Determination of 15 Organophosphate Ester Flame Retardants in Soils and Sediments by Gas Chromatography-Mass Spectrometry with Accelerated Solvent Extraction
-
摘要:
有机磷酸酯类阻燃剂广泛存在于环境中,长期接触会对生物体的生殖系统、免疫系统造成破坏,进而对人类健康产生影响,调查研究其在环境中的污染水平非常有必要,而多组分、同时、准确的分析技术是研究的基础,目前已有的分析方法在化合物种类和提取效率方面还有待提高。本文建立了一种分析土壤和沉积物中15种有机磷酸酯类阻燃剂的方法。新鲜样品采用加速溶剂萃取(ASE)直接提取,提取液用复合填料的固相萃取柱进行净化,再采用气相色谱-质谱(GC-MS)进行定性、定量分析。为了改善提取效率和净化效果等问题,针对土壤和沉积物样品基质的复杂性,实验中主要优化了样品的提取、净化条件:针对磷酸三(2-氯乙基)酯提取回收率低的问题,改进了样品制备方式,新鲜样品在有少量水的存在下直接提取,使得有机溶剂更好地与样品颗粒进行接触,显著提高了该化合物的提取效率;采用石墨化碳和氨基硅胶复合填料的固相萃取小柱对样品提取液进行净化,保障了复杂沉积物样品净化效果的有效性,同时选用5%甲苯的洗脱溶剂体系,能够提高磷酸三甲苯酯(TCP)在石墨化碳固相萃取柱上的洗脱效率,保证了净化过程的回收率。结果表明,目标化合物浓度在10.0~500.0ng/mL之间的标准曲线R2大于0.9962,5个添加水平下的平均回收率在72.6%~112.9%之间,相对标准偏差RSD(n=4)≤25.3%,方法检出限为0.17~1.21ng/g。采用该方法分析美国NIST有证标准物质,测试结果均在不确定度范围内。通过8家实验室验证表明该方法的各项指标满足分析测试要求,能够应用于土壤和沉积物等基质复杂的固体样品中有机磷酸酯类阻燃剂的分析。
Abstract:BACKGROUNDOrganophosphate ester flame retardants have widely existed in the environment for several years, and long-term exposure will have an impact on human health. Therefore, it is necessary to investigate their pollution level in the environment, and a multi-component, simultaneous and accurate analysis method is the basis of research. The analytical methods still need to be improved in terms of the types of compounds and extraction efficiency. As a result, it is necessary to establish a rapid and accurate method for analyzing multiple types of organophosphate ester flame retardants in soil and sediment.
OBJECTIVESTo establish a rapid and accurate method for the analysis of 15 organophosphate ester flame retardants in soil and sediment.
METHODSThe pretreatment was optimized, including the preparation methods for soil and sediment samples, the extraction solvent and extraction temperature for accelerated solvent extraction (ASE), and various parameters of the purification process. The analysis procedure was as follows: Weigh 10.0g (accurate to 0.01g) of the fresh sample, add an appropriate amount of diatomite, stir evenly, and grind into particles. The samples were transferred to the ASE extraction tank, and a quantity of surrogates (tri-butyl phosphate-D27 and tri-phenyl phosphate-D15) were added. The samples were extracted by ASE with n-hexane/acetone (1∶1, V/V). After concentrating the extract to a volume of 2-3mL, the extracts were removed from the water by adding anhydrous sulfuric acid. The purification was carried out using a GCB-NH2 SPE column. The target compounds were eluted with 10mL eluent solution (5% toluene n-hexane/acetone, 8∶2, V/V). The eluents were concentrated and fixed to 1.0mL by n-hexane. The final extracts were analyzed by gas chromatography-mass spectrometry, and the target compounds were quantified by internal standard calibration curve method.
