Determination of High Content of Molybdenum in Molybdenum Ore by Emission Spectrometry with Solid Sampling Technique
-
摘要:
全面、系统地建立钼矿石、钼矿粉分析方法,对钼元素研究开发和保障钼矿工业发展具有重要意义。目前多采用酸溶或碱熔样品后进行分析,其不足是测定钼含量的范围窄,消耗样品量大,还需使用大量酸碱,且受仪器限制,分析高含量钼时多需对样品溶液进行数次稀释,使分析步骤更加繁琐。发射光谱法则可避免上述问题,但用之准确分析高含量钼矿石钼矿粉尚有测试方法的瓶颈需要突破。本文研究通过内标元素、分析线对、缓冲剂配比、电流程序等环节的实验分析,建立了固体进样-交流电弧发射光谱法测定钼矿石中高含量钼的分析方法:优化样品与光谱缓冲剂质量比至1∶2,优化分析线对,截取曝光时间35s,采用以国家一级合成硅酸盐光谱分析标准物质和国家一级矿石标准物质组成的自研标准系列制作标准曲线,由全谱交直流电弧发射光谱仪自动扣除分析线和内标线背景后以对数坐标二次曲线拟合计算,使测定范围扩展为500~500800μg/g,检出限为27.38μg/g,相对标准偏差(RSD)为3.28%~8.30%,相对误差为-0.43%~0.73%。结果表明,本文方法在实现绿色分析的同时,在检出限相当、精密度合格的条件下,一次性分析高含量钼的上限从5%提高至50%。
Abstract:BACKGROUNDThe majority of current molybdenum ore analysis techniques use absorbance, gravimetric methods, ICP-MS, ICP-OES, XRF, etc., which are primarily based on liquid injection, with a lengthy analytical procedure, complex steps, and a measurable range of 0.01%-5.17%[16]. The joint technologies of EPMA, SEM, and X-ray spectroscopy are more expensive, and the results may not be reproducible[18-21]. Compared with the above methods, AC-Arc atomic emission spectrometry (Arc-AES), which does not call for the use of acids and bases, has the potential to be applied to the analysis of molybdenum ore and molybdenum powder with a high content of Mo over 5%.
OBJECTIVESTo improve the current analytical techniques for determining high content of molybdenum in molybdenum ore.
METHODSThe mixed sample was loaded into the lower electrode after being ground at 2400Hz for 30min with the different sample-to-buffer ratio in a 5mL crucible. Two drops of a 2% mass fraction sucrose-ethanol solution were added and dried at 70℃ for 1h. The samples were mounted on an AES-8000 direct-reading atomic emission spectrometer using the vertical electrode method. The internal reference method was used to fit the quadratic curve in logarithmic coordinates by subtracting the background spectral lines of the analyzed elements and the internal reference elements. The experiments were conducted by choosing the internal reference element types and spectral lines, selecting the Mo spectral lines, deciding the sample-to-buffer ratio, optimizing the current loading procedure, setting the spectral uptake time, and other conditions. A set of national-level reference materials and national-level synthetic silicate spectral analysis reference materials were used for calibration. The relative standard deviation and logarithmic deviation were utilized for quality control.
RESULTS(1) The analytical line pair is chosen to be Mo 277.54nm/Ge 326.9494nm. The uniformity of internal reference elements is ensured by the excessive addition of germanium dioxide. Mo 277.54nm and Ge 326.9494nm evaporation curves exhibit good consistency when GBW07142 is used as the sample (Fig.1). (2) The sample-to-buffer ratio is selected as 1∶2. It is discovered that the evaporation behavior is significantly improved when it reaches 1∶2; simply increasing the buffer, is not conducive to the analysis of actual samples. (3) Primary current is 4A for 5s, secondary current is 15A for 30s, and the total interception exposure time is 35s. The results show that the intensity of Mo and Ge greatly increases before 30s and slows down after 35s (Fig.2). (4) The reference series components are shown in Table 1 with the content range between 500 to 500800μg/g. The reference curve equation is y=−0.077x2+1.3077x+1.2725, with a coefficient of determination (R2) of 0.999 (Fig. E.1). The detection limit of Mo in this method is 27.38μg/g, which is slightly higher than that of alkali fusion-inductively coupled plasma spectrometry (0.002%)[9] and X-ray fluorescence spectrometry (0.0026%)[16]. The RSD ranges from 3.28% to 8.30%, and the RE ranges from −0.43% to 0.73% (Table 2). The results are consistent with the reference values, with significant precision and accuracy, which meets the requirements (△lgC≤0.05, RSD≤10%) listed in Specification of Multi-Purpose Regional Geochemical Survey (DZ/T 0258—2014).
