• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

湿法球磨制备超细地质样品及取样量探究

董学林, 向兆, 贾正勋, 张楠, 童铄云, 熊玉祥

董学林,向兆,贾正勋,等. 湿法球磨制备超细地质样品及取样量探究[J]. 岩矿测试,2023,42(5):1052−1061. DOI: 10.15898/j.ykcs.202307310110
引用本文: 董学林,向兆,贾正勋,等. 湿法球磨制备超细地质样品及取样量探究[J]. 岩矿测试,2023,42(5):1052−1061. DOI: 10.15898/j.ykcs.202307310110
DONG Xuelin,XIANG Zhao,JIA Zhengxun,et al. Study and Application of a Wet Ball Milling Ultra-fine Method for Geological Samples[J]. Rock and Mineral Analysis,2023,42(5):1052−1061. DOI: 10.15898/j.ykcs.202307310110
Citation: DONG Xuelin,XIANG Zhao,JIA Zhengxun,et al. Study and Application of a Wet Ball Milling Ultra-fine Method for Geological Samples[J]. Rock and Mineral Analysis,2023,42(5):1052−1061. DOI: 10.15898/j.ykcs.202307310110

湿法球磨制备超细地质样品及取样量探究

基金项目: 国家重点研发计划项目(2021YFC2903000)课题 “战略性矿产现场快速分析装备、技术和应用示范”;湖北省地质局科技计划项目(KJ2021-17)
详细信息
    作者简介:

    董学林,博士,正高级工程师,从事岩矿分析和环境分析工作。E-mail:dongxlin109@126.com

    通讯作者:

    熊玉祥,正高级工程师,从事岩矿分析及管理工作。E-mail:984694462@qq.com

  • 中图分类号: O657.63

Study and Application of a Wet Ball Milling Ultra-fine Method for Geological Samples

  • 摘要:

    当前实验室制备的地质样品存在大颗粒微粒,影响了样品代表性和分析结果的准确度,制备超细样品是有效的解决办法。本文建立了水为助磨剂,湿法球磨制备超细地质样品的方法。结果表明,氧化锆或碳化钨材质的球磨罐会污染样品中锆、钨及钴等微量元素,而玛瑙材质的球磨罐污染样品的风险较小;采用玛瑙材质的球磨罐,20g样品,液固比为1∶1,磨球配置为大8颗、中16颗、小48颗,球磨时间30min,运用该方法对四种代表性样品(岩石、土壤、沉积物及稀土矿石)进行球磨,粒度检测结果表明,球磨后的样品粒度均达到1000目;对60件未知基质类型的样品进行湿法球磨后,D50均小于5μm,D90均小于19μm,表明该方法具有一定的适用性;微观形貌研究表明,球磨制备的样品,大颗粒微粒显著减少,颗粒分布更加均匀;对球磨后的岩石标准物质(GBW07104)进行了取样量试验,所检测的46种元素结果进行统计,除Mo、Cd、Cr等元素外,取样量可减少至2mg;制备的超细样品与电感耦合等离子体质谱(ICP-MS)技术联用,可发挥ICP-MS高灵敏度的效能,同时提高检测效率、减少环境污染。

  • 碲和硒是稀散元素,在高新科技领域具有重要应用,已被中国和欧美国家列为战略性关键矿产资源1-2。一直以来全球碲、硒矿产资源主要采自斑岩-矽卡岩铜金矿床,如中国广东大宝山铜矿和江西城门山铜矿3-4,研究斑岩矿床中碲、硒的产出情况对国家资源战略保障具有重要意义。云南普朗斑岩型铜金矿床位于三江特提斯成矿域义敦岛弧南部,属于超大型斑岩矿床,已探明铜资源储量4.31Mt,金资源量113t5。矿区内出露的地层为中三叠统尼汝组和上三叠统图姆沟组,侵入岩为普朗复式岩体,由石英闪长玢岩(~216Ma)、石英二长斑岩(~215Ma)和花岗闪长斑岩(~206Ma)组成,岩体出露总面积约为11km2图1)。前人对普朗矿床的地质特征、成岩成矿时代、成矿物质来源、成矿流体性质等作了大量工作,但对矿床中碲硒的含量和赋存状态等研究还较为薄弱。本文报道了普朗矿床中产出的碲化物和硒化物,以期为斑岩矿床中碲硒的勘查和综合利用提供资料。

    图  1  普朗斑岩铜金矿床地质简图(据Leng等5修改)
    Figure  1.  Geological map of the Pulang porphyry Cu-Au deposit (Modified from Leng, et al 5 ).

