Distribution Characteristics and Ecological Risk Assessment of Heavy Metals in Typical Soil Profiles of Muchuan County, Sichuan Province
-
摘要:
根据全国土壤污染状况调查显示,全国土壤的环境状况总体不容乐观,耕地土壤环境质量令人担忧,已对粮食安全构成威胁。已有的研究工作多集中于土壤重金属的空间分布特征及污染源分析、重金属污染风险评估以及评估方法,但对于不同土壤深度重金属在耕地中的积累与剖面分布的变化及其生态风险分析相对较少。为研究四川省沐川县土壤剖面重金属分布特征和生态风险,本文在研究区选择三个不同地质背景区采集了土柱剖面样品开展相关工作。结果表明:样品中As、Cd、Hg、Pb、Ni、Cu、Zn七项指标中,除了Cu外,其余重金属元素含量都高于国家和四川省土壤背景值,表明这些元素在土壤中呈现不同程度地富集。土壤中7种重金属的浓度与土壤养分(氮、磷、钾),土壤有机碳和pH值存在相关性,如在玉米地剖面中,氮和磷与Cd呈显著正相关,相关系数分别为0.845、0.747。大量研究表明,磷肥中含有一定量的重金属。磷肥中重金属含量高低与磷矿及其来源有关,磷肥能够增加土壤 Cd 含量。土壤有机碳与Cd呈显著正相关,相关系数为0.934,其原因是土壤有机质对重金属的吸附作用,有机碳对土壤中重金属的保留起了重要作用。pH值与Cd呈显著负相关,相关系数为-0.964,随着pH值的增加,土壤对重金属离子的吸附会增加,从而导致土壤中活性重金属离子减少。土壤重金属之间存在显著的正相关关系,表明它们普遍存在同源性。采用地质积累指数($ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $)评价土壤重金属污染程度,并选取潜在生态风险指数($ RI $)评价其潜在生态风险,结果表明土壤中主要污染元素为Cd。生态风险指数显示,玉米地的潜在生态风险较大,其中Cd、Hg的生态风险较高,潜在生态风险指数($ RI $)随着剖面深度的增加而降低。当地应采取适当措施,加强对该地区污染的防治工作,避免对人体健康造成危害。
-
关键词:
- 土壤 /
- 重金属 /
- 含量分布 /
- 污染评价 /
- 电感耦合等离子体质谱法
Abstract:BACKGROUNDSoil is a precious resource for human survival and social development. The quality of the soil environment is impacted by a variety of issues due to the social economy’s rapid expansion, and the issue of heavy metal contamination in farmed land has garnered great attention globally. Heavy metals in soil pose a severe risk to the security of agricultural products and public health due to their persistence, latency, and ease of entry into the food chain. In recent years, many scholars have carried out research on soil heavy metal pollution and ecological risk assessment under different conditions such as natural conditions, industrial and mining industries and developed transportation in different regions. Zhou et al.[11] found that Xiong’an New Area was affected by the production activities of surrounding enterprises. The contents of As, Cd, Cu, Pb and Zn in some root soil samples exceeded the screening value standard for soil pollution risk of agricultural land (GB 15618—2018), and the exceeding ratios were 23.33%, 96.67%, 33.33%, 33.33% and 10.00%, respectively. Song et al.[12] evaluated the characteristics of heavy metal pollution in the surface soil of Fuping County, Hebei Province, and found that As and Cd exceeded the acceptable carcinogenic risk level (As is 10−5, Cd is 10−6). Kumar et al.[10] collected data on heavy metal-contaminated soils in India from 1991 to 2018. The average Cd content of all soil types exceeded the limit values, and the potential ecological risk values of Cd were greater than 320, reflecting a higher ecological risk. For the heavily polluted soil, according to the different pollution situation in our country, the remediation measures are taken according to local conditions. However, due to the wide area of contaminated soil and the complex composition of pollution sources, the current soil remediation work still faces huge problems.
OBJECTIVESTo study the vertical distribution characteristics of heavy metals in soil, the relationship between soil heavy metals and soil nutrient elements, as well as the degree of pollution and potential ecological risks.
METHODSThe contents of Cd, Cu, Ni, Pb, Zn were measured using inductively coupled plasma-mass spectrometry (ICP-MS); As content was determined by hydride generation atomic fluorescence spectrometry (HG-AFS); P and K2O contents were determined by X-ray fluorescence spectrometry (XRF); N content was determined by oxidation combustion gas chromatography (GC); Hg content was determined by cold vapor atomic fluorescence spectrometry (CV-AFS); Organic carbon content was determined by high-frequency combustion infrared absorption method (IR); potentiometric method (POT) was used to measure soil pH value. Statistical analysis and calculation of soil heavy metal content, pollution index, and ecological risk index were conducted using Excel 2016. Pearson correlation analysis was conducted using SPSS 26, and the degree of soil heavy metal pollution was evaluated using the geoaccumulation index (Igeo). Potential ecological risk index (RI) values were selected to evaluate potential ecological risks.
