Determination of Major and Trace Elements in Geological Samples by Laser Ablation Inductively Coupled Plasma-Mass Spectrometry with Ammonium Fluoride Digestion
-
摘要:
准确测定岩石、土壤或矿物等地质样品中的关键金属元素含量,是开展关键金属矿产基础理论研究、探讨关键金属元素超常富集成矿机制、开展找矿勘查和绿色利用的重要前提。由于激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)在整体元素分析方面具有高灵敏度、多原子离子干扰少、样品消耗少和前处理简单等优势,被认为是一种具有较大潜力的绿色地质分析技术。然而,天然地质样品的组成十分复杂多样,在使用LA-ICP-MS进行元素整体分析之前通常需要将其消解均一化,这些前处理流程不仅复杂、费时费力,并且需要使用大量浓酸,增加了样品丢失和污染的风险。本文提出了将氟化铵消解方法作为LA-ICP-MS整体元素分析前处理技术,利用氟化铵具有高沸点,能在常压条件下对难溶矿物进行化学分解的特点,可实现岩石中不同类型矿物的物理结构均质化和化学成分均匀化,形成超细粉末颗粒。氟化铵消解后的粉末可以直接进行粉末压片,通过加入In内标结合岩石参考物质外标校正,实现LA-ICP-MS快速多元素整体定量分析。通过重量法可以准确获得Si元素质量分数。通过对5个国际岩石标准物质的分析测试,整体分析测试精度优于5%,45个主微量元素(包括关键金属元素)分析准确度优于10%,表明了本方法的有效性和可靠性。本方法仅需要2h即可完成样品完全消解,可批量操作。相比于传统酸消解流程,新方法大幅降低无机酸的用量,具有绿色环保的特点。
Abstract:BACKGROUNDThe accurate determination of concentrations of key metal elements in geological samples (such as rocks, soils or ores) is an important foundation for the basic theory research of critical metal ores, supernormal enrichment mechanism of critical metal elements, mineral resource exploration and green utilization of mineral resources. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) has advantages of providing adequate sensitivity, low interferences of polyatomic ions, small quantities of sample consumption and simple sample preparation. It is perceived as a green geological analytical technique with great potential in the whole elemental determination. However, the pretreatment of geological samples is the key factor limiting its pervasive application. The current bulk analysis of LA-ICP-MS is limited by the problem of sample homogenization. Most of the traditional pretreatment techniques are obtained by physical grinding, which has low efficiency and the risk of cross contamination. Therefore, new pre-processing techniques for geological samples need to be proposed to meet the requirements of LA-ICP-MS analysis.
OBJECTIVESTo develop a new pre-treatment technology for geological samples and establish a rapid, efficient, green, and environment-friendly LA-ICP-MS elemental quantitative analysis technology.
METHODSThe ammonium fluoride (NH4F) was used to digest five rock reference materials (BCR-2, BHVO-2, AGV-2, RGM-2, GSP-2). Ultrafine particulate powders obtained after evaporation and stirrer processes were directly pressed into tablets. The rapid whole elemental quantitative analysis of LA-ICP-MS can be achieved by adding the indium (In) internal standard and external standard correction of geological rock reference material. The digestion time of NH4F, the morphology, element composition, element distribution and other characteristics were also investigated. The mass fraction of SiO2 was evaluated to the total normalization 100% and gravimetric method.
RESULTSThe results show that 2h digestion time can completely decompose geological rock samples. Moreover, the digestion products have the characteristics of ultrafine powder with a typical grain size of smaller than 5μm. Various silicate rocks after NH4F digestion have a consistent grain morphology and size, allowing the production of pressed powder pellets that have excellent cohesion and homogeneity suitable for laser ablation micro-analysis without the addition of a binder. The mass fraction of SiO2 in rock samples is obtained accurately using the gravimetric method. The analytical results of five reference materials generally agreed with the recommended values, with the analytical precision within 10% for 45 major and trace elements.
CONCLUSIONSA NH4F digestion method as sample preparation for the rapid determination of major and trace elements in silicate rock powders by LA-ICP-MS was introduced. The analytical results obtained for five rock reference materials generally agree with the recommended values within a relative deviation of <10%, confirming the usefulness of this method for quantitative elemental analysis of silicate rock samples. The applicability field of this method includes most common silicate rock samples. Furthermore, sediment, solid and ore can also be analyzed by the NH4F digestion method. There are many innovations for the new technique, including reducing matrix effects between reference materials and samples, spiking the internal standard simply and feasibly and sample batch processing. The optimized method can be used to quickly prepare compact tablet samples with high uniformity and without elements loss, which are suitable for LA-ICP-MS. This method only needs the use of NH4F solid reagent, which greatly reduces the consumption of other inorganics acids. Moreover, NH4F is a neutral reagent, which decreases the potential risk of acid reagent harmful in the pretreatment process to laboratory personnel, and has the added advantage of greener environmental protection, safety, and high efficiency.