    本次研究对象主要为普朗矿床中的铜精矿和钼精矿样品,测试分析均在东华理工大学核资源与环境国家重点实验室完成。样品的矿相学观察利用ZEISS Axio Scope A1光学显微镜及ZEISS Sigma 300场发射扫描电镜完成,扫描电镜的加速电压为20kV,发射电流为10μA6。矿物成分利用JXA-8530F Plus型电子探针分析完成,实验设定加速电压为15kV,电流为20nA,探针直径为1μm,使用ZAF方法对X射线强度进行校正。分析标样选择砷化镓(As),黄铜矿(Cu),黄铁矿(Fe、S),自然银(Ag),碲铋矿(Te、Bi),辉钼矿(Mo),自然铅(Pb),自然锑(Sb),硒化镉(Se),自然金(Au),自然铂(Pt),自然钯(Pd)。测试主量元素的精确度和准确度均小于2%。

    普朗铜金矿床中的碲和硒含量高,并形成大量碲化物、硒化物和富硒矿物。矿床精矿中的碲和硒含量分别达74.3×10−6和270×10−6。碲在钾化带中的含量为0.3×10−6~0.43×10−6,较绢英岩化带中的高(0.02×10−6~0.12×10−6),由矿体中心向外,碲品位逐渐降低7。硒在钾化带和绢英岩化带的含量无明显差别,分别为1.49×10−6~2.44×10−6和1.04×10−6~3.00×10−6。矿石中的碲与金呈正相关关系,硒与银呈正相关关系。普朗铜矿床中,碲和硒主要以碲化物、硒化物和富硒矿物形式存在,形成辉碲铋矿、碲钯矿、硒银矿和富硒方铅矿等(图2)。辉碲铋矿是普朗含量最多的碲化物,反射光下为白色略带淡蓝色,矿物成分较均一,Bi含量为58.36%~61.24%,Te含量为31.03%~34.50%,S含量为3.76%~4.54%(图2e)。普朗辉碲铋矿中含有较高的Se(0.77%~3.63%)。辉碲铋矿的化学式为Bi2.02~2.08(Te1.74~1.93S0.85~1.01Se0.08~0.332.90~2.98。碲钯矿属于独立铂族元素矿物,在自然界很少见,中国斑岩矿床中仅江西德兴有报道8,在全球其他斑岩矿床中非常少见。普朗碲钯矿粒径为1~5μm,反射光下呈亮白色(图2a)。碲钯矿中Pd和Pt可以类质同象取代,因此含量变化较大,Pd含量为16.26%~25.69%,Pt含量为4.82%~17.66%,Te含量为61.25%~66.76%(图2f)。碲钯矿化学式为(Pd0.64~0.98Pt0.09~0.370.98~1.03Te1.97~1.02。硒银矿是普朗含量最多的硒化物,反射光下为白色带微蓝绿色(图2c)。硒银矿中普遍含S,含量为0.55%~2.65%,Ag含量普遍偏低,为70.22%~72.77%,Se含量为24.09%~27.31%(图2g)。硒银矿化学式为Ag1.89~1.98(Se0.87~1.01S0.05~0.241.02~1.11。富硒方铅矿属于PbS1-xSex矿物,其中x值可在0~1之间连续变化。普朗富硒方铅矿S和Se的含量变化大,分别为4.01%~12.52%和1.85%~19.13%,Pb含量为73.91%~82.52%,大多数样品中含有Ag,最高含量达1.61%。普朗富硒方铅矿形成了较完整的PbS-PbSe固溶体系列(图2h),化学式为Pb0.98~1.01(S0.35~0.97Se0.07~0.670.99~1.02

