Determination of Major and Trace Elements in Geological Samples by Laser Ablation Inductively Coupled Plasma-Mass Spectrometry with Ammonium Fluoride Digestion
-
摘要:
准确测定岩石、土壤或矿物等地质样品中的关键金属元素含量,是开展关键金属矿产基础理论研究、探讨关键金属元素超常富集成矿机制、开展找矿勘查和绿色利用的重要前提。由于激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)在整体元素分析方面具有高灵敏度、多原子离子干扰少、样品消耗少和前处理简单等优势,被认为是一种具有较大潜力的绿色地质分析技术。然而,天然地质样品的组成十分复杂多样,在使用LA-ICP-MS进行元素整体分析之前通常需要将其消解均一化,这些前处理流程不仅复杂、费时费力,并且需要使用大量浓酸,增加了样品丢失和污染的风险。本文提出了将氟化铵消解方法作为LA-ICP-MS整体元素分析前处理技术,利用氟化铵具有高沸点,能在常压条件下对难溶矿物进行化学分解的特点,可实现岩石中不同类型矿物的物理结构均质化和化学成分均匀化,形成超细粉末颗粒。氟化铵消解后的粉末可以直接进行粉末压片,通过加入In内标结合岩石参考物质外标校正,实现LA-ICP-MS快速多元素整体定量分析。通过重量法可以准确获得Si元素质量分数。通过对5个国际岩石标准物质的分析测试,整体分析测试精度优于5%,45个主微量元素(包括关键金属元素)分析准确度优于10%,表明了本方法的有效性和可靠性。本方法仅需要2h即可完成样品完全消解,可批量操作。相比于传统酸消解流程,新方法大幅降低无机酸的用量,具有绿色环保的特点。
Abstract:BACKGROUNDThe accurate determination of concentrations of key metal elements in geological samples (such as rocks, soils or ores) is an important foundation for the basic theory research of critical metal ores, supernormal enrichment mechanism of critical metal elements, mineral resource exploration and green utilization of mineral resources. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) has advantages of providing adequate sensitivity, low interferences of polyatomic ions, small quantities of sample consumption and simple sample preparation. It is perceived as a green geological analytical technique with great potential in the whole elemental determination. However, the pretreatment of geological samples is the key factor limiting its pervasive application. The current bulk analysis of LA-ICP-MS is limited by the problem of sample homogenization. Most of the traditional pretreatment techniques are obtained by physical grinding, which has low efficiency and the risk of cross contamination. Therefore, new pre-processing techniques for geological samples need to be proposed to meet the requirements of LA-ICP-MS analysis.
OBJECTIVESTo develop a new pre-treatment technology for geological samples and establish a rapid, efficient, green, and environment-friendly LA-ICP-MS elemental quantitative analysis technology.
METHODSThe ammonium fluoride (NH4F) was used to digest five rock reference materials (BCR-2, BHVO-2, AGV-2, RGM-2, GSP-2). Ultrafine particulate powders obtained after evaporation and stirrer processes were directly pressed into tablets. The rapid whole elemental quantitative analysis of LA-ICP-MS can be achieved by adding the indium (In) internal standard and external standard correction of geological rock reference material. The digestion time of NH4F, the morphology, element composition, element distribution and other characteristics were also investigated. The mass fraction of SiO2 was evaluated to the total normalization 100% and gravimetric method.
RESULTSThe results show that 2h digestion time can completely decompose geological rock samples. Moreover, the digestion products have the characteristics of ultrafine powder with a typical grain size of smaller than 5μm. Various silicate rocks after NH4F digestion have a consistent grain morphology and size, allowing the production of pressed powder pellets that have excellent cohesion and homogeneity suitable for laser ablation micro-analysis without the addition of a binder. The mass fraction of SiO2 in rock samples is obtained accurately using the gravimetric method. The analytical results of five reference materials generally agreed with the recommended values, with the analytical precision within 10% for 45 major and trace elements.
CONCLUSIONSA NH4F digestion method as sample preparation for the rapid determination of major and trace elements in silicate rock powders by LA-ICP-MS was introduced. The analytical results obtained for five rock reference materials generally agree with the recommended values within a relative deviation of <10%, confirming the usefulness of this method for quantitative elemental analysis of silicate rock samples. The applicability field of this method includes most common silicate rock samples. Furthermore, sediment, solid and ore can also be analyzed by the NH4F digestion method. There are many innovations for the new technique, including reducing matrix effects between reference materials and samples, spiking the internal standard simply and feasibly and sample batch processing. The optimized method can be used to quickly prepare compact tablet samples with high uniformity and without elements loss, which are suitable for LA-ICP-MS. This method only needs the use of NH4F solid reagent, which greatly reduces the consumption of other inorganics acids. Moreover, NH4F is a neutral reagent, which decreases the potential risk of acid reagent harmful in the pretreatment process to laboratory personnel, and has the added advantage of greener environmental protection, safety, and high efficiency.