CONCLUSIONSThis method can be employed to determine the high Mo content in molybdenum ore and molybdenum powder without dilution. Moreover, it is suitable for a wider determination range with the upper limit rising to 50%. It can solve possible problems, such as large sample demand, large chemical reagent use, cumbersome operation and contamination in other analytical methods.
-
碲和硒是稀散元素,在高新科技领域具有重要应用,已被中国和欧美国家列为战略性关键矿产资源[1-2]。一直以来全球碲、硒矿产资源主要采自斑岩-矽卡岩铜金矿床,如中国广东大宝山铜矿和江西城门山铜矿[3-4],研究斑岩矿床中碲、硒的产出情况对国家资源战略保障具有重要意义。云南普朗斑岩型铜金矿床位于三江特提斯成矿域义敦岛弧南部,属于超大型斑岩矿床,已探明铜资源储量4.31Mt,金资源量113t[5]。矿区内出露的地层为中三叠统尼汝组和上三叠统图姆沟组,侵入岩为普朗复式岩体,由石英闪长玢岩(~216Ma)、石英二长斑岩(~215Ma)和花岗闪长斑岩(~206Ma)组成,岩体出露总面积约为11km2(图1)。前人对普朗矿床的地质特征、成岩成矿时代、成矿物质来源、成矿流体性质等作了大量工作,但对矿床中碲硒的含量和赋存状态等研究还较为薄弱。本文报道了普朗矿床中产出的碲化物和硒化物,以期为斑岩矿床中碲硒的勘查和综合利用提供资料。
本次研究对象主要为普朗矿床中的铜精矿和钼精矿样品,测试分析均在东华理工大学核资源与环境国家重点实验室完成。样品的矿相学观察利用ZEISS Axio Scope A1光学显微镜及ZEISS Sigma 300场发射扫描电镜完成,扫描电镜的加速电压为20kV,发射电流为10μA[6]。矿物成分利用JXA-8530F Plus型电子探针分析完成,实验设定加速电压为15kV,电流为20nA,探针直径为1μm,使用ZAF方法对X射线强度进行校正。分析标样选择砷化镓(As),黄铜矿(Cu),黄铁矿(Fe、S),自然银(Ag),碲铋矿(Te、Bi),辉钼矿(Mo),自然铅(Pb),自然锑(Sb),硒化镉(Se),自然金(Au),自然铂(Pt),自然钯(Pd)。测试主量元素的精确度和准确度均小于2%。
普朗铜金矿床中的碲和硒含量高,并形成大量碲化物、硒化物和富硒矿物。矿床精矿中的碲和硒含量分别达74.3×10−6和270×10−6。碲在钾化带中的含量为0.3×10−6~0.43×10−6,较绢英岩化带中的高(0.02×10−6~0.12×10−6),由矿体中心向外,碲品位逐渐降低[7]。硒在钾化带和绢英岩化带的含量无明显差别,分别为1.49×10−6~2.44×10−6和1.04×10−6~3.00×10−6。矿石中的碲与金呈正相关关系,硒与银呈正相关关系。普朗铜矿床中,碲和硒主要以碲化物、硒化物和富硒矿物形式存在,形成辉碲铋矿、碲钯矿、硒银矿和富硒方铅矿等(图2)。辉碲铋矿是普朗含量最多的碲化物,反射光下为白色略带淡蓝色,矿物成分较均一,Bi含量为58.36%~61.24%,Te含量为31.03%~34.50%,S含量为3.76%~4.54%(图2e)。普朗辉碲铋矿中含有较高的Se(0.77%~3.63%)。辉碲铋矿的化学式为Bi2.02~2.08(Te1.74~1.93S0.85~1.01Se0.08~0.33)2.90~2.98。碲钯矿属于独立铂族元素矿物,在自然界很少见,中国斑岩矿床中仅江西德兴有报道[8],在全球其他斑岩矿床中非常少见。普朗碲钯矿粒径为1~5μm,反射光下呈亮白色(图2a)。碲钯矿中Pd和Pt可以类质同象取代,因此含量变化较大,Pd含量为16.26%~25.69%,Pt含量为4.82%~17.66%,Te含量为61.25%~66.76%(图2f)。