RESULTSThe average contents of As, Cd, Cu, Hg, Ni, Pb, and Zn in the soil of YS plot were 20.8mg/kg, 0.35mg/kg, 26.38mg/kg, 0.121mg/kg, 33.29mg/kg, 42.37mg/kg, and 94.47mg/kg, respectively; The average contents of As, Cd, Cu, Hg, Ni, Pb, and Zn in the soil of PS plot were 7.21mg/kg, 0.32mg/kg, 28.32mg/kg, 0.028mg/kg, 47.34mg/kg, 33.29mg/kg, and 116.45mg/kg, respectively; The average contents of As, Cd, Cu, Hg, Ni, Pb, and Zn in the soil of GS plot were 5.42mg/kg, 0.16mg/kg, 22.38mg/kg, 0.08mg/kg, 31.8mg/kg, 30mg/kg, and 75.03mg/kg, respectively. The concentrations of As, Cd, Hg, Ni, Pb, and Zn were higher than the national and Sichuan soil background values, indicating that these metals were relatively enriched in the soil of Muchuan County. The relationship between seven heavy metals at different soil depths was evaluated through Pearson correlation analysis (seen in Table 4). There was a significant positive correlation between heavy metals, indicating their widespread homology. In the PS profile, the correlation between Cd, Hg and organic carbon was very high, with correlation coefficients of 0.934 and 0.955, respectively (Fig.5); As, Cd, Cu, Hg, Zn showed a highly significant negative correlation with pH, and the correlation between Cd, Hg content and soil pH was shown in Fig.5, with correlation coefficients of −0.964 and −0.944, respectively. The content of heavy metals in soil was closely related to organic carbon and pH value, which should be attributed to the adsorption of organic matter and the fact that pH not only affected the electrostatic adsorption of heavy metals by soil particles, but also damaged the inert part of the parent material. Soil organic matter and pH value are important factors affecting the migration of heavy metals in soil. The surface soil had a high content of organic matter, multiple adsorption sites, and a high soil pH value, which reduced the solubility of heavy metals and thus the metal migration rate. Soil pollution assessment results. The Igeo values of Cu and Zn in all soil profiles were less than 0, indicating that the soil in the study area was not contaminated by these heavy metals. The Igeo value of Cd at four depths was significantly reduced. Except that the Igeo value at GS point was less than 1, YS and PS were greater than 1, indicating that the Cd pollution degree of corn land (YS, PS) was more serious than that of tea garden land (GS). This may be due to the difference of tillage conditions, and the Igeo value of surface soil at YS point was between 2 and 3, showing moderate-strong pollution. The Igeo values of As, Hg, Ni and Pb at four depths were all less than 1 and close to 0, indicating that the soil pollution was slight, which may be caused by human input or natural changes. In general, conventional agricultural practices lead to the enrichment of heavy metals in soils due to excessive use of fertilizers and pesticides, wastewater irrigation and atmospheric deposition. Zhao et al.[42] found that use of fertilizers and manure increased the content of heavy metals (Cd, Cu, Pb, and Zn) by approximately 3% per year. The order of heavy metal pollution degree from high to low is Cd>Hg>As>Pb>Ni. Potential ecological risk assessment. According to the description of risk level, the YS plot had the highest potential risk index for Cd and Hg, and there was a significant ecological risk of Cd and Hg at depths of 0-140cm (80≤Ei<160), among which the surface soil Cd had a strong ecological risk (160≤Ei<320). It indicates that Cd pollution sources in the region may be affected by past agricultural activities, including fertilizers and pesticides. The soil Cd of PS plot exhibited strong ecological hazards (160≤Ei<320) at the depth of 0-30cm while exhibiting strong ecological hazards (80≤Ei<160) at 60-110cm. The Cd and Hg in surface soil at the GS plot site had moderate ecological risks (40≤Ei<80). The value of RI showed a strong ecological risk (300≤RI<600) at 0-10cm of the YS plot, and a moderate ecological risk (150≤RI<300) at 30-140cm. Moderate ecological hazards (150≤RI<300) were present in the PS plot, while mild ecological hazards (RI<150) were present at 60-110cm. The ecological hazards of GS plot at 0-130cm were relatively weak. The Ei values of heavy metals in soil decreased with the increase of depth, which was consistent with the evaluation results of Igeo pollution. The Ei values of Cd in the three profiles were relatively high, indicating that special attention should be paid to the control of heavy metal pollution.
CONCLUSIONSAccording to the results of soil vertical profile data, it can be concluded that heavy metal content tends to accumulate in the surface soil, and its content decreases with increasing depth. The Igeo value and Ei value also decrease with the increase of formation depth. The geoaccumulation index and potential ecological risk analysis indicate that Cd poses significant ecological risks to the local soil, and appropriate measures should be taken to strengthen pollution prevention and control in the area to avoid harm to human health. The content of heavy metals is closely related to soil nutrients and physicochemical properties, positively correlated with organic carbon content, and negatively correlated with pH value. According to the research results, it is suggested to carry out further research on the accumulation of heavy metals in soil, rationally assess its ecological harm, and ensure the safe use of land.
