• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

地质环境中生物标志物GDGTs分析技术研究进展

战楠, 孙青, 李琪, 谢曼曼, 尚文郁, 郝瑞霞

战楠,孙青,李琪,等. 地质环境中生物标志物GDGTs分析技术研究进展[J]. 岩矿测试,2024,43(1):30−46. DOI: 10.15898/j.ykcs.202306100077
引用本文: 战楠,孙青,李琪,等. 地质环境中生物标志物GDGTs分析技术研究进展[J]. 岩矿测试,2024,43(1):30−46. DOI: 10.15898/j.ykcs.202306100077
ZHAN Nan,SUN Qing,LI Qi,et al. Research Progress in Analytical Methods of Biomarker GDGTs in Geological Environments[J]. Rock and Mineral Analysis,2024,43(1):30−46. DOI: 10.15898/j.ykcs.202306100077
Citation: ZHAN Nan,SUN Qing,LI Qi,et al. Research Progress in Analytical Methods of Biomarker GDGTs in Geological Environments[J]. Rock and Mineral Analysis,2024,43(1):30−46. DOI: 10.15898/j.ykcs.202306100077

地质环境中生物标志物GDGTs分析技术研究进展

基金项目: 中国地质科学院基本科研业务费项目(CSJ-2022-05)
详细信息
    作者简介:

    战楠,博士研究生,助理研究员,从事环境分析化学、有机地球化学研究。E-mail:zhannan@mail.cgs.gov.cn

    通讯作者:

    孙青,博士,研究员,从事有机地球化学、全球气候变化、稳定同位素研究。E-mail:sunqing1616@yahoo.com

  • 中图分类号: O657

Research Progress in Analytical Methods of Biomarker GDGTs in Geological Environments

  • 摘要:

    甘油二烷基甘油四醚脂(GDGTs)是一类来自于微生物细胞膜脂的新兴生物标志物,广泛存在于海洋、湖泊、土壤、泥炭等环境。在活体细胞中,GDGTs通常以完整极性膜脂(IPL-GDGTs)的形式存在,而在地质环境中主要以脱去极性头基的核心脂(CL-GDGTs)的形式存在。CL-GDGTs结构稳定、不易降解,并且对环境变化响应敏感,因此被认为是重建古气候-古环境变化的有力工具。GDGTs结构复杂、种类多样,在环境中的含量通常较低且常与其他化合物共存,因此分析难度较高,现有技术和方法在其分离、纯化、定量等方面仍然面临挑战。本文总结了近年来GDGTs在分析技术方面的研究进展,概述了GDGTs的分类与结构,对环境中IPL-GDGTs和CL-GDGTs的分离、纯化等方法进行总结和比较,其中CL-GDGTs可选择多种提取方法,而极性较强、热稳定性较差的IPL-GDGTs应尽量选取Bligh-Dyer提取法。普通的分离、纯化通常采用柱层析法,而涉及GDGTs单体分离时,一般采用制备液相色谱法。液相色谱-质谱、核磁共振波谱、气相色谱-同位素比值质谱是GDGTs含量测定、结构鉴定、同位素分析的主要分析手段。本文评述了现有方法的特点和不足,并在此基础上,提出了GDGTs分析技术的发展方向,以期为地质环境中GDGTs的分析研究提供启示和参考。

     

    要点

    (1)GDGTs是来自微生物细胞膜脂的一类新兴的生物标志物,是当前古气候-古环境重建研究的良好载体和有力工具,在地质环境中广泛分布。

    (2)GDGTs的结构复杂、种类多样,分析难度较高,现有分析技术在其分离、纯化、准确定量等方面仍面临挑战。

    (3)GDGTs的分析研究重点需要关注方法标准化、分析效率、新组分识别及同位素分析等方面。

    HIGHLIGHTS

    (1) GDGTs are a new class of biomarkers, which are ubiquitous in geological environments and have unique advantages in paleoclimate reconstruction.

    (2) The analysis of GDGTs is difficult due to their structural diversity, and the existing analytical methods still face challenges in separation, purification, and accurate quantification.

    (3) The future analysis of GDGTs should focus on improving the analytical separation, efficiency, and accuracy and expand to method standardization, new component identification, and isotopic techniques.

    BRIEF REPORT

    Glycerol dialkyl glycerol tetraethers (GDGTs) are lipid biomarkers that are widely distributed in geological environments, including oceans[4-6], lakes[7-10], river estuaries[11], hot springs[12], soil[14-17], and peats[18-22]. They are sensitive to environmental changes and can effectively record paleoclimate information over a range of geological time scales. GDGT-based proxies are widely used in the reconstruction of terrestrial and marine paleoenvironments[23-28]. However, the accurate analysis of GDGTs is challenging due to their diverse nature and difficulties in their separation, purification, and quantification.

      GDGTs in the environment exist in two forms: intact polar lipids (IPL-GDGTs) or as core lipids (CL-GDGTs) (Fig.1). CL-GDGTs can be further classified into two types based on their structural differences: isoprenoid GDGTs (isoGDGTs) and branched GDGTs (brGDGTs). IsoGDGTs are primarily composed of GDGT-0 to GDGT-8, Crenarchaeol, and its stereoisomer. IsoGDGTs are produced by archaea[36-37], while the biological origin of brGDGTs is still uncertain, although there is evidence to indicate that their potential producers are heterotrophic bacteria, including Acidobacteria, Proteobacteria, Nitrospira, Bacteroidetes, Actinobacteria, and Verrucomicrobia[25-27, 48]. BrGDGTs consist of three series (Ⅰ, Ⅱ, and Ⅲ), each of which differs by a methylene group. The alkyl side chains of brGDGTs in series Ⅱ and Ⅲ may possess various methyl groups at the C5, C6, and C7 positions, leading to the formation of positional isomers, such as 5-methyl, 6-methyl, and 7-methyl brGDGTs[8, 39-41].

      Extraction methods for GDGTs from environmental samples mainly involve the Bligh-Dyer method[12, 35, 49-50], ultrasonic extraction[14, 32, 51-52], Soxhlet extraction[53-56], accelerated solvent extraction (ASE)[31, 57-59] and microwave-assisted extraction (MAE)[27, 59-60]. The Bligh-Dyer method was originally used to extract cell membrane lipids from eukaryotes and bacteria, but modifications have been made to increase extraction rates[3, 59, 61]. Ultrasonic extraction usually uses methanol, methanol-dichloromethane, and dichloromethane as the extraction solution[52, 59]. Soxhlet extraction is highly efficient but demands a large amount of solvents and is time-consuming[53-56]. ASE is the most commonly used method for extracting CL-GDGTs, using dichloromethane-methanol as the extraction solvent[57-59]. MAE is a simple, fast, efficient, and selective method for solid samples, but its application is limited by the lack of widespread microwave reactor availability[28, 59-60].

      Different GDGTs extraction methods have been compared in several studies[50-51, 63-64]. Schouten et al.[51] compared the efficiency of three extraction methods: ultrasonic extraction, Soxhlet extraction, and ASE extraction for isoGDGTs. They found that the TEX86 values obtained by the three methods were almost identical within ±1σ error. Wang et al[50] also compared the efficiency of Bligh-Dyer and ultrasonic extraction. They found that the Bligh-Dyer method was more effective in extracting IPL-GDGTs, whereas the ultrasonic extraction method was more efficient in extracting CL-GDGTs. However, the values of palaeoclimatic indicators (TEX86, MBT, and CBT) obtained by both methods were identical, indicating that the different extraction methods did not affect the value of palaeoclimatic proxies[50]. Yang et al.[64] later confirmed that the Bligh-Dyer method was more efficient than the ultrasonic extraction in extracting OH-GDGTs that contain polar head groups. In summary, the Bligh-Dyer method is preferable for IPL-GDGTs due to their greater polarity and lower thermal stability, while various extraction methods can be used for CL-GDGTs.

      To isolate and purify GDGTs from environmental samples, column chromatography[51, 59-61] is commonly used along with preparative liquid chromatography (Prep HPLC) in some cases[40, 65-66]. Prep HPLC is mainly used to separate components that are hard to fractionate or prone to loss in column chromatography, such as certain GDGT monomers, isomers, or IPL-GDGTs with unstable head groups[22, 39, 66, 68]. The Ib and IIIa5, 6 components were successfully isolated from mixtures of brGDGTs through Prep HPLC along with repeated separation and purification[18, 40]. Silica and alumina (Al2O3) are commonly used as stationary phases. The elution process yields nonpolar and polar fractions. GDGTs are usually found in the polar fraction and can be further analysed for structural identification and isotopic analysis using Prep HPLC or a combination of both methods. During the process of separating and purifying GDGTs, some IPL-GDGTs may lose their polar head groups due to poor stability. To address this issue, Huguet et al.[59] proposed an indirect method for determining IPL-GDGTs. The total lipid extract was divided into two equal parts. The first part was purified through an Al2O3 column to obtain the content of CL-GDGTs. The second part underwent acid-hydrolysis, which converted IPL-GDGTs into CL-GDGTs by losing their polar head groups. The hydrolysis product was the sum of (IPL+CL)-GDGTs. The quantity of IPL-GDGTs was determined by subtracting CL-GDGTs from (IPL+CL)-GDGTs. However, the error of this “ subtraction method” is greater than that of the direct measurement. Therefore, this method should be used with caution, especially when the concentration of IPL-GDGTs is lower than that of CL-GDGTs[59].

      The analysis of GDGTs in the geological environment mainly involves content determination, structural identification, and isotopic analysis. This is commonly done using high-performance liquid chromatography-mass spectrometry (HPLC-MS)[3, 51-54], gas chromatography-mass spectrometry (GC-MS)[3, 63, 69-70], nuclear magnetic resonance spectroscopy (NMR)[18, 41, 71], and gas chromatography-isotope ratio mass spectrometry (GC-IRMS)[40, 65, 72]. CL-GDGTs are usually analyzed by HPLC-APCI-MS, while IPLs-GDGTs with polar head groups are usually analyzed by RP-HPLC-ESI-MS. Good separation of 5-, 6-, and 7-methyl isomers of brGDGTs can be achieved by using four HPLC columns or two UPLC columns in tandem[8, 39-41, 73]. In a normal-phase HPLC system, the peaks of GDGTs are sorted by their mass-to-charge ratios (m/z) from the largest to the smallest, as shown in Fig. 2.