-
天然气水合物,是在一定条件下(合适的温度、压力、气体饱和度及水的盐度等)由水和天然气组成的冰状笼形结晶化合物。形成天然气水合物的主要气体为甲烷,甲烷分子含量超过99%的天然气水合物通常称为甲烷水合物(Methane Hydrate)[1]。天然气水合物的结构类型有Ⅰ型、Ⅱ型、H型和一种新型的水合物(由生物分子和水分子生成)[2-3]。Kvenvolden等[4]和Milkov[5]曾预测全球有机碳超过1×105亿吨(甲烷在标准温压条件下为21×1015 m3),主要以甲烷形式存在,并赋存于水合物中。目前,冻土带和海底已经开展了天然气水合物的相关实验及开采[6]。与冻土带所蕴藏的天然气水合物相比,海底沉积层中发育的水合物资源量可能更为巨大[7], 在全球79个国家累计已发现超过230个天然气水合物矿点(NGHD)[8]。因此,合理开采海底天然气水合物将是解决全球能源危机的有效途径[9-10],同时天然气水合物也可能诱发海底地质灾害[11]以及影响全球气候的变化[12], 所以了解天然气水合物的稳定条件成了一个核心的科学问题。
甲烷水合物稳定性受控于温度、压力、孔隙水盐度和气体组分等因素。天然气水合物主要发育在具备水合物生成的温压、气源等条件的海洋沉积层中和极地地区[13-15],所以研究水合物发育区的压力、温度、地温梯度、导热率及热流等参数,可以预测水合物赋存范围[16]。似反射层与海底之间所限定的厚度为天然气水合物稳定存在的厚度即天然气水合物稳定带(GHSZ)[17]。天然气水合物稳定带(GHSZ)是指温度和压力处于天然气水合物形成和稳定存在的热力学范围内的特定区域[18]。因而,预测目标区水合物资源量必须明确水合物稳定带厚度,对评估天然气水合物资源具有重要意义[19-21]。已有研究表明甲烷水合物实际存在区的厚度随盐度的增大而变薄,盐的存在降低了气体水合物的稳定性,导致水合物稳定带的厚度比纯水情况下的厚度变薄[22-23]。孔隙水中的盐类对水合物的生成和稳定存在有抑制作用[7, 24-25],1888年Villard[26]第一次在CH4-H2O二元体系中获得了甲烷水合物。Deaton等[27]最早提出了研究水合物的抑制性,直到1983年de Roo等[28]才将盐度考虑进来,并系统研究了CH4-H2O-NaCl三元体系下甲烷水合物相平衡时的温压条件。事实上,盐度对水合物系统的影响是预测海底甲烷气水合物存在、分布和演变的一个重要因素。海相水合物形成于含海水(Cl-、Na+、Mg2+、SO42-、Ca2+以及过渡金属Fe、Mn、Cu、Co、Ni)的沉积层中,所以必须明确水合物在复杂体系中的平衡,拟为确定水合物的形成、分解以及资源量奠定基础[25, 29-30]。研究盐类对甲烷水合物的稳定性主要是通过实验测试(目测法、等压法、等容法)和热力学计算来确定天然气水合物的相平衡点[28, 31-37]。
1. 天然气水合物相平衡的研究方法
1.1 气体水合物相平衡热力学方法
气体水合物相平衡热力学主要解决气体水合物形成和稳定存在的温度、压力条件,预测已知状态系统是否可形成水合物,其理论依据主要是多相系统相平衡理论[34]。气体水合物相平衡的理论模型已经研究得比较成熟,并在指导水合物理论研究和工程应用方面发挥了积极的作用。Parrish等[38]第一次基于van der Waals-Platteeuw统计热力学模型[34]预测纯水条件下水合物的形成。随后这种方法被不断修改,但大多数预测模型的基本思想都来源于van der Waals-Platteeuw统计热力学模型[34],预测模型的缺点就是所需的参数较多,计算繁琐,应用起来不方便[23-25, 30-32, 35-37, 39-41]。由于水合物形成于地层中,地层水是一个复杂的盐水体系,水合物形成的温度与纯水体系差异较大。Englezos等[42]、Shabani等[43]、Javanmardi等[44-45]的模型可用于预测盐水体系中水合物的相平衡。在盐水体系中,离子与水分子反应降低了水的活性,因此将盐对水合物的影响转移到水活性的变化,将溶液中水的活性加入到模型中来预测水合物相平衡。这些热力学模型计算水合物生成条件时,大多忽略了气体在富水相的溶解对水合物生成条件的影响,这会给计算结果带来一定的误差。水合物模型在适宜的温度(小于290 K)和压力(小于20 MPa)条件下的预测结果较好,而在高压下,如大于20 MPa,模型的预测结果与实验数据偏差较大,表明当前的水合物模型对于水合物稳定性描述并不完美[46]。
1.2 气体水合物相平衡实验分析方法