-
Keywords:
- soil /
- heavy metals /
- content distribution /
- pollution assessment /
- inductively coupled plasma-mass spectrometry
-
土壤是人类生存和发展的宝贵资源。在社会经济快速发展的今天,土壤环境质量受到多种因素的影响,耕地重金属污染问题在世界范围内引起了广泛关注 [1-2]。耕地重金属含量明显增加,主要是由于农业生产、大气沉降、废物处理等人为活动[3]所致。一方面,耕作土壤中重金属的积累影响了土壤的理化性质,导致土壤养分元素循环失衡,直接影响了耕作土壤的生产力,导致作物产量和品质下降。另一方面,重金属污染范围广、持续时间长、易积累难分解,可通过直接接触或食物链传递对人类健康构成威胁[4-7]。例如,汞的积累可导致自身免疫性疾病以及肺和肾衰竭。长期摄入过量Cd导致前列腺增生性病变、骨折、肾功能障碍、肺癌和肺腺癌等不良影响[8]。中国约2.786×109m2 农业土壤被Cd污染[9] 。 Kumar等[10]收集了1991—2018年印度重金属污染土壤数据,所有土壤类型Cd平均含量都超过限量值,Cd的潜在生态风险值和修正后的潜在生态风险值均大于320,反映出较高的生态风险。研究土壤中重金属的含量并评估其风险,对于避免重金属对生态环境和人类健康造成危害具有重要意义。
近年来国内外学者在不同区域,开展自然条件、工矿业及交通发达等不同条件下,土壤重金属污染及生态风险评价等研究。周亚龙等[11]发现雄安新区受周边企业生产活动的影响,部分根系土壤样品As、Cd、Cu、Pb和Zn含量超过农用地土壤污染风险筛选值标准(GB 15618—2018),其超标率分别为23.33%、96.67%、33.33%、33.33%和10.00%。宋绵等[12]评估了河北阜平县表层土壤重金属污染特征发现As和Cd超过可接受致癌风险水平(As为10−5,Cd为10−6),具有一定的致癌风险。Huang等[13]发现九龙江流域水稻土中重金属具有较高的潜在生态风险,其中镉和汞的贡献率最高,分别为59.4%和26.2%。Barrena-González等[14]研究发现西班牙埃斯特雷马杜拉地区的土壤养分表现出较高的变异性,80%以上的养分集中在土壤上层和较浅的土层。其他化学性质,如pH值表现出相反的行为,在深层具有较小的变异性和较高的值。谢龙涛等[15]研究表明土壤重金属含量与土壤有机质和pH值密切相关。Ye等[16]利用聚合增强树分析表明,土壤pH和有机碳是控制水稻土Cd生物有效性的主要因素。
四川省沐川县位于中国西南部,是典型的土壤重金属元素地质高背景区。目前,对该区域内土壤剖面重金属垂直分布及其生态风险的研究认识还不够全面。本文选取沐川县3个剖面的38个土壤样品中的7种重金属(As、Cd、Cu、Zn、Hg、Ni、Pb)为对象,利用电感耦合等离子体质谱法、氢化物发生原子荧光光谱法、高频燃烧红外吸收法等方法测定样品中7种重金属元素含量等指标,采用地质累积指数(Geoaccumulation Index,$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $)和汉克森潜在生态风险指数法(Potential Ecological Risk Index,RI),研究重金属在土壤中的垂向分布特征,探究沐川县土壤重金属与土壤养分元素的关系及其污染程度和潜在生态风险,拟为地方政府对土壤资源的安全利用、土壤污染的防治与修复提供依据。
1. 研究区概况
研究区位于四川盆地西南边缘小凉山余脉、乌蒙山区西北部,地处岷江、大渡河、金沙江的腹心地带,隶属于沐川县。地貌主要以平坝、低山和低中山为主[17]。气候属亚热带湿润季风气候。主要作物为玉米、茶叶等。土壤类型多为紫色土和黄壤[18],区内土地利用方式以旱地、茶园为主,耕地较为分散,主要为山间梯田。
在地质构造上,沐川县位于扬子淮地台四川台坳川中台拱西南缘的弧形褶带,西南接凉山凹陷带、东北连威远台凸,县内断裂少但褶皱较发育。区内出露地层主要有:侏罗系蓬莱镇组(J3p)、遂宁组(J3sn)、沙溪庙组(J2s)和自流井组(J1z);三叠系须家河组(T3x)和垮洪洞组—须家河组并层(T3k-x);三叠系雷口坡组(T2l);三叠系飞仙关组—嘉陵江组—雷口坡组并层(T1-2f-l)和飞仙关组—嘉陵江组并层(T1f-j);二叠系宣威组(P2x);二叠系峨眉山玄武岩组(Pe);白垩系窝头山组(K1w)(图1) 。蓬莱镇组(J3p)、遂宁组(J3sn)、沙溪庙组(J2s) 和自流井组(J1z) :泥岩、砂岩和粉砂岩;须家河组(T3x) 和垮洪洞组—须家河组并层(T3k-x):砂岩、粉砂岩、泥岩及煤层组成的沉积旋回;雷口坡组(T2l):粉砂岩与白云岩、泥质灰岩互层,夹黑色碳质页岩;飞仙关组—嘉陵江组—雷口坡组并层(T1-2f-l) 和飞仙关组—嘉陵江组并层(T1f-j):白云岩、灰岩、页岩;宣威组(P2x):黄绿色砂、粉砂岩,夹泥岩及煤;峨眉山玄武岩组(Pe):灰绿色致密、杏仁状玄武岩,夹苦橄岩、凝灰质砂泥岩、煤线及硅质岩;窝头山组(K1w):砖红色块状细粒长石石英砂岩。
2. 实验部分
2.1 样品采集
按照不同的地质背景和土壤类型布设三条土柱剖面(YS、PS、GS)。采用手动取样钻连续分段采样,样柱长度控制为10cm/件。每件样品质量不少于500g。取深部土样时,需防止上部土壤混入。土柱剖面深度视土层发育情况而定,从3个土壤剖面共采集38个土壤样品,采样点描述见表1。土壤样品经自然风干后去除石块、碎屑、塑料等杂质,研磨后过10目筛,混匀、称重并送往实验室。