RESULTSThe extraction efficiency of dry and fresh samples was compared. It was found that the fresh samples with a small amount of water were extracted directly with the solvent, making the organic solvent more able to better contact with the sample particles, and significantly improving the extraction efficiency of the target compound. For example, the recovery of TCEP was greater than 90%, which was significantly higher than previous studies of 86%[33] and 31.2%-48.9%[39]. The sample was extracted twice using a solvent of n-hexane/acetone (1∶1, V/V) at 80℃ by accelerated solvent extraction (ASE) to obtain the best extraction effect. The solid phase extraction (SPE) columns of GCB combined NH2 were used to purify samples. Large amounts of pigments and other small molecule substances such as acids, lipids, alcohols, sugars, steroids were removed by this method. n-hexane/acetone (8∶2, V/V) with 5% toluene was selected as the elution solvent. The addition of 5% toluene could enhance the elution TCP from GCB solid-phase extraction column. The solid phase extraction recoveries of the target compound under this condition were between 64.7% and 123.6%. The linear range of the method was 10-500ng/mL except for TBEP, which ranged from 20 to 500ng/mL. The linear correlation coefficients of the standard curves of all target compounds were greater than 0.9962. The precision experiments results showed that the average recoveries of five spiked levels (2.0, 5.0, 10.0, 50.0, and 500.0ng/g) ranged from 72.6% to 112.9%, and the RSD ranged from 1.6% to 25.3%. The recoveries of surrogates ranged from 84.7% to 114.3%. The method detection limits of 15 target compounds were 0.17-1.21ng/g. Nine laboratories from different industries were selected to conduct a comparative validation of the method. The testing results of statistical analysis indicated that the repeatability and reproducibility were essentially consistent with no significant differences. In order to investigate the applicability and accuracy of the method, the certified standard material for domestic sludge (SRM 2585) developed by the National Institute of Standards and Technology (NIST) was used for testing. The results of 9 laboratories participating in the collaborative verification were all within the uncertainty range, and the absolute value of the relative error was less than 5.35%, which indicates that this method can be applied to the analysis of actual samples.
CONCLUSIONSThe results show that this method is simple and accurate, and is suitable for the detection of flame retardants in different types of soil and sediment samples. This method can provide technical support for the environmental investigation and research of these organophosphate ester flame compounds.
-
-
表 1 各OPFRs目标化合物保留时间及质谱参数
Table 1 Retention times and mass spectrum parameters of target OPFRs .
化合物名称(缩写)
Compound name (Abbr.)保留时间
Retention time (min)定量离子
Quantitative ion (m/z)定性离子
Qualitative ion (m/z)内标分组
Internal standard grouping磷酸三乙酯(TEP) 6.875 155 99,127 1 萘-D8 7.750 136 108,137 1 磷酸三丙酯(TPrP) 9.507 99 141,183 1 苊-D10 10.625 162 164,160 2 磷酸三异丁酯(TiBP) 10.679 99 139,155 2 磷酸三丁酯-D27(TBP-D27) 11.627 167 103,231 2 磷酸三正丁酯(TnBP) 11.772 155 211,99 2 磷酸三(2-氯乙基)酯(TCEP) 12.760 249 143,205,223 3 磷酸三(2-氯丙基)酯(TCPP)* 13.066 277 157,201,125 3 菲-D10 13.222 188 184,160 3 磷酸三(1,3-二氯异丙基)酯(TDCP) 17.101 381 321,191 3 磷酸三(丁氧基乙基)酯(TBEP) 17.537 199 299,153 3 磷酸三苯酯-D15(TPP-D15) 17.582 341 339,243,223 3 磷酸三苯酯(TPhP) 17.645 326 325,215,169 3 2-乙基己基二苯基磷酸酯(DPEHP) 17.770 251 250,170,94 3 磷酸三辛酯(TEHP) 17.893 99 113,211 3 䓛-D12 18.347 240 236,241 3 三苯基氧膦(TPPO) 18.679 277 278,199,183 4 邻位-磷酸三甲苯酯(o-TCP) 19.079 368 277,165 4 间位-磷酸三甲苯酯(m-TCP) 19.697 368 261,165 4 对位-磷酸三甲苯酯(p-TCP) 20.789 368 261,165 4 注:“*”表示该化合物有两个色谱峰,需合并峰面积进行定量。 表 2 不同净化吸附剂OPFRs目标化合物的回收率比较
Table 2 Comparison of the average recoveries by different adsorbents for target compounds of OPFRs.