    图  2  碲硒矿物显微照片及矿物元素含量三元图
    a—碲钯矿反射光镜下照片; b—碲钯矿BSE照片; c—硒银矿反射光镜下照片; d—硒银矿BSE照片; e— Bi-Te-S体系三元图; f— Te-Pd-Pt体系三元图; g—Ag-Se-S体系三元图; h—Pb-Se-S体系三元图。Mol—辉钼矿; Mrk—碲钯矿; Nau—硒银矿; Py—黄铁矿。
    Figure  2.  Photomicrographs of tellurium and selenium minerals and ternary plots of element contents. a—Reflected light photomicrograph of merenskyite; b—BSE image of merenskyite; c—Reflected light photomicrograph of naumannite; d—BSE image of naumannite; e—Ternary plot of Bi-Te-S system; f—Ternary plot of Te-Pd-Pt system; g—Ternary plot of Ag-Se-S system; h—Ternary plot of Pb-Se-S system. Mol=Molybdenite, Mrk=Merenskyite, Nau=Naumannite, Py=Pyrite.

    矿床中的碲和硒可以指示物质来源和成矿过程。碲和硒具有亲硫特点,碲会部分进入硫化物晶格,但更易形成碲的独立矿物;硒属于强亲硫元素,在较高温的条件下易于进入硫化物晶格,在中低温条件下,硫含量较低时,可形成硒的独立矿物。洋壳中的铁锰结壳、页岩及浮游沉积物等是自然界中碲和硒的重要储库9,因此在洋陆俯冲过程中,大陆岩石圈地幔和洋壳的部分熔融会形成富碲、硒的岩浆10-11。碲和硒在硫化物熔体中的相容性很高(D硫化物/硅酸盐>600),碲倾向于存在液相硫化物(SL)中,而硒则更易进入单硫化物固熔体(MSS)(DTe SL/硅酸盐/DSe SL/硅酸盐为5~9,DTe MSS/硅酸盐/DSe MSS/硅酸盐为0.5~0.8)12。当富碲、硒的岩浆到达下地壳,会结晶分异形成富Co、Ni的硅酸盐矿物,碲、硒存在硫化物熔体中继续向上运移;当岩浆到达中地壳,温度低于900℃时,硫化物熔体与Te-Se熔体发生相分离;当岩浆到达上地壳,侵位形成班岩体及Cu矿床,Ag-Pt-Pd则高度集中在富Te-Se熔体中,并最终形成贵金属矿物13。普朗铜金矿床中的碲和硒可能与区内晚三叠世的俯冲造山密切相关,富碲和硒的岩浆也促进了铂族元素的富集成矿。

    普朗斑岩铜金矿床中碲化物和硒化物的发现,对资源的综合利用及矿床成因研究具有重要意义。矿床中碲和硒的资源量规模大,大部分以独立矿物形式存在,且常与Au-Ag-PGE共生,具有较好的经济回收利用价值。碲化物和硒化物的产出也为成矿物质来源及岩浆演化过程提供了新的研究方向。

  • 图  1   球磨制备样品XRD图谱

    a—不同材质球磨罐制样;b—碳化钨球磨罐制样。

    Figure  1.   XRD spectra of samples prepared by ball milling.

    a—Sample preparation in ball milling tanks with different materials; b—Sample preparation in tungsten carbide ball milling tank.

    图  2   干法、湿法球磨对样品粒度和比表面积的影响

    粒径:μm;比表面积BMJ:m2/kg;原样:YS;干磨:GM;湿磨:SM。

    Figure  2.   Effect of dry and wet ball milling on the particle size and specific surface area of samples.

    Particle size: μm; Specific surface area BMJ: m2/kg;Initial sample: YS; Dry grinding: GM; Wet grinding: SM.

    图  3   (a)不同助磨剂对样品粒度和比表面积的影响;(b)助磨剂加入量的影响

    Figure  3.   (a) Effect of different milling aids on the particle size and specific surface area of samples; (b) Effect of the amount of milling aids.

    图  4   球磨条件的优化

    a—磨球数量;b—球磨时间。

    Figure  4.   Optimization of ball milling conditions.

    a—The number of milling balls; b—Ball milling time.

    图  5   球磨时间及样品粒径

    Figure  5.   Ball milling time and sample size.

    图  6   四件样品不同粒径对比

    1—原样;2—球磨制备样品;a—岩石;b—沉积物;c—土壤;d—稀土。

    Figure  6.   Comparison of different particle sizes of four samples.

    1—Initial samples; 2—Samples prepared by ball milling; a—Rock; b—Sediment; c—Soil; d—Rare earth ore.