以往采用压力-温度-体积测试仪(简称PVT仪)来研究气体水合物的形成热力学,通过目测PVT仪中天然气水合物的形成过程,确定形成时的温度和压力,但是PVT仪器笨重且昂贵,不方便使用,实验过程中遇到固体微粒时,PVT方法就无法测量。此外,PVT无法定量评价天然气水合物的动力学性质[31]。后来将差示扫描量热仪(Differential Scanning Calorimetry,缩写DSC)应用到天然气水合物的研究中,它的原理主要是根据实验过程中热流量的变化判断水合物的形成,与样品的黏度、透明度等无关,是研究水合物一种简单、可靠的工具[47-48]。但是不能满足水合物的微观观测和定量研究。
相比于PVT仪、DSC、热力学计算,用原位拉曼光谱技术研究甲烷水合物生成条件可以有效地避免热力学方程中复杂参数的求算,同时具有可视、准确、结果可靠的优势。显微激光拉曼光谱是将入射激光通过显微镜聚焦到样品上,从而可以在不受周围物质干扰情况下,准确获得所照样品微区的有关化学成分、晶体结构、分子相互作用以及分子取向等各种拉曼光谱信息[49-50]。近些年来,国内外学者[51-56]已成功地应用激光拉曼光谱分析天然气水合物形成条件。Subramanian等[52]的研究表明,不同类型甲烷水合物的拉曼光谱明显不同,Ⅰ型甲烷水合物和Ⅱ型甲烷水合物的特征拉曼峰的峰强具有明显的差别,可以在拉曼谱图上明确区分开来(图 1)。Chazallon等[53]发现,甲烷水合物不仅在C—H键处有其独特的拉曼峰,同时其O—H键也有一个特征峰位于3051 cm-1。所以,通过拉曼光谱可以清楚地识别体系中甲烷所处的相态特征,这为原位甲烷水合物拉曼光谱分析提供了依据。吕万军等[56]通过原位拉曼光谱结合透明高压腔,测定甲烷水合物形成过程中溶液中饱和甲烷浓度的变化来确定水合物的形成条件。Jager等[33]结合显微拉曼光谱,可以将Ⅰ型甲烷水合物的形成和分解在拉曼谱图上清楚地确定,随着水合物的形成和分解,其拉曼峰也发生着相应的变化。因此,原位拉曼光谱技术可以准确测定甲烷水合物在不同盐水体系中形成和分解的温压条件。
2. 盐类对甲烷水合物的影响
根据DSDP(Deep Sea Drilling Project,深海钻探工程)和ODP(Offshore Driling Platform,海上钻井平台)[57]采集的海底沉积物,对孔隙水成分进行分析,结果表明海洋沉积孔隙水中,Cl-、SO42-、Na+、Ca2+、Mg2+、K+、NH4+是主要离子,CO32-和PO43-相对含量低一些。以下将从氯化物、硫酸盐、碳酸盐三大盐类出发,探讨盐类对甲烷水合物稳定性的影响以及相平衡条件。
2.1 氯化物对甲烷水合物稳定性的影响
2.1.1 氯化钠对甲烷水合物稳定性的影响
国内外学者[24, 28, 58-61]通过不同的实验研究了盐类,特别是NaCl对甲烷水合物稳定性的影响。对于NaCl-CH4-H2O体系,各种实验手段殊出同归,最后的实验数据皆表明随着NaCl浓度的增加,甲烷水合物稳定存在的温压范围逐渐缩小,NaCl浓度越高,甲烷水合物稳定存在的温度越低,压力越高。盐度每增加1 mol/L,在压力恒定的情况下,温度降低3~4 K;同样在温度恒定的情况下,压力升高2 MPa左右(图 2a)。除了NaCl,其他氯化物对甲烷水合物稳定性的影响也不容忽视,但整体的影响趋势是一致的,都是随着盐度的增加,甲烷水合物稳定存在的温压范围缩小[61-63]。
2.1.2 其他氯化物对甲烷水合物稳定性的影响
目前针对CaCl2、MgCl2、KCl等对甲烷水合物的抑制作用研究甚少,Kharrat等[61]对不同浓度的CaCl2-CH4-H2O体系进行分析,随着CaCl2浓度的增加,甲烷水合物稳定存在的温压范围逐渐缩小,CaCl2浓度越高,甲烷水合物稳定存在的温度越低,压力越高。盐度每增加0.5 mol/L,在压力恒定的情况下,温度降低幅度由小变大最后趋于稳定,开始时温度只下降2.5 K,盐度在1.530 mol/L后温度稳定下降4 K左右;同样在温度恒定情况下,压力升高降低幅度由小变大最后趋于稳定,开始时压力只升高约2 MPa,盐度在1.530 mol/L后压力稳定升高约5 MPa(图 2b)。
Atik等[62]和Kang等[32]对不同浓度的MgCl2-CH4-H2O体系进行分析,随着MgCl2浓度的增加,甲烷水合物稳定存在的温压范围逐渐缩小,MgCl2浓度越高,甲烷水合物稳定存在的温度越低,压力越高。盐度每增加0.5 mol/L左右,在压力恒定的情况下,温度降低幅度由小变大;同样在温度恒定的情况下,压力升高幅度由小变大(图 2c,d),即MgCl2盐度越高,对甲烷水合物的抑制作用强度越大。
