样匮乏的难题。

    本文通过建立基体匹配和非基体匹配分析方法,有效地解决了磷灰石U-Pb定年分析时标样中普通铅对分析结果的影响,成功实现磷灰石U-Pb定年准确分析。未来研究仍需加强低普通铅磷灰石U-Pb定年标准样品研制,促进非基体匹配磷灰石U-Pb定年方法的推广,为磷灰石U-Pb年代学在地球科学研究中的应用提供支撑。

    致谢:感谢审稿人对本文提出的宝贵修改建议。

  • 图  1   定量分析示意图

    (a)飞秒激光高频率剥蚀碳酸盐标准样品MACS-3时Mg,Ca瞬时信号图;(b)线性回归拟合计算Mg/Ca比值。激光剥蚀束斑32µm,剥蚀频率50Hz。

    Figure  1.   Schematic drawing of calibration.

    (a) Magnesium and calcium signal of fs-LA on carbonate MACS-3; (b) The Mg/Ca ratio calculated with linear regression method. Laser ablation was performed with a spot size of 32µm and a repetition rate of 50Hz.

    图  2   气溶胶局部提取和常规剥蚀池纳秒激光单脉冲剥蚀NIST610玻璃时U元素瞬时信号对比图

    (a)气溶胶局部提取;(b)常规剥蚀池。激光剥蚀束斑44µm。

    Figure  2.   Uranium signal profile of single shot ablation on NIST610 glass with local aerosol extraction and normal ablation cell.

    (a) The local aerosol extraction ablation cell; (b) The normal ablation cell. Laser ablation was performed with a spot size of 44µm.

    图  3   纳秒激光高频率剥蚀NIST610玻璃时气溶胶局部提取和常规剥蚀池U元素瞬时信号对比图

    (a)气溶胶局部提取;(b)常规剥蚀池。激光剥蚀束斑32µm,剥蚀频率20Hz。

    Figure  3.   Uranium signal profile obtained with high repetition rates ns-laser ablation on NIST610 glass with local aerosol extraction and normal ablation cell.

    (a) The local aerosol extraction ablation cell; (b) The normal ablation cell. Laser ablation was performed with a spot size of 32µm and a repetition rate of 20Hz.

    图  4   不同激光剥蚀条件下元素检出限

    (a)纳秒激光常规剥蚀(剥蚀频率6Hz)和气溶胶局部提取结合高频率剥蚀(20Hz);(b)飞秒激光常规剥蚀(剥蚀频率10Hz)和高频率剥蚀(100Hz)。

    Figure  4.   The limits of detection obtained under different laser ablation conditions.

    (a) Nanosecond laser ablation with normal repetition rate (6Hz) and local aerosol extraction combined with high repetition rate (20Hz);(b) Femtosecond laser ablation with normal repetition rate (10Hz) and high repetition rate (100Hz).

    图  5   以NIST610玻璃为外标,Ca为内标分析碳酸盐标样CGSP-A、CGSP-B、CGSP-C、CGSP-D和MACS-3结果

    (a)纳秒激光气溶胶局部提取结合高频率剥蚀(20Hz);(b)飞秒激光高频率剥蚀(100Hz)。剥蚀束斑均为32µm。

    Figure  5.   The relative deviations of the measured average concentrations of carbonate reference materials (CGSP-A, CGSP-B, CGSP-C, CGSP-D and MACS-3). The NIST 610 glass was used as an external calibration material and Ca was used as an internal standard.

    (a) Nanosecond laser ablation with local aerosol extraction combined with high repetition rate (20Hz);(b) Femtosecond laser ablation with high repetition rate (100Hz). The laser ablation spot size was 32µm.

    表  1   LA-ICP-MS仪器操作参数

    Table  1   Summary of instrumental operating parameters.