      Single and triple quadrupole mass spectrometry are commonly used for the GDGTs analysis through HPLC-MS. SIM mode is preferred for quantification due to its higher sensitivity and reproducibility than the full-scan mode, which captures the characteristic ions [M+H]+ of each GDGT component[51]. However, low resolution can cause ion loss for isoGDGTs and brGDGTs, which affects the accuracy of quantitative results[76]. Recently, high-resolution mass spectrometry, such as Orbitrap-MS[77-78] and FTICR-MS[55, 79], has been applied to the GDGTs analysis. HPLC-HRMS provides a comprehensive characterization of the structure and composition of GDGTs in environmental samples, offering great potential for future analyses.

      Structure identification of GDGTs involves various techniques such as HRMS, GC-MS, and NMR techniques[18, 42, 63, 70]. The molecular formulae of GDGTs can be determined by HRMS through precise mass measurement of the protonated molecular ion peaks and isotopic peaks evaluation[77, 79]. Conventional GC has a temperature limit of 300-350°C, which makes it impossible to vaporize GDGTs directly. However, HT-GC has a higher limit of 400-450°C, allowing for direct analysis of GDGTs. HT-GC equipped with a flame ionization detector can be used to analyse CL-GDGTs[18, 72]. The possible molecular structures of GDGTs can be deduced from analyzing the primary and secondary fragment ions of the mass spectra, along with their fragmentation pathways[41-42]. NMR techniques provide molecular structural information of GDGTs, which can be verified by other methods such as HPLC-MS and GC-MS[18, 41, 71, 82]. Nevertheless, NMR has certain limitations and requires high sample purity and content to ensure adequate signal intensity. NMR analysis usually requires high sample purity and milligram injection quantities, which means it is not easy to separate and enrich GDGT monomers from their homologues and isomers, so only a few GDGT components (e.g., Ia, Ib, and IIa) have been verified by NMR[18, 44, 71]. In the future, HPLC-NMR technology may simplify the process and achieve more efficient and convenient structural analysis of GDGTs[84].

      The isotopic composition of GDGTs provides vital biological and environmental information [65, 85-90]. GC-IRMS is the primary method used for stable carbon and hydrogen isotope analysis of GDGTs[40, 61, 65, 87-89]. Prior to GC-IRMS analysis, GDGTs are converted into smaller and more volatile alkanes through “ether bond cleavage”[61, 69-70, 85]. Accelerator mass spectrometry is used to analyze radiocarbon isotopes for GDGTs, but it requires a carbon content of the sample greater than 100μg C[93]. To meet this testing requirements, a large amount of environmental samples must be extracted, separated, and purified to obtain an adequate amount of high-purity individual GDGT component[18, 90].

      Significant progress has been achieved in the analytical techniques and methods for GDGTs during the last two decades. However, existing approaches still face issues regarding standardization, method efficiency, and novel GDGT components. Future studies should focus on the following aspects: (1) Establishing standard methods and quality control systems for GDGTs. Developing standard analytical procedures for GDGTs and establishing a quality control and evaluation system is crucial to improve the reliability and comparability of the analytical results. (2) Developing convenient and efficient analytical methods. It is necessary to establish simpler and more automated techniques for GDGT extraction, separation, and purification. In addition, developing qualitative and quantitative methods with better sensitivity and accuracy is also important. (3) Identification of unknown components of GDGTs. Using various techniques such as HPLC-HRMS, GC-MS, and NMR to identify the unknown GDGT components, enhancing the understanding of their composition and distribution in the environment. (4) Developing new isotopic techniques and methods for GDGTs with fewer samples and easier procedures, and helping to expand the use of isotopic methods in the future.

  • 华南陆块是亚洲东部重要的组成构造单元之一,有关其形成和演化历史对充分认识亚洲大陆地壳形成、生长和演化都具有重要意义,因而受到国内外研究者的广泛关注。然而,相比于毗邻的华北克拉通,由于显生宙巨厚沉积地层的覆盖所导致前寒武纪地质体出露极为有限,导致目前有关华南陆块早期基底岩石的研究程度仍显相对薄弱,有关其古老物质组成、早期地壳岩石的形成时代和演化过程等一些关键科学问题也尚未完全探索清楚。

    大别造山带北大别构造带长期以来被认为是华南陆块北缘卷入秦岭—大别碰撞造山带的部分1-4。近年来越来越多的研究证据显示,在该区域内可能存在太古宙乃至冥古宙的古老地壳物质残余1-4,其中最为值得注意的是,本研究团队最近在北大别构造带木子店地区发现一套TTG片麻岩和斜长角闪岩的岩石组合(命名为“木子店片麻杂岩”)。已开展的锆石U-Pb年代学工作表明,这套岩石的原岩形成年龄为3.8~3.6Ga,代表了目前华南陆块范围内已知的最古老地壳岩石4。因此,对木子店片麻杂岩开展相应的研究工作,将对大别造山带乃至华南陆块古老地壳基底岩石的变质历史进行有效约束。另一方面,碰撞造山带内高级变质岩石往往保存了造山带构造-热事件的记录,木子店片麻杂岩位于秦岭—大别碰撞造山带,因而有关其变质时代和构造性质等同样也是深入了解造山带演化历史的关键问题。锆石和独居石U-Pb测年是目前最常用的对高级变质作用进行限定的测试方法5。其中,锆石可在高级变质作用的不同阶段通过变质重结晶或增生等方式形成,通过对这些变质锆石生长区域开展定年分析,理论上可获得相对应的岩石发生变质作用过程的年龄。然而,许多情况下利用锆石U-Pb定年方法对高级变质岩进行变质年龄测定往往无法获得理想的结果。例如,在某些特定变质作用条件下(如缺乏变质流体的封闭体系)较难形成变质锆石;此外还存在部分锆石的变质增生区域过小而无法对其开展测量,这在古老基底岩石的锆石中尤为明显246。同时,古老基底岩石通常经历了多期次不同程度的变质作用叠加,导致其锆石成因往往具有复杂性,在利用锆石U-Pb定年方法进行测量时可能会得到并无实际地质意义的“混合年龄”。另外,高级变质岩中锆石发生“Pb丢失”现象而导致的不谐和问题也值得注意。因此,高级变质岩中锆石U-Pb年龄多用来对这些岩石的原岩时代进行测定。但与锆石不同的是,独居石在角闪岩相-麻粒岩相变质作用过程中相对更容易形成,加之其具有极高的Th、U含量(通常超过104 μg/g),以及相对低的普通Pb含量(一般低于100μg/g)和异常缓慢的Pb扩散速率,使得它在岩石变质作用过程中难以产生“Pb丢失”,因而成为对高级变质岩石变质时代进行限定的重要测试手段7-8

    本文对北大别始太古代木子店片麻杂岩开展了13μm束斑大小的高精度LA-ICP-MS微区原位独居石U-Pb同位素年龄测定,结合独居石的微量元素组成,对该套岩石的变质时代及其构造指示意义进行了探讨。

    秦岭—桐柏—大别—苏鲁造山带是亚洲东部最为重要的碰撞造山带之一,是华北克拉通和华南陆块于中生代最终碰撞拼合的结果。大别造山带位于该造山带中部,并可依据变质程度进一步分为北淮阳、北大别、中大别、南大别以及宿松5个构造带。其中,北大别构造带主体为一套混合岩化长英质片麻岩,夹少量镁铁质-超镁铁质岩、榴辉岩、麻粒岩、磁铁石英岩以及大理岩透镜体。前人所开展的锆石年代学研究结果显示,北大别构造带内大部分混合岩的原岩可能形成于新元古代,并在白垩纪经历了混合岩化作用9。近年来,随着同位素年代学研究工作的逐步积累,在该构造带内亦陆续发现一批太古宙岩石,例如黄土岭麻粒岩、团风混合岩、贾庙花岗片麻岩以及木子店花岗片麻岩等1-4,锆石U-Pb定年结果显示,这些岩石的原岩形成时间主要集中在2.7~2.5Ga的新太古代,并经历了古元古代的构造-热事件1-4

    在北大别构造带木子店地区,一系列花岗片麻岩、磁铁石英岩以及变超基性-基性岩零星出露,且被大规模早白垩世黑云二长花岗岩所侵入(图1)。木子店片麻杂岩零星出露于木子店地区,该套岩石原属“大别群”(部分文献亦称“大别山杂岩”)组成部分,以英云闪长片麻岩为主,伴少量花岗闪长片麻岩、斜长角闪岩以及磁铁石英岩和变基性-超基性岩岩块。这些岩石总体变质程度达麻粒岩相,略高于区域上新太古代—古元古代花岗片麻岩类。由于强烈构造变形及后期高级变质作用影响,除可见白垩纪花岗岩类明显侵入木子店片麻杂岩外,其余各岩性之间接触关系不明。Wang等(2023)4对木子店片麻杂岩开展的锆石U-Pb定年结果则表明,该套岩石形成于3.8~3.6Ga,代表了目前华南陆块范围内已知最古老岩石。

    图  1  (a)秦岭—大别—苏鲁造山带地质简图;(b)木子店地区区域地质简图(据文献[2]修改)
    Figure  1.  (a) Schematic geological map of the Qinling—Dabie—Sulu orogenic belt; (b) Schematic geological map of the Muzidian area and sampling location (Modified by Reference [2])

    两件用于独居石定年的样品均采自木子店片麻杂岩中的长英质部分(图2中a,b),样品编号为22MW11(角闪斜长片麻岩)和22MW01(长英质片麻岩),采用地质锤进行采集,每件样品质量约5kg。其中样品22MW11为角闪斜长片麻岩,呈灰白色,具有片状粒状变晶结构,片麻状构造。岩石主要由石英(含量50%~55%)、斜长石(25%~30%)、角闪石(~15%)以及少量单斜辉石(~3%)构成(图2c),副矿物包括磁铁矿、锆石及少量独居石和磷灰石等。样品22MW01为长英质片麻岩,野外呈浅灰白色,野外可见变基性岩捕掳体,岩石具有片状粒状变晶结构,片麻状构造。主要由石英(55%~60%)、斜长石(25%~30%)、角闪石(13%~15%)以及少量黑云母(~2%)构成(图2d),副矿物包括锆石、磁铁矿、独居石、磷灰石等。石英和斜长石颗粒以它形为主,均具长轴定向特点,斜长石粒径0.2~2mm,石英粒径变化范围较大,从0.2mm到1cm不等,与黑云母、角闪石等暗色矿物共同构成岩石片麻理。