Mohammadi等[63]对不同浓度的KCl-CH4-H2O体系进行分析,但是有关的实验数据较少,只对0.676 mol/L和1.315 mol/L的KCl进行了实验测试。随着KCl浓度的增加,甲烷水合物稳定存在的温压范围逐渐缩小,KCl浓度越高,甲烷水合物稳定存在的温度越低,压力越高。盐度每增加0.5 mol/L左右,在压力恒定的情况下,温度降低2 K;同样在温度恒定的情况下,压力升高1 MPa(图 2e)。
2.1.3 氯化物对甲烷水合物抑制作用大小
当氯化物浓度小于0.5 mol/L时,NaCl、CaCl2、MgCl2和KCl对甲烷水合物的抑制作用大小相近。但随着浓度的上升,当氯化物浓度大于1.5 mol/L后CaCl2对甲烷水合物稳定存在时的温压条件影响较大,浓度每升高0.5 mol/L,温度下降4 K,压力升高5 MPa。而其他盐类对甲烷水合物的抑制作用相近。浓度相近(大于1mol/L,小于1.5 mol/L)的NaCl、CaCl2、MgCl2和KCl对甲烷水合物的抑制作用进行对比,发现MgCl2对甲烷水合物的抑制作用最强,KCl最弱。抑制作用大小依次是MgCl2>CaCl2>NaCl>KCl(图 2f)。
2.2 硫酸盐和碳酸盐对甲烷水合物稳定性的影响
大部分的实验都是研究氯化物对甲烷水合物稳定性的影响,但是很少考虑到硫酸盐和碳酸盐对甲烷水合物的抑制作用,相关的研究也比较少。Lu等[65]通过实验确定了1 mol/L和0.5 mol/L的MgSO4对甲烷水合物稳定存在时的温压条件的影响,增加0.5 mol/L的MgSO4,在压力恒定的情况下,温度降低2 K;同样在温度恒定的情况下,压力升高0.7 MPa(图 3a)。相比于氯化物,MgSO4对甲烷水合物稳定存在时的压力影响较小。
Mohammadi等[64]将K2CO3考虑进来,实验研究0.319 mol/L和1.064 mol/L的K2CO3对甲烷水合物的抑制作用,随着浓度的升高,甲烷水合物稳定存在的温压范围缩小,K2CO3浓度上升0.745 mol/L,在压力恒定的情况下,温度降低1.2 K;同样在温度恒定的情况下,压力升高1 MPa(图 3b)。相比于氯化物和MgSO4,K2CO3对甲烷水合物的影响更小。但是关于硫酸盐和碳酸盐对甲烷水合物抑制性的研究还较少,还不能明确硫酸盐和碳酸盐大类对甲烷水合物稳定性的影响,有待进一步的实验研究。
3. 盐类对甲烷水合物的抑制作用强弱
研究者们对不同盐类和不同离子对甲烷水合物的抑制作用大小进行了对比分析。何勇等[7]实验发现盐类对甲烷水合物的抑制作用大小为:NaCl>KCl>CaCl2>MgCl2>Na2SO4;Sylva等[24]的实验结果(图 4)与何勇等[7]的相近:FeCl3>NaCl>CaCl2≈AgNO3≈MnSO4>CuSO4≈FeSO4,可以看出NaCl是除了FeCl3外对甲烷水合物抑制作用最强的盐类。前人的系统研究结果与本文统计(基于Sylva等[24]、Mohammadi等[63-64]、Kang等[32]、Atik等[62]、Kharrat等[61]、de Roo等[28]、Maekawa等[59]、Lu等[60]的数据)的实验结果(即盐类浓度小于1.5 mol/L大于1 mol/L时,盐类对甲烷水合物的抑制作用大小为MgCl2>CaCl2>NaCl>KCl;盐类浓度大于1.5 mol/L时,CaCl2的抑制作用较强)存在较大的差异。可能由于统计的实验数据来自不同的实验测试方法,导致实验结果存在较大的差异。在阴阳离子对水合物稳定性的抑制作用大小上也出现了争议,有的认为Mg2+>Ca2+>Na+>K+,SO42->CO32->Cl-[66-67],也有的认为Cl->SO42-,Mg2+≈Na+>Ca2+[60, 68-69]。实验结果差异较大,造成实验结果不一致的原因可能是在实验之前未完全将反应釜和溶液中的空气驱净,导致水合物合成受影响,也有可能是实验对比的盐类浓度上有差异,不同浓度的离子可能对甲烷水合物的抑制作用程度不一样。Lu等[60, 65]和Atik等[62]认为阴离子的存在对水合物稳定性的影响更大。在电解质溶液中,盐离子和水分子反应会降低水的活性,导致水合物不易形成[70-72]。理论上,阴离子半径越小、阳离子的半径越大和价位越高,对水分子的静电效应越强、溶剂效应和盐析效应越强,水的活性越低[73-74]。