    激光剥蚀系统 Agilent 7900 电感耦合等离子体质谱仪
    工作参数 实验条件 实验条件 工作参数 实验条件
    激光类型 193nm,
    纳秒激光
    257nm,
    飞秒激光
    RF功率 1500W
    剥蚀频率 6Hz,20Hz 10Hz,100Hz 等离子体气流速 15.0L/min
    脉冲宽度 15ns 300fs 辅助气流速 1.0L/min
    能量密度 6J/cm2 2.5J/cm2 采样深度 5.0mm
    束斑大小
    剥蚀模式
    32µm
    单点剥蚀
    32µm
    单点剥蚀
    离子透镜设置 Typical
    剥蚀时间 5s 5s 测量的同位素 43Ca,45Sc,51V,53Cr,55Mn,57Fe,59Co,60Ni,63Cu,66Zn,75As,88Sr,89Y,93Nb,111Cd,118Sn,121Sb,137Ba, 139La,140Ce,141Pr,143Nd,147Sm,151Eu,157Gd,159Tb, 163Dy,165Ho,166Er,169Tm,173Yb,175Lu,178Hf,181Ta, 208Pb,232Th,238U
    驻留时间 4ms
    检测器模式 Dual
    下载: 导出CSV

    表  2   碳酸盐标样LA-ICP-MS分析结果(n=11)

    Table  2   Element concentrations of carbonate reference materials obtained with LA-ICP-MS analysis (n=11).