-
水(H2O)是自然岩浆体系中最主要的挥发组分,显著影响岩浆的黏度、熔点和结晶行为,从而控制岩浆分异演化的趋势[1-3]。而熔体包裹体是在岩浆活动过程中捕获在结晶矿物晶格缺陷中的岩浆熔体[4-5],一定程度上保留了所捕获岩浆的组分状态,可以提供岩浆作用过程的直接信息[6-8]。前人通过大量研究证实了应用熔体包裹体确定岩浆挥发份的可靠性[2,8-10]。借助熔体包裹体研究岩浆中的挥发份含量,不仅可以揭示岩浆的分异演化过程,还能为理解岩浆活动特征提供重要依据。
目前应用于测定硅酸盐熔体包裹体中的H2O的原位分析技术主要有[11-12]:电子探针(EPMA)、离子探针(SIMS)、傅里叶变换红外光谱和显微激光拉曼光谱。相较于其他方法,显微激光拉曼光谱分析具有高空间分辨率、快速、无损分析、样品制备简单等优点[13-15],可应用于分析暴露在表面或包裹于内部的样品,并且能够在0%~20%(含水量)浓度范围内精确测定[16-19]。Thomas[16]利用显微激光拉曼光谱技术研究了26个已知成分的人工合成玻璃和天然硅酸盐熔体包裹体样品,在水含量0%~16%范围内获得与实测值基本一致的结果;Chabiron等[17]通过显微激光拉曼光谱法测试熔体包裹体水含量,该方法得到的结果与红外光谱测试结果基本一致;王玉琪等[12]使用显微激光拉曼光谱快速标定了花岗质玻璃样品,其测试结果与红外光谱水含量结果的相对误差小于10%;Tu等[19]建立了一种基于激光共聚焦拉曼光谱测定硅酸盐熔体中总溶解水及不同形态水含量的方法。上述研究进一步证实了显微激光拉曼光谱技术在测定熔体包裹体水含量方面的独特优势和可靠性。
髫髻山组火山岩是燕山造山带中生代最具代表性的钙碱性火山岩之一,代表了燕山期大规模火山喷发的开始[20]。前人的研究主要集中在燕山造山带中生代火山岩的地球化学特征[21-25],而水作为影响岩浆形成及演化的重要因素,目前对髫髻山组火山岩中的水含量尚不清楚。柳江盆地向斜核部出露了中侏罗统髫髻山组(J2t)下部的凝灰岩[24,26],作为火山活动早期产物,研究其岩浆中的水含量对于了解火山活动有重要意义。因此,对该凝灰岩开展岩石地球化学分析和岩浆水含量定量研究,可以为深入认识和理解该地区的岩浆活动提供重要依据。本文以柳江盆地侏罗系髫髻山组下部凝灰岩为研究对象,以岩石学、岩石地球化学和包裹体岩相学分析为基础,应用显微激光拉曼光谱法定量测定了凝灰岩中熔体包裹体的水含量,并讨论了岩浆中的水对火山喷发行为的影响。
1. 研究区地质概况
柳江盆地位于河北省秦皇岛市,其大地构造位置位于华北陆块北缘中朝地块燕山褶皱造山带东段(图1a)。盆地是一个近南北向不对称的短轴向斜(图1b),西翼地层紧凑且直立倒转,东翼地层舒展而平缓,主要构造线偏于盆地西部,其走向大致为南北向。
柳江盆地髫髻山组地层岩性特征[26]表现为:下部主要发育灰绿色、浅黄色的安山质、流纹质火山集块岩夹凝灰岩和火山熔岩;中部发育灰绿色安山质、角闪安山质、粗安山质火山熔岩与集块岩、角砾岩互层;上部发育黑绿色、紫红色、青灰色玄武质、玄武安山质、辉石安山质火山熔岩与熔结集块岩、集块岩互层,夹有少量的火山角砾岩及凝灰岩。由下向上,岩性由偏酸性逐渐过渡为中性、中基性。
2. 实验部分
2.1 样品及处理
本文所采集的凝灰岩样品取自河北省秦皇岛市柳江盆地髫髻山组下部野外露头。将采集的新鲜凝灰岩样品分别制备成厚约0.03mm的普通岩石薄片和厚约0.1mm双面抛光的流体包裹体薄片多张,用于显微观察和显微激光拉曼光谱测试。挑选新鲜的凝灰岩样品2块,用于全岩主量和微量元素分析。
2.2 样品测试
2.2.1 显微观察
样品的显微观察在中国石油大学(华东)深层油气全国重点实验室完成。镜下观察使用仪器为徕卡DM2700P显微镜,在透光条件下观察和记录样品的岩石学特征和熔体包裹体岩相学特征,并在镜下挑选、标记保存完好的熔体包裹体,以备显微激光拉曼光谱测试。
2.2.2 主量和微量元素分析
样品全岩主量和微量元素分析测试在中国石油大学(华东)深层油气全国重点实验室完成。全岩主量元素采用IRIS Intrepid Ⅱ XSP电感耦合等离子体发射光谱仪(ICP-OES)进行测试;微量元素和稀土元素使用ELAN9000电感耦合等离子体质谱仪(ICP-MS)进行测试。用于本次测试的凝灰岩样品为TJS-1和TJS-2,对每块样品分别进行两次测试,以保证数据可靠性,测试偏差小于1%。
2.2.3 显微激光拉曼光谱分析
人工合成硅酸盐玻璃标准样品和髫髻山组熔体包裹体样品的显微激光拉曼光谱测试在中国石油大学(华东)深层油气全国重点实验室完成。用于测试的人工合成玻璃标样依次命名为标样1~标样4,熔体包裹体则按照MI-1至MI-9顺序依次编号。为降低实际样品薄片中的黏合剂对实验的干扰,测试前使用丙酮溶液浸泡清洗薄片,风干后进行实验测试分析。实验仪器为LABRAM HR EVO型激光拉曼光谱仪(法国HORIBA FRANCE SAS公司),使用的激光光源波长为532nm,光栅1800gr/mm,光谱分辨率≤0.65cm−1,测试精度小于±0.1cm−1,实验环境温度为20℃,湿度为50%。
2.3 测试数据质量控制
显微激光拉曼光谱法定量熔体包裹体水含量的准确性会受到拉曼光谱仪参数、拉曼图谱数据处理方法、标准样品、标定参数等方面的影响。因此,本文在使用该方法进行熔体包裹体水含量定量分析时,对上述四个方面的影响因素进行了优化,从而提高实验测试结果的准确度和精度。