    图  7   制备的60件超细样品粒度统计

    Figure  7.   Particle size statistics of 60 ultrafine samples prepared.

    a—D50 ; b—D90

    图  8   样品加工前后SEM图

    a,b—岩石;c,d—土壤;e,f—沉积物;g,h—稀土矿石。

    Figure  8.   SEM images of samples before and after processing.

    a and b: Rock samples; c and d: Soil samples; e and f: Sediment samples; g and h: Rare earth ore samples.

    表  1   不同材质罐体制备超细样品粒径分布及W、Zr、Co元素含量(n=3)

    Table  1   Particle size distribution and W, Zr, Co content of ultrafine samples prepared by tanks with different materials (n=3).

    样品编号 球磨罐材质 粒径(μm) 元素含量(μg/g)
    D90 D50 D10 W Zr Co
    1 未球磨处理 72.58 6.38 0.85 0.45 99 13.2
    2 玛瑙罐 20.36 4.86 0.84 0.47 96 13.8
    3 氧化锆罐 12.21 2.95 0.71 1.50 10401 14.5
    4 碳化钨罐 7.78 1.64 0.15 4113 122 404
    下载: 导出CSV
  • [1] 王毅民, 王晓红, 高玉淑, 等. 中国地质标准物质制备技术与方法研究进展[J]. 地质通报, 2010, 29(7): 1090−1104.

    Wang Y M, Wang X H, Gao Y S, et al. Advances in preparing techniques for geochemical reference materials in China[J]. Geological Bulleti of China, 2010, 29(7): 1090−1104.

    [2] 涂家润, 卢宜冠, 孙凯, 等. 应用微束分析技术研究铜钴矿床中钴的赋存状态[J]. 岩矿测试, 2022, 41(2): 226−238. doi: 10.15898/j.cnki.11-2131/td.202112060194

    Tu J R, Lu Y G, Sun K, et al. Application of microbeam analytical technology to study the occurrence of cobalt from copper-cobalt deposits[J]. Rock and Mineral Analysis, 2022, 41(2): 226−238. doi: 10.15898/j.cnki.11-2131/td.202112060194

    [3] 闫斌, 朱祥坤, 陈岳龙. 样品量的大小对铜锌同位素测定值的影响[J]. 岩矿测试, 2011, 30(4): 400−405. doi: 10.3969/j.issn.0254-5357.2011.04.004

    Yan B, Zhu X K, Chen Y L. Effects of sample size on Cu and Zn isotope ratio measurements[J]. Rock and Mineral Analysis, 2011, 30(4): 400−405. doi: 10.3969/j.issn.0254-5357.2011.04.004

    [4] 王祎亚, 王毅民. 超细标准物质与超细样品分析研究进展[J]. 光谱学与光谱分析, 2021, 41(3): 696−703.

    Wang Y Y, Wang Y M. Research progress of ultra-fine reference materials and ultra-fine samples[J]. Spectroscopy and Spectral Analysis, 2021, 41(3): 696−703.

    [5] 程志中, 刘妹, 黄宏库, 等. 镍矿石和镍精矿标准物质研制[J]. 岩矿测试, 2013, 32(4): 86-93. doi: 10.3969/j.issn.0254-5357.2013.04.009

    Cheng Z Z, Liu M, Huang H K, et al. Preparation and certification of nickel ore and nickel concentrate reference materials[J]. Rock and Mineral Analysis, 2013, 32(4): 600−607. doi: 10.3969/j.issn.0254-5357.2013.04.009

    [6] 王晓红, 何红蓼, 王毅民, 等. 超细样品的地质分析应用[J]. 分析测试学报, 2010, 29(6): 578−583.

    Wang X H, He H L, Wang Y M, et al. Geoanalytical techniques using ultra-fine samples[J]. Journal of Instrumental Analysis, 2010, 29(6): 578−583.