化合物
Compounds石墨化碳(GCB)回收率
Recovery of graphitized
carbon (%)活性炭(C) 回收率
Recovery of activated
carbon (%)化合物
Compound石墨化碳(GCB)回收率
Recovery of graphitized
carbon (%)活性炭(C) 回收率
Recovery of activated
carbon (%)TEP 103.0 - TPP-D15 103.6 4.5 TPrP 96.5 - TPhP 93.1 6.1 TiBP 133.1 125.6 DPEHP 103.3 49.9 TBP-D27 85.0 119.8 TEHP 93.8 172.1 TnBP 94.5 125.1 TPPO 120.8 83.8 TCEP 96.9 126.0 o-TCP 84.6 7.2 TCPP 85.8 127.4 m-TCP 76.8 5.0 TDCP 116.2 127.8 p-TCP 59.1 3.8 TBEP 135.3 224.9 注:“-”表示存在严重干扰,无法给出定量结果。 表 3 采用不同洗脱溶剂OPFRs目标化合物平均回收率
Table 3 Average recoveries by different elution solvents for target compounds of OPFRs.
化合物
Compounds正己烷-丙酮(V/V)平均回收率
Recovery of HEX-AC(V/V)(%)正己烷-丙酮(V/V,8∶2)平均回收率
Recovery of HEX-AC(V/V,8∶2)(%)正己烷-丙酮(V/V,1∶1)平均回收率
Recovery of HEX-AC(V/V,1∶1)(%)9∶1 8∶2 1∶1 1%甲苯
1% Toluene3%甲苯
3% Toluene5%甲苯
5% Toluene1%甲苯
1% Toluene3%甲苯
3% Toluene5%甲苯
5% TolueneTEP 99.9 123.1 114.8 99.7 104.7 108.9 114.2 109.8 121.1 TPrP 51.3 84.5 84.9 67.2 78.5 87.2 79.3 77.8 85.1 TiBP 119.8 107.7 107.2 92.6 102.0 123.6 96.1 95.7 111.4 TBP-D27 91.3 106.7 106.3 81.2 100.1 108.7 99.9 96.8 106.8 TnBP 88.4 94.3 96.3 68.3 88.3 91.8 90.3 85.7 101.2 TCEP 131.4 128.3 133.3 107.2 120.6 121.4 125.3 115.5 130.4 TCPP 100.9 96.8 102.1 85.5 97.0 97.1 96.7 95.5 99.7 TDCP 98.9 106.1 101.4 78.8 100.9 95.7 98.6 87.9 99.8 TBEP 100.5 96.8 98.3 67.0 100.0 95.3 102.0 89.6 118.0 TPP-D15 93.1 103.7 100.9 77.4 93.1 91.9 97.7 84.8 96.8 TPhP 91.0 91.8 96.7 97.3 93.0 93.6 101.7 91.9 98.5 DPEHP 96.7 103.0 102.7 104.3 100.8 104.2 113.3 101.8 113.0 TEHP 117.4 118.9 109.9 100.1 109.9 127.1 117.3 100.5 120.0 TPPO 55.0 60.9 62.1 63.2 62.8 64.7 61.0 62.1 61.8 o-TCP 82.2 90.3 91.7 97.7 89.4 90.9 98.9 91.2 95.4 m-TCP 4.0 73.2 97.3 97.9 94.3 96.3 103.3 94.3 97.7 p-TCP 0.0 0.0 13.8 5.5 91.6 99.9 71.3 98.6 103.1 表 4 OPFRs目标化合物精密度平均添加回收率、相对标准偏差及方法检出限
Table 4 Average recoveries, RSD and detection limits of the method for target compounds of OPFRs.