碲钯矿化学式为(Pd0.64~0.98Pt0.09~0.37)0.98~1.03Te1.97~1.02。硒银矿是普朗含量最多的硒化物,反射光下为白色带微蓝绿色(图2c)。硒银矿中普遍含S,含量为0.55%~2.65%,Ag含量普遍偏低,为70.22%~72.77%,Se含量为24.09%~27.31%(图2g)。硒银矿化学式为Ag1.89~1.98(Se0.87~1.01S0.05~0.24)1.02~1.11。富硒方铅矿属于PbS1-xSex矿物,其中x值可在0~1之间连续变化。普朗富硒方铅矿S和Se的含量变化大,分别为4.01%~12.52%和1.85%~19.13%,Pb含量为73.91%~82.52%,大多数样品中含有Ag,最高含量达1.61%。普朗富硒方铅矿形成了较完整的PbS-PbSe固溶体系列(图2h),化学式为Pb0.98~1.01(S0.35~0.97Se0.07~0.67)0.99~1.02。
图 2 碲硒矿物显微照片及矿物元素含量三元图a—碲钯矿反射光镜下照片; b—碲钯矿BSE照片; c—硒银矿反射光镜下照片; d—硒银矿BSE照片; e— Bi-Te-S体系三元图; f— Te-Pd-Pt体系三元图; g—Ag-Se-S体系三元图; h—Pb-Se-S体系三元图。Mol—辉钼矿; Mrk—碲钯矿; Nau—硒银矿; Py—黄铁矿。Figure 2. Photomicrographs of tellurium and selenium minerals and ternary plots of element contents. a—Reflected light photomicrograph of merenskyite; b—BSE image of merenskyite; c—Reflected light photomicrograph of naumannite; d—BSE image of naumannite; e—Ternary plot of Bi-Te-S system; f—Ternary plot of Te-Pd-Pt system; g—Ternary plot of Ag-Se-S system; h—Ternary plot of Pb-Se-S system. Mol=Molybdenite, Mrk=Merenskyite, Nau=Naumannite, Py=Pyrite.矿床中的碲和硒可以指示物质来源和成矿过程。碲和硒具有亲硫特点,碲会部分进入硫化物晶格,但更易形成碲的独立矿物;硒属于强亲硫元素,在较高温的条件下易于进入硫化物晶格,在中低温条件下,硫含量较低时,可形成硒的独立矿物。洋壳中的铁锰结壳、页岩及浮游沉积物等是自然界中碲和硒的重要储库[9],因此在洋陆俯冲过程中,大陆岩石圈地幔和洋壳的部分熔融会形成富碲、硒的岩浆[10-11]。碲和硒在硫化物熔体中的相容性很高(D硫化物/硅酸盐>600),碲倾向于存在液相硫化物(SL)中,而硒则更易进入单硫化物固熔体(MSS)(DTe SL/硅酸盐/DSe SL/硅酸盐为5~9,DTe MSS/硅酸盐/DSe MSS/硅酸盐为0.5~0.8)[12]。当富碲、硒的岩浆到达下地壳,会结晶分异形成富Co、Ni的硅酸盐矿物,碲、硒存在硫化物熔体中继续向上运移;当岩浆到达中地壳,温度低于900℃时,硫化物熔体与Te-Se熔体发生相分离;当岩浆到达上地壳,侵位形成班岩体及Cu矿床,Ag-Pt-Pd则高度集中在富Te-Se熔体中,并最终形成贵金属矿物[13]。普朗铜金矿床中的碲和硒可能与区内晚三叠世的俯冲造山密切相关,富碲和硒的岩浆也促进了铂族元素的富集成矿。
普朗斑岩铜金矿床中碲化物和硒化物的发现,对资源的综合利用及矿床成因研究具有重要意义。矿床中碲和硒的资源量规模大,大部分以独立矿物形式存在,且常与Au-Ag-PGE共生,具有较好的经济回收利用价值。碲化物和硒化物的产出也为成矿物质来源及岩浆演化过程提供了新的研究方向。
-
表 1 标准系列配比及钼含量
Table 1 Ratio of the standard series and concentration of Mo.