    [7] 刘青山, 靳宏, 臧世阳, 等. 粒度不均匀铬矿石取样代表性的研究[J]. 岩矿测试, 2012, 31(6): 997−999. doi: 10.15898/j.cnki.11-2131/td.2012.06.015

    Liu Q S, Jin H, Zang S Y, et al. A study on the representativeness of sampling for non-uniform particle size chrome ore[J]. Rock and Mineral Analysis, 2012, 31(6): 997−999. doi: 10.15898/j.cnki.11-2131/td.2012.06.015

    [8]

    Flores É M M, Barin J S, Mesko M F, et al. Sample preparation techniques based on combustion reactions in closed vessels—A brief overview and recent applications[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2007, 62: 1051−1064. doi: 10.1016/j.sab.2007.04.018

    [9] 熊英, 陈文科, 田萍, 等. 含粗粒金矿样品采集加工与分析研究进展[J]. 岩矿测试, 2015, 34(1): 12−18. doi: 10.15898/j.cnki.11-2131/td.2015.01.004

    Xiong Y , Chen W K , Tian P, et al. Review on collection, processing and analysis of coarse gold-containing ore samples[J]. Rock and Mineral Analysis, 2015, 34(1): 12-18. doi: 10.15898/j.cnki.11-2131/td.2015.01.004

    [10]

    Agatemor C, Beauchemin D. Matrix effects in inductively coupled plasma mass spectrometry: A review[J]. Analytica Chimica Acta, 2011, 706(1): 66−83. doi: 10.1016/j.aca.2011.08.027

    [11]

    Linge K L. Trace element determination by ICP-AES and ICP-MS developments and applications reported during 2006 and 2007[J]. Geostandards and Geoanalytical Research, 2008, 32: 16.

    [12]

    Guerrero M M L, Alonso E V, García de Torres A, et al. Simultaneous determination of traces of Pt, Pd, Os, Ir, Rh, Ag and Au metals by magnetic SPE-ICP-OES and in situ chemical vapour generation[J]. Journal of Analytical Atomic Spectrometry, 2017, 32: 2281−2291. doi: 10.1039/C7JA00271H

    [13]

    Sébastien A, Michel V, Mireille P, et al. A routine method for oxide and hydroxide interference corrections in ICP-MS chemical analysis of environmental and geological samples[J]. Geostandards and Geoanalytical Research, 2007, 24: 19−31.

    [14]

    Eggins S M, Woodhead J D, Kinsley L P J, et al. A simple method for the precise determination of ≥40 trace elements in geological samples by ICP-MS using enriched isotope internal standardisation[J]. Chemical Geology, 1997, 134: 311−326. doi: 10.1016/S0009-2541(96)00100-3

    [15] 王娜, 徐铁民, 魏双, 等. 微波消解-电感耦合等离子体质谱法测定超细粒度岩石和土壤样品中的稀土元素[J]. 岩矿测试, 2020, 39(1): 68−76.

    Wang N, Xu T M, Wei S, et al. Determination of rare earth elements in ultra-fine rock and soil samples by ICP-MS using microwave digestion[J]. Rock and Mineral Analysis, 2020, 39(1): 68−76.

    [16] 郑存江, 刘清辉, 胡勇平, 等. 富钴结壳超细标准物质的加工制备[J]. 岩矿测试, 2010, 29(3): 301−304.

    Zheng C J, Liu Q H, Hu Y P, et al. Processing and preparation of ultra-fine Co-rich crust reference materials[J]. Rock and Mineral Analysis, 2010, 29(3): 301−304.

    [17] 赵晓亮, 李志伟, 王烨, 等. 铌钽精矿标准物质研制[J]. 岩矿测试, 2018, 37(6): 687−694. doi: 10.15898/j.cnki.11-2131/td.201711230185

    Zhao X L, Li Z W, Wang Y, et al. Preparation and certification of niobium-tantalum concentrate reference materials[J]. Rock and Mineral Analysis, 2018, 37(6): 687−694. doi: 10.15898/j.cnki.11-2131/td.201711230185

    [18]

    Balcerzak M. Sample digestion methods for the determination of traces of precious metals by spectrometric techniques[J]. Analytical Sciences, 2002, 18: 737−750. doi: 10.2116/analsci.18.737

    [19] 孙德忠, 何红蓼. 封闭酸溶-等离子体质谱法分析超细粒度地质样品中42个元素[J]. 岩矿测试, 2007, 26(1): 21−25. doi: 10.3969/j.issn.0254-5357.2007.01.006

    Sun D Z, He H L. Determination of 42 elements in ultra-fine geological samples by inductively coupled plasma-mass spectrometry with pressurized acid digestion[J]. Rock and Mineral Analysis, 2007, 26(1): 21−25. doi: 10.3969/j.issn.0254-5357.2007.01.006