关于氯化物、硫酸盐和碳酸盐等抑制作用大小的比较,需要在同一实验测试条件下完成,但是前人并没有系统地研究其他盐类(如硫酸盐、碳酸盐等)对甲烷水合物稳定性的影响,未在不同盐类体系下针对甲烷水合物的稳定性进行横向和纵向的对比。关于盐类对甲烷水合物抑制作用的研究,已经从分子水平发展到离子水平。阴阳离子对甲烷水合物稳定性影响强度上存在较大的争议,阳离子如Mg2+、Na+、Ca2+、K+对甲烷水合物抑制作用大小的排序不统一,阴离子如SO42-、CO32-、Cl-对甲烷水合物的抑制作用大小争议更大。水的活性影响着甲烷水合物的形成,水的活性则受控于阴阳离子的半径电价等因素,因此探讨阴阳离子的性质对研究甲烷水合物在海水中的稳定性具有重要的意义。
4. 存在问题与展望
盐类对甲烷水合物的抑制作用是毋庸置疑的,但关于KCl、硫酸盐、碳酸盐等盐类对甲烷水合物影响的研究甚少,盐类对甲烷水合物的抑制作用大小存在差异,在不同盐类抑制作用强弱上也存在较大的争议。目前的研究结果还不够系统,与实际地质条件下的甲烷水合物稳定环境还存在一定差别。根据已有的研究成果,盐类对水合物稳定性影响的研究未来应关注以下几点。
(1) 以往的研究中对NaCl关注较多,关于NaCl对甲烷水合物的影响的研究已比较成熟,随着盐度的增加,NaCl对甲烷水合物的抑制作用越强,盐度每增加1 mol/L,在压力恒定的情况下,温度降低3~4 K;同样在温度恒定的情况下,压力升高2 MPa左右。但是地层水中还存在其他离子,如SO42-、CO32-、K+、Ca2+、Mg2+、NH4+,目前的研究成果与实际地质条件还存在一定差距,实际地层中的盐离子种类更多,更复杂,且不同的地质因素[如生物活动、水岩交互作用、深部物质(如甲烷气体)上流]会影响地层水盐度和离子种类的变化。因此,还需进行更加系统的研究,特别是要加强氯化物-甲烷-水、硫酸盐-甲烷-水、碳酸盐-甲烷-水等体系的详细研究。
(2) 本文数据统计结果显示,盐类浓度小于1.5 mol/L大于1 mol/L时,盐类对甲烷水合物的抑制作用大小为MgCl2>CaCl2>NaCl>KCl,盐类浓度大于1.5 mol/L时,CaCl2的抑制作用较强。盐类和离子对甲烷水合物的抑制作用大小和机制还需进一步确认,有待于系统地研究关于氯化物、硫酸盐、碳酸盐对甲烷水合物的抑制作用,并进行横向和纵向上的对比。同时阴阳离子对水合物稳定的影响强度还需进一步验证和分析,对比阴阳离子对甲烷水合物的稳定性影响的强弱,明确阳离子Mg2+、Na+、Ca2+、K+和阴离子SO42-、CO32-、Cl-对甲烷水合物的抑制作用大小,以及离子本身的性质如何影响着水的活性。明确盐类和阴阳离子的抑制作用大小,以及盐类和离子特性如何影响水合物的形成和稳定,对未来甲烷水合物的勘探和开发具有借鉴意义。
(3) 选取合适的实验手段,减小实验误差。将目测法、等容法、等压法三者相结合,目前实验手段中将高压可视反应腔与显微激光拉曼技术相结合可实现。这种实验手段能够在高压可视反应腔中清楚地观察到水合物的形成分解过程实现定性的研究,同时可根据拉曼谱图定量观测甲烷水合物的形成过程中液相中饱和甲烷浓度,准确获取甲烷水合物稳定形成时的温压条件。
-
图 1 不同岩石类型标准物质(BCR-2、BHVO-2、GSP-2、AGV-2和RGM-2)氟化铵消解产物的扫描电子显微镜(SEM)图像(a~e);GSP-2消解产物的粉末压片表面微观特征和激光剥蚀坑图像(f)
Figure 1. Scanning electron microscope (SEM) images of the NH4F digested products (a-e). The size of the digested particles exhibits a highly reduced grain size, well below 5μm. Furthermore, the morphology of these particles is remarkly uniform, with no apparent mineral structure. SEM images of the surfaces and ablation craters on the pressed pellets of GSP-2 (f). Observe the fine and uniform particles and well-defined ablation craters.
图 3 利用氟化铵消解玄武岩标样BCR-2(a)和花岗闪长岩标样GSP-2(b),不同消解时间对元素Sr、Zr和Hf的回收率影响