    元素 CGSP-A CGSP-B CGSP-C CGSP-D MACS-3
    推荐值(µg/g) 纳秒激光测定值
    (µg/g)
    飞秒激光测定值
    (µg/g)
    推荐值(µg/g) 纳秒激光测定值
    (µg/g)
    飞秒激光测定值
    (µg/g)
    推荐值(µg/g) 纳秒激光测定值
    (µg/g)
    飞秒激光测定值
    (µg/g)
    推荐值(µg/g) 纳秒激光测定值
    (µg/g)
    飞秒激光测定值
    (µg/g)
    推荐值(µg/g) 纳秒激光测定值
    (µg/g)
    飞秒激光测定值
    (µg/g)
    Sc 18.1±0.7 14.8±2.3 16.2±0.6 4.39±0.49 3.86±0.21 4.09±0.21 5.09±0.52 3.83±0.25 4.13±0.12 15.7±0.8 14.8±0.5 15.4±0.3 21.0±0.8 19.9±1.1 19.5±1.4
    V 20.4±3.2 20.7±3.6 22.5±1.1 17.6±2.1 16.8±0.7 17.3±0.5 15.5±3.1 12.5±1.4 14.9±1.2 5.41±3.10 4.35±0.17 4.27±0.08 46.3±1.1 57.3±6.0 56.7±5.3
    Cr 25.5±0.9 25.0±5.4 27.6±1.4 25±1 4.65±1.07 6.00±1.75 18.8±2.2 4.87±2.39 5.39±1.33 3.39±0.53 4.09±3.74 2.51±0.23 117±5 142±16 140±15
    Mn 349±852 404±8721 390±1082 257±542 299±2639 287±837 267±232 294±515 306±945 189±232 213±1337 214±300 536±28 615±59 601±52
    Fe 118±3378 818±13633 933±2872 219±3026 158±6282 172±4773 222±3448 137±13175 172±15173 792±1126 659±2973 644±551 112±300 124±1231 123±1146
    Co 5.04±0.15 4.36±0.62 4.56±0.13 0.75±0.07 0.42±0.09 0.46±0.09 0.78±0.06 1.21±0.83 0.99±0.52 2.32±0.21 2.19±0.24 2.02±0.07 57.1±2.0 57.4±4.1 57.1±4.1
    Ni 4.35±1.74 5.16±0.96 5.52±0.28 5.6±1.2 1.37±0.77 2.06±1.38 6.34±1.33 1.39±0.55 2.41±2.89 6.25±1.34 8.36±1.84 7.25±0.69 57.4±4.9 69±4 68.3±4.2
    Cu 2.15±0.29 0.42±0.53 1.34±1.52 3.07±0.11 -1.186±3.266 0.62±0.16 2.26±0.19 0.76±1.20 1.15±0.22 1.37±0.28 0.79±2.93 0.30±0.09 120±5 141±15 137±14
    Zn 517±20 473±65 520±32 36.9±2.2 29.9±6.6 36.7±2.1 92.1±3.0 77.3±8.1 86.4±5.3 17.2±2.7 16.8±5.2 16.7±1.1 111±6 170±19 165±18
    As 3.68±0.41 10.0±2.0 10.4±1.3 5.44±0.49 8.33±0.65 7.42±0.46 3.42±0.34 6.42±0.79 6.42±0.55 3.39±0.35 3.34±0.63 3.39±0.34 44.2±1.4 61.1±7.1 59.8±7.1
    Sr 255±74 251±148 247±110 261±111 289±88 285±76 293±89 302±83 313±85 246±72 263±141 265±38 676±350 711±192 697±368
    Y 108±18 99.1±11.4 103±5 97.1±1.9 91.8±2.5 93.8±2.4 158±7 137±4 145±4 28.3±0.6 26.3±0.8 26.8±0.4 20.6±0.0 20.2±0.7 19.8±1.0
    Nb 3.55±0.24 2.49±0.46 2.69±0.11 4.11±0.49 2.94±0.18 2.95±0.07 3.16±0.35 1.96±0.28 2.47±0.23 0.44±0.07 0.29±0.03 0.28±0.01 35.2±3.1 56.9±5.2 56.6±4.9
    Cd 4.81±0.49 2.66±0.47 3.45±0.51 0.22±0.02 0.1±0.2 0.38±0.32 0.63±0.08 0.26±0.21 0.52±0.08 1.05±0.15 0.49±0.20 0.78±0.10 54.6±2.2 62.4±10.0 60.1±9.2
    Sn 10.1±0.9 12.2±2.7 11.5±0.7 2.7±0.1 3.47±0.32 3.65±0.16 2.26±0.12 2.78±0.47 3.20±0.39 0.39±0.12 1.44±0.42 1.24±0.14 58.1±8.8 56.3±4.8 55.0±4.4
    Sb 0.43±0.12 0.28±0.09 0.27±0.03 1.84±0.22 1.98±0.34 1.87±0.11 0.21±0.04 0.21±0.05 0.22±0.06 0.09±0.05 0.057±0.024 0.051±0.012 20.6±1.1 28.2±3.0 27.6±2.8
    Ba 68.6±1.9 64.8±10.7 62.5±4.4 31.6±1.4 29.4±1.3 29.0±0.9 18.1±0.7 16±1 17.8±0.9 283±17 291±14 290±4 58.7±2.0 63.3±3.0 62.1±3.0
    La 109±36 916±110 966±55 124±4 118±3 117±3 225±6 203±7 217±6 62.3±1.7 57±2 61.0±0.7 10.4±0.5 11.9±0.6 11.6±0.7
    Ce 260±29 231±282 242±142 437±14 414±11 411±12 750±24 679±17 719±19 132±2 130±12 132±1 11.2±0.3 12±0 11.8±0.7
    Pr 388±10 295±34 304±16 81.3±2.6 69.4±2.0 67.4±1.6 137±7 114±3 118±3 17.3±0.4 15.3±1.0 15.0±0.1 12.1±0.2 11.9±0.8 11.5±0.8
    Nd 153±48 121±144 125±61 407±12 351±10 349±8 675±23 562±17 596±16 63.9±2.8 57.7±2.2 59.3±0.8 11.0±0.4 11.4±0.5 11.0±0.7
    Sm 154±5 127±15 131±6 79.9±2.6 71.4±3.1 71.0±1.5 136±4 117±4 122±3 9.17±0.24 8.25±1.18 8.39±0.17 11.0±0.3 11±1 10.8±0.9
    Eu 32.3±1.1 27.6±3.1 28.5±1.5 24.0±0.5 23.3±1.0 22.9±0.4 40.9±1.5 37.4±0.8 38.8±0.9 2.73±0.10 2.55±0.11 2.60±0.06 11.8±0.1 11.9±0.7 11.8±0.6
    Gd 77.0±15.9 59.2±7.2 56.8±2.9 58.3±2.8 56.1±1.9 56.4±1.3 97.0±1.3 91.1±2.5 94.2±2.0 6.94±0.70 5.94±0.41 5.95±0.08 10.8±0.3 9.96±0.52 9.83±0.54
    Tb 8.37±0.78 5.88±0.65 5.89±0.34 7.72±0.33 6.99±0.22 6.98±0.24 12.8±0.7 10.8±0.2 11.2±0.3 1.09±0.06 0.87±0.06 0.91±0.02 10.4±0.0 9.96±0.46 9.76±0.57
    Dy 30.9±1.1 25.5±2.9 26.5±1.3 31.2±1.0 28.7±1.1 28.8±0.7 50.4±2.2 44.1±1.7 46.7±1.2 5.61±0.17 5.14±0.23 5.46±0.14 10.7±0.5 10.2±0.5 9.91±0.67
    Ho 4.70±0.11 3.96±0.50 4.07±0.27 4.28±0.14 4.10±0.17 3.98±0.09 6.52±0.09 5.90±0.19 6.18±0.14 1.31±0.10 1.04±0.06 1.08±0.03 11.3±0.1 10.6±0.5 10.2±0.7
    Er 10.0±1.6 7.41±0.96 7.58±0.39 7.24±0.25 6.69±0.27 6.76±0.58 11.7±0.7 9.80±0.40 10.3±0.3 2.78±0.04 2.44±0.20 2.58±0.05 11.2±0.2 10±1 9.90±0.56
    Tm 0.89±0.02 0.72±0.10 0.71±0.04 0.70±0.03 0.64±0.03 0.74±0.36 0.98±0.03 0.83±0.04 0.88±0.03 0.41±0.05 0.31±0.05 0.32±0.01 11.1±0.1 10.7±0.6 10.4±0.7
    Yb 4.22±0.10 3.20±0.43 3.37±0.24 3.07±0.16 2.39±0.21 2.44±0.09 4.47±0.25 3.54±0.33 3.55±0.13 1.67±0.05 1.46±0.17 1.56±0.07 11.6±0.1 10.7±0.5 10.5±0.6
    Lu 0.51±0.06 0.34±0.03 0.34±0.02 0.40±0.04 0.29±0.02 0.28±0.02 0.49±0.01 0.33±0.02 0.35±0.03 0.24±0.03 0.18±0.02 0.18±0.01 11.1±0.1 10±0 9.88±0.54
    Hf 0.21±0.02 0.032±0.028 0.027±0.009 0.19±0.02 0.024±0.017 0.031±0.040 0.23±0.05 0.0093±0.0038 0.012±0.004 0.1±0.0 0.0024±0.0048 0.0026±0.0021 4.73±0.21 5.51±0.56 5.44±0.46
    Ta 0.33±0.03 0.28±0.05 0.28±0.02 0.75±0.02 0.57±0.04 0.60±0.02 0.4±0.0 0.25±0.08 0.30±0.03 0.18±0.02 0.10±0.02 0.11±0.01 20.5±5.3 25±3 24.7±2.4
    Pb 163±31 218±345 193±90 312±6 435±21 373±10 224±5 267±26 277±26 119±5 157±3 146±3 56.5±1.8 74.6±6.4 73.3±7.2
    Th 167±7 132±18 144±9 7.76±0.44 6.94±0.24 7.26±0.19 9.97±0.42 9.21±0.24 9.68±0.24 1.96±0.16 1.63±0.10 1.73±0.03 55.4±1.1 53.6±2.6 52.9±3.1
    U 0.07±0.01 0.063±0.019 0.063±0.005 0.03±0.01 0.0043±0.0039 0.0046±0.0011 0.02±0.01 0.0037±0.0026 0.0049±0.0024 0.02±0.01 0.039±0.107 0.0038±0.0017 1.52±0.04 1.67±0.39 1.79±0.42
    下载: 导出CSV
  • [1]