标准系列
编号标准系列配比成分 钼含量
(μg/g)1 GBW07711 500 2 GBW07141 660 3 GBW07142 1500 4 GBW07143 5400 5 GBW07144∶基体(GSES Ⅰ)=1∶50 10016 6 GBW07144∶基体(GSES Ⅰ)=1∶25 20032 7 GBW07144∶基体(GSES Ⅰ)=1∶5 100160 8 GBW07144 500800 表 2 方法精密度和准确度
Table 2 Accuracy and precision of the method.
测定次数 GBW07141 GBW07142 GBW07143 1 629.02 1554.30 5221.84 2 635.15 1574.90 5043.96 3 699.70 1429.01 5767.91 4 641.80 1448.65 5803.26 5 659.32 1498.60 5456.75 6 654.50 1336.90 5286.44 7 683.15 1350.19 5087.67 8 676.11 1713.88 5650.50 9 681.28 1643.03 5354.01 10 678.51 1605.32 5214.25 11 659.32 1386.38 5327.01 12 679.70 1381.34 5941.20 标准值(μg/g) 660.00±30 1500.00±100 5400.00±200 AVE(μg/g) 664.80 1493.54 5429.57 RSD (%) 3.28 8.30 5.43 相对误差(%) 0.73 −0.43 0.55 △lgC 0.003 −0.002 0.002 -
[1] 朱欣然. 国内外钼资源供需形势分析[J]. 矿产保护与利用, 2020, 40(1): 172−178. Zhu X R. Analysis of the supply and demand situation of molybdenum resources at home and abroad[J]. Mineral Protection and Utilization, 2020, 40(1): 172−178.
[2] 冯丹丹. 全球钼资源供需形势分析与展望[J]. 国土资源情报, 2020(10): 39−44. Feng D D. Analysis and prospect of global molybdenum resource supply and demand situation[J]. Land and Resources Intelligence, 2020(10): 39−44.
[3] 郑波. 固体直接进样测土壤重金属的方法与技术研究[D]. 北京: 中国农业科学院, 2016. Zheng B. Studies on measuring method and technology of soil heavy metals by using direct solid sampling [D]. Beijing: Chinese Academy of Agricultural Sciences, 2016.
[4] 赵炳建, 赵浩年, 赵越, 等. 微波消解-电感耦合等离子体原子发射光谱法测定钼铁合金中的钼含量[J]. 分析测试技术与仪器, 2022, 28(4): 422−426. Zhao B J, Zhao H N, Zhao Y, et al. Determination of ferromolybdenum alloy by microwave digestion inductively coupled plasma atomic emission spectroscopy[J]. Analysis and Testing Technology and Instruments, 2022, 28(4): 422−426.
[5] 王力强, 王家松, 魏双, 等. 偏硼酸锂熔融-电感耦合等离子体发射光谱法测定钨钼矿石中钨钼及11种伴生元素[J]. 岩矿测试, 2021, 40(5): 688−697. doi: 10.15898/j.cnki.11-2131/td.202103190040 Wang L Q, Wang J S, Wei S, et al. Determination of W, Mo and 11 other elements in tungsten-molybdenum ores by inductively coupled plasma optical emission spectrometry with lithium metaborate fusion[J]. Rock and Mineral Analysis, 2021, 40(5): 688−697. doi: 10.15898/j.cnki.11-2131/td.202103190040
[6] 杨萍, 党铭铭, 郭永艳, 等. 五酸消解-电感耦合等离子体原子发射光谱法测定矽卡岩型多金属钨矿中钨、钼、铋的含量[J]. 理化检验(化学分册), 2022, 58(7): 773−776. Yang P, Dang M M, Guo Y Y, et al. Determination of W, Mo, and Bi in skarn-type polymetallic tungsten ores by ICP-AES with penta acid digestion[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2022, 58(7): 773−776.
[7] 党铭铭, 杨萍, 雷勇, 等. 电感耦合等离子体发射光谱技术测定多金属伴生矿中钨钼铋两种消解方法的对比[J]. 岩矿测试, 2021, 40(4): 603−611. Dang M M, Yang P, Lei Y, et al. Comparison of two different sample digestion methods for determination of tungsten, molybdenum, and bismuth in polymetallic ore by inductively coupled plasma-optical emission spectrometry[J]. Rock and Mineral Analysis, 2021, 40(4): 603−611.