Figure 3. Recoveries of Sr, Zr, Hf of BCR-2 (a) and GSP-2 (b), as a function of the digestion time at temperatures of 250℃. BCR-2 digests easily, with nearly 100% Sr, Zr, Hf recovery in 0-0.5h; But for GSP-2, 100% Zr and Hf recovery is achieved only after 1.5h of digestion.
图 6 五个USGS岩石标准物质45个主微量元素分析相对标准偏差(a)和相对误差(b)的测试结果
Figure 6. Relative standard deviation (a, RSD) and relative deviation of average concentrations (b, RD%) of 45 elements for the five rock reference materials (USGS). Most elements have an RSD under 5% and a RD below 10%, indicating reliable data and uniform trace element distribution in the pellets.
表 1 两种不同SiO2的定量计算方法所得到的平均值和相对误差
Table 1 The measured values and relative deviation (RD) of rock reference materials obtained from two different SiO2 quantitative correction schemes.
岩石标准物质
编号SiO2标准值
(%)方法一 方法二 SiO2测试平均值
(%)相对偏差
(%)SiO2测试平均值
(%)相对偏差
(%)BCR-2 54.1 56.4 4.3 54.0 −0.2 BHVO-2 49.9 47.4 −5.0 48.9 −2.0 GSP-2 66.6 62.8 −5.7 67.6 1.5 AGV-2 59.3 53.8 −9.3 59.4 0.2 RGM-2 73.4 67.9 −7.5 74.2 1.1 -
[1] 李超, 王登红, 屈文俊, 等. 关键金属元素分析测试技术方法应用进展[J]. 岩矿测试, 2020, 39(5): 658−669. Li C, Wang D H, Qu W J, et al. A review and perspective on analytical methods of critical metal elements[J]. Rock and Mineral Analysis, 2020, 39(5): 658−669.
[2] 刘勇胜, 屈文俊, 漆亮, 等. 中国岩矿分析测试研究进展与展望(2011—2020)[J]. 矿物岩石地球化学通报, 2021, 40(3): 515–539. Liu Y S, Qu W J, Qi L, et al. Advances and perspective of reasearches on rock and mineral analyses in China (2011—2020)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(3): 515-519.
[3] 翟明国, 吴福元, 胡瑞忠, 等. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 2019, 33(2): 106−111. Zhai M G, Wu F Y, Hu R Z, et al. Critical metal mineral resources: Current reasearch status and scientific issues[J]. Sciences Foundation in China, 2019, 33(2): 106−111.
[4] 曾江萍, 王家松, 朱悦, 等. 敞开酸溶-电感耦合等离子体质谱法测定铀矿石中15种稀土元素[J]. 岩矿测试, 2022, 41(5): 789−797. Zeng J P, Wang J S, Zhu Y, et al. Determination of 15 rare earth elements in uranium ore by open acid dissolution-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2022, 41(5): 789−797.