2.3.1 拉曼光谱参数设置
由于过高的激光功率和积分时间可能会导致玻璃中水的丢失[11-12,19],通过比较不同条件下的水峰强度,最终采用的实验条件为激光功率30mW,积分时间30s,积分次数3次。在使用激光拉曼光谱仪对包裹体进行测试之前,用单晶硅标准样对该仪器进行校正以确保实验结果的准确性。
2.3.2 拉曼图谱数据处理
由于拉曼光谱在测试过程中会受到硅酸盐成分、仪器及测试环境等方面的影响,需要对测试得到的拉曼光谱进行数据处理。本文结合强度校正和基线校正对实验获得的拉曼光谱进行校正,以消除上述影响。具体校正程序见2.4.2节。
2.3.3 标准样品应用
为尽可能地提高测试结果准确性,在建立熔体包裹体中水的特征峰强度与浓度之间的线性关系时,首先需要借助标准物质建立实验室标定曲线。本文通过对中国科学技术大学壳幔物质与环境重点实验室人工合成的11个不同水含量的含水玻璃标准样品测试结果进行校正(包括11个参考样品[19]和4个实测样品),建立了实验室水含量标定曲线。
2.3.4 参数标定
拉曼光谱仪定量限定硅酸盐玻璃水含量的校正方法包括外标法和内标法[11,16]。相较于外标法,内标法在标定含水硅酸盐玻璃中水含量时更为准确且可靠,可以通过选取合适的标定参数和公式消除硅酸盐玻璃成分差异产生的影响[11]。样品的岩石学和地球化学特征表明,髫髻山组凝灰岩为酸性火山岩,而酸性硅酸盐玻璃具有较强的LF470拉曼峰高度/强度比(图2),优先选择AWF/ALF作为最佳标定参数[11,19]。
图 2 不同水含量人工合成流纹质玻璃的拉曼光谱红色实线为5.27% H2O人工合成标准样品的拉曼谱图;橙色实线为4.09% H2O人工合成标准样品的拉曼谱图;绿色实线为2.26% H2O人工合成标准样品的拉曼谱图;蓝色实线为1.48% H2O人工合成标准样品的拉曼谱图。LF-250cm−1~700cm−1为低波段谱带;HF-850cm−1~1300cm−1为高波段谱带;WF-3000cm−1~3800cm−1为总水谱带。Figure 2. Raman spectra of artificially synthesized rhyolitic glasses with different water content2.4 熔体包裹体水含量定量分析
2.4.1 含水玻璃标样拉曼光谱特征谱带
人工合成含水玻璃标准样品由中国科学技术大学壳幔物质与环境重点实验室提供,标样1~标样4分别为5.27% H2O、4.09% H2O、2.26% H2O 和1.48% H2O的实际测试样品,分别对应Tu等[19]的样品RH-8、RH-7、RH-5和RH-4。对人工合成含水玻璃标准样品进行显微激光拉曼光谱测试,拉曼光谱图显示,含水玻璃拉曼光谱具有三个特征谱带(图2),与前人实验结果一致[16-17,19]。在硅酸盐玻璃的低波段谱带中,最明显的谱带在470cm−1处,这是由于桥氧(T—O—T;T=Si,Al)的弯曲振动引起的[16-17]。而高波段谱带则与非桥氧(T—O;T=Si,Al)的拉伸振动有关[28-32]。在总水谱带中,在3540~3620cm−1的宽带则是因为O—H和H2Om伸缩振动的共同作用[33-34]。
2.4.2 拉曼图谱数据处理方法
使用Origin 2018软件对拉曼光谱图进行以下光谱处理。
第一步:强度校正。对原始拉曼光谱进行Long[35]校正以获得真实的光谱强度,校正方程表示为:
$$ I=I_{{\mathrm{o b s}}}\left\{\dfrac{v_{0}^{3}\left[1-\exp \left(-\dfrac{h c v}{K T}\right)\right] v}{\left(v_{\mathrm{0}}-v\right)^{4}}\right\} $$ (1) 式中:Iobs为测量强度;v0为入射激光的波数(v0=18797cm−1);h为普朗克常数(6.62607×10−34J·s);c为光速(2.9979×1010cm/s);K为玻尔兹曼常数(1.38065×10−23J/K);T为绝对温度。
第二步,基线校正。根据样品的光谱特征分段式固定部分基线,而后使用三次样条插值法扣除基线。
第三步,谱带积分。含水玻璃拉曼光谱具有三个特征谱带,即LF、HF、WF(图2),对基于前两步得到的拉曼光谱进行峰面积积分,分别得到LF、HF、WF的积分面积,简写为ALF、AHF、AWF。
2.4.3 熔体包裹体水含量标定曲线
前人研究证明,硅酸盐玻璃的水含量与其拉曼参数之间存在良好的线性关系[16-17,19],但由于不同激光拉曼光谱仪的效率因子不同,其线性关系的系数会存在差异。因此,不同仪器的AWF/ALF值之间也存在良好的线性关系。通过4个人工合成标准样品确定本文实际测量值AWF/ALF与Tu等[19]测得的AWF/ALF*之间的线性关系,可以得到11个标准样品的AWF/ALF值(表1),然后使用Origin 2018软件对标准样品进行AWF/ALF-CH2O线性拟合,得到的熔体包裹体水含量(CH2O)标定曲线如图3所示,其方程表示如下:
表 1 不同水含量人工合成含水硅酸盐玻璃标准样品的积分面积等参数测量结果Table 1. Measurement results of integrated area and other parameters of artificially synthesized water-containing silicate glasses standard samples with different water content人工合成含水玻璃