[8] 杨新能, 陈德, 李小青. 碱熔-电感耦合等离子体原子发射光谱法测定铁矿石中铬铌钼钨锡[J]. 冶金分析, 2019, 39(12): 55−60. doi: 10.13228/j.boyuan.issn1000-7571.010796 Yang X N, Chen D, Li X Q. Determination of chromium, niobium, molybdenum, tungsten, tin in iron ore by inductively coupled plasma atomic emission spectrometry with alkali fusion[J]. Metallurgical Analysis, 2019, 39(12): 55−60. doi: 10.13228/j.boyuan.issn1000-7571.010796
[9] 黄朝文, 莫凯敏. 碱熔-电感耦合等离子体质谱法测定钨矿石和钼矿石中的钨钼[J]. 当代化工研究, 2023(11): 76−78. Huang C W, Mo K M. Determination of tungsten and molybdenum in tungsten ore and molybdenum ore by inductively coupled plasma mass spectrometry with alkali fusion[J]. Modern Chemical Research, 2023(11): 76−78.
[10] 吴葆存, 于亚辉, 闫红岭, 等. 碱熔-电感耦合等离子体质谱法测定钨矿石和钼矿石中稀土元素[J]. 冶金分析, 2016, 36(7): 39−45. doi: 10.13228/j.boyuan.issn1000-7571.009753 Wu B C, Yu Y H, Yan H L, et al. Determination of rare earth elements in tungsten ore and molybdenum ore by inductively coupled plasma mass spectrometry with alkali fusion[J]. Metallurgical Analysis, 2016, 36(7): 39−45. doi: 10.13228/j.boyuan.issn1000-7571.009753
[11] Panteeva S, Gladkochoub D, Donkaya T, et al. Determination of 24 trace elements in felsic rocks by inductively coupled plasma spectrometry after lithium metaborate fusion[J]. Spectrochimica Acta Part B, 2003, 58(2): 341−350. doi: 10.1016/S0584-8547(02)00151-9
[12] Diegor W, Longgerich H, Abrajano T, et al. Applicability of a high pressure digestion technique to the analysis of sediment and soil samples by inductively coupled plasma-mass spectrometry[J]. Analytica Chemica Acta, 2011, 431(2): 195−207.
[13] 任梦阳. 氟化氢铵消解-电感耦合等离子体质谱(ICP-MS)法测定地球化学样品中的钨锡钼[J]. 中国无机分析化学, 2022, 12(2): 52−55. doi: 10.3969/j.issn.2095-1035.2022.02.008 Ren M Y. Determination of tungsten, tin and molybdenum in geochemical samples by inductively coupled plasma mass spectrometry (ICP-MS) with ammmonium fluoride digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2022, 12(2): 52−55. doi: 10.3969/j.issn.2095-1035.2022.02.008
[14] 张征莲, 施意华, 唐碧玉, 等. 电感耦合等离子体质谱(ICP-MS)法测定炭质页岩中的钨钼钪[J]. 中国无机分析化学, 2021, 11(4): 39−44. Zhang Z L, Shi Y H, Tang B Y, et al. Determination of tungsten, molybdenum and scandium in carbon shale by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2021, 11(4): 39−44.
[15] 邓飞, 韩亮, 马青兰. X射线荧光光谱压片法快速分析钼矿石中的钼含量[J]. 甘肃科技, 2014, 3(15): 39−40,12. Deng F, Han L, Ma Q L. Rapid analysis of molybdenum content in molybdenum ores by X-ray fluorescence spectroscopy compression method[J]. Gansu Science and Technology, 2014, 3(15): 39−40,12.
[16] 王学田, 丁力, 李艳娟, 等. X射线荧光光谱法同时测定矿石中钨钼锡[J]. 分析试验室, 2015, 34(9): 1031−1037. Wang X T, Ding L, Li Y J, et al. Simultaneous determination of W, Mo and Sn in ore by X-ray fluorescence spectrometry[J]. Chinese Journal of Analysis Laboratory, 2015, 34(9): 1031−1037.
[17] 杨小丽, 李小丹, 杨梅. X射线荧光光谱法测定以钨和钼为主的多金属矿中主次成分[J]. 冶金分析, 2013, 33(8): 38−42. Yang X L, Li X D, Yang M. Determination of major and minor components in tungsten and molybdenum polymetallic ore by X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2013, 33(8): 38−42.