化合物
Compounds平均添加回收率(相对标准偏差)
Average recovery and RSD (%,n=4)最低添加浓度
Minimum spiked level
(ng/g)方法检出限
MDL
( ng/g,n=7)2.0ng/g 5.0ng/g 10.0ng/g 50.0ng/g 500.0ng/g TEP 84.6 (15.7) 89.6 (6.9) 72.6 (8.3) 95.7 (4.8) 89.7 (1.8) 2.0 0.99 TPrP 93.1 (11.4) 102.0 (4.1) 87.4 (4.1) 99.5 (5.1) 94.3 (2.6) 1.0 0.30 TiBP 92.5 (17.1) 99.5 (4.4) 88.6 (4.3) 93.6 (7.5) 87.6 (6.6) 2.0 1.19 TnBP 80.9 (25.3) 105.3 (12.2) 103.8 (11.7) 100.7 (5.8) 96.4 (3.4) 1.0 0.58 TCEP 84.4 (7.4) 98.3 (4.8) 83.5 (9.9) 93.1 (6.9) 89.0 (3.0) 2.0 0.51 TCPP 91.0 (18.3) 100.4 (9.9) 103.6 (8.7) 99.7 (5.3) 96.9 (1.6) 1.0 0.60 TDCP 77.6 (3.9) 97.4 (5.6) 102.4 (4.1) 106.0 (6.8) 103.8 (1.9) 2.0 1.21 TBEP 81.8 (5.1) 98.4 (7.7) 98.0 (6.2) 109.3 (14.9) 100.1 (5.6) 2.0 1.01 TPhP 84.4 (5.2) 95.3 (2.6) 87.7 (4.3) 104.6 (5.4) 108.0 (4.5) 2.0 0.60 DPEHP 88.2 (5.6) 97.7 (3.5) 95.5 (5.5) 112.9 (6.5) 95.8 (3.3) 1.0 0.21 TEHP 84.1 (7.5) 99.6 (3.7) 92.9 (8.3) 108.6 (5.3) 102.1 (3.4) 2.0 0.45 TPPO 85.6 (6.4) 75.7 (3.1) 74.1 (14.2) 111.5 (5.5) 99.2 (3.3) 2.0 0.40 o-TCP 85.1 (7.9) 98.1 (3.4) 88.7 (3.3) 104.4 (5.1) 100.2 (5.0) 1.0 0.17 m-TCP 87.4 (7.3) 95.3 (2.8) 91.0 (5.0) 105.3 (5.0) 93.8 (3.8) 1.0 0.35 p-TCP 90.0 (11.4) 87.5 (4.9) 92.4 (5.9) 109.6 (7.6) 98.2 (2.6) 1.0 0.27 TBP-D27 84.7 (9.1) 95.8 (3.5) 94.7 (6.3) 105.0 (4.8) 99.6 (3.3) - - TPP-D15 90.0 (16.3) 91.9 (4.0) 90.1 (4.0) 114.3 (7.0) 102.1 (3.5) - - 注:“-”表示替代物无此项参数。 表 5 方法精密度统计结果
Table 5 Statistical results of precision test for the method.
化合物
Compounds水平范围m
Range of the level
(ng/g)重复性限
Repeatability limit
r再现性限
Reproducibility limit
RTEP 1.79~423 r=0.1926+0.0217m R=0.3932+0.3338m TPrP 1.78~446 r=0.2652−0.5820m R=0.4164+0.1015m TiBP 1.95~439 r=0.3811−0.9933m R=0.3434+1.4979m TnBP 1.88~458 r=0.2272+0.3410m R=0.5256m0.9292 TCEP 1.91~441 r=0.2384–0.5121m R=0.3564−0.5632m TCPP 2.10~469 r=0.3121+1.2603m R=0.2780+1.2912m TDCP 1.93~449 r=0.2008+0.5286m R=0.3215+0.8002m TBEP 1.92~473 r=0.2221+0.9032m R=0.2694+2.2083m TPhP 1.85~442 r=0.1651+0.4826m R=0.3558+0.6809m DPEHP 1.94~452 r=0.2017–0.0458m R=0.2568+3.1222m TEHP 1.84~467 r=0.2052–0.1792m R=0.4434–0.8442m TPPO 1.80~426 r=0.2599–0.0649m R=0.5711+0.4568m o-TCP 1.94~436 r=0.1616+0.5595m R=0.2842+1.8740m m-TCP 1.94~435 r=0.1579+0.5534m R=0.2722+1.2441m p-TCP 1.88~447 r=0.1967+0.3243m R=0.3364+1.4465m 注:表中m为9家实验室对5个样品测定所得的质量分数平均值。 表 6 方法正确度统计结果
Table 6 Statistical results of accuracy test for the method.