    Hori M, Ishikawa T, Nagaishi K, et al. Rare earth elements in a stalagmite from Southwestern Japan: A potential proxy for chemical weathering[J]. Geochemical Journal, 2014, 48(1): 73−84. doi: 10.2343/geochemj.2.0287

    [2]

    Chen W, Simonetti A. In-situ determination of major and trace elements in calcite and apatite, and U-Pb ages of apatite from the Oka carbonatite complex: Insights into a complex crystallization history[J]. Chemical Geology, 2013, 353: 151−172. doi: 10.1016/j.chemgeo.2012.04.022

    [3]

    Chen C F, Liu Y S, Foley S F, et al. Carbonated sediment recycling and its contribution to lithospheric refertilization under the Northern North China Craton[J]. Chemical Geology, 2017, 466: 641−653. doi: 10.1016/j.chemgeo.2017.07.016

    [4]

    Webb G E, Kamber B S. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy[J]. Geochimica et Cosmochimica Acta, 2000, 64(9): 1557−1565. doi: 10.1016/S0016-7037(99)00400-7

    [5]

    Chen L, Liu Y S, Hu Z C, et al. Accurate determinations of fifty-four major and trace elements in carbonate by LA-ICP-MS using normalization strategy of bulk components as 100%[J]. Chemical Geology, 2011, 284(3-4): 283−295.