    图  2  木子店片麻杂岩野外和镜下照片
    Pl—斜长石;Hb—角闪石;Bi—黑云母;Q—石英。
    Figure  2.  Field outcrop and photomicrographs for Muzidian gneiss complex: Pl—Plagioclase; Hb—Hornblende; Bi—Biotite; Q—Quartz

    野外样品采集后,送至河北省廊坊市宇能岩石矿物分选技术服务有限公司进行独居石分选。样品采用颚式破碎机破碎后,通过传统重磁技术方法分离出独居石,随后将其粘在环氧树脂上进行制靶,经抛光等步骤处理后用于开展背散射(BSE)照相,并以此为基础选择合适区域进行独居石U-Pb定年分析。独居石制靶、透射光和反射光照相均在南京宏创科技有限公司完成。独居石BSE照相在中国地质调查局武汉地质调查中心实验测试室采用日本岛津公司EPMA-1600电子探针完成,拍照工作条件为:加速电压15kV,电流10nA。

    独居石的U-Pb年龄和微量元素的同时测定,在中国地质调查局武汉地质调查中心实验测试室完成。测试仪器为RESOlution S155 193nm氟化氩准分子激光剥蚀系统与Icap-Q型ICP-MS联机使用。测试激光束斑直径为13μm,激光频率3Hz,能量密度3.5J/cm2。每个样品点的分析时间为90s,其中背景信号时间15s,激光剥蚀时间45s,尾吹时间30s。

    测定时采用独居石国际标准物质44069对年龄进行校正。单个数据点误差为1σ。每分析10个样品点分析两次标准物质44069,同时采用独居石标准物质Trebilcock作为未知样品对数据结果进行监控,测试结果与其推荐值(272±2Ma10)在误差范围内相一致。独居石中的微量元素含量以USGS参考玻璃(BCR-2G、BIR-1G和BHVO-2G)为校正标准,采用多外标-无内标法11对微量元素含量进行定量计算以扣除基体效应影响。USGS玻璃中元素含量的推荐值参考GeoReM数据库(http://georem.mpch-mainz.gwdg.de/)。对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量计算)采用ICPMSDataCal软件(Ver.10.9)进行处理11。年龄计算以及谐和图的绘制均采用ISOPLOT软件完成12

    木子店片麻杂岩独居石样品的LA-ICP-MS U-Pb定年结果见表1

    表  1  北大别木子店片麻杂岩独居石U-Pb同位素组成和年龄值
    Table  1.  U-Pb isotopic ratios and apparent ages of monazite from Muzidian gneiss complex in the Northern Dabie Orogen
    样品22MW11
    测点
    Th含量
    (μg/g)
    U含量
    (μg/g)
    207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U 谐和度
    (%)
    比值 1σ 比值 1σ 比值 1σ 年龄(Ma) 1σ 年龄(Ma) 1σ 年龄(Ma) 1σ
    MW11-1 186410 7332 0.0491 0.0012 0.1344 0.0037 0.0198 0.0002 154 56 128 3 126 2 98
    MW11-2 197307 3778 0.0470 0.0013 0.1296 0.0037 0.0200 0.0002 50.1 72 124 3 128 1 96
    MW11-3 172276 3779 0.0501 0.0017 0.1404 0.0047 0.0204 0.0002 211 76 133 4 130 2 97
    MW11-6 227338 6906 0.0484 0.0011 0.1323 0.0030 0.0199 0.0002 120 54 126 3 127 1 99
    MW11-7 192879 4041 0.0483 0.0017 0.1353 0.0047 0.0204 0.0002 117 82 129 4 130 1 98
    MW11-9 180820 4645 0.0500 0.0016 0.1365 0.0044 0.0199 0.0003 198 105 130 4 127 2 97
    MW11-10 213252 10626 0.0483 0.0012 0.1363 0.0035 0.0205 0.0002 122 57 130 3 131 2 99
    MW11-11 174629 4962 0.0507 0.0023 0.1447 0.0067 0.0208 0.0003 228 106 137 6 133 2 96
    MW11-12 198507 3882 0.0486 0.0014 0.1374 0.0040 0.0206 0.0002 128 69 131 4 131 2 99
    MW11-14 179763 3510 0.0471 0.0015 0.1312 0.0045 0.0201 0.0002 53.8 74 125 4 128 2 97
    MW11-15 207922 2505 0.0490 0.0018 0.1356 0.0050 0.0203 0.0003 146 89 129 5 129 2 99
    MW11-16 177388 6678 0.0475 0.0012 0.1314 0.0035 0.0200 0.0002 76.0 94 125 3 128 1 98
    MW11-17 211743 2839 0.0499 0.0017 0.1404 0.0046 0.0205 0.0002 191 112 133 4 131 2 98
    MW11-18 184015 2839 0.0474 0.0016 0.1328 0.0046 0.0204 0.0002 77.9 69 127 4 130 2 97
    MW11-19 213105 3124 0.0473 0.0017 0.1320 0.0049 0.0203 0.0002 61.2 85 126 4 129 2 97
    MW11-20 167763 4389 0.0502 0.0017 0.1399 0.0046 0.0203 0.0002 206 80 133 4 130 2 97
    MW11-22 192664 8380 0.0497 0.0017 0.1406 0.0050 0.0204 0.0002 189 78 134 4 130 1 97
    MW11-23 243780 4535 0.0481 0.0018 0.1334 0.0049 0.0202 0.0002 102 91 127 4 129 2 98
    MW11-24 184068 3900 0.0492 0.0017 0.1364 0.0048 0.0201 0.0003 167 80 130 4 128 2 98
    MW11-25 188850 8382 0.0484 0.0012 0.1335 0.0033 0.0199 0.0002 120 56 127 3 127 1 99
    MW11-26 180843 6387 0.0483 0.0015 0.1359 0.0043 0.0204 0.0002 122 74 129 4 130 1 99
    MW11-27 207930 5238 0.0476 0.0010 0.1301 0.0028 0.0198 0.0002 79.7 50 124 3 126 1 98
    MW11-28 197678 2753 0.0471 0.0016 0.1340 0.0046 0.0206 0.0002 53.8 78 128 4 131 2 97
    MW11-30 195694 3999 0.0484 0.0020 0.1332 0.0053 0.0201 0.0003 117 96 127 5 128 2 98
    MW11-32 177606 5946 0.0506 0.0017 0.1398 0.0044 0.0201 0.0002 233 76 133 4 128 2 96
    MW11-34 200061 3514 0.0493 0.0021 0.1388 0.0058 0.0206 0.0002 161 98 132 5 131 2 99
    MW11-35 194798 5650 0.0476 0.0014 0.1329 0.0039 0.0203 0.0002 79.7 70 127 3 130 2 97
    MW11-36 174154 2157 0.0498 0.0014 0.1358 0.0038 0.0199 0.0002 183 69 129 3 127 1 98
    MW11-37 178861 2757 0.0493 0.0016 0.1365 0.0044 0.0202 0.0002 161 74 130 4 129 2 99
    MW11-38 180591 6144 0.0474 0.0013 0.1363 0.0037 0.0210 0.0002 77.9 136 130 3 134 1 96
    MW11-39 175177 6068 0.0469 0.0010 0.1313 0.0031 0.0203 0.0002 55.7 39 125 3 129 1 96
    MW11-40 187657 4194 0.0473 0.0017 0.1348 0.0050 0.0208 0.0003 64.9 85 128 5 133 2 96
    样品22MW01
    测点
    Th含量
    (μg/g)
    U含量
    (μg/g)
    207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U 谐和度
    (%)
    比值 1σ 比值 1σ 比值 1σ 年龄(Ma) 1σ 年龄(Ma) 1σ 年龄(Ma) 1σ
    MW1-1 166645 3043 0.0490 0.0018 0.1400 0.0050 0.0207 0.0003 150 85 133 5 132 2 99
    MW1-5 262630 7005 0.0489 0.0010 0.1346 0.0029 0.0199 0.0002 143 45 128 3 127 1 99
    MW1-7 191746 5815 0.0507 0.0018 0.1448 0.0051 0.0208 0.0003 233 82 137 5 133 2 96
    MW1-8 133410 2873 0.0474 0.0019 0.1310 0.0050 0.0202 0.0002 77.9 83 125 5 129 2 96
    MW1-9 181982 3623 0.0499 0.0014 0.1382 0.0039 0.0201 0.0003 191 67 131 4 128 2 97
    MW1-10 242641 3159 0.0489 0.0019 0.1346 0.0053 0.0201 0.0002 143 91 128 5 128 2 99
    MW1-12 252773 9255 0.0505 0.0011 0.1374 0.0031 0.0198 0.0002 217 84 131 3 126 2 96
    MW1-14 240269 4057 0.0496 0.0029 0.1370 0.0087 0.0201 0.0003 189 135 130 8 128 2 98
    MW1-18 139956 3108 0.0495 0.0015 0.1397 0.0045 0.0204 0.0003 169 70 133 4 130 2 98
    MW1-21 263686 10469 0.0471 0.0010 0.1310 0.0031 0.0202 0.0003 53.8 149 125 3 129 2 97
    MW1-22 226722 3006 0.0507 0.0018 0.1433 0.0050 0.0206 0.0003 228 82 136 5 131 2 96
    MW1-23 224741 3177 0.0492 0.0017 0.1415 0.0053 0.0208 0.0002 167 82 134 5 133 2 98
    MW1-25 230108 2332 0.0482 0.0021 0.1381 0.0060 0.0210 0.0003 109 95 131 5 134 2 98
    MW1-26 144067 1911 0.0488 0.0022 0.1376 0.0062 0.0207 0.0003 200 103 131 6 132 2 99
    MW1-29 268982 2672 0.0512 0.0020 0.1420 0.0052 0.0204 0.0003 250 86 135 5 130 2 96
    MW1-30 156794 5440 0.0466 0.0017 0.1322 0.0047 0.0207 0.0003 31.6 91 126 4 132 2 95
    MW1-6 69266 3613 0.0521 0.0025 0.2683 0.0128 0.0373 0.0006 300 105 241 10 236 4 97
    MW1-27 34270 4206 0.0551 0.0013 0.4559 0.0107 0.0602 0.0006 417 58 381 8 377 4 98
    注:235U衰变常数为9.8485×10−10a,238U衰变常数为1.55125×10−10a;238U/235U=137.88。
    下载: 导出CSV 
    | 显示表格

    样品22MW11中,独居石多为半自形到它形,呈淡黄色、透明,长度范围为30~60μm。独居石BSE照片显示(图3)大多数独居石颗粒没有明显的核边结构,仅少数颗粒具有狭窄的边缘。对该样品中33个独居石颗粒33个点进行了U-Pb年龄测定,所有分析均获得谐和年龄。独居石具有相对高的Th和U含量,对应Th/U比值为20.1~83.0,所获得分析点的年龄数据相对其原岩形成时代具有明显偏年轻的特点,除一个分析点具有明显偏老的年龄(150±2Ma)以外,剩余32个分析点的年龄数据集中,具有相对一致的年龄,数据点的206Pb/238U加权平均年龄为129±1Ma (MSWD=1.8)(图4a)。

    图  3  北大别木子店片麻杂岩代表性独居石背散射图像
    Figure  3.  BSE images of representative monazite from Muzidian gneiss complex in the Northern Dabie Orogen: (a) Amphibole-plagioclase gneiss (sample 22MW11); (b) Felsic gneiss (sample 22MW01).
    图  4  北大别木子店片麻杂岩独居石U-Pb年龄谐和图
    Figure  4.  U-Pb concordia of monazite from Muzidian gneiss complex in the Northern Dabie Orogen: (a) Amphibole-plagioclase gneiss (sample 22MW11); (b) Felsic gneiss (sample 22MW01).