化
合
物
Compounds推荐值
Recommended value
(ng/g)最小测量值
Minimum measurement value
(ng/g)最大测量值
Maximum measurement value
(ng/g)平均测量值
Average measurement value
(ng/g)标准偏差SD
(ng/g)相对误差
RE
(%)TnBP 276±14 267 283 275 4.73 −0.26 TCEP 925±149 781 1044 910 95.9 −1.66 TCPP 1200±350 1018 1407 1257 117 4.78 TPhP 1190±130 837 1228 1126 116 −5.35 -
[1] 王晓伟,刘景富,阴永光. 有机磷酸酯阻燃剂污染现状与研究进展[J]. 化学进展,2010,22(10):1983−1992. Wang X W,Liu J F,Yin Y G. The pollution status and research progress on organophosphate ester flame retardants[J]. Progress in Chemistry, 2010, 22(10):1983−1992.
[2] Veen I V D,Boer J D. Phosphorus flame retardants:Properties,production,environmental occurrence,toxicity and analysis[J]. Chemosphere, 2012, 88(10):1119−1153. doi: 10.1016/j.chemosphere.2012.03.067
[3] 季麟,高宇,田英. 有机磷阻燃剂生产使用及我国相关环境污染研究现况[J]. 环境与职业医学,2017,34(3):271−279. doi: 10.13213/j.cnki.jeom.2017.16491 Ji L,Gao Y,Tian Y. Review on production,application,and environmental pollution of organophosphate flame retardants in China[J]. Journal of Environmental and Occupational Medicine, 2017, 34(3):271−279. doi: 10.13213/j.cnki.jeom.2017.16491
[4] 曾铭,苏小东,蒋小良,等. 有机磷酸酯阻燃剂分析方法研究进展[J]. 化学试剂,2013,35(5):423−426,463. doi: 10.13822/j.cnki.hxsj.2013.05.017 Zeng M,Su X D,Jiang X L,et al. Progress of analytical method of organophosphorus flame retardants[J]. Chemical Reagents, 2013, 35(5):423−426,463. doi: 10.13822/j.cnki.hxsj.2013.05.017
[5] 汪素芳, 杨郁, 郭良宏. 有机磷酸酯阻燃剂对赖氨酸脱羧酶活性的抑制效应研究[C]//中国化学会第29届学术年会摘要集——第20分会: 环境与健康, 2014. Wang S F, Yang Y, Guo L H. Structure-dependent inhibition of lysine decarboxylase activity by organophosphate esters[C]//Summary of the 29th Annual Academic Conference of the Chinese Chemical Society—Chapter 20: Environment and Health, 2014.
[6] Wang Q,Liang K,Liu J,et al. Exposure of Zebrafish embryos/larvae to TDCPP alters concentrations of thyroid hormones and transcriptions of genes involved in the hypothalamic-pituitary-thyroid axis[J]. Aquatic Toxicology, 2013, 126:207−213. doi: 10.1016/j.aquatox.2012.11.009
[7] Liu X,Ji K,Jo A,et al. Effects of TDCPP or TPP on gene transcriptions and hormones of HPG axis,and their consequences on reproduction in adult Zebrafish (Danio rerio)[J]. Aquatic Toxicology, 2013, 134-135:104−111. doi: 10.1016/j.aquatox.2013.03.013
[8] Farhat A,Crump D,Chiu S,et al. In ovo effects of two organophosphate flame retardants—TCPP and TDCPP—On pipping success,development,mRNA expression,and thyroid hormone levels in chicken embryos[J]. Toxicological Sciences, 2013, 134(1):92−102. doi: 10.1093/toxsci/kft100
[9] Saboori A M,Lang D M,Newcombe D S. Structural requirements for the inhibition of human monocyte carboxylesterase by organophosphorus compounds[J]. Chemico-Biological Interactions, 1991, 80(3):327−338. doi: 10.1016/0009-2797(91)90092-L
[10] Kojima H,Takeuchi S,Itoh T,et al. In vitro endocrine disruption potential of organophosphate flame retardants via human nuclear receptors[J]. Toxicology, 2013, 314(1):76−83. doi: 10.1016/j.tox.2013.09.004
[11] Zeng X,He L,Cao S,et al. Occurrence and distribution of organophosphate flame retardants/plasticizers in wastewater treatment plant sludges from the Pearl River Delta,China[J]. Environmental Toxicology and Chemistry, 2014, 33(8):1720−1725. doi: 10.1002/etc.2604
[12] Li J,Yu N,Zhang B,et al. Occurrence of organophosphate flame retardants in drinking water from China[J]. Water Research, 2014, 54:53−61. doi: 10.1016/j.watres.2014.01.031
[13] Wang R,Tang J,Xie Z,et al. Occurrence and spatial distribution of organophosphate ester flame retardants and plasticizers in 40 rivers draining into the Bohai Sea,North China[J]. Environmental Pollution, 2015, 198:172−178. doi: 10.1016/j.envpol.2014.12.037
[14] 庄园. 有机磷酸酯阻燃剂在太湖及其周边河流水体中的分布和源解析[D]. 南京: 南京大学, 2015. Zhuang Y. Distribution and sources apportionment of organophosphorus ester flame retardants in water and sediments from Taihu Lake and surrounding rivers[D]. Nanjing: Nanjing University, 2015.