标准样品编号ALF AWF AWF/ALF*
(Tu等[19]测量值)AWF/ALF
(转换值或实测值)CH2O
(%)RH-1(Tu等,2023) / / 1.0700 0.3726 0.33 RH-2(Tu等,2023) / / 1.3300 0.4631 0.41 RH-3(Tu等,2023) / / 1.8400 0.6407 0.58 RH-4(Tu等,2023) / / 3.2600 1.1351 1.48 RH-5(Tu等,2023) / / 4.9400 1.7201 2.26 RH-6(Tu等,2023) / / 6.3100 2.1971 3.01 RH-7(Tu等,2023) / / 8.5100 2.9632 4.09 RH-8(Tu等,2023) / / 11.7800 4.1018 5.27 RH-9(Tu等,2023) / / 14.3000 4.9793 6.35 RH-10(Tu等,2023) / / 15.4400 5.3762 6.84 RH-11(Tu等,2023) / / 21.3100 7.4201 9.05 标准样品1 292.6424 1264.846 / 4.3222 5.27 标准样品2 244.9186 776.2908 / 3.1696 4.09 标准样品3 229.9241 374.9651 / 1.6308 2.26 标准样品4 189.5898 250.3734 / 1.3206 1.48 注:RH-1至RH-11为Tu等[19]测试样品;标样1至标样4为本文中的实际测试样品,分别对应Tu等[19]的样品RH-8、RH-7、RH-5、RH-4。“/”代表本文未使用的数据。 $$ C_{\mathrm{H}_2\mathrm{O}_t}=1.26\times\left(\frac{A_{\mathrm{WF}}}{A_{\mathrm{LF}}}\right)\quad R^2=0.998 $$ (2) 3. 结果与讨论
3.1 岩石学与地球化学特征
3.1.1 岩石学特征
样品新鲜面呈灰白色,具凝灰结构、块状构造。岩石主要由晶屑(35%)、岩屑(25%)和基质(40%)组成。晶屑成分以石英、长石为主,粒径可达1.8mm;岩屑以流纹岩岩屑为主,粒径约0.5~2mm;基质由尘屑和火山灰构成。镜下观察表明,岩石发育凝灰结构、假流纹构造,发生轻微蚀变。岩石定名为流纹质岩屑-晶屑凝灰岩。
3.1.2 岩石主量和微量元素地球化学特征
柳江盆地髫髻山组凝灰岩样品全岩主量元素分析结果见表2。样品中SiO2含量为75.18%~77.14%,Fe2O3含量1.06%~2.28%,Al2O3含量12.61%~13.02%,CaO含量0.14%~1.10%,MgO含量0.65%~1.29%,TiO2含量0.14%,全碱(Na2O+K2O)含量4.04%~4.24%,Na2O/K2O值为0.56~0.65。里特曼指数(σ)为0.51~0.53,属钙碱性系列。TAS图解投图落点在流纹岩区域中(图4a),符合样品中流纹质岩屑发育的岩石学特征,表明研究区髫髻山组下部凝灰岩的形成与酸性岩浆活动之间存在密切联系。
表 2 髫髻山组凝灰岩全岩主量元素测试结果Table 2. Analytical results of major elements in tuff of the Tiaojishan Formation凝灰岩样品
编号Na2O
(%)MgO
(%)Al2O3
(%)SiO2
(%)P2O5
(%)K2O
(%)CaO
(%)TiO2
(%)MnO
(%)Fe2O3
(%)烧失量
(%)Na2O+K2O
(%)主量元素含量
合计(%)TJS-1 1.45 1.29 13.02 75.18 0.03 2.60 1.10 0.14 0.04 2.28 3.38 4.04 100.48 TJS-2 1.67 0.65 12.61 77.14 0.02 2.58 0.14 0.14 0.03 1.06 3.04 4.24 99.07 注:为确保测试结果的可靠性,实验数据取同一样品两次测试结果的平均值。 柳江盆地髫髻山组凝灰岩样品全岩微量元素分析结果见表3。原始地幔标准化蛛网图(图4b)显示,大离子亲石元素(Rb、Th、U、K)富集,高场强元素(Ta、Nb、Ti、Zr、P)亏损,具明显Pb正异常,Sr负异常,弱Ba、La、Ce负异常;稀土元素球粒陨石标准化曲线(图4c)呈海鸥式展布,具明显Eu负异常,说明岩浆演化过程中存在明显的斜长石分离结晶作用;稀土元素配分模式为右倾型,呈现轻稀土富集、重稀土亏损的特点。(La/Sm)N平均值为6.77,(Gd/Yb)N平均值为1.88,表明轻稀土分馏程度高而重稀土分馏程度较低;(La/Yb)N平均值为15.65,轻重稀土分馏明显。李伍平等[21]对燕山造山带中-晚侏罗世髫髻山期火山岩进行研究发现,冀北髫髻山期流纹岩样品具有轻稀土元素强烈富集、重稀土元素强烈亏损、负Eu异常、Sr含量低(94~135μg/g)等特征,与本研究中凝灰岩样品的岩石地球化学特征相似。Ta/Yb-Th/Yb图解(图4d)投点落在活动大陆边缘,指示该时期研究区受洋壳俯冲的影响,岩浆活动强烈。(La/Nb)N平均值为1.06[原始地幔(La/Nb)N值约为0.96,平均大陆壳(La/Nb)N值为2.5[39]],指示成岩过程中受到一定地壳混染作用。上述地球化学特征与前人的研究结果[20,40-41]一致,即实验样品可以在一定程度上反映研究区髫髻山期早期的岩浆活动特征。