    样品22MW01中,独居石为半自形到自形,颜色为淡黄色,BSE图像显示多数独居石为均质的,仅少部分颗粒显示具有斑点(图3b)。对该样品中18颗独居石18个数据点进行了分析,所有分析点均为谐和独居石。结果显示,所获得的年龄数据均远远小于岩石原岩的形成年龄,其中16个独居石颗粒年龄组成接近,其206Pb/238U加权平均年龄为130±1Ma(MSWD=2.1),Th/U比值介于25.2~101之间。剩余2个独居石颗粒具有明显偏低的Th/U比值(分别为8.2和19.2),以及偏老的206Pb/238U年龄(分别为236±4Ma和377±4Ma),可能为继承独居石年龄(图4b)。

    木子店片麻杂岩独居石样品的LA-ICP-MS微量元素测试结果见表2。数据显示,所有独居石颗粒具有相似的微量元素组成,稀土元素配分模式图中表现为强烈的轻稀土元素富集,重稀土元素亏损(La/Yb=1610~5390)以及明显的Eu负异常(Eu/Eu*=0.14~0.32)。与样品22MW11相比,样品22MW01中独居石显示出更低的重稀土元素含量、更高的轻重稀土元素分异,以及更为明显的负Eu异常的特点(图5)。

    表  2  北大别木子店片麻杂岩独居石微量元素组成
    Table  2.  Trace element contents of monazite from Muzidian gneiss complex in the Northern Dabie Orogen
    样品编号 元素含量(μg/g)
    La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y Th U Si
    MW11-1 138521 199176 15840 46140 4077 272 3066 173 573 80.0 160 12.7 56.9 6.34 2124 186410 7332 41727
    MW11-2 143070 196675 14714 42334 3158 259 2589 121 364 49.5 100 8.18 36.5 4.26 1333 197307 3778 42534
    MW11-3 138555 202502 16616 49693 4628 272 3447 207 703 95.7 185 14.5 68.5 6.74 2550 172276 3779 40078
    MW11-6 137308 179216 12685 33671 2345 241 2247 91.9 288 40.0 85.3 6.54 34.8 4.10 1080 227338 6906 57053
    MW11-7 140932 193833 15030 43731 3458 250 2770 134 418 56.2 112 8.65 37.6 4.11 1485 192879 4041 45845
    MW11-9 140270 197158 15210 43927 3466 261 2779 137 450 63.4 127 10.0 43.4 4.35 1655 180820 4645 44196
    MW11-10 138311 180924 12586 34588 2619 255 2446 112 373 50.4 103 8.28 35.3 3.94 1346 213252 10626 54893
    MW11-11 133330 195509 15880 49487 4911 275 3691 238 862 117 223 17.7 76.2 8.04 3001 174629 4962 40191
    MW11-12 128565 188117 15211 47303 4100 266 2922 159 506 68.9 135 10.4 47.7 4.97 1783 198507 3882 46016
    MW11-14 138239 193244 15258 45785 3612 259 2779 133 413 54.4 110 7.74 35.9 3.82 1427 179763 3510 42572
    MW11-15 125427 182828 14895 46925 3931 258 2809 140 434 55.1 112 8.01 34.5 3.83 1463 207922 2505 52004
    MW11-16 135816 191316 14721 45225 3953 265 3100 168 581 78.5 153 12.0 53.3 5.81 2054 177388 6678 42943
    MW11-17 129835 182962 14042 42579 3309 250 2523 115 348 46.4 95.9 6.78 33.8 3.39 1239 211743 2839 55636
    MW11-18 136910 189546 14882 44646 3560 258 2766 133 411 54.7 109 7.87 36.7 3.94 1436 184015 2839 43140
    MW11-19 128190 181294 14211 42072 3233 252 2499 116 347 45.9 94.0 7.21 35.1 3.29 1228 213105 3124 53381
    MW11-20 135145 195703 15825 46799 4180 252 3259 184 625 88.3 170 14.0 61.8 6.45 2270 167763 4389 34881
    MW11-22 132014 182367 13817 40792 3535 253 2938 156 525 72.4 140 11.3 49.1 5.29 1877 192664 8380 50744
    MW11-23 114156 166619 13063 39294 2906 255 2167 98.8 282 36.8 78.1 5.72 25.5 2.92 982 243780 4535 65177
    MW11-24 136312 189089 14052 40820 3094 248 2565 121 397 53.9 111 8.17 42.4 4.22 1439 184068 3900 43658
    MW11-25 128308 183106 14339 43132 3672 256 2857 157 526 72.1 148 11.5 51.3 5.60 1942 188850 8382 46737
    MW11-26 126226 185572 14703 44785 4464 271 3364 219 812 112 220 17.7 78.4 8.31 2975 180843 6387 40228
    MW11-27 128463 176009 13386 38839 2958 244 2407 110 340 45.9 95.0 7.10 34.0 3.81 1213 207930 5238 50059
    MW11-28 129218 181035 14100 41784 3095 255 2396 108 322 42.5 87.8 6.66 29.6 3.34 1142 197678 2753 47381
    MW11-30 130004 180582 13751 41552 3166 246 2497 114 352 46.0 94.4 7.12 34.7 3.33 1237 195694 3999 45829
    MW11-32 126189 182886 14535 44930 3789 252 2955 160 555 77.4 154 12.3 56.2 5.95 2012 177606 5946 42733
    MW11-34 118846 170988 13533 41324 3394 245 2608 136 435 58.5 119 9.45 37.5 4.34 1566 200061 3514 60236
    MW11-35 126117 178981 13751 41292 3120 255 2497 115 359 48.9 97.9 7.20 35.6 3.63 1295 194798 5650 47697
    MW11-36 126109 183416 14810 48039 4040 255 2959 152 472 61.3 120 9.08 38.9 4.05 1556 174154 2157 42681
    MW11-37 126057 180966 14600 45086 3688 249 2822 139 434 58.1 113 8.52 36.3 3.55 1490 178861 2757 45309
    MW11-38 128255 179239 13777 40359 3255 252 2675 135 480 68.4 137 11.2 47.9 5.27 1786 180591 6144 43495
    MW11-39 126166 183025 14320 43528 3707 257 2909 160 548 76.9 149 11.8 50.1 5.73 2044 175177 6068 41464
    MW11-40 131049 177956 13209 38550 2909 232 2433 108 343 46.9 97.2 7.59 36.5 3.94 1258 187657 4194 45326
    MW11-29 128500 180131 14261 43697 3424 241 2591 123 380 51.0 104 7.40 34.5 3.65 1348 191806 3201 48000
    样品编号 元素含量(μg/g)
    La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y Th U Si
    MW1-1 158157 212653 15817 44459 3476 159 3116 146 445 59.4 115 8.86 36.1 4.02 1633 166645 3043 36883
    MW1-5 123671 173235 13143 39498 2992 207 2474 115 350 47.4 96.8 7.53 32.1 3.50 1194 262630 7005 66654
    MW1-7 156116 202450 14113 38157 2734 153 2721 113 358 47.1 99.2 7.67 33.4 3.31 1345 191746 5815 46068
    MW1-8 170321 226809 16461 47368 3828 170 3456 173 539 72.1 137 10.1 42.8 4.50 1855 133410 2873 28844
    MW1-9 149310 205327 15638 46605 3903 180 3248 168 543 69.5 136 10.4 44.0 4.18 1817 181982 3623 42624
    MW1-10 129912 183044 14344 42810 3291 218 2623 125 382 51.6 106 8.17 34.5 3.79 1334 242641 3159 55240
    MW1-12 127926 174960 13094 37233 2711 215 2326 99.3 302 40.7 83.1 6.35 28.2 3.19 1066 252773 9255 66267
    MW1-14 129500 180618 13711 40271 2985 209 2443 113 344 47.5 94.4 7.94 36.9 4.69 1211 240269 4057 57984
    MW1-18 165035 222645 15924 44681 3452 158 3143 145 454 60.8 119 8.75 39.0 3.99 1623 139956 3108 29700
    MW1-21 121663 170826 12812 36653 2650 214 2237 100 311 42.8 86.2 7.09 30.2 3.12 1111 263686 10469 66797
    MW1-22 135213 186713 14368 42543 3259 223 2590 117 353 45.7 94.3 6.77 30.5 2.86 1184 226722 3006 54088
    MW1-23 128995 185314 14897 45653 3949 188 3060 171 561 76.1 145 10.9 46.3 4.84 1969 224741 3177 58256
    MW1-25 133317 184376 14544 43366 3269 220 2615 123 379 52.1 103 7.82 34.9 3.41 1311 230108 2332 54878
    MW1-26 168153 221184 15725 44612 3569 153 3163 149 439 56.8 107 7.57 31.2 3.38 1569 144067 1911 35698
    MW1-29 120654 166938 13169 39012 3006 215 2364 111 348 46.8 94.5 6.89 31.3 3.49 1178 268982 2672 68041
    MW1-30 164943 215486 15035 40775 2993 145 2873 128 389 51.0 101 7.42 31.5 3.02 1423 156794 5440 36654
    MW1-6 169915 257423 20702 63531 5832 146 4160 211 605 73.9 137 9.41 39.2 3.80 1978 69266 3613 14800
    MW1-27 189722 268973 20096 57313 4524 262 3735 189 590 76.3 145 9.28 39.7 3.84 1938 34270 4206 8600
    下载: 导出CSV 
    | 显示表格
    图  5  北大别木子店片麻杂岩独居石稀土元素配分模式图
    Figure  5.  REE patterns of monazite from Muzidian gneiss complex in the Northern Dabie Orogen