    [6]

    Sun D Y, Liu J, Fan C Z, et al. New CGSP carbonate matrix reference materials for LA-ICP-MS analysis[J]. Geostandards and Geoanalytical Research, 2023, 47(1): 7−22. doi: 10.1111/ggr.12460

    [7]

    Desmarchelier J M, Hellstrom J C, McCulloch M T. Rapid trace element analysis of speleothems by ELA-ICP-MS[J]. Chemical Geology, 2006, 231(1-2): 102−117. doi: 10.1016/j.chemgeo.2006.01.002

    [8]

    Fairchild I J, Treble P C. Trace elements in speleothems as recorders of environmental change[J]. Quaternary Science Reviews, 2009, 28(5-6): 449−468. doi: 10.1016/j.quascirev.2008.11.007

    [9]

    Treble P, Shelley J, Chappell J. Comparison of high resolution sub-annual records of trace elements in a modern (1911—1992) speleothem with instrumental climate data from Southwest Australia[J]. Earth and Planetary Science Letters, 2003, 216(1-2): 141−153. doi: 10.1016/S0012-821X(03)00504-1

    [10]

    Smrzka D, Zwicker J, Bach W, et al. The behavior of trace elements in seawater, sedimentary pore water, and their incorporation into carbonate minerals: A review[J]. Facies, 2019, 65: 1−47. doi: 10.1007/s10347-018-0543-2

    [11]

    Kawabe I, Kitahara Y, Naito K. Non-chondritic yttrium/holmium ratio and lanthanide tetrad effect observed in pre-Cenozoic limestones[J]. Geochemical Journal, 1991, 25(1): 31-44.

    [12] 陈琳莹, 李崇瑛, 陈多福. 碳酸盐岩中碳酸盐矿物稀土元素分析方法进展[J]. 矿物岩石地球化学通报, 2012, 31(2): 177−183. doi: 10.3969/j.issn.1007-2802.2012.02.012

    Chen L Y, Li C Y, Chen D F. Progress of analytical methods of rare earth elements of carbonate minerals in carbonate rocks[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31(2): 177−183. doi: 10.3969/j.issn.1007-2802.2012.02.012

    [13]

    Akagi T, Hashimoto Y, Fu F, et al. Variation of the distribution coefficients of rare earth elements in modern coral-lattices: Species and site dependencies[J]. Geochimica et Cosmochimica Acta, 2004, 68(10): 2265−2273. doi: 10.1016/j.gca.2003.12.014

    [14]

    Tan L, Shen C C, Cai Y, et al. Trace-element variations in an annually layered stalagmite as recorders of climatic changes and anthropogenic pollution in Central China[J]. Quaternary Research, 2014, 81(2): 181−188. doi: 10.1016/j.yqres.2013.12.001

    [15]

    Arkhipkin A I, Schuchert P C, Danyushevsky L. Otolith chemistry reveals fine population structure and close affinity to the Pacific and Atlantic oceanic spawning grounds in the migratory southern blue whiting (Micromesistius Australis)[J]. Fisheries Research, 2009, 96(2-3): 188−194. doi: 10.1016/j.fishres.2008.11.002

    [16]

    Jenner F E, Arevalo R D. Major and trace element analysis of natural and experimental igneous systems using LA-ICP-MS[J]. Elements, 2016, 12(5): 311−316. doi: 10.2113/gselements.12.5.311

    [17] 刘勇胜, 胡兆初, 李明, 等. LA-ICP-MS 在地质样品元素分析中的应用[J]. 科学通报, 2013, 58(36): 3753−3769. doi: 10.1360/csb2013-58-36-3753

    Liu Y S, Hu Z C, Li M, et al. Applications of LA-ICP-MS in the elemental analyses of geological samples[J]. Chinese Science Bulletin, 2013, 58(36): 3753−3769. doi: 10.1360/csb2013-58-36-3753

    [18] 罗涛, 胡兆初. 激光剥蚀电感耦合等离子体质谱副矿物 U-Th-Pb 定年新进展[J]. 地球科学, 2022, 47(11): 4122−4144.