表 3 髫髻山组凝灰岩全岩微量元素测试结果Table 3. Analytical results of trace elements in tuff of the Tiaojishan Formation凝灰岩样品
编号Li
(μg/g)Be
(μg/g)B
(μg/g)Sc
(μg/g)V
(μg/g)Cr
(μg/g)Co
(μg/g)Ni
(μg/g)Cu
(μg/g)Zn
(μg/g)Ga
(μg/g)Ge
(μg/g)As
(μg/g)Rb
(μg/g)Sr
(μg/g)TJS-1 29.75 4.72 17.15 3.84 6.09 7.14 1.26 3.90 2.57 36.30 19.25 1.68 0.41 76.35 139.50 TJS-2 10.46 3.78 15.55 4.89 6.59 4.43 0.72 1.69 2.39 18.56 17.55 0.80 0.47 74.13 97.87 凝灰岩样品
编号Y
(μg/g)Zr
(μg/g)Nb
(μg/g)Mo
(μg/g)Cd
(μg/g)Cs
(μg/g)Ba
(μg/g)La
(μg/g)Ce
(μg/g)Pr
(μg/g)Nd
(μg/g)Sm
(μg/g)Eu
(μg/g)Gd
(μg/g)Tb
(μg/g)TJS-1 16.75 112.50 26.30 2.24 0.09 1.39 451.50 32.45 63.90 7.16 23.90 4.84 0.31 4.04 0.61 TJS-2 13.50 100.77 27.64 1.80 0.04 0.99 386.05 24.29 52.86 5.53 17.92 3.56 0.24 2.80 0.45 凝灰岩样品
编号Dy
(μg/g)Ho
(μg/g)Er
(μg/g)Tm
(μg/g)Yb
(μg/g)Lu
(μg/g)Hf
(μg/g)Ta
(μg/g)W
(μg/g)Tl
(μg/g)Pb
(μg/g)Bi
(μg/g)Th
(μg/g)U
(μg/g)TJS-1 2.95 0.63 1.65 0.27 1.91 0.31 3.97 2.02 0.51 0.63 24.40 0.16 22.40 6.35 TJS-2 2.45 0.50 1.44 0.25 1.70 0.27 3.68 2.04 0.70 0.60 20.70 0.10 21.60 5.50 注:为确保测试结果的可靠性,实验数据取同一样品两次测试结果的平均值。 3.2 凝灰岩熔体包裹体与水含量特征
3.2.1 熔体包裹体岩相学特征
对采集样品的包裹体薄片进行镜下显微观察,熔体包裹体较发育,呈孤立状随机分布在石英斑晶的晶格缺陷中,未见到边界层、破裂或泄露等明显的成分改造现象,表现出原生成因的岩相学特征[7,42]。熔体包裹体颜色复杂,呈无色或淡黄色,其形态具有多样性,发育多边形(图5中a,b)、橄榄球形(图5中c,d)及椭圆形(图5e),直径为30~165μm。根据熔体包裹体相态特征,可将其划分为三类:①玻璃质+结晶质熔体包裹体(图5a);②玻璃质+气泡熔体包裹体(图5中b,d);③玻璃质熔体包裹体(图5中c,e)。熔体包裹体内部不含或只含少量真空气泡,属于冷却速率较快的喷发火山岩相[6,43-44]。其中,呈孤立状分布在石英晶屑中、无破裂和泄露现象、不含或仅含单个气泡的熔体包裹体是岩浆迅速淬火冷凝而成,所捕获的熔体没有发生物理或化学成分改造,能代表矿物结晶时周围的熔体特征。
3.2.2 熔体包裹体拉曼光谱特征
髫髻山组凝灰岩中9个熔体包裹体样品的显微激光拉曼光谱测试结果显示:各熔体包裹体在3100~3800cm−1处均检测到水峰,未检测到CO2等其他挥发组分(图5f)。根据鲍文反应序列[45],石英形成于岩浆分离结晶作用晚期,其捕获的熔体包裹体组成接近于喷发前的熔浆成分,熔体包裹体中挥发份含量可以代表喷发前岩浆中挥发份含量[2]。
3.2.3 凝灰岩熔体包裹体水含量特征
按照2.3.2节所述步骤对9个熔体包裹体样品的显微激光拉曼图谱进行处理,并将处理结果(即AWF、ALF)代入建立的水含量标定曲线方程,即2.4.3中的方程(2),使用Excel进行计算,得到的熔体包裹体水含量结果列于表4。测定结果显示,柳江盆地髫髻山组凝灰岩石英晶屑中熔体包裹体水含量为0.99%~4.98%,平均含量为2.62%(表4)。