[5] 龚仓, 丁洋, 陆海川, 等. 五酸溶样-电感耦合等离子体质谱法同时测定地质样品中的稀土等28种金属元素[J]. 岩矿测试, 2021, 40(3): 340−348. Gong C, Ding Y, Lu H C, et al. Simultaneous determination of 28 elements including rare earth elements by ICP-MS with five-acid dissolution[J]. Rock and Mineral Analysis, 2021, 40(3): 340−348.
[6] 张元, 王文东, 卢兵, 等. 碱熔-阳离子交换树脂分离ICP-MS法测定厚覆盖区地球化学调查样品中硼锗溴钼锡碘钨[J]. 岩矿测试, 2022, 41(1): 99−108. Zhang Y, Wang W D, Lu B, et al. Determination of boron, germanium, bromine, molybdenum, tin, iodine and tungsten in geochemical survey samples by ICP-MS with alkali fusion-cation exchange resin seperation[J]. Rock and Mineral Analysis, 2022, 41(1): 99−108.
[7] Zhu L Y, Liu Y S, Hu Z C, et al. Simultaneous determination of major and trace elements in fused volcanic rock powders using a hermetic vessel heater and LA-ICP-MS[J]. Geostandards and Geoanalytical Research, 2013, 37(2): 207−229. doi: 10.1111/j.1751-908X.2012.00181.x
[8] Hu Z C, Qi L. Sample digestion methods, Volume 15: Analytical geochemistry/Inorganic INSTR. Analysis[J]. Treatise on Geochemistry (Second Edition), 2014: 87−109.
[9] He Z W, Huang F, Yu H M, et al. A flux-free fusion technique for rapid determination of major and trace elements in silicate rocks by LA-ICP-MS[J]. Geostandards and Geoanalytical Research, 2015, 40(1): 5−21.
[10] Zhang C X, Hu Z C, Zhang W, et al. Green and fast laser fusion technique for bulk silicate rock analysis by laser ablation-inductively coupled plasma mass spectrometry[J]. Analytical Chemistry, 2016, 88(20): 10088−10094. doi: 10.1021/acs.analchem.6b02471
[11] 胡靓, 张德贤, 娄威, 等. 含膏盐建造铁矿床中磁铁矿LA-ICP-MS微量元素测定与地球化学特征研究[J]. 岩矿测试, 2022, 41(4): 564−574. Hu L, Zhang D X, Lou W, et al. In situ LA-ICP-MS determination of trace elements in magnetite from a gypsum-salt bearing iron deposit and geochemical characteristics[J]. Rock and Mineral Analysis, 2022, 41(4): 564−574.
[12] Lv N, Chen K Y, Bao Z A, et al. Non-matrix-matched 9μm U-Pb dating of zircon using excimer laser ablation ICP-MS[J]. Atomic Spectroscopy, 2021, 42(2): 51−61.
[13] Xiao Y T, Yang J, Deng J, et al. Influence of spot size on LA-ICP-MS ablation behavior for synthetic calcium tungstate and silicate glass reference material NIST SRM610[J]. Atomic Spectroscopy, 2021, 42(1): 36−42. doi: 10.46770/AS.2021.01.006
[14] Zhang W, Hu Z C, Feng L P, et al. Accurate determination of Zr isotopic ratio in zircons by femtosecond laser ablation MC-ICP-MS with “wet” plasma technique[J]. Journal of Earth Science, 2022, 33(1): 67−75. doi: 10.1007/s12583-021-1535-7
[15] Li Z Q, Li F J, Chen Z A, et al. Provenance of late Mesozoic Strata and tectonic implications for the Southwestern Ordos Basin, North China: Evidence from detrital zircon U-Pb geochronology and Hf isotopes[J]. Journal of Earth Science, 2022, 33(2): 373−394. doi: 10.1007/s12583-021-1450-y
[16] Wu S, Karius V, Schmidt B C, et al. Comparison of ultrafine powder pellet and flux-free fusion glass for bulk analysis of granitoids by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2018, 42(4): 575−591. doi: 10.1111/ggr.12230
[17] Garbeschönberg D, Müller S. Nano-particulate pressed powder tablets for LA-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(6): 990−1000. doi: 10.1039/C4JA00007B
[18] Gray A L. Solid sample introduction by laser ablation for inductively coupled plasma source mass spectrometry[J]. Analyst, 1985, 110(5): 551−556. doi: 10.1039/an9851000551
[19] Mochizuki T, Sakashita A, Iwata H, et al. Laser ablation for direct elemental analysis of solid samples by inductively coupled plasma mass spectrometry[J]. Bulletin of the Japan Institute of Metals, 1988, 33(4): 403−409.