[15] Shi Y,Gao L,Li W,et al. Occurrence,distribution and seasonal variation of organophosphate flame retardants and plasticizers in urban surface water in Beijing,China[J]. Environmental Pollution, 2016, 209:1−10. doi: 10.1016/j.envpol.2015.11.008
[16] He M J,Yang T,Yang Z H,et al. Occurrence and distribution of organophosphate esters in surface soil and street dust from Chongqing,China:Implications for human exposure[J]. Archives of Environmental Contamination and Toxicology, 2017, 73(3):349−361. doi: 10.1007/s00244-017-0432-7
[17] Luo Q,Shan Y,Muhammad A,et al. Levels,distribution,and sources of organophosphate flame retardants and plasticizers in urban soils of Shenyang,China[J]. Environmental Science and Pollution Research, 2018, 25:31752−31761. doi: 10.1007/s11356-018-3156-y
[18] Cao S,Zeng X,Song H,et al. Levels and distributions of organophosphate flame retardants and plasticizers in sediment from Taihu Lake,China[J]. Environmental Toxicology and Chemistry, 2012, 31(7):1478−1484. doi: 10.1002/etc.1872
[19] Zheng J,Gao Z,Yuan W,et al. Development of pressurized liquid extraction and solid-phase microextraction combined with gas chromatography and flame photometric detection for the determination of organophosphate esters in sediments[J]. Journal of Separation Science, 2014, 37(17):2424−2430. doi: 10.1002/jssc.201301274
[20] Tajima S,Araki A,Kawai T,et al. Detection and intake assessment of organophosphate flame retardants in house dust in Japanese dwellings[J]. Science of the Total Environment, 2014, 478:190−199. doi: 10.1016/j.scitotenv.2013.12.121
[21] Salamova A,Hermanson M,Hites R A. Organophosphate and halogenated flame retardants in atmospheric particles from a European Arctic site[J]. Environmental Science & Technology, 2014, 48(11):6133−6140.
[22] Feng L,Ouyang F,Liu L,et al. Levels of urinary metabolites of organophosphate flame retardants,TDCIPP,and TPHP,in pregnant women in Shanghai[J]. Journal of Environmental and Public Health, 2016, 9416054.
[23] Sun Y,Gong X,Lin W,et al. Metabolites of organophosphate ester flame retardants in urine from Shanghai,China[J]. Environmental Research, 2018, 164:507−515. doi: 10.1016/j.envres.2018.03.031
[24] Zhao F,Wan Y,Zhao H,et al. Levels of blood organophosphorus flame retardants and association with changes in human sphingolipid homeostasis[J]. Environmental Science & Technology, 2016, 50(16):8896−8903.
[25] Ma Y,Jin J,Li P,et al. Organophosphate ester flame retardant concentrations and distributions in serum from inhabitants of Shandong,China,and changes between 2011 and 2015[J]. Environmental Toxicology and Chemistry, 2017, 36(2):414−421. doi: 10.1002/etc.3554
[26] He C,Toms L L,Thai P,et al. Urinary metabolites of organophosphate esters:Concentrations and age trends in Australian children[J]. Environment International, 2018, 111:124−130. doi: 10.1016/j.envint.2017.11.019
[27] Yusa V,Ye X,Calafat A M. Methods for the determination of biomarkers of exposure to emerging pollutants in human specimens[J]. Trends in Analytical Chemistry, 2012, 38:129−142. doi: 10.1016/j.trac.2012.05.004
[28] Ding J,Xu Z,Huang W,et al. Organophosphate ester flame retardants and plasticizers in human placenta in eastern China[J]. Science of the Total Environment, 2016, 554-555:211−217. doi: 10.1016/j.scitotenv.2016.02.171
[29] Wang Y,Yao Y,Li W,et al. A nationwide survey of 19 organophosphate esters in soils from China:Spatial distribution and hazard assessment[J]. Science of the Total Environment, 2019, 671(25):528−535.
