• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

激光剥蚀电感耦合等离子体质谱法测定碳酸盐矿物中元素组成

Accurate Determination of Elemental Contents in Carbonate Minerals with Laser Ablation Inductively Coupled Plasma-Mass Spectrometry

  • 摘要: 碳酸盐中微量元素信息可为探究古环境、古气候演化、壳幔相互作用以及成岩成矿等重要地质作用过程提供关键约束,其微量元素含量的准确测定一直备受学者关注。激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)可提供碳酸盐矿物中微量元素含量的精细信息,而常规激光测试方法严重制约着碳酸盐矿物微量元素分析的空间分辨率和低含量元素的检测能力。相比于常规剥蚀池条件时的低频率分析,本研究通过采用气溶胶局部提取快速清洗剥蚀池结合高频率激光剥蚀的方式,快速提升激光微区分析瞬时信号强度,有效地提升峰形信号灵敏度(约13倍),碳酸盐激光微区元素检出限降低5~10倍。在此激光分析模式下,分别采用纳秒和飞秒激光剥蚀联用四极杆等离子体质谱仪(LA-Q-ICP-MS),以NIST610玻璃为外标,Ca为内标开展了较小激光剥蚀束斑(32μm)条件下碳酸盐矿物中微量元素(亲石元素、亲铁和亲硫元素)分析。结果表明,纳秒和飞秒激光分析碳酸盐矿物标样CGSP-A、CGSP-B、CGSP-C、CGSP-D和MACS-3获得的亲石元素(如Sc、Sr、Y、Ba、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Th等)测试值与推荐值在误差范围内一致;而亲铁和亲硫元素(如Ni、Cu、Zn、As、Cd、Sn、Sb和Pb)测试结果则存在较大偏差(大于20%),这可能与本研究选用的高频激光剥蚀和较小剥蚀束斑(32µm)造成显著的“Downhole”分馏效应有关。本研究通过研制新型激光剥蚀池,改变激光剥蚀方式,即采用气溶胶局部提取剥蚀池和高频率剥蚀方法可有效地提升碳酸盐矿物微量元素(如亲石元素)分析的空间分辨率和低含量元素检测能力,有利于促进碳酸盐矿物在地质环境等领域的广泛应用。

     

    Abstract:
    BACKGROUND Trace element information in carbonates provides key constraints for investigating ancient environments, paleoclimate evolution, shell-mantle interactions, diagenesis and mineralization processes. The accurate determination of trace element content in carbonate minerals have always been a primary focus. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) can provide detailed information on trace element content in carbonate minerals. However, the elemental concentrations in carbonate minerals are usually extremely low (from hundreds of pg/g to tens of ng/g). A large spot size (from 44 to 100μm) is often used for trace element measurements in carbonate minerals. Therefore, the detection capability of low-content elements in carbonate minerals and the spatial resolution of LA determination still need to be improved.
    OBJECTIVES To develop a new analytical method for determination of low-content trace elements in carbonate minerals with LA-ICP-MS.
    METHODS A new local aerosol extraction ablation cell was proposed in this study. Laser ablation was performed using high-repetition rates with the new designed ablation cell. The elemental contents in carbonate reference materials MACS-3, CGSP-A, CGSP-B, CGSP-C, and CGSP-D were determined with both ns and fs LA-Q-ICP-MS with a spot size of 32μm. Here, NIST 610 glass was used as an external calibration material and Ca was used as an internal standard.
    RESULTS The obtained peak height of a single laser shot was enhanced by a factor of 13 with the local aerosol extraction ablation cell because of the rapid washout time. The signal intensities were increased by 1.5 times under high-repetition rate laser ablation mode. Therefore, the detection limits of trace elements in carbonate minerals obtained from nanosecond laser ablation at high repetition rates (20Hz) were reduced by 5-8 times compared to conventional analysis (6Hz). The detection limits of trace elements were reduced by 5-10 times with the frequency of femtosecond laser ablation increased from 10Hz to 100Hz. The elemental contents in carbonate reference materials were measured with both ns and fs LA-Q-ICP-MS with a spot size of 32μm. The obtained results of lithophile elements (e.g., Sc, Sr, Y, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Th) in carbonate CGSP series and carbonate MACS-3 showed good agreement with their reference values. However, the measured results of siderophile and chalcophile elements (e.g., Ni, Cu, Zn, As, Cd, Sn, Sb, and Pb) showed systematic bias (>20%), which may be related to the “downhole” fractionation effect caused by the high-repetition rate laser ablation used in this study.
    CONCLUSIONS The new designed local aerosol extraction ablation cell combined with high-repetition rate laser ablation mode significantly improved the spital resolution and determination ability of low-content elements in carbonate minerals. The obtained results of lithophile elements in carbonate CGSP series and carbonate MACS-3 showed good agreement with their reference values using ns- and fs-LA-Q-ICP-MS with a spot size of 32m. It is worth noting that the spatial resolution and the detection capability of ultra-low-content elements in carbonate minerals could be further improved with the proposed LA method combined with high-sensitivity magnetic sector mass spectrometry.

     

/

返回文章
返回