表 4 髫髻山组凝灰岩中熔体包裹体LF、WF积分面积及水含量计算结果Table 4. Integrated areas of LF and WF, and water content of the melt inclusions in tuff of the Tiaojishan Formation包裹体样品编号 熔体包裹体类型 ALF AWF AWF/ALF 峰位(cm−1) CH2Ot (%) MI-1 玻璃质 120.2732 203.0257 1.6880 3631 2.13 MI-2 玻璃质 119.9589 208.9559 1.7419 3631 2.19 MI-3 玻璃质 297.2329 233.0028 0.7839 3643 0.99 MI-4 玻璃质 198.5294 276.1755 1.3911 3636 1.75 MI-5 玻璃质 180.3690 306.9109 1.7016 3631 2.14 MI-6 玻璃质+气泡 78.6287 288.6345 3.6709 3636 4.63 MI-7 玻璃质+气泡 222.9093 237.9510 1.0675 3637 1.35 MI-8 玻璃质+气泡 526.2989 1446.2396 2.7479 3541 3.46 MI-9 玻璃质+结晶质 186.4130 737.1156 3.9542 3568 4.98 根据李福春等[1]的熔体包裹体水含量统计数据,大多数超基性基性岩浆中的水含量在0~0.8%;大部分中性岩浆水含量为0.4%~2.8%,平均为2.26%;酸性岩浆水含量范围主要集中在0.8%~5.6%,平均为2.712%。对比测定结果与统计数据可以看出,柳江盆地髫髻山组下部凝灰岩中熔体包裹体呈现高水含量的特点,反映了岩浆演化后期为酸性岩浆,这与岩石地球化学特征反映的岩浆性质一致,进一步验证了该时期研究区存在由地壳浅部酸性岩浆活动引发的火山爆发。
柳江盆地位于燕山褶皱造山带东段(图1a),在中侏罗世(160±5Ma前后)受到燕山造山运动的影响强烈,研究区处于大陆边缘活动阶段(图4d),上地幔发生部分熔融[25,40-41],形成的岛弧拉斑玄武质岩浆随着基性矿物的分离结晶,逐渐向富硅、富水的酸性岩浆演化。水含量的增加促进了斜长石等矿物的分离结晶,导致负Eu异常(图4c)的形成[46];高含水量的岩浆也可以促进流体相的形成,使得大离子亲石元素更容易在岩浆中富集,而高场强元素则因难以进入流体相而在残余熔体中表现为亏损[47](图4b),从而使其形成的火山岩具有特定的地球化学特征。此外,水作为岩浆中最主要的挥发份,控制着岩浆的脱气过程,从而显著影响了岩浆系统的喷发动力[43,48]。根据样品的熔体包裹体水含量测定结果,可以推测,高水含量岩浆是研究区髫髻山期早期爆发性火山喷发的重要驱动因素之一。
4. 结论
柳江盆地髫髻山组下部发育流纹质岩屑-晶屑凝灰岩,在地球化学上表现出富水酸性岩浆的特征:大离子亲石元素(LILEs)富集,高场强元素(HFSEs)亏损,稀土元素(REEs)配分模式呈现轻稀土(LREEs)富集、重稀土(HREEs)亏损的特点,并出现负Eu异常和明显Pb正异常、Sr负异常,代表了研究区髫髻山期早期的岩浆特征。基于人工合成标样,本文建立了显微激光拉曼光谱定量熔体包裹体水含量标定曲线,并对柳江盆地髫髻山组下部凝灰岩石英斑晶内的熔体包裹体开展了水含量定量分析。测定结果表明,该凝灰岩中熔体包裹体水含量为0.99%~4.98%,平均为2.62%,介于酸性岩浆水含量范围,指示了研究区髫髻山期早期为富水酸性岩浆。凝灰岩地球化学特征和熔体包裹体水含量测定结果均反映了柳江盆地髫髻山早期岩浆具有富水、富硅的特点。结合样品的熔体包裹体水含量测定结果和大规模火山喷发背景,推测高水含量岩浆可能是导致此次爆发性火山喷发的重要条件之一。
今后的研究中,可利用显微激光拉曼光谱法对研究区髫髻山期不同阶段的火山岩开展水含量系统分析,这对于探讨燕山造山带髫髻山期火山岩成因和岩浆演化具有重要意义。
致谢:感谢中国科学技术大学壳幔物质与环境重点实验室(合肥)高晓英教授团队提供的帮助。
-
图 1 不同岩石类型标准物质(BCR-2、BHVO-2、GSP-2、AGV-2和RGM-2)氟化铵消解产物的扫描电子显微镜(SEM)图像(a~e);GSP-2消解产物的粉末压片表面微观特征和激光剥蚀坑图像(f)
Figure 1. Scanning electron microscope (SEM) images of the NH4F digested products (a-e). The size of the digested particles exhibits a highly reduced grain size, well below 5μm. Furthermore, the morphology of these particles is remarkly uniform, with no apparent mineral structure. SEM images of the surfaces and ablation craters on the pressed pellets of GSP-2 (f). Observe the fine and uniform particles and well-defined ablation craters.
图 3 利用氟化铵消解玄武岩标样BCR-2(a)和花岗闪长岩标样GSP-2(b),不同消解时间对元素Sr、Zr和Hf的回收率影响
Figure 3. Recoveries of Sr, Zr, Hf of BCR-2 (a) and GSP-2 (b), as a function of the digestion time at temperatures of 250℃. BCR-2 digests easily, with nearly 100% Sr, Zr, Hf recovery in 0-0.5h; But for GSP-2, 100% Zr and Hf recovery is achieved only after 1.5h of digestion.