表 1 研究区不同类型土柱剖面取样点概况Table 1. Sampling points of different types of soil column profiles in the study area.采样地点 采样深度(cm) 土地利用类型 土壤类型 地质背景 可见特征描述 剖面YS 140 山坡旱地,
种植玉米黄色黏质土 三叠系雷口坡组(T2l),岩性为粉砂岩与白云岩、泥质灰岩互层,夹黑色碳质页岩 0~50cm灰黄色黏质土,50~140cm黄色黏质土 剖面PS 110 山坡旱地,
种植玉米紫色黏质土 侏罗系蓬莱镇组(J3p)岩性
以泥岩、砂岩和粉砂岩为主0~80cm紫色黏质土,80~110cm紫色黏质土,
土壤水分降低剖面GS 130 茶园地 灰色黏质土 三叠系须家河组(T3x) ,岩性主要为砂岩、粉砂岩、泥岩及煤层组成的沉积旋回 0~40cm,灰色黏质土,有机质较丰富;40~70cm,土壤颜色变黄,细砂成分增多;80~90cm,青灰色淤泥,水分增多;90~100cm,土壤变灰黑色,水分变少;100~120cm,青灰色黏质土;120~130cm,灰绿色,底部为页岩、泥岩 2.2 样品测试
以《土地质量地球化学评价规范》(DZ/T 0295—2016)为依据 ,采用电感耦合等离子体质谱法(ICP-MS,ICap Qc型,美国ThermoFisher公司)测定Cd、Cu、Ni、Pb、Zn含量;氢化物发生原子荧光光谱法(HG-AFS,XGY-2020A型,廊坊开元高技术开发公司)测定As含量;X射线荧光光谱法(XRF,PW 4400/40型,荷兰帕纳科公司)测定P、K2O含量;氧化燃烧-气相色谱法(GC,EA3000型,意大利Eurovetorspa公司)测定N含量;冷蒸气原子荧光光谱法(CV-AFS,XGY-2020A型,廊坊开元高技术开发公司)测定Hg含量;高频燃烧红外吸收法(IR,COREY-200型,四川普瑞晟科技有限公司)测定有机碳(Corg)含量;电位法(POT,PHB-4型,上海仪电科学仪器有限公司)测定土壤pH值。各指标分析测试的检出限见表2。
表 2 各指标分析测试检出限Table 2. Detection limit of each index analysis.分析项目 检出限 分析项目 检出限 As 0.5$ \mathrm{m} $g/kg Zn 4$ \mathrm{m} $g/kg Cd 0.03$ \mathrm{m} $g/kg P 10$ \mathrm{m} $g/kg Cu 1.$ 0\mathrm{ } $mg/kg Corg 0.10% Hg 0.0005$ \mathrm{m} $g/kg K2O 0.05% Pb 2$ \mathrm{m} $g/kg pH 0.1 Ni 2$ \mathrm{m} $g/kg N 20$ \mathrm{m} $g/kg 分析质量控制严格执行《土地质量地球化学评价规范》(DZ/T 0295—2016)和《多目标区域地球化学调查规范》(DZ/T 0258—2014) 。样品分析过程中,按照规范插入国家一级标准物质(GBW07401、GBW07408、GBW07423~GBW07426) 和重复样,用于监控分析测试的准确度和精密度。各元素的分析检出限、准确度和精密度均达到或优于DZ/T 0258—2014的要求,分析数据质量可靠。
2.3 污染程度和潜在生态风险评价方法
采用地质累积指数($ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $)[19]评价土壤重金属污染程度,选取潜在生态风险指数(RI)[20]评价潜在生态风险。$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $的计算公式如下:
$$ I_{\mathrm{g}\mathrm{e}\mathrm{o}}=\mathrm{log}_2(C_{\mathrm{n}}/kB_{\mathrm{n}}) $$ (1) 式中:$ C $n为土壤中目标元素的实测值,$ {B}_{\mathrm{n}} $为土壤中目标元素的背景值。在本研究中,$ {B}_{\mathrm{n}} $选取四川省土壤背景值[21]。$ k $是一个常数,用于修正不同地方岩石组成差异引起的背景值的变化($ k $一般赋值为1.5)。
$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $与污染程度之间的对应关系为: $ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $≤0表示无污染; 0<$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $≤1 表示轻度至中等污染; 1<$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $≤2 表示中等污染; 2<$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $≤3表示中等至强污染; 3<$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $≤4表示强污染; 4<$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $≤5表示强至极严重污染;$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $>5表示极严重污染。
$$ RI = \sum {E}_{i}=\sum {T}_{m}\left(\frac{{C}_{n}}{{B}_{n}}\right) $$ (2) 式中:RI为所有重金属元素个体潜在生态风险的总和;$ {E}_{i} $为单个元素的潜在生态风险指数;$ {T}_{\mathrm{m}} $为生物毒性因子。依据 Hakanson[20]和徐争启等[22]的研究,给出的毒性响应系数为:Hg=40,Cd=30,As=10,Pb=Cu=Ni=5,Zn=1和Cr=2。