[30] 王润梅. 环渤海主要入海河流有机磷酸酯阻燃剂的初步研究[D]. 北京: 中国科学院大学, 2015. Wang R M. Preliminary study of organophosphate ester flame retardants in rivers around the Bohai Sea[D]. Beijng: The University of Chinese Academy of Sciences, 2015.
[31] Quintana J B,Rodil R,Reemtsma T,et al. Organophosphorus flame retardants and plasticizers in water and air Ⅱ. Analytical methodology[J]. Trends in Analytical Chemistry, 2008, 27(10):904−915. doi: 10.1016/j.trac.2008.08.004
[32] 胡晓辉,仇雁翎,朱志良,等. 环境中有机磷酸酯阻燃剂分析方法的研究进展[J]. 环境化学,2014,33(12):2076−2086. doi: 10.7524/j.issn.0254-6108.2014.12.013 Hu X H,Qiu Y L,Zhu Z L,et al. Research progress on analytical methods of organophosphate ester flame retardants in the environment[J]. Environmental Chemistry, 2014, 33(12):2076−2086. doi: 10.7524/j.issn.0254-6108.2014.12.013
[33] 刘世龙,张华,胡晓辉,等. 气相色谱-串联质谱法测定沉积物中有机磷酸酯[J]. 分析化学,2016,44(2):192−197. doi: 10.11895/j.issn.0253-3820.150600 Liu S L,Zhang H,Hu X H,et al. Analysis of organophosphate esters in sediment samples using gas chromatography-tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2016, 44(2):192−197. doi: 10.11895/j.issn.0253-3820.150600
[34] 刘静,曾祥英,于志强,等. 超声提取/固相萃取测定固体介质中合成麝香及有机磷酸酯阻燃剂/增塑剂[J]. 分析测试学报,2016,35(1):61−67. doi: 10.3969/j.issn.1004-4957.2016.01.010 Liu J,Zeng X Y,Yu Z Q,et al. Determination of synthetic musks and organophosphate flame retardants/plasticizers in solid phase by ultrasound- assisted extraction coupled with solid phase extraction[J]. Journal of Instrumental Analysis, 2016, 35(1):61−67. doi: 10.3969/j.issn.1004-4957.2016.01.010
[35] Luo Q,Wang S,Sun L,et al. Simultaneous accelerated solvent extraction and purification for the determination of 13 organophosphate esters in soils by gas chromatography-tandem mass spectrometry[J]. Environmental Science and Pollution Research, 2018, 25:19546−19554. doi: 10.1007/s11356-018-2047-6
[36] García-López M,Rodríguez I,Cela R. Pressurized liquid extraction of organophosphate triesters from sediment samples using aqueous solutions[J]. Journal of Chromatography A, 2009, 1216(42):6986−6993. doi: 10.1016/j.chroma.2009.08.068
[37] 鹿建霞,季雯,马盛韬,等. 气相色谱/质谱法检测灰尘、土壤和沉积物中有机磷酸酯[J]. 分析化学,2014,42(6):859−865. doi: 10.1016/S1872-2040(14)60745-3 Lu J X,Ji W,Ma S T,et al. Analysis of organophosphate esters in dust,soil and sediment samples using gas chromatography coupled with mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2014, 42(6):859−865. doi: 10.1016/S1872-2040(14)60745-3
[38] Cristale J,Lacorte S. Development and validation of a multiresidue method for the analysis of polybrominated diphenyl ethers,new brominated and organophosphorus flame retardants in sediment,sludge and dust[J]. Journal of Chromatography A, 2013, 1305:267−275. doi: 10.1016/j.chroma.2013.07.028
[39] 陈玫宏,徐怀洲,宋宁慧,等. 高效液相色谱-串联质谱法同时测定水体和沉积物中12 种有机磷酸酯类化合物[J]. 分析化学,2017,45(7):987−995. Chen M H,Xu H Z,Song N H,et al. Simultaneous determination of 12 kinds of organophosphates in water and sediment by high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2017, 45(7):987−995.