图 6 五个USGS岩石标准物质45个主微量元素分析相对标准偏差(a)和相对误差(b)的测试结果
Figure 6. Relative standard deviation (a, RSD) and relative deviation of average concentrations (b, RD%) of 45 elements for the five rock reference materials (USGS). Most elements have an RSD under 5% and a RD below 10%, indicating reliable data and uniform trace element distribution in the pellets.
表 1 两种不同SiO2的定量计算方法所得到的平均值和相对误差
Table 1 The measured values and relative deviation (RD) of rock reference materials obtained from two different SiO2 quantitative correction schemes.
岩石标准物质
编号SiO2标准值
(%)方法一 方法二 SiO2测试平均值
(%)相对偏差
(%)SiO2测试平均值
(%)相对偏差
(%)BCR-2 54.1 56.4 4.3 54.0 −0.2 BHVO-2 49.9 47.4 −5.0 48.9 −2.0 GSP-2 66.6 62.8 −5.7 67.6 1.5 AGV-2 59.3 53.8 −9.3 59.4 0.2 RGM-2 73.4 67.9 −7.5 74.2 1.1 -
[1] 李超, 王登红, 屈文俊, 等. 关键金属元素分析测试技术方法应用进展[J]. 岩矿测试, 2020, 39(5): 658−669. Li C, Wang D H, Qu W J, et al. A review and perspective on analytical methods of critical metal elements[J]. Rock and Mineral Analysis, 2020, 39(5): 658−669.
[2] 刘勇胜, 屈文俊, 漆亮, 等. 中国岩矿分析测试研究进展与展望(2011—2020)[J]. 矿物岩石地球化学通报, 2021, 40(3): 515–539. Liu Y S, Qu W J, Qi L, et al. Advances and perspective of reasearches on rock and mineral analyses in China (2011—2020)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(3): 515-519.
[3] 翟明国, 吴福元, 胡瑞忠, 等. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 2019, 33(2): 106−111. Zhai M G, Wu F Y, Hu R Z, et al. Critical metal mineral resources: Current reasearch status and scientific issues[J]. Sciences Foundation in China, 2019, 33(2): 106−111.
[4] 曾江萍, 王家松, 朱悦, 等. 敞开酸溶-电感耦合等离子体质谱法测定铀矿石中15种稀土元素[J]. 岩矿测试, 2022, 41(5): 789−797. Zeng J P, Wang J S, Zhu Y, et al. Determination of 15 rare earth elements in uranium ore by open acid dissolution-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2022, 41(5): 789−797.
[5] 龚仓, 丁洋, 陆海川, 等. 五酸溶样-电感耦合等离子体质谱法同时测定地质样品中的稀土等28种金属元素[J]. 岩矿测试, 2021, 40(3): 340−348. Gong C, Ding Y, Lu H C, et al. Simultaneous determination of 28 elements including rare earth elements by ICP-MS with five-acid dissolution[J]. Rock and Mineral Analysis, 2021, 40(3): 340−348.
[6] 张元, 王文东, 卢兵, 等. 碱熔-阳离子交换树脂分离ICP-MS法测定厚覆盖区地球化学调查样品中硼锗溴钼锡碘钨[J]. 岩矿测试, 2022, 41(1): 99−108. Zhang Y, Wang W D, Lu B, et al. Determination of boron, germanium, bromine, molybdenum, tin, iodine and tungsten in geochemical survey samples by ICP-MS with alkali fusion-cation exchange resin seperation[J]. Rock and Mineral Analysis, 2022, 41(1): 99−108.
[7] Zhu L Y, Liu Y S, Hu Z C, et al. Simultaneous determination of major and trace elements in fused volcanic rock powders using a hermetic vessel heater and LA-ICP-MS[J]. Geostandards and Geoanalytical Research, 2013, 37(2): 207−229. doi: 10.1111/j.1751-908X.2012.00181.x
[8] Hu Z C, Qi L. Sample digestion methods, Volume 15: Analytical geochemistry/Inorganic INSTR. Analysis[J]. Treatise on Geochemistry (Second Edition), 2014: 87−109.
[9] He Z W, Huang F, Yu H M, et al. A flux-free fusion technique for rapid determination of major and trace elements in silicate rocks by LA-ICP-MS[J]. Geostandards and Geoanalytical Research, 2015, 40(1): 5−21.
[10] Zhang C X, Hu Z C, Zhang W, et al. Green and fast laser fusion technique for bulk silicate rock analysis by laser ablation-inductively coupled plasma mass spectrometry[J]. Analytical Chemistry, 2016, 88(20): 10088−10094. doi: 10.1021/acs.analchem.6b02471
[11] 胡靓, 张德贤, 娄威, 等. 含膏盐建造铁矿床中磁铁矿LA-ICP-MS微量元素测定与地球化学特征研究[J]. 岩矿测试, 2022, 41(4): 564−574. Hu L, Zhang D X, Lou W, et al. In situ LA-ICP-MS determination of trace elements in magnetite from a gypsum-salt bearing iron deposit and geochemical characteristics[J]. Rock and Mineral Analysis, 2022, 41(4): 564−574.
[12] Lv N, Chen K Y, Bao Z A, et al. Non-matrix-matched 9μm U-Pb dating of zircon using excimer laser ablation ICP-MS[J]. Atomic Spectroscopy, 2021, 42(2): 51−61.