潜在生态危害系数($ {E}_{i} $) 从低到高分为5个等级,用于描述某一污染物(元素) 的生态危害程度。不同的$ {E}_{i} $值对应的生态危害程度划分为:$ {E}_{i} $<40为轻微;40≤$ {E}_{i} $≤80为中等;80≤$ {E}_{i} $≤160为强;160≤$ {E}_{i} $≤320为很强; $ {E}_{i} $≥320为极强。
潜在生态危害指数(RI) 是描述某一点多个污染物(元素) 潜在生态危害系数的综合值,分为4个等级。RI<150表示轻微;150≤RI≤300表示中等;300≤RI≤600表示强;RI≥600表示很强。
2.4 数据处理与图件制作
采用Excel 2016进行土壤重金属含量、污染指数、生态风险指数的统计和计算,利用ArcGIS绘制研究区地质简图,采用SPSS 26进行Pearson相关分析和箱型图制作,后期用 CorelDRAW2019进行修饰。
3. 结果与讨论
3.1 土柱剖面重金属含量
三个剖面重金属(As、Cd、Cu、Hg、Ni、Pb、Zn)平均含量对比如图2。
剖面YS土壤中,As、Cd、Cu、Hg、Ni、Pb、Zn含量范围分别为(mg/kg):18.07~22.81、0.22~0.73、22.96~31.13、0.088~0.148、30.32~36.85、37.32~53.52和84.54~104.10;变异系数分别为0.07、0.36、0.09、0.17、0.06、0.11、0.07。
剖面PS土壤中,As、Cd、Cu、Hg、Ni、Pb、Zn含量范围分别为(mg/kg):6.09~8.35、0.21~0.49、24.87~31.71、0.02~0.04、45.02~51.98、29.57~42和 107.70~125.60;变异系数分别为0.09、0.31、0.08、0.23、0.04、0.11、0.05。
剖面YS和PS土壤中,Cd 呈高度变异,Hg、Pb 呈中等变异,As、Cu、Pb、Zn呈低变异程度。多种重金属含量多呈低变异性,表明As、Cu、Pb、Zn主要来源于母质。
剖面GS土壤中,As、Cd、Cu、Hg、Ni、Pb、Zn含量范围分别为(mg/kg):0.95~10.64、0.06~0.31、14.39~31.01、0.038~0.119、22.46~48.34、22.28~43.68和59.54~105.80;变异系数分别为0.71、0.47、0.19、0.41、0.30、0.24、0.17。As、Cd、Hg呈高变异性,表明该研究区这三种金属含量变异性高,空间分散程度大,可能受到人类活动的影响。重金属的空间分布可能是多种污染源共同作用的结果,但更多的污染源信息需要通过不同的统计分析来深入挖掘。
As含量在剖面YS高于全国和四川背景值,在剖面PS、GS均低于全国和四川背景值。三个剖面的Cd含量都高于全国和四川背景值,Cu 含量均低于四川背景值;剖面YS和GS的Hg含量高于全国和四川背景值,剖面PS的Hg含量显著低于全国和四川背景值;Ni含量在剖面PS远高于背景值,在剖面YS接近四川背景值,高于全国背景值,在剖面GS高于全国背景值,低于四川背景值;Pb含量在三个剖面均高于背景值;Zn含量在剖面YS、PS都高于背景值,在剖面GS接近全国土壤背景值,低于四川背景值。三个剖面Zn含量最高,Cd、Hg含量最低。这7种重金属除了Cu,其余金属含量都高于国家和四川土壤背景值,表明这些金属在沐川县土壤中较富集。成土母质是重金属富集的重要驱动机制[23],不同成土母质发育的土壤,其元素含量必定具有一定差异[7]。整体上看,不同土地利用方式下,玉米地(剖面YS、PS)重金属(Cd、Cu、Pb、Zn)含量高于茶园地(剖面GS)。
3.2 土壤剖面重金属垂向分布
As、Cd、Cu、Hg、Ni、Pb、Zn等重金属元素在三个剖面上的分布如图3所示。YS剖面Cd、Cu、Zn、Pb随土层深度的增加而降低,由于作物根系主要分部局在表土中,相对较高的重金属含量可能会引起人们对粮食安全的担忧;Hg含量在50cm以上时随着剖面深度的增加而降低,50cm以下随土层深度增加而升高;As和Ni变化不明显。在剖面PS中,7种重金属含量均以表土最高,随土层深度的增加略有所下降,有可能是自然变化造成的[24]。在剖面GS中,Ni、Cu、Zn随深度增加而升高,As、Hg、Pb随深度增加而降低;Cd变化不规则,波动较大,可能受成土母质的影响,在剖面GS,0~40cm为灰色黏质土,80~90cm为青灰色淤泥,120~130cm为页岩、泥岩;一些重金属(Cd、Cu、Zn、Pb)会随着工业活动、化肥/农药的施用和汽车尾气排放在表层土壤中逐渐积累[24-26]。本研究中Cd、Cu、Zn、Pb总含量沿土壤剖面的变化也支持了这一点。
3.3 土壤剖面有机碳、养分元素及pH垂向分布
三个剖面土壤中有机碳、N、P、K2O和pH值的垂向分布如图4所示。
土壤剖面pH值为4.48~8.46,在剖面GS呈酸性,在剖面YS、PS呈碱性,可能与土壤类型有关。土壤有机碳含量在0.2%~3.37%之间,随土层深度的增加而降低,在剖面GS变化最明显。Cd、Pb含量的最高值出现在表层,这一发现可能是由于不同层次土壤理化性质的影响。N含量随土层深度增加而降低,变化范围在496.94~2323.94mg/kg。P含量为227.46~1315.8mg/kg,在剖面YS变化最明显。K2O含量范围为1.6%~3.55%,在剖面YS、PS差异不明显,在剖面GS,80cm以下含量明显增加。
3.4 重金属浓度与土壤养分的相关关系