    秦岭—大别造山带作为世界上规模最大的高压-超高压变质带,且经历了多阶段构造演化,成为研究高压-超高压变质作用和造山带演化的热点地区。北大别构造带大规模出露早白垩世混合岩和后碰撞花岗岩,表明该时期存在显著的构造-岩浆事件,该过程对构造带的物质组成、地壳再造等均具有重要影响9。然而,作为华南陆块已知最古老岩石,木子店片麻杂岩是否亦受该时期变质作用影响,目前仍缺乏了解。已有研究显示,木子店片麻杂岩中的锆石U-Pb同位素年龄记录了这些岩石的原岩主要形成于3.8~3.6Ga的始太古代,但仅少数锆石颗粒记录了零星的可能变质时代信息4。与之相比,在变质流体存在的情况下,独居石相比锆石更容易发生再沉淀过程,加之其具有极低的铅扩散速率,因此其相对能够更准确地记录高级变质岩所经历的变质年龄。

    本研究中,木子店片麻杂岩中独居石颗粒以半自形到自形为主,且未见显示明显的核-边结构,表明它们可能主要为变质作用过程中形成的。最近研究显示,变质和岩浆独居石相比热液独居石而言,具有明显更低的Th以及更低的Ce含量,通常Th/Ce比值不超过0.113。木子店片麻杂岩独居石的Th/Ce比值为0.59~1.61,排除了独居石的热液成因。同时,独居石Si/Ce、Ca/Ce和Y/LREEs成因分类图中14,岩浆成因的独居石分布范围很广,集中在该分类图的中间位置,而变质成因独居石往往具有相对低的Y/LREEs比值。木子店片麻杂岩独居石全部位于变质独居石区域内(图6),证明了本研究所有独居石均为变质成因独居石。两件片麻岩样品的独居石U-Pb年龄分别为129±1Ma和130±1Ma,具有高度一致性。独居石的微量元素特点可进一步对其变质作用性质进行约束。木子店片麻杂岩样品的独居石均显示了相似的地球化学特点,即轻稀土元素富集、重稀土元素亏损及显著的负Eu异常(图5),重稀土元素亏损以及轻、重稀土元素的高度分异是独居石形成在相对高的压力条件下的证据,而明显的Eu负异常则表示在独居石形成过程中可能存在斜长石。样品23MW11中独居石具有相对更明显的负Eu异常,表明其源区斜长石含量可能更高。变质独居石中Y含量被认为可能与其结晶温度相关16-17

    图  6  独居石岩浆-变质成因判别图(据文献[15]修改)
    Figure  6.  Discrimination of monazite with igneous and metamorphic origins (Modified by Reference[15])

    本文对木子店片麻杂岩独居石开展了Y元素温度的计算,结果显示这些独居石在0.5GPa压力条件下的形成温度变化范围在583~962℃之间(平均735℃)。此外,前人对北大别构造带同时代混合岩中淡色体开展的变质温压条件研究也表明,其形成的P-T条件在520~550MPa、760~820℃18。因而,本文认为来自木子店片麻杂岩的中生代独居石可能是在麻粒岩相变质作用下形成。

    碰撞造山带地壳演化通常包含三个阶段,即最初的地壳增厚、随后的地壳根部变质,以及最后的加厚地壳伸展和垮塌。已有研究显示,大别造山带在三叠纪华南陆块和华北克拉通的陆陆碰撞过程中大陆地壳曾增厚至50km以上,但现今该地区地壳厚度仅35~40km,且缺失了造山带地壳根部,暗示部分岩石圈已拆沉到地幔之中18,该观点也得到大别地区地震层析图像研究结果的支持19-20。随后,因受侏罗纪古太平洋板块的西北向俯冲,以及早白垩世(135~130Ma)古太平洋板块后撤过程所导致相应区域发生挤压及之后的伸展过程21,在大别造山带发育大规模区域性地壳深熔作用,导致大量晚中生代构造-岩浆作用形成。

    Wu等(2007)9对北大别构造带漫水河、凤凰关、燕子河等多处混合岩开展了详细的锆石U-Pb年代学和Hf同位素研究,结果显示大别造山带中生代可能存在两期混合岩化作用,时间分别在139±1Ma和123±1Ma,其认为前者可能形成于区域伸展拉张的构造背景,后者则与大别造山带岩石圈垮塌和拆沉过程相关。胡俊良等(2018)22对木子店地区出露最广泛的二长花岗岩进行了系统研究,结果显示这些花岗岩主要形成于131±1Ma,并具有明显的埃达克质岩石的地球化学特点,认为它们可能是后碰撞伸展过程中加厚地壳部分熔融形成的。本文通过独居石U-Pb同位素定年方法,在北大别构造带木子店片麻杂岩中获得~130Ma的变质作用,进一步支持了在北大别构造带早白垩世存在强烈的构造-热事件。

    大别造山带中生代花岗岩类大多数具有早白垩世年龄22-23。前人研究结果表明,这些后碰撞成因的花岗岩大多属于Ⅰ型花岗岩,并可依据时代、结构和地球化学组成等进一步分为两类,其中早期(144~130Ma)花岗岩多变形,且具有典型埃达克质岩石的地球化学组成,而晚期(130~116Ma)花岗岩则未变形且没有埃达克质岩石的地球化学特点23。早期花岗岩被认为来自三叠纪陆陆碰撞所导致的加厚地壳部分熔融,晚期花岗岩则多认为来自岩石圈拆沉所诱发的地壳部分熔融过程24。在这些过程中,地壳部分熔融或软流圈地幔上涌过程中释放出来的流体在控制地壳变形、变质以及岩浆活动中都起到了关键作用。木子店片麻杂岩独居石U-Pb同位素年龄和大别造山带混合岩以及木子店地区广泛出露的黑云母二长花岗岩中获得的锆石U-Pb年龄结果基本相一致,显示北大别构造带在~130Ma存在几乎同时的变质、岩浆和混合岩化作用,表明木子店片麻杂岩中生代变质作用可能与部分熔融过程相关。结合大别造山带两类中生代花岗岩类在变形特点和地球化学组成上的差异,本文将大别造山带北大别构造带由挤压向伸展的构造转换时间大致限定为~130Ma。值得注意的是,该期构造-热事件可能对以木子店片麻杂岩为代表的大别造山带太古宙—元古宙古老基底岩石的地球化学组成,尤其是全岩同位素组成产生显著影响,因而在后续对北大别构造带古老岩石开展进一步研究工作时需予以谨慎。

    对木子店片麻杂岩中两件片麻岩样品开展了LA-ICP-MS独居石U-Pb定年和微量元素测定,结果显示大多数独居石可能形成于变质作用条件下,两件片麻岩样品的独居石U-Pb年龄分别为129±1Ma和130±1Ma,代表了木子店片麻杂岩发生变质作用的时间。

    大别造山带早白垩世加厚地壳的伸展垮塌和造山山根拆沉,引起变质作用和同时代的岩浆活动,将北大别构造带从挤压向伸展的构造转换时间限定在~130Ma。大别造山带太古宙—元古宙古老基底岩石的地球化学组成,尤其是全岩同位素组成产生了显著影响,建议后续对北大别构造带古老岩石开展进一步研究工作时需谨慎予以考虑。

    致谢:在野外工作和论文写作期间,与中国地质调查局武汉地质调查中心彭练红正高级工程师、田洋正高级工程师、徐大良正高级工程师和金巍高级工程师进行了有益讨论;论文修改过程中,审稿专家给予了宝贵的修改意见。在此一并表示感谢!

  • 图  1   环境中常见的支链GDGTs、类异戊二烯GDGTs和完整极性膜类脂GDGTs的分子结构图

    Figure  1.   Molecular structures of brGDGTs, isoGDGTs and IPL-GDGTs in the environment.

    图  2   内蒙古双沟山天池湖泊沉积物中GDGTs的液相色谱总离子流图和提取离子流图

    图中分析条件:在正己烷-异丙醇梯度洗脱下,以2根BEH Hilic色谱柱(150mm×2.1mm×1.7μm)和1根硅胶色谱柱(150mm×2.1mm×1.9μm)串联,经HPLC-APCI-MS分析,实现GDGTs各组分良好分离。

    Figure  2.   Total ion chromatogram (TIC) and extracted ion chromatogram (EIC) of GDGTs identified in lake sediment of Lake Shuanggoushan, Inner Mongolia. The chromatogram generated by HPLC-APCI-MS showing the elution order of brGDGTs and isoGDGTs with [M+H]+ ions.

    Analytical condition: under gradient elution of n-hexane/isopropanol, the good separation of GDGTs were achieved by HPLC-APCI-MS method with two BEH Hilic columns (150mm×2.1mm×1.7μm) and one silica column (150mm×2.1mm×1.9μm) in tandem.

    表  1   地质环境样品中GDGTs的不同提取、分离、纯化方法

    Table  1   Different extraction, separation and purification methods of GDGTs in geological environment samples.