    Luo T, Hu Z C. Recent advances in U-Th-Pb dating of accessory minerals by laser ablation inductively coupled plasma mass spectrometry Earth Science[J]. Earth Science, 2022, 47(11): 4122−4144.

    [19]

    Liao X H, Hu Z C, Luo T, et al. Determination of major and trace elements in geological samples by laser ablation solution sampling-inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(6): 1126−1134. doi: 10.1039/C9JA00027E

    [20]

    Luo T, Wang Y, Li M, et al. Determination of major and trace elements in alloy steels by nanosecond and femtosecond laser ablation ICP-MS with non-matrix-matched calibration[J]. Atomic Spectroscopy, 2020, 41(1): 11−19. doi: 10.46770/AS.2020.01.002

    [21]

    Mertz-Kraus R, Brachert T, Jochum K, et al. LA-ICP-MS analyses on coral growth increments reveal heavy winter rain in the Eastern Mediterranean at 9Ma[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 273(1-2): 25−40. doi: 10.1016/j.palaeo.2008.11.015

    [22]

    Thompson J A, Thompson J M, Goemann K, et al. Use of non-matrix matched reference materials for the accurate analysis of calcium carbonate by LA-ICP-MS[J]. Geostandards and Geoanalytical Research, 2022, 46(1): 97−115. doi: 10.1111/ggr.12405

    [23]

    Jochum K P, Scholz D, Stoll B, et al. Accurate trace element analysis of speleothems and biogenic calcium carbonates by LA-ICP-MS[J]. Chemical Geology, 2012, 318: 31−44.

    [24]

    Strnad L, Ettler V, Mihaljevic M, et al. Determination of trace elements in calcite using solution and laser ablation ICP‐MS: Calibration to NIST SRM glass and USGS MACS carbonate, and application to real landfill calcite[J]. Geostandards and Geoanalytical Research, 2009, 33(3): 347−355. doi: 10.1111/j.1751-908X.2009.00010.x

    [25]

    Bourdin C, Douville E, Genty D. Alkaline-earth metal and rare-earth element incorporation control by ionic radius and growth rate on a stalagmite from the Chauvet Cave, Southeastern France[J]. Chemical Geology, 2011, 290(1-2): 1−11. doi: 10.1016/j.chemgeo.2011.08.006

    [26]

    Wu C C, Burger M, Günther D, et al. Highly-sensitive open-cell LA-ICPMS approaches for the quantification of rare earth elements in natural carbonates at parts-per-billion levels[J]. Analytica Chimica Acta, 2018, 1018: 54−61. doi: 10.1016/j.aca.2018.02.021

    [27]

    Russo R E, Mao X, Gonzalez J J, et al. Femtosecond laser ablation ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2002, 17(9): 1072−1075. doi: 10.1039/B202044K

    [28]

    Fernández B, Claverie F, Pécheyran C, et al. Direct analysis of solid samples by fs-LA-ICP-MS[J]. TrAC Trends in Analytical Chemistry, 2007, 26(10): 951−966. doi: 10.1016/j.trac.2007.08.008

    [29]

    Bian Q, Garcia C C, Koch J, et al. Non-matrix matched calibration of major and minor concentrations of Zn and Cu in brass, aluminium and silicate glass using NIR femtosecond laser ablation inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2006, 21(2): 187−191. doi: 10.1039/B513690C

    [30]

    Horn I, von Blanckenburg F. Investigation on elemental and isotopic fractionation during 196nm femtosecond laser ablation multiple collector inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2007, 62(4): 410−422. doi: 10.1016/j.sab.2007.03.034

    [31]

    Neff C, Becker P, Günther D. Parallel flow ablation cell for short signal duration in LA-ICP-TOFMS element imaging[J]. Journal of Analytical Atomic Spectrometry, 2022, 37(3): 677−683. doi: 10.1039/D1JA00421B

    [32]

    ,Becker P, Günther D. Reducing sample amount for forensic glass analysis using LA-ICP-TOFMS and multivariate statistics[J]. Journal of Analytical Atomic Spectrometry, 2023, 38: 1704-1712.