通过Pearson相关分析,确定了不同土壤类型三个剖面中重金属浓度与土壤养分的相关关系(表3)。在剖面YS,Cd、Cu与N、P、Corg呈极显著(p<0.01)正相关;Hg、Zn与K2O呈显著正相关(p<0.05),与pH呈极显著负相关(p<0.01);Pb与N、P、Corg呈极显著正相关,与K2O呈极显著负相关;As和Ni与N、P、K2O、Corg、pH无相关性。在剖面PS,As、Cd、Cu、Hg、Zn与N、P、Corg呈正相关(As和P除外),与pH呈负相关;Ni与K2O呈正相关。在剖面GS,Cd与N、P、K2O、Corg、pH之间的关系不密切,Cu与P、K2O呈正相关;As、Hg、Pb与N、Corg呈极显著正相关,Zn、Ni与N、Corg呈负相关。一个潜在的原因可能是土壤有机质对重金属的吸附,土壤有机质对Cd和Pb等金属有很大吸附力[27]。但是,腐植酸和胡敏素[28]可能会降低土壤中某些金属的含量,因此较高的有机质含量可能不会固定更多的金属,本研究中在茶园剖面(GS),Zn和Ni含量与土壤有机碳(Corg)呈显著负相关。氮、磷、钾作为肥料的标志元素,在农业生产过程中极易在表层土壤中累积。化肥和农药不仅会将重金属直接带入土壤,还会影响pH、有机质等其他土壤因子,从而增加重金属含量[29-30]。大量研究表明,磷肥中含有一定量重金属。磷肥中重金属含量高低与磷矿及其来源有关。美国磷肥中 Cd 含量在 4~100mg/kg ,摩洛哥磷肥中 Cd 含量在 10~24mg/kg[31]。本研究中玉米地Cd与氮磷呈显著正相关,剖面YS相关系数分别为0.813和0.947;剖面PS相关系数分别为0.845和0.747。 一般来说,土壤pH值与土壤中重金属含量呈负相关关系,因为pH值不仅影响土壤颗粒对重金属的静电吸附,而且会破坏母质的惰性部分,从而影响土壤中重金属含量[3,32]。较酸性的环境有利于金属作为土壤中的不稳定组分加入土壤,也限制了金属离子与土壤矿物质或有机物的结合。
表 3 三个采样点土壤剖面重金属与土壤养分指标的Pearson相关性Table 3. Pearson correlation between heavy metals in soil profiles and soil nutrient indicators at three sampling points.采样地点 养分元素 As Cd Cu Hg Ni Pb Zn 剖面YS N 0.186 0.813** 0.706** −0.419 −0.147 0.724** 0.135 P 0.401 0.947** 0.758** −0.188 −0.120 0.828** 0.307 K2O 0.155 −0.399 −0.486 0.795** 0.526 −0.669** 0.638* Corg 0.003 0.759** 0.764** −0.721** −0.340 0.861** −0.150 pH −0.492 −0.455 −0.120 −0.627* −0.088 −0.265 −0.836** 剖面PS N 0.814** 0.845** 0.828** 0.924** −0.160 −0.072 0.724* P 0.458 0.747** 0.504 0.632* −0.209 0.481 0.695* K2O −0.113 −0.266 0.047 −0.295 0.924** −0.121 0.424 Corg 0.865** 0.934** 0.865** 0.955** −0.283 0.065 0.717* pH −0.897** −0.964** −0.884** −0.944** 0.287 −0.223 −0.735** 剖面GS N 0.934** 0.448 −0.262 0.899** −0.765** 0.897** −0.612* P 0.186 0.144 0.661* 0.084 0.265 0.485 0.425 K2O −0.713** −0.237 0.801** −0.721** 0.937** −0.366 0.863** Corg 0.947** 0.552 −0.303 0.953** −0.824** 0.893** −0.673* pH −0.451 −0.039 −0.054 −0.358 0.227 −0.649* 0.110 注:“**”表示在 0.01 级别(双尾),相关性显著;“*”表示在 0.05 级别(双尾),相关性显著。 由表3可知,在YS剖面有机碳(Corg)与Cd、Cu、Pb呈极显著正相关,与Hg呈极显著负相关。在PS剖面Corg与As、Cd、Cu、Hg呈极显著正相关,与Zn呈正相关,Cd、Hg与Corg相关程度非常高,相关系数分别达0.934和0.955(图5);Cd、Hg含量与土壤pH的相关系数(图5)分别为-0.964和-0.944。土壤有机质和pH值是影响重金属在土壤中迁移的重要因素。pH和有机碳两个变量均能较准确地预测土壤重金属总含量,两者的分布可能对该地区土壤重金属的分布有一定的控制作用,Khaledian等[33]的数据说明了这一点。
在剖面GS,有机碳(Corg)与As、Hg、Pb呈极显著正相关,与Ni呈极显著负相关,与Zn呈显著负相关。由于Hg对土壤有机质官能团具有较高的亲和力,土壤有机碳通常与Hg浓度具有很强相关性[34],与研究结果一致。Ahmad等[35]认为有机碳增加了土壤溶液中的重金属,阻止了重金属与其他离子的络合,从而增加了土壤中重金属浓度。可见,有机碳对土壤中重金属的保留起了重要作用。这也解释了表层土壤含有较高的Cd、Cu、Pb,因为这部分的有机碳含量相对较高。一般而言,细颗粒土壤比表面积较大,有机质含量较高,因此对重金属(样体)离子的结合能力较高[36-37]。研究发现[16],土壤pH值在决定Cd在土壤结合位点上的吸附以及Cd在土壤溶液中的形态、溶解度和流动性方面起着最重要的作用。