[18] 温利刚, 贾木欣, 付强,等. 基于扫描电子显微镜-X射线能谱的矿物自动分析系统(BPMA)测定高纯石英砂中杂质矿物[J]. 中国无机分析化学, 2023, 13(8): 845−850. Wen L G, Jia M X, Fu Q, et al. Determination of impurity minerals in high-purity quartz by SEM-EDS-based automated process mineralogy analyzing system (BPMA)[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(8): 845−850.
[19] 付雪涛, 赵俊莎, 高亚欣, 等. X射线能谱法测定镍钴锰酸锂中镍、钴、锰三元素摩尔比[J]. 中国无机分析化学, 2020, 10(1): 76−80. Fu X T, Zhao J S, Gao Y X, et al. Determination for the molar ratio of nickel, cobalt, manganese of nickel-cobalt-manganese lithium by X-ray energy spectrum[J]. Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(1): 76−80.
[20] 高尚, 黄梦诗, 杨振英, 等. 扫描电镜中X射线能谱仪的技术进展[J]. 分析科学学报, 2022, 38(1): 115−121. Gao S, Huang M S, Yang Z Y, et al. Technical progress of X-ray energy dispersive spectroscopy in scanning electron microscope[J]. Journal of Analytical Science, 2022, 38(1): 115−121.
[21] 《岩石矿物分析》编委会. 《岩石矿物分析》(第四版 第一分册)[M]. 北京: 地质出版社, 2011: 660-679, 903-923. Editorial Board of “ Rock and Mineral Analysis”. Rock and Mineral Analysis (Fourth Edition, Volume Ⅰ)[M]. Beijing: Geological Publishing House, 2011: 660-679, 903-923.
[22] 张勤. 多目标地球化学填图中的54种指标配套分析方案和分析质量监控系统[J]. 第四纪研究, 2005, 25(3): 292−297. Zhang Q. A complete set of analytical schemes and analytical data monitoring systems for determinations of 54 components in multi-purpose geochemical mapping[J]. Quaternary Sciences, 2005, 25(3): 292−297.
[23] 柴红, 冯先进, 李华昌. 电弧原子发射光谱(Arc-AES)的应用研究进展[J]. 中国资源综合利用, 2018, 36(1): 88−92. Chai H, Feng X J, Li H C. Study on the application progress of arc-emission spectroscopy (Arc-AES) technology[J]. China Resources Comprehensive Utilization, 2018, 36(1): 88−92.
[24] 杨婷. 发射光谱法测定地质样品中的锡[J]. 科技资讯, 2016, 14(27): 154, 156. Yang T. Determination of tin in geological samples by emission spectroscopy[J]. Science and Technology Information, 2016, 14(27): 154, 156.
[25] Savinova E, Sukach Y, Kolesov G, et al. Using arc excitation atomic emission spectrometry in studying the microelement composition of bottom sediments[J]. Journal of Analytical Chemistry, 2013, 68(2): 127-131.
[26] 马景治, 曲少鹏, 李光一, 等. 固体进样-发射光谱法同时测定地球化学样品中铜铅锌镍[J]. 岩矿测试, 2022, 41(6): 1007−1016. Ma J Z, Qu S P, Li G Y, et al. Simultaneous determination of copper, lead, zinc and nickel in geochemical samples by emission spectrometry with solid sampling technique[J]. Rock and Mineral Analysis, 2022, 41(6): 1007−1016.
[27] 赵丽, 于阗. 液体缓冲剂交流电弧发射光谱分析中内标元素选择探讨[J]. 现代科学仪器, 2021, 38(3): 57−60. Zhao L, Yu T. Selection of internal standard elements in AC arc emission spectroscopy of liquid buffers[J]. Modern Scientific Instruments, 2021, 38(3): 57−60.
[28] 王鹤龄, 李光一, 曲少鹏, 等. 氟化物固体缓冲剂-交流电弧直读发射光谱法测定化探样品中易挥发与难挥发微量元素[J]. 岩矿测试, 2017, 36(4): 367−373. Wang H L, Li G Y, Qu S P, et al. Determination of volatile and nonvolatile trace elements in geochemical samples by fluoride solid buffer-AC arc direct reading emission spectrometry[J]. Rock and Mineral Analysis, 2017, 36(4): 367−373.