[20] Jarvis K E, Williams J G. Laser-ablation inductively-coupled plasma-mass spectrometry (LA-ICP-MS)—A rapid technique for the direct, quantitative-determination of major, trace and rare-earth elements in geological samples[J]. Chemical Geology, 1993, 106(3-4): 251−262. doi: 10.1016/0009-2541(93)90030-M
[21] Perkins W T, Fuge R, Pearce N J G. Quantitative analysis of trace elements in carbonates using laser ablation inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 1991, 6(6): 445−449. doi: 10.1039/ja9910600445
[22] Perkins W T, Pearce N J G, Jeffries T E. Laser ablation inductively coupled plasma mass spectrometry: A new technique for the determination of trace and ultra-trace elements in silicates[J]. Geochimica et Cosmochimica Acta, 1993, 57(2): 475−482. doi: 10.1016/0016-7037(93)90447-5
[23] Denoyer E R. Semiquantitative analysis of environmental materials by laser sampling inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 1992, 7(8): 1187−1193. doi: 10.1039/ja9920701187
[24] Morrison C A, Lambert D D, Morrison R J S, et al. Laser ablation-inductively coupled plasma-mass spectrometry: An investigation of elemental responses and matrix effects in the analysis of geostandard materials[J]. Chemical Geology, 1995, 119(1-4): 13−29. doi: 10.1016/0009-2541(94)00064-F
[25] Holá M, Mikuška P, Hanzlíková R, et al. Tungsten carbide precursors as an example for influence of a binder on the particle formation in the nanosecond laser ablation of powdered materials[J]. Talanta, 2010, 80(5): 1862−1867. doi: 10.1016/j.talanta.2009.10.035
[26] O’Connor C, Landon M R, Sharp B L. Absorption coefficient modified pressed powders for calibration of laser ablation inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2007, 22(3): 273−282. doi: 10.1039/B612512C
[27] Arroyo L, Trejos T, Gardinali P R, et al. Optimization and validation of a laser ablation inductively coupled plasma mass spectrometry method for the routine analysis of soils and sediments[J]. Spectrochimica Acta Part B-Atomic Spectroscopy, 2009, 64(1): 16−25. doi: 10.1016/j.sab.2008.10.027
[28] Mukherjee P K, Khanna P P, Saini N K. Rapid determination of trace and ultra trace level elements in diverse silicate rocks in pressed powder pellet targets by LA-ICP-MS using a matrix-independent protocol[J]. Geostandards and Geoanalytical Research, 2014, 38(3): 363−379. doi: 10.1111/j.1751-908X.2013.012015.x
[29] Godfred O D, Ashantha G, Charlotte A, et al. Determination of refractive and volatile elements in sediment using laser ablation inductively coupled plasma mass spectrometry[J]. Analytica Chimica Acta, 2015, 898: 19−27. doi: 10.1016/j.aca.2015.09.033
[30] Zhang W, Hu Z C. Recent advances in sample preparation methods for elemental and isotopic analysis of geological samples[J]. Spectrochimica Acta Part B-Atomic Spectroscopy, 2019, 160: 105690−105706. doi: 10.1016/j.sab.2019.105690
[31] Hu Z C, Gao S, Liu Y S, et al. NH4F assisted high pressure digestion of geological samples for multi-element analysis by ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(3): 408−413. doi: 10.1039/b921006g
[32] Hu Z C, Zhang W, Liu Y S, et al. Rapid bulk rock decomposition by ammonium fluoride (NH4F) in open vessels at an elevated digestion temperature[J]. Chemical Geology, 2013, 355: 144−152. doi: 10.1016/j.chemgeo.2013.06.024
[33] Jochum K P, Nohl U, Herwig K, et al. GeoReM: A new geochemical database for reference materials and isotopic standards[J]. Geostandards and Geoanalytical Research, 2005, 29(3): 333−338. doi: 10.1111/j.1751-908X.2005.tb00904.x
[34] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1-2): 34−43. doi: 10.1016/j.chemgeo.2008.08.004
-
期刊类型引用(3)
1. 梁龙贵,张龙,郭仕为,景玉平,梁挺,李姜超. 基于IAO-PNN模型的天然气水合物生成条件预测研究. 低碳化学与化工. 2023(06): 170-176 . 百度学术
2. 王英梅,牛爱丽,张兆慧,展静,张学民. 二氧化碳水合物快速生成方法研究进展. 化工进展. 2021(S2): 117-125 . 百度学术
3. 孙既粤,周义明,辛洋,万野,蒋磊. H_2S水合物生长过程在线观测及拉曼光谱特征研究. 石油与天然气化工. 2020(03): 93-100 . 百度学术
其他类型引用(9)