[13] Xiao Y T, Yang J, Deng J, et al. Influence of spot size on LA-ICP-MS ablation behavior for synthetic calcium tungstate and silicate glass reference material NIST SRM610[J]. Atomic Spectroscopy, 2021, 42(1): 36−42. doi: 10.46770/AS.2021.01.006
[14] Zhang W, Hu Z C, Feng L P, et al. Accurate determination of Zr isotopic ratio in zircons by femtosecond laser ablation MC-ICP-MS with “wet” plasma technique[J]. Journal of Earth Science, 2022, 33(1): 67−75. doi: 10.1007/s12583-021-1535-7
[15] Li Z Q, Li F J, Chen Z A, et al. Provenance of late Mesozoic Strata and tectonic implications for the Southwestern Ordos Basin, North China: Evidence from detrital zircon U-Pb geochronology and Hf isotopes[J]. Journal of Earth Science, 2022, 33(2): 373−394. doi: 10.1007/s12583-021-1450-y
[16] Wu S, Karius V, Schmidt B C, et al. Comparison of ultrafine powder pellet and flux-free fusion glass for bulk analysis of granitoids by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2018, 42(4): 575−591. doi: 10.1111/ggr.12230
[17] Garbeschönberg D, Müller S. Nano-particulate pressed powder tablets for LA-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(6): 990−1000. doi: 10.1039/C4JA00007B
[18] Gray A L. Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry[J]. Analyst, 1985, 110(5): 551−556. doi: 10.1039/an9851000551
[19] Mochizuki T, Sakashita A, Iwata H, et al. Laser ablation for direct elemental analysis of solid samples by inductively coupled plasma mass spectrometry[J]. Bulletin of the Japan Institute of Metals, 1988, 33(4): 403−409.
[20] Jarvis K E, Williams J G. Laser-ablation inductively-coupled plasma-mass spectrometry (LA-ICP-MS)—A rapid technique for the direct, quantitative-determination of major, trace and rare-earth elements in geological samples[J]. Chemical Geology, 1993, 106(3-4): 251−262. doi: 10.1016/0009-2541(93)90030-M
[21] Perkins W T, Fuge R, Pearce N J G. Quantitative analysis of trace elements in carbonates using laser ablation inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 1991, 6(6): 445−449. doi: 10.1039/ja9910600445
[22] Perkins W T, Pearce N J G, Jeffries T E. Laser ablation inductively coupled plasma mass spectrometry: A new technique for the determination of trace and ultra-trace elements in silicates[J]. Geochimica et Cosmochimica Acta, 1993, 57(2): 475−482. doi: 10.1016/0016-7037(93)90447-5
[23] Denoyer E R. Semiquantitative analysis of environmental materials by laser sampling inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 1992, 7(8): 1187−1193. doi: 10.1039/ja9920701187
[24] Morrison C A, Lambert D D, Morrison R J S, et al. Laser ablation-inductively coupled plasma-mass spectrometry: An investigation of elemental responses and matrix effects in the analysis of geostandard materials[J]. Chemical Geology, 1995, 119(1-4): 13−29. doi: 10.1016/0009-2541(94)00064-F
[25] Holá M, Mikuška P, Hanzlíková R, et al. Tungsten carbide precursors as an example for influence of a binder on the particle formation in the nanosecond laser ablation of powdered materials[J]. Talanta, 2010, 80(5): 1862−1867. doi: 10.1016/j.talanta.2009.10.035
[26] O’Connor C, Landon M R, Sharp B L. Absorption coefficient modified pressed powders for calibration of laser ablation inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2007, 22(3): 273−282. doi: 10.1039/B612512C
[27] Arroyo L, Trejos T, Gardinali P R, et al. Optimization and validation of a laser ablation inductively coupled plasma mass spectrometry method for the routine analysis of soils and sediments[J]. Spectrochimica Acta Part B-Atomic Spectroscopy, 2009, 64(1): 16−25. doi: 10.1016/j.sab.2008.10.027
[28] Mukherjee P K, Khanna P P, Saini N K. Rapid determination of trace and ultra trace level elements in diverse silicate rocks in pressed powder pellet targets by LA-ICP-MS using a matrix-independent protocol[J]. Geostandards and Geoanalytical Research, 2014, 38(3): 363−379. doi: 10.1111/j.1751-908X.2013.012015.x
[29] Godfred O D, Ashantha G, Charlotte A, et al. Determination of refractive and volatile elements in sediment using laser ablation inductively coupled plasma mass spectrometry[J]. Analytica Chimica Acta, 2015, 898: 19−27. doi: 10.1016/j.aca.2015.09.033
[30] Zhang W, Hu Z C. Recent advances in sample preparation methods for elemental and isotopic analysis of geological samples[J]. Spectrochimica Acta Part B-Atomic Spectroscopy, 2019, 160: 105690−105706. doi: 10.1016/j.sab.2019.105690
[31] Hu Z C, Gao S, Liu Y S, et al. NH4F assisted high pressure digestion of geological samples for multi-element analysis by ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(3): 408−413. doi: 10.1039/b921006g
[32] Hu Z C, Zhang W, Liu Y S, et al. Rapid bulk rock decomposition by ammonium fluoride (NH4F) in open vessels at an elevated digestion temperature[J]. Chemical Geology, 2013, 355: 144−152. doi: 10.1016/j.chemgeo.2013.06.024
[33] Jochum K P, Nohl U, Herwig K, et al. GeoReM: A new geochemical database for reference materials and isotopic standards[J]. Geostandards and Geoanalytical Research, 2005, 29(3): 333−338. doi: 10.1111/j.1751-908X.2005.tb00904.x
[34] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1-2): 34−43. doi: 10.1016/j.chemgeo.2008.08.004
-
期刊类型引用(0)
其他类型引用(2)