    样品类型 提取方法及提取剂 分离及净化方法 参考文献
    土壤 BD法,甲醇-二氯甲烷-磷酸缓冲液 硅胶柱,正己烷/乙酸乙酯、乙酸乙酯、甲醇 Pitcher等(2009)
    土壤 超声萃取法,甲醇、甲醇-二氯甲烷 硅胶柱,正己烷/二氯甲烷、二氯甲烷/甲醇 Bai等(2017)
    土壤、湖泊沉积物 BD法,甲醇-二氯甲烷-磷酸缓冲液 硅胶柱,正己烷/乙酸乙酯、甲醇 Buckles等(2014)
    土壤、湖泊沉积物 索氏抽提法,甲醇-二氯甲烷 Al2O3柱,正己烷/二氯甲烷、二氯甲烷/甲醇 Hu等(2016)
    黄土 ASE,二氯甲烷-甲醇 硅胶柱,二氯甲烷/乙酸乙酯 Lu等(2016)
    泥炭 超声萃取法,二氯甲烷、二氯甲烷/甲醇 硅胶柱,正己烷/甲醇 Zheng等(2018)
    泥炭 MAE,二氯甲烷-甲醇 硅胶柱,二氯甲烷/甲醇 Naafs等(2017)
    海洋沉积物 索氏抽提法,甲醇-二氯甲烷 Al2O3柱,正己烷/二氯甲烷、二氯甲烷/甲醇 Liao等(2020)
    海洋沉积物 BD法,甲醇-二氯甲烷-磷酸缓冲液 硅胶柱,正己烷/乙酸乙酯
    制备HPLC,正己烷/异丙醇
    Zhu等(2013)
    湖泊沉积物 ASE法,二氯甲烷-甲醇 Al2O3柱,二氯甲烷、二氯甲烷/甲醇 Chu等(2017)
    湖泊沉积物 ASE法,二氯甲烷-甲醇 Al2O3柱,正己烷/二氯甲烷、二氯甲烷/甲醇 Li等(2023)
    湖泊沉积物 ASE法,二氯甲烷-甲醇 Al2O3柱,二氯甲烷、二氯甲烷/甲醇
    制备HPLC,正己烷/异丙醇
    Weber等(2015
    海洋、湖泊沉积物 MAE法,二氯甲烷-甲醇 Al2O3柱,正己烷/二氯甲烷、二氯甲烷/甲醇 Escala等(2009)
    湖泊水体悬浮颗粒物 BD法,甲醇-二氯甲烷-磷酸缓冲液 Al2O3柱,正己烷/二氯甲烷、二氯甲烷/甲醇 Kumar等(2019)
    下载: 导出CSV
  • [1]

    Castañeda I S, Schouten S. A review of molecular organic proxies for examining modern and ancient lacustrine environments[J]. Quaternary Science Reviews, 2011, 30: 2851−2891. doi: 10.1016/j.quascirev.2011.07.009

    [2] 尚文郁, 孙静轶, 谢曼曼, 等. 基于Py-GC/MS的沙漠湖泊直链脂肪族化合物分析及古气候应用初探[J]. 岩矿测试, 2022, 41(5): 836−848.

    Shang W Y, Sun J Y, Xie M M, et al. Py-GC/MS analysis method for aliphatic biomarker in desert lake sediment and its application in paleoclimatic study[J]. Rock and Mineral Analysis, 2022, 41(5): 836−848.

    [3]

    Schouten S, Hopmans E C, Damsté J S S. The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review[J]. Organic Geochemistry, 2013, 54: 19−61. doi: 10.1016/j.orggeochem.2012.09.006

    [4]

    Dong L, Li Q Y, Li L, et al. Glacial–interglacial contrast in MBT/CBT proxies in the South China Sea: Implications for marine production of branched GDGTs and continental teleconnection[J]. Organic Geochemistry, 2015, 79: 74−82. doi: 10.1016/j.orggeochem.2014.12.008

    [5]

    Ge H M, Zhang C L. Advances in GDGT research in Chinese marginal seas: A review[J]. Science China: Earth Sciences, 2016, 59(6): 1173−1186. doi: 10.1007/s11430-015-5242-z

    [6]

    de Jonge C, Stadnitskaia A, Cherkashov G, et al. Branched glycerol dialkyl glycerol tetraethers and crenarchaeol record post-glacial sea level rise and shift in source of terrigenous brGDGTs in the Kara Sea (Arctic Ocean)[J]. Organic Geochemistry, 2016, 92: 42−54. doi: 10.1016/j.orggeochem.2015.11.009

    [7]

    Cao J T, Rao Z G, Shi F X, et al. [J]. Ice formation on lake surfaces in winter causes warm-season bias of lacustrine brGDGT temperature estimates[J]. Biogeosciences, 2020, 17: 2521–2536.

    [8]

    Wang H Y, Liu W G, He Y X, et al. Salinity-controlled isomerization of lacustrine brGDGTs impacts the associated MBT’5ME terrestrial temperature index[J]. Geochimica et Cosmochimica Acta, 2021, 305: 33−48. doi: 10.1016/j.gca.2021.05.004

    [9]

    Feng X P, Zhao C, D’Anderea W J, et al. Temperature fluctuations during the Common Era in subtropical Southwestern China inferred from brGDGTs in a remote alpine lake[J]. Earth and Planetary Science Letters, 2019, 510: 26−36. doi: 10.1016/j.jpgl.2018.12.028

    [10] 李婧婧, 杨欢, 郑峰峰, 等. 湖泊水体微生物四醚膜脂化合物研究进展[J]. 湖泊科学, 2021, 33(5): 1334−1349. doi: 10.18307/2021.0504

    Li J J, Yang H, Zheng F F, et al. Occurrence and distribution of glycerol dialkyl glycerol tetraethers in lake water column: A review[J]. Journal of Lake Sciences, 2021, 33(5): 1334−1349. doi: 10.18307/2021.0504

    [11]

    Cheng Z Y, Yu F L, Ruan X Y, et al. GDGTs as indicators for organic-matter sources in a small subtropical river-estuary system[J]. Organic Geochemistry, 2021, 153: 104180. doi: 10.1016/j.orggeochem.2021.104180

    [12]

    Pitcher A, Schouten S, Damste J S S. In situ production of crenarchaeol in two California hot springs[J]. Applied and Environmental Microbiology, 2009, 75: 4443−4451. doi: 10.1128/AEM.02591-08

    [13]

    Wu W Y, Zhang C L, Wang H Y, et al. Impacts of temperature and pH on the distribution of archaeal lipids in Yunnan hot springs, China[J]. Frontiers in Microbiology, 2013, 4: 312.

    [14]

    Ding S, Lange M, Lipp J, et al. Characteristics and origin of intact polar lipids in soil organic matter[J]. Soil Biology and Biochemistry, 2020, 151: 108045. doi: 10.1016/j.soilbio.2020.108045

    [15]

    de Jonge C, Radujkovic D, Sigurdsson B D, et al. Lipid biomarker temperature proxy responds to abrupt shift in the bacterial community composition in geothermally heated soils[J]. Organic Geochemistry, 2019, 137: 103897. doi: 10.1016/j.orggeochem.2019.07.006

    [16]

    Cao M, Rueda G, Rivas-Ruiz P, et al. Branched GDGT variability in sediments and soils from catchments with marked temperature seasonality[J]. Organic Geochemistry, 2018, 122: 98−114. doi: 10.1016/j.orggeochem.2018.05.007

    [17]

    Peaple M D, Beverly E J, Garza B, et al. Identifying the drivers of GDGT distributions in alkaline soil profiles within the Serengeti ecosystem[J]. Organic Geochemistry, 2022, 169: 104433. doi: 10.1016/j.orggeochem.2022.104433

    [18]

    Weijers J W H, Schouten S, Hopmans E C, et al. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits[J]. Environmental Microbiology, 2006, 8(4): 648−657. doi: 10.1111/j.1462-2920.2005.00941.x

    [19] 樊嘉琛, 钱施, 裴宏业, 等. 微生物醚类化合物在泥炭古环境重建中的应用: 进展与问题[J]. 地球科学进展, 2021, 36(12): 1272−1290. doi: 10.11867/j.issn.1001-8166.2021.095

    Fan J C, Qian S, Pei H Y, et al. Application of microbial ether lipids in the reconstruction of paleoenvironments in peatlands: Progress and problems[J]. Advances in Earth Science, 2021, 36(12): 1272−1290. doi: 10.11867/j.issn.1001-8166.2021.095

    [20] 李奇缘, 刘潇敏, 王章章, 等. 青藏高原东部现代泥炭GDGTs分布特征及环境意义[J]. 第四纪研究, 2016, 36(2): 388−395.

    Li Q Y, Liu X M, Wang Z Z, et al. Distributions and environmental significance of GDGTs in modern peat samples from Eastern Tibetan Plateau[J]. Quaternary Sciences, 2016, 36(2): 388−395.

    [21]

    Naafs B D A, Inglis G N, Zhang Y, et al. Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids[J]. Geochimica et Cosmochimica Acta, 2017, 208: 285−301. doi: 10.1016/j.gca.2017.01.038

    [22]

    Huguet A, Meador T B, Laggoun-Défarge F, et al. Production rates of bacterial tetraether lipids and fatty acids in peatland under varying oxygen concentrations[J]. Geochimica et Cosmochimica Acta, 2017, 203: 103−116. doi: 10.1016/j.gca.2017.01.012

    [23] 梁栋, 李丽, 贺娟, 等. 运用生物标志物重建古盐度的研究进展[J]. 地球化学, 2022, 51(3): 316−332.

    Liang D, Li L, He J, et al. Progress in paleosalinity reconstruction: A review of biomarker approaches[J]. Geochimica, 2022, 51(3): 316−332.

    [24]

    Ernst R, Ejsing C S, Antonny B. Homeoviscous adaptation and the regulation of membrane lipids[J]. Journal of Molecular Biology, 2016, 428(24): 4776−4791. doi: 10.1016/j.jmb.2016.08.013

    [25]

    Summons R E, Welander P V, Gold D A. Lipid biomarkers: Molecular tools for illuminating the history of microbial life[J]. Nature Reviews Microbiology, 2022, 20: 174−185. doi: 10.1038/s41579-021-00636-2

    [26]

    Halamka T A, Raberg J H, McFarlin J M, et al. Production of diverse brGDGTs by acidobacterium Solibacter usitatus in response to temperature, pH, and O2 provides a culturing perspective on brGDGT proxies and biosynthesis[J]. Geobiology, 2022, 21: 102−118.

    [27]

    Chen Y F, Zheng F F, Yang H, et al. The production of diverse brGDGTs by an acidobacterium providing a physiological basis for paleoclimate proxies[J]. Geochimica et Cosmochimica Acta, 2022, 337(15): 155−165.