    [33]

    Hu Z C, Liu Y S, Gao S, et al. A local aerosol extraction strategy for the determination of the aerosol composition in laser ablation inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(9): 1192−1203. doi: 10.1039/b803934h

    [34]

    Luo T, Wang Y, Hu Z C, et al. Further investigation into ICP-induced elemental fractionation in LA-ICP-MS using a local aerosol extraction strategy[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(4): 941−949. doi: 10.1039/C4JA00483C

    [35] 冯彦同, 张文, 胡兆初, 等. 激光剥蚀电感耦合等离子体质谱仪新分析模式及其在地球科学中的应用[J]. 中国科学: 地球科学, 2022, 52(1): 98-121.

    Feng Y T, Zhang W, Hu Z C, et al. A new analytical mode and application of the laser ablation inductively coupled plasma mass spectrometer in the Earth sciences[J]. Science China Earth Sciences, 2022, 65(1): 182−196.

    [36]

    Luo T, Hu Z C, Zhang W, et al. Reassessment of the influence of carrier gases He and Ar on signal intensities in 193nm excimer LA-ICP-MS analysis[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(10): 1655−1663. doi: 10.1039/C8JA00163D

    [37]

    Jochum K P, Weis U, Stoll B, et al. Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines[J]. Geostandards and Geoanalytical Research, 2011, 35(4): 397−429. doi: 10.1111/j.1751-908X.2011.00120.x

    [38]

    Fietzke J, Liebetrau V, Günther D, et al. An alternative data acquisition and evaluation strategy for improved isotope ratio precision using LA-MC-ICP-MS applied to stable and radiogenic strontium isotopes in carbonates[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(7): 955−961. doi: 10.1039/b717706b

    [39]

    Pettke T, Oberli F, Audétat A, et al. Quantification of transient signals in multiple collector inductively coupled plasma mass spectrometry: Accurate lead isotope ratio determination by laser ablation of individual fluid inclusions[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(3): 475−492. doi: 10.1039/C0JA00140F

    [40]

    Kappel S, Boulyga S, Dorta L, et al. Evaluation strategies for isotope ratio measurements of single particles by LA-MC-ICPMS[J]. Analytical and Bioanalytical Chemistry, 2013, 405: 2943−2955. doi: 10.1007/s00216-012-6674-3

    [41] 罗涛. LA-ICP-MS 分析过程中 ICP 引起的元素分馏效应研究[D]. 武汉: 中国地质大学(武汉), 2015.

    Luo T. Further investigation into ICP-induced elemental fractionation in LA-ICP-MS using a local aerosol extraction strategy[D]. Wuhan: China University of Geosciences (Wuhan), 2015.

    [42]

    Hu Z C, Gao S, Liu Y S, et al. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(8): 1093−1101. doi: 10.1039/b804760j

    [43]

    Hu Z C, Liu Y S, Gao S, et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(9): 1391−1399. doi: 10.1039/c2ja30078h

    [44]

    Wu S T, Yang M, Yang Y H, et al. Improved in situ zircon U-Pb dating at high spatial resolution (5-16μm) by laser ablation-single collector-sector field-ICP-MS using Jet sample and X skimmer cones[J]. International Journal of Mass Spectrometry, 2020, 456: 116394. doi: 10.1016/j.ijms.2020.116394

    [45]

    Yuan H L, Bao Z A, Chen K Y, et al. Improving the sensitivity of a multi-collector inductively coupled plasma mass spectrometer via expansion-chamber pressure reduction[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(5): 1011−1017. doi: 10.1039/C8JA00448J

    [46]

    Longerich H P, Jackson S E, Günther D. Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation[J]. Journal of Analytical Atomic Spectrometry, 1996, 11(9): 899−904. doi: 10.1039/JA9961100899

图(5)  /  表(2)
计量
  • 文章访问数:  156
  • HTML全文浏览量:  151
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-01
  • 修回日期:  2023-09-02
  • 录用日期:  2023-09-14
  • 网络出版日期:  2023-11-18
  • 刊出日期:  2023-09-29

目录

/

返回文章
返回