[29] 姚建贞, 郝志红, 唐瑞玲, 等. 固体发射光谱法测定地球化学样品中的高含量锡[J]. 光谱学与光谱分析, 2013, 33(11): 3124−3127. Yao J Z, Hao Z H, Tang R L, et al. Determination of high content tin in geochemical samples by solid emission spectrometry[J]. Spectroscopy and Spectral Analysis, 2013, 33(11): 3124−3127.
[30] 肖细炼, 朱园园, 陈燕波, 等. 交流电弧-光电直读发射光谱法测定岩石矿物样品中高含量锡[J]. 理化检验(化学分册), 2021, 57(3): 241−246. Xiao X L, Zhu Y Y, Chen Y B, et al. Determination of high content tin in rock and mineral samples by alternating current AC-optoelectronic direct reading emission spectrometry[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2021, 57(3): 241−246.
[31] 郝志红, 姚建贞, 唐瑞玲, 等. 直流电弧全谱直读原子发射光谱法(DC-Arc-AES)测定地球化学样品中痕量硼、钼、银、锡、铅的方法研究[J]. 光谱学与光谱分析, 2015, 35(2): 527−533. Hao Z H, Yao J Z, Tang R L, et al. Determination of trace boron, molybdenum, silver, tin and lead in geochemical samples by DC arc direct reading atomic emission spectroscopy[J]. Spectroscopy and Spectral Analysis, 2015, 35(2): 527−533.
[32] 李小辉. 交流电弧直读原子发射光谱法快速测定钼矿石中的银[J]. 理化检验(化学分册), 2017, 53(6): 716−718. Li X H. Rapid determination of silver in molybdenum ores by AC arc direct reading atomic emission spectrometry[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 53(6): 716−718.
[33] 马景治, 李光一, 董学兵, 等. 交流电弧发射光谱法测定铅矿石中锡[J]. 冶金分析, 2023, 43(2): 39−45. Ma J Z, Li G Y, Dong X B, et al. Determination of tin in lead ore by AC arc emission spectrometry[J]. Metallurgical Analysis, 2023, 43(2): 39−45.
[34] 郭心玮, 郝志红, 姚建贞, 等. 交流电弧原子发射光谱固体粉末样品制备方法的改进[J]. 分析测试技术与仪器, 2023, 29(1): 7−15. Guo X W, Hao Z H, Yao J Z, et al. Improvement of preparation method for determination of solid powder samples by AC-arc atomic emission spectrometry[J]. Analysis and Testing Technology and Instruments, 2023, 29(1): 7−15.
[35] 曲红静, 吴冬梅, 赵燕秋. 全谱直流电弧发射光谱法同时测定钛白粉中13种杂质元素[J]. 分析仪器, 2023(4): 16−19. Qu H J, Wu D M, Zhao Y Q. Simultaneous determination of 13 impurity elements in titanium dioxide by full spectrum DC arc emission spectrometry[J]. Analytical Instrumentation, 2023(4): 16−19.
[36] 黄海波, 袁静, 凌波, 等. 电弧发射光谱技术发展及其在地质领域的应用[J]. 华东地质, 2023, 44(1): 103−117. Huang H B, Yuan J, Ling B, et al. Technical development of arc-emission spectroscopy and its application in geological sample analysis[J]. East China Geology, 2023, 44(1): 103−117.
[37] 郝志红, 姚建贞, 唐瑞玲, 等. 交流电弧直读原子发射光谱法测定地球化学样品中银、硼、锡钼、铅的方法研究[J]. 地质学报, 2016, 90(8): 2070−2082. Hao Z H, Yao J Z, Tang R L, et al. Study on the method for the determination of silver, boron, tin, molybdenum, lead in geochemical samples by AC-arc direct reading atomic emission spectroscopy[J]. Acta Geologica Sinica, 2016, 90(8): 2070−2082.
-
期刊类型引用(2)
1. 王大钊,梁丰,王艳军,李凯旋,刘家军,冷成彪. 斑岩系统中低熔点亲铜元素与稀贵金属赋存状态和富集机制研究:以藏东南普朗超大型斑岩Cu-Au矿床为例. 岩石学报. 2025(02): 621-641 . 百度学术
2. 刘家军,王大钊,翟德高,高燊,郑波,王佳新,张斌,王冠智,王泽琳,汪林炜,翁国明. 低熔点亲铜元素(LMCE)在金成矿中的作用及促进金富集的机理. 矿床地质. 2024(04): 712-734 . 百度学术
其他类型引用(0)