使用Pearson相关分析可以确定重金属之间的相关关系,提供其来源和传输的信息,如果重金属之间存在显著的正相关关系,说明其来源相同,途径相似[38-39],各采样点土壤Pearson相关分析结果见表4。As与Cd、Hg、Pb呈极显著正相关,Cd与Cu、Zn、Pb呈极显著正相关(p<0.01),表明相似的地球化学行为或输入来源可能与农药和化肥的使用有关。本研究的结果与以前的一些研究一致。例如,在东北德惠的农业土壤中,Zn和Cu也存在较高的相关性[25],这两种元素往往受到农业生产人为输入的控制。As、Hg与Pb之间呈较强的正相关,提示它们可能有共同来源。但是Ni、Pb之间没有发现统计上的相关性,这可能表明它们的来源不同。
表 4 土壤剖面重金属之间的Pearson相关性Table 4. Pearson correlation between heavy metals in soil profiles.元素 As Cd Cu Hg Ni Pb Zn As 1 Cd 0.546** 1 Cu 0.187 0.644** 1 Hg 0.772** 0.141 −0.288 1 Ni −0.369* 0.141 0.683** −0.769** 1 Pb 0.822** 0.672** 0.310 0.566** −0.311 1 Zn 0.029 0.500** 0.783** −0.484** 0.864** 0.065 1 注:“**”表示在 0.01 级别(双尾),相关性显著;“*”表示在 0.05 级别(双尾),相关性显著。 3.5 土壤污染评价结果
图6给出0~10cm、30~40cm、70~80cm、100~110cm各层重金属的$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $值,可以代表这些重金属在整个垂向剖面上的变化。所有土壤剖面中Cu、Zn的$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $值均小于0,表明研究区土壤未受到这些重金属的污染。Cd在四个深度的$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $值有明显降低,除了在剖面GS的$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $值小于1,在剖面YS、PS均大于1,说明玉米地(YS、PS)的Cd污染程度较茶园地(GS)严重,这可能是由于耕作条件的差异,且YS点表土$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $值在2~3之间,表现为中等-强污染。综上所述,由于种植不同作物不可避免地会改变土壤的物理和化学性质,不同农区土壤重金属污染水平差异很大。旱地和茶园地土壤的基本理化特征不同,从而影响重金属的化学转化和生物有效性[40]。金属的有效性取决于土壤有机质[41],土壤有机质是土壤系统中最重要的组成部分之一,因为它对阳离子交换能力有重要影响,阳离子交换能力使土壤具有保留阳离子金属的能力[33]。特别是在污染环境中,土壤中金属的数量和有效性可以随着有机质和总有机碳的增加而增加。As、Hg、Ni、Pb在四个深度的$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $值均小于1且接近于0,表明土壤污染轻微,可能是人为输入造成的,也可能是自然变化造成的。土壤中金属的天然来源与土壤母质有关,而人类对土壤金属的输入与各种人类活动有关。一般来说,由于过度使用化肥和农药、废水灌溉和大气沉降,常规农业做法导致土壤中重金属富集。Zhao等[42]研究发现,化肥和粪肥的使用使重金属(Cd、Cu、Pb和Zn)含量增加约3%/年。在很多情况下,金属污染物首先滞留在土壤表层,然后由不定期的淋滤水(特别是大量的雨水、灌溉水等)携带向下运移[36]。底土的污染主要是由表层土壤的金属垂直运移引起的。同时,土壤中重金属的迁移能力取决于其与土壤组分的相互作用[32]。
图 6 三个采样点剖面土壤0~10cm深度(a)、30~40cm深度(b)、70~80cm深度(c)和100~110cm深度(d)的重金属地质累积指数($ {\mathit{I}}_{\mathbf{g}\mathbf{e}\mathbf{o}} $)Figure 6. Geo-accumulation indexes ($ {\mathit{I}}_{\mathbf{g}\mathbf{e}\mathbf{o}} $) of heavy metals in profile soils at 0-10cm depth (a), 30-40cm depth (b), 70-80cm depth (c) and 100-110cm depth (d) at the three sampling sites.重金属的污染程度由高到低依次为:Cd>Hg>As>Pb>Ni。以白云岩为主的三叠系雷口坡组(T2l)和以泥岩为主的侏罗系蓬莱镇组(J3p)中Cd的$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $值较高,以砂岩为主的三叠系须家河组(T3x)中Cd的$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $值较低,说明重金属的富集与成土母质关系较为密切。陈文轩等[43]基于福建、广东、海南、浙江、湖南、 陕西、甘肃、河南、重庆、山西、天津、内蒙古以及安徽等地农田土壤重金属实测数据,发现各行政区农田土壤Cd与Hg的地质累积指数较高,与本次研究结果相似。