    [28]

    Naafs B D A, Oliveira A S F, Mulholland A J. Molecular dynamics simulations support the hypothesis that the brGDGT paleothermometer is based on homeoviscous adaptation[J]. Geochimica et Cosmochimica Acta, 2021, 312: 44−56. doi: 10.1016/j.gca.2021.07.034

    [29]

    Jenkyns H C, Schouten-Huibers L, Schouten S, et al. Warm middle Jurassic-early Cretaceous high-latitude sea-surface temperatures from the Southern Ocean[J]. Climate of the Past, 2012, 8(1): 215−226. doi: 10.5194/cp-8-215-2012

    [30]

    Kielhofer J R, Tierney J E, Reuther J D, et al. BrGDGT temperature reconstruction from interior Alaska: Assessing 14, 000 years of deglacial to Holocene temperature variability and potential effects on early human settlement[J]. Quaternary Science Reviews, 2023, 303: 107979. doi: 10.1016/j.quascirev.2023.107979

    [31]

    Chu G Q, Sun Q, Zhu Q Z, et al. The role of the Asian winter monsoon in the rapid propagation of abrupt climate changes during the last deglaciation[J]. Quaternary Science Reviews, 2017, 177: 120−129. doi: 10.1016/j.quascirev.2017.10.014

    [32]

    Bai Y, Chen C H, Xu Q, et al. Paleoaltimetry potentiality of branched GDGTs from Southern Tibet[J]. Geochemistry, Geophysics, Geosystems, 2018, 19: 551−564. doi: 10.1002/2017GC007122

    [33]

    Liu X L, Summons R E, Hinrichs K U. Extending the known range of glycerol ether lipids in the environment: Structural assignments based on tandem mass spectral fragmentation patterns[J]. Rapid Communications in Mass Spectrometry, 2012, 26(19): 2295−2302. doi: 10.1002/rcm.6355

    [34]

    Li Y J, Su X, Jiao L, et al. Intact polar and core tetraether lipids in sediments from the haiyang 4 cold-seep of the Northern South China Sea and their implications[J]. Acta Geologica Sinica (English Edition), 2022, 96(2): 691−700. doi: 10.1111/1755-6724.14928

    [35]

    Kumar D M, Woltering M, Hpmans E C, et al. The vertical distribution of Thaumarchaeota in the water column of Lake Malawi inferred from core and intact polar tetraether lipids[J]. Organic Geochemistry, 2019, 132: 37−49. doi: 10.1016/j.orggeochem.2019.03.004

    [36]

    Villanueva L, Sinninghe Damsté J S, Schouten S. A re-evaluation of the archaeal membrane lipid biosynthetic pathway[J]. Nature Reviews Microbiology, 2014, 12(6): 438−448. doi: 10.1038/nrmicro3260

    [37]

    Zeng Z R, Liu X L, Farley K R, et al. GDGT cyclization proteins identify the dominant archaeal sources of tetraether lipids in the ocean[J]. Proceedings of the National Academy of Sciences, 2019, 116(45): 22505−22511.

    [38]

    Yang W, Chen H H, Chen Y F, et al. Thermophilic archaeon orchestrates temporal expression of GDGT ring synthases in response to temperature and acidity stress[J]. Environmental Microbiology, 2023, 25(2): 575−587. doi: 10.1111/1462-2920.16301

    [39]

    De Jonge C, Hopmans E C, Stadnitskaia A, et al. Identification of novel penta- and hexamethylated branched glycerol dialkyl glycerol tetraethers in peat using HPLC-MS2, GC-MS and GC–SMB-MS[J]. Organic Geochemistry, 2013, 54: 78−82. doi: 10.1016/j.orggeochem.2012.10.004

    [40]

    Weber Y, De Jonge C, Rijpstra W I C, et al. Identification and carbon isotope composition of a novel branched GDGT isomer in lake sediments: Evidence for lacustrine branched GDGT production[J]. Geochimica et Cosmochimica Acta, 2015, 154: 118−129. doi: 10.1016/j.gca.2015.01.032

    [41]

    Ding S, Schwab V F, Ueberschaar N, et al. Identification of novel 7-methyl and cyclopentenyl branched glycerol dialkyl glycerol tetraethers in lake sediments[J]. Organic Geochemistry, 2016, 102: 52−58. doi: 10.1016/j.orggeochem.2016.09.009

    [42]

    Liu X L, Russell D A, Bonfio C, et al. Glycerol configurations of environmental GDGTs investigated using a selective sn2 ether cleavage protocol[J]. Organic Geochemistry, 2019, 128: 57−62. doi: 10.1016/j.orggeochem.2018.12.003

    [43]

    Sinninghe Damsté J S, Rijpstra W I C, Hopmans E C, et al. The enigmatic structure of the crenarchaeol isomer[J]. Organic Geochemistry, 2018, 124: 22−28. doi: 10.1016/j.orggeochem.2018.06.005

    [44]

    Sinninghe Damsté J S, Hopmans E C, Pancost R D, et al. Newly discovered non–isoprenoid glycerol dialkyl glycerol tetraether lipids in sediments[J]. Chemical Communications, 2000, 17: 1683−1684.

    [45]

    Bale N J, Palatinszky M, Rijpstra W I C, et al. Membrane lipid composition of the moderately thermophilic ammonia-oxidizing archaeon “Candidatus Nitrosotenuis uzonensis” at different growth temperatures[J]. Applied and Environmental Microbiology, 2019, 85(20): e01332−19.

    [46]

    Sinninghe Damsté J S, Rijpstra W I C, Hopmans E C, et al. Ether- and ester-bound iso-diabolic acid and other lipids in members of acidobacteria subdivision 4[J]. Applied and Environmental Microbiology, 2014, 80: 5207−5218. doi: 10.1128/AEM.01066-14

    [47]

    Halamka T A, McFarlin J M, Younkin A D, et al. Oxygen limitation can trigger the production of branched GDGTs in culture[J]. Geochemical Perspectives Letters, 2021, 19: 36−39.

    [48]

    Liang J, Richter N, Xie H C, et al. Branched glycerol dialkyl glycerol tetraether (brGDGT) distributions influenced by bacterial community composition in various vegetation soils on the Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 611: 111358. doi: 10.1016/j.palaeo.2022.111358

    [49]

    Buckles L K, Weijers J W H, Verschuren D, et al. Sources of core and intact branched tetraether membrane lipids in the lacustrine environment: Anatomy of Lake Challa and its catchment, equatorial East Africa[J]. Geochimica et Cosmochimica Acta, 2014, 140: 106−126. doi: 10.1016/j.gca.2014.04.042

    [50] 王欢业, 刘卫国, 张传伦. 超声波有机溶剂萃取法和改进的Bligh-Dyer 法提取甘油二烷基甘油四醚类化合物效果对比[J]. 地球环境学报, 2017, 8(2): 176−184.

    Wang H Y, Liu W G, Zhang C L. Comparison of the ultrasound-assisted organic solvent extraction and modified Bligh-Dyer extraction for the analysis of glycerol dialkyl glycerol tetraethers from environmental samples[J]. Journal of Earth Environment, 2017, 8(2): 176−184.

    [51]

    Schouten S, Huguet C, Hopmans E C, et al. Analytical methodology for TEX86 paleothermometry by high-performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry[J]. Analytical Chemistry, 2007, 79(7): 2940−2944. doi: 10.1021/ac062339v

    [52]

    Zheng Y H, Pancost R D, Naafs B D A, et al. Transition from a warm and dry to a cold and wet climate in NE China across the Holocene[J]. Earth and Planetary Science Letters, 2018, 493: 36−46. doi: 10.1016/j.jpgl.2018.04.019

    [53]

    Hu J F, Zhou H D, Peng P A, et al. Seasonal variability in concentrations and fluxes of glycerol dialkyl glycerol tetraethers in Huguangyan Maar Lake, SE China: Implications for the applicability of the MBT–CBT paleotemperature proxy in lacustrine settings[J]. Chemical Geology, 2016, 420: 200−212. doi: 10.1016/j.chemgeo.2015.11.008

    [54]

    Liao W S, Hu J F, Zhou H D, et al. Climatic and human impact on the environment: Insight from the tetraether lipid temperature reconstruction in the Beibu Gulf, China[J]. Quaternary International, 2020, 536: 75−84. doi: 10.1016/j.quaint.2019.12.004

    [55] 童晓宁. 松辽盆地及邻区晚白垩世四醚类脂物GDGTs揭示的古气候/环境意义[D]. 广州: 中国科学院广州地球化学研究所, 2018: 44-46.

    Tong X N. The paleoclimate and paleoenvironment reconstruction based on glycerol dialkyl glycerol tetraethers during late Cretaceous in the Songliao Basin and its vicinity[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2018: 44-46.

    [56]

    Lengger S K, Sutton P A, Rowland S J, et al. Archaeal and bacterial glycerol dialkyl glycerol tetraether (GDGT) lipids in environmental samples by high temperature-gas chromatography with flame ionisation and time-of-flight mass spectrometry detection[J]. Organic Geochemistry, 2018, 121: 10−21. doi: 10.1016/j.orggeochem.2018.03.012

    [57]

    Li Q, Sun Q, Xie M M, et al. Coupled temperature variations in the Huguangyan Maar Lake between high and low latitude[J]. Quaternary Science Reviews, 2023, 305: 108011. doi: 10.1016/j.quascirev.2023.108011

    [58]

    Lu H X, Liu W G, Wang H Y, et al. Variation in 6-methyl branched glycerol dialkyl glycerol tetraethers in Lantian loess–paleosol sequence and effect on paleotemperature reconstruction[J]. Organic Geochemistry, 2016, 100: 10−17. doi: 10.1016/j.orggeochem.2016.07.006

    [59]

    Huguet C, Martens-Habbena M, Urakawa H, et al. Comparison of extraction methods for quantitative analysis of core and intact polar glycerol dialkyl glycerol tetraethers (GDGTs) in environmental samples[J]. Limnology and Oceanography:Methods, 2010, 8: 127−145. doi: 10.4319/lom.2010.8.127

    [60]

    Escala M, Fietz S, Rueda G, et al. Analytical Considerations for the use of the paleothermometer tetraether index86 and the branched vs isoprenoid tetraether index regarding the choice of cleanup and instrumental conditions[J]. Analytical Chemistry, 2009, 81: 2701−2707. doi: 10.1021/ac8027678

    [61]

    Oba M, Sakata S, Tsunogai U. Polar and neutral isopranyl glycerol ether lipids as biomarkers of archaea in near-surface sediments from the Nankai Trough[J]. Organic Geochemistry, 2006, 37: 1643−1654. doi: 10.1016/j.orggeochem.2006.09.002

    [62]