    [20] 王毅民, 陈幼平. 近30年来我国地质分析重要成果评介[J]. 地质论评, 2008, 54(5): 653−669. doi: 10.3321/j.issn:0371-5736.2008.05.010

    Wang Y M, Chen Y P. Review on important achievements of geoanalysis in last 30 years of Cnina[J]. Geological Review, 2008, 54(5): 653−669. doi: 10.3321/j.issn:0371-5736.2008.05.010

    [21] 杜高翔, 王海荣, 柴红勇, 等. 粉体制备中助磨剂的应用研究现状[J]. 化工矿物与加工, 2004(10): 6−9. doi: 10.3969/j.issn.1008-7524.2004.10.002

    Du G X, Wang H R, Chai H Y, et al. Study status of application of grinding aids in the preparation of powders[J]. Industrial Minerals & Processing, 2004(10): 6−9. doi: 10.3969/j.issn.1008-7524.2004.10.002

    [22] 高伟, 王泽红, 毛勇. 助磨剂在石英粉磨中的应用研究现状及发展趋势[J]. 金属矿山, 2019, 48(9): 22−27. doi: 10.19614/j.cnki.jsks.201909004

    Gao W, Wang Z H, Mao Y. Research status and development trend of grinding aid in quartz grinding[J]. Metal Mine, 2019, 48(9): 22−27. doi: 10.19614/j.cnki.jsks.201909004

    [23]

    He M, Forssberg E. Rheological behaviors in wet ultrafine grinding of limestone[J]. Minerals and Metallurgical Processing, 2007, 24: 19−29.

    [24]

    Hasegawa M, Kimata M, Shimane M, et al. The effect of liquid additives on dry ultrafine grinding of quartz[J]. Powder Technology, 2001, 114: 145−151. doi: 10.1016/S0032-5910(00)00290-4

    [25]

    Wang X, Li G, Zhang Q, et al. Determination of major/ minor and trace elements in seamount phosphorite by XRF spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28: 81−88. doi: 10.1111/j.1751-908X.2004.tb01044.x

    [26]

    Wang Y, Gao Y, Wang X, et al. Investigations into the preparation of ultra-fine particle size geochemical reference materials[J]. Geostandards and Geoanalytical Research, 2007, 28: 113−121.

    [27] 王焰, 钟宏, 曹勇华, 等. 我国铂族元素, 钴和铬主要矿床类型的分布特征及成矿机制[J]. 科学通报, 2020, 65(33): 3825−3838. doi: 10.1360/TB-2020-0202

    Wang Y, Zhong H, Cao Y H, et al. Genetic classification, distribution and ore genesis of major PGE, Co and Cr deposits in China: A critical review[J]. Chinese Science Bulletin, 2020, 65(33): 3825−3838. doi: 10.1360/TB-2020-0202

    [28] 周成胶, 张刚阳, 张丁川. 铼金属矿床类型, 元素赋存形式和富集机制[J]. 地质科技情报, 2021, 40(4): 115−130.

    Zhou C J, Zhang G Y, Zhang D C. Types, element occurrence forms and enrichment mechanisms of rhemium metal deposits[J]. Bulletin of Geological Science and Technology, 2021, 40(4): 115−130.

  • 期刊类型引用(2)

    1. 王大钊,梁丰,王艳军,李凯旋,刘家军,冷成彪. 斑岩系统中低熔点亲铜元素与稀贵金属赋存状态和富集机制研究:以藏东南普朗超大型斑岩Cu-Au矿床为例. 岩石学报. 2025(02): 621-641 . 百度学术
    2. 刘家军,王大钊,翟德高,高燊,郑波,王佳新,张斌,王冠智,王泽琳,汪林炜,翁国明. 低熔点亲铜元素(LMCE)在金成矿中的作用及促进金富集的机理. 矿床地质. 2024(04): 712-734 . 百度学术

    其他类型引用(0)

图(8)  /  表(1)
计量
  • 文章访问数:  146
  • HTML全文浏览量:  37
  • PDF下载量:  39
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-07-30
  • 修回日期:  2023-08-26
  • 录用日期:  2023-09-07
  • 网络出版日期:  2023-11-18
  • 刊出日期:  2023-09-29

目录

    /

    返回文章
    返回