    Auderset A, Schmitt M, Martínez-García A. Simultaneous extraction and chromatographic separation of n-alkanes and alkenones from glycerol dialkyl glycerol tetraethers via selective accelerated solvent extraction[J]. Organic Geochemistry, 2020, 143: 103979. doi: 10.1016/j.orggeochem.2020.103979

    [63]

    Lengger S K, Hopmans E C, Sinninghe Damsté J S, et al. Comparison of extraction and work up techniques for analysis of core and intact polar tetraether lipids from sedimentary environments[J]. Organic Geochemistry, 2012, 47: 34−40. doi: 10.1016/j.orggeochem.2012.02.009

    [64]

    Yang Y, Gao C, Dang X Y, et al. Assessing hydroxylated isoprenoid GDGTs as a paleothermometer for the tropical South China Sea[J]. Organic Geochemistry, 2018, 115: 156−165. doi: 10.1016/j.orggeochem.2017.10.014

    [65]

    Weijers J W H, Wiesenberg G L B, Hopmans E C, et al. Carbon isotopic composition of branched tetraether membrane lipids in soils suggest a rapid turnover and a heterotrophic life style of their source organism(s)[J]. Biogeosciences, 2010, 7: 2959−2973. doi: 10.5194/bg-7-2959-2010

    [66]

    Zhu C, Lipp J S, Wörmer L, et al. Comprehensive glycerol ether lipid fingerprints through a novel reversed phase liquid chromatography–mass spectrometry protocol[J]. Organic Geochemistry, 2013, 65: 53−62. doi: 10.1016/j.orggeochem.2013.09.012

    [67]

    Sanchi L, Ménot G, Bard E. An automated purification method for archaeal and bacterial tetraethers in soils and sediments[J]. Organic Geochemistry, 2013, 54: 83−90. doi: 10.1016/j.orggeochem.2012.10.005

    [68]

    Shah S R, Mollenhauer G, Ohkouchi N, et al. Origins of archaeal tetraether lipids in sediments: Insights from radiocarbon analysis[J]. Geochimica et Cosmochimica Acta, 2008, 72: 4577−4594. doi: 10.1016/j.gca.2008.06.021

    [69]

    Schouten S, Hoefs M J L, Koopmans M P, et al. Structural characterization, occurrence and fate of archaeal ether-bound acyclic and cyclic biphytanes and corresponding diols in sediments. Organic Geochemistry, 1998, 29: 5-7, 1305-1319.

    [70]

    Kaneko M, Kitajima F, Naraoka H. Stable hydrogen isotope measurement of archaeal ether-bound hydrocarbons[J]. Organic Geochemistry, 2011, 42: 166−172. doi: 10.1016/j.orggeochem.2010.11.002

    [71]

    Sinninghe Damsté J S, Schouten S, Ellen Hopmans et al. Crenarchaeol: The characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota[J]. Journal of Lipid Research, 2002, 43(10): 1641−1651. doi: 10.1194/jlr.M200148-JLR200

    [72]

    Pancost R D, Coleman J M, Love C D, et al. Kerogen-bound glycerol dialkyl tetraether lipids released by hydropyrolysis of marine sediments: A bias against incorporation of sedimentary organisms?[J]. Organic Geochemistry, 2008, 39(9): 1359−1371. doi: 10.1016/j.orggeochem.2008.05.002

    [73]

    Hopmans E C, Schouten S, Sinninghe Damsté J S, et al. The effect of improved chromatography on GDGT-based palaeoproxies[J]. Organic Geochemistry, 2016, 93: 1−6. doi: 10.1016/j.orggeochem.2015.12.006

    [74]

    Yang H, Lü X X, Ding W H, et al. The 6-methyl branched tetraethers significantly affect the performance of the methylation index (MBT’) in soils from an altitudinal transect at Mount Shennongjia[J]. Organic Geochemistry, 2015, 82: 42−53. doi: 10.1016/j.orggeochem.2015.02.003

    [75]

    Chen Y, Zhang C, Jia C, et al. Tracking the signals of living archaea: A multiple reaction monitoring (MRM) method for detection of trace amounts of intact polar lipids from the natural environment[J]. Organic Geochemistry, 2016, 97: 1−4. doi: 10.1016/j.orggeochem.2016.04.006

    [76]

    Davtian N, Bard E, Ménot G, et al. The importance of mass accuracy in selected ion monitoring analysis of branched and isoprenoid tetraethers[J]. Organic Geochemistry, 2018, 118: 58−62. doi: 10.1016/j.orggeochem.2018.01.007

    [77] 李运运, 何晨, 吴建勋, 等. 甘油四醚类化合物的高分辨质谱表征[J]. 质谱学报, 2021, 42(6): 1127−1138.

    Li Y Y, He C, Wu J X, et al. Molecular characterization of glycerol dialkyl glycerol tetraethers by high resolution orbitrap mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(6): 1127−1138.

    [78]

    Horai S, Yamauchi N, Naraoka H. Simultaneous total analysis of core and polar membrane lipidsin archaea by high-performance liquid chromatography/high-resolution mass spectrometry coupled with heated electrospray ionization[J]. Rapid Communications in Mass Spectrometry, 2019, 33(20): 1571−1577. doi: 10.1002/rcm.8506

    [79]

    Radović J R, Silva R C, Snowdon R. Rapid screening of glycerol ether lipid biomarkers in recent marine sediment using atmospheric pressure photoionization in positive mode fourier transform ion cyclotron resonance mass spectrometry[J]. Analytical Chemistry, 2016, 88: 1128−1137. doi: 10.1021/acs.analchem.5b02571

    [80]

    Schouten S, Hopmans E C, van der Meer J, et al. An interlaboratory study of TEX86 and BIT analysis using high-performance liquid chromatography-mass spectrometry[J]. Geochemistry, Geophysics, Geosystems, 2009, 10: Q03012.

    [81]

    Schouten S, Hopmans E C, Rosell M A, et al. An interlaboratory study of TEX86 and BIT analysis of sediments, extracts, and standard mixtures[J]. Geochemistry Geophysics Geosystems, 2013, 14(12): 5263−5285. doi: 10.1002/2013GC004904

    [82]

    Liu X L, Lipp J S, Simpson J H, et al. Mono- and dihydroxyl glycerol dibiphytanyl glycerol tetraethers in marine sediments: Identification of both core and intact polar lipid forms[J]. Geochimica et Cosmochimica Acta, 2012, 89: 102−115. doi: 10.1016/j.gca.2012.04.053

    [83]

    Sutton P A, Rowland S J. High temperature gas chromatography-time-of-flight-mass spectrometry (HTGC-ToF-MS) for high-boiling compounds[J]. Journal of Chromatography A, 2012, 1243: 69−80. doi: 10.1016/j.chroma.2012.04.044

    [84] 张何, 黄桂兰, 袁铃, 等. 液相色谱-核磁共振联用技术研究进展[J]. 化学分析计量, 2017, 26(3): 117−122.

    Zhang H, Huang G L, Yuan L, et al. Advances of liquid chromatography coupled with nuclear magnetic resonance spectrometer[J]. Chemical Analysis and Meterage, 2017, 26(3): 117−122.

    [85] 黄咸雨, 张一鸣. 脂类单体碳同位素在湖沼古环境和古生态重建中的研究进展[J]. 地球科学进展, 2019, 34(1): 20−33.

    Huang X Y, Zhang Y M. An overview of the applications of lipid carbon isotope compositions in the paleoenvironmental and paleoecological reconstructions in lacustrine and peat deposits[J]. Advances in Earth Science, 2019, 34(1): 20−33.

    [86]

    Lin Y S, Lipp J S, Yoshinaga M Y, et al. Intramolecular stable carbon isotopic analysis of archaeal glycosyl tetraether lipids[J]. Rapid Communications in Mass Spectrometry, 2010, 24: 2817−2826. doi: 10.1002/rcm.4707

    [87]

    Weber Y, Sinninghe Damsté J S, Zopfi J, et al. Redox-dependent niche differentiation provides evidence for multiple bacterial sources of glycerol tetraether lipids in lakes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115,43: 10926−10931.

    [88]

    Colcord D E, Pearson A, Brassell S C. Carbon isotopic composition of intact branched GDGT core lipids in Greenland lake sediments and soils[J]. Organic Geochemistry, 2017, 110: 25−32. doi: 10.1016/j.orggeochem.2017.04.008

    [89]

    Pearson A, Hurley S J, Walter S R S, et al. Stable carbon isotope ratios of intact GDGTs indicate heterogeneous sources to marine sediments[J]. Geochimica et Cosmochimica Acta, 2016, 181: 18−35. doi: 10.1016/j.gca.2016.02.034

    [90]

    Gies H, Hagedorn F, Lupker M, et al. Millennial-age glycerol dialkyl glycerol tetraethers (GDGTs) in forested mineral soils: 14C-based evidence for stabilization of microbial necromass[J]. Biogeosciences, 2021, 18: 189−205. doi: 10.5194/bg-18-189-2021

    [91]

    Kusch S, Rethemeyer J, Hopmans E C, et al. Factors influencing 14C concentrations of algal and archaeal lipids and their associated sea surface temperature proxies in the Black Sea[J]. Geochimica et Cosmochimica Acta, 2016, 188: 35−57. doi: 10.1016/j.gca.2016.05.025

    [92]

    Lengger S K, Weber Y, Taylor K W R, et al. Determination of the δ2H values of high molecular weight lipids by high-temperature gas chromatography coupled to isotope ratio mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2021, 35: e8983. doi: 10.1002/rcm.8983

    [93] 张海龙, 陶舒琴, 于蒙, 等. 生物标志物单体放射性碳同位素分析技术的发展[J]. 地球科学进展, 2017, 32(11): 79−89.

    Zhang H L, Tao S Q, Yu M, et al. A review on techniques and applications of biomarker compound-specific radiocarbon analysis[J]. Advances in Earth Science, 2017, 32(11): 79−89.

    [94]

    Haghipour N, Ausin B, Usman M O, et al. Compound-specific radiocarbon analysis (CSRA) by elemental analyzer-accelerator mass spectrometry (EA-AMS): Precision and limitations[J]. Analytical Chemistry, 2019, 91,3: 2042−2049.

  • 其他相关附件

图(2)  /  表(1)
计量
  • 文章访问数:  442
  • HTML全文浏览量:  187
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-09
  • 修回日期:  2023-07-25
  • 录用日期:  2023-08-04
  • 网络出版日期:  2023-11-07
  • 刊出日期:  2024-02-28

目录

/

返回文章
返回