Yang 等[44]分析了中国402个工业用地和1041个农业用地土壤中重金属的含量,确定Cd、Pb 和 As 为优先控制的重金属。各重金属的$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $值分析表明,Ni值的$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $值最低,污染轻微,而Cd的$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $值最高,Hg次之,污染严重。可以确定Cd 和 Hg元素为农田土壤优先控制重金属。由于Cd、Hg对人体的毒性,可能对人体健康构成更大的威胁,亟待治理。
3.6 潜在生态风险评估
三个剖面10、30、60、90、110、130、140cm土层As、Cd、Cu、Hg、Ni、Pb、Zn的$ {E}_{i} $值结果列于表5。除了Cd和Hg,大部分重金属(Ei<40)的$ {E}_{i} $值依次降低:Cd>Hg>As>Pb>Ni>Cu>Zn,说明这些重金属的污染程度较低。根据风险等级的描述,剖面YS的Cd、Hg潜在风险指数最高,在0~140cm深度存在较大的Cd、Hg生态风险(80≤$ {E}_{i} $<160),其中表层土壤Cd存在很强生态风险(160≤$ {E}_{i} $<320)。表明该地区的镉污染源可能受以往农业活动的影响,包括施用化肥和农药。Wei等[45]研究也表明陕西省石泉县农田土壤中Cd、Hg富集程度高,毒性系数高,生态风险高。在剖面PS,Cd在 0~30cm土壤表现为很强生态危害(160≤$ {E}_{i} $<320),在60~110cm表现为强生态危害(80≤$ {E}_{i} $<160)。在剖面GS,表层土壤Cd、Hg存在中等生态风险(40≤$ {E}_{i} $<80)。RI值在剖面YS上0~10cm表现为强生态风险(300≤RI <600),在30~140cm表现为中等生态风险(150≤RI<300)。在剖面PS,在0~30cm中等生态危害(150≤RI <300),在60~110cm表现为轻微生态危害(RI <150)。在剖面GS,在0~130cm表现为生态危害相对较弱。土壤各重金属$ {E}_{i} $值随深度的增加而降低,与$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $污染评价结果一致。三个剖面Cd的$ {E}_{i} $值相对较高,表明在控制重金属污染方面需要特别关注。张小敏等[46]对中国农田土壤重金属分布特征研究表明,南方地区由于工业活动和矿区开采,导致土壤Cd累积明显强于北方地区。综上所述,可以发现三个剖面表层土壤生态危害指数(RI)较高,且Cd的贡献最大。因此,为控制和缓解土壤重金属污染,今后应进一步加强对沐川县每个乡镇进行土地质量改善和监测,规范和调整工业和农业活动。
表 5 三个采样点土壤剖面重金属潜在生态风险指数Table 5. Potential ecological risk index of heavy metals in soil profiles of three sampling points.采样地点 采样深度
(cm)$ {E}_{i} $ RI As Cd Cu Hg Ni Pb Zn 剖面YS 10 21.9 278.4 5.0 83.3 5.0 8.7 1.2 403.5 30 21.1 141.6 4.3 72.9 4.9 7.8 1.0 253.6 60 20.0 125.3 4.5 66.7 5.1 6.9 1.0 229.6 90 18.0 95.7 3.7 88.6 4.7 6.4 1.1 218.1 110 20.6 96.5 3.8 96.9 5.1 6.2 1.1 230.1 140 20.7 146.6 4.3 90.5 5.6 6.0 1.2 274.9 剖面PS 10 7.7 177.3 4.8 27.8 6.9 5.5 1.4 231.4 30 8.0 171.6 5.0 22.5 7.2 6.0 1.4 221.7 60 7.0 103.3 4.7 16.8 7.4 5.0 1.3 145.5 90 6.3 80.5 4.1 15.2 7.0 4.8 1.3 147.6 110 6.3 80.1 4.3 13.7 8.0 5.4 1.4 119.2 剖面GS 10 9.6 56.6 3.4 74.2 3.4 6.3 0.7 154.3 30 9.7 101.8 3.8 78.6 3.9 6.2 0.8 204.8 60 6.9 33.8 3.5 64.8 4.2 5.0 0.8 119.1 90 2.3 64.2 3.0 31.6 5.2 3.9 0.9 111.0 110 0.9 21.6 3.9 30.4 6.0 3.6 0.9 67.5 130 1.5 85.1 5.0 25.7 7.4 3.8 1.2 129.7 4. 结论
选择四川省沐川县采集土壤剖面样品,采用电感耦合等离子体质谱法、氢化物发生原子荧光光谱法、高频燃烧红外吸收法等方法测定了样品中7种重金属元素,土壤养分元素氮、磷、钾,有机碳含量和pH值,结合地质累积指数法和潜在生态风险指数法,对研究区的土壤剖面重金属含量、生态风险特征进行了分析。根据土壤垂直剖面数据结果可以得出,重金属含量趋于在表层土壤富集,随深度增加其含量降低。$ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $值与$ {E}_{i} $值亦随地层深度的增加而降低。研究区各指标的相关关系分析结果显示,土壤重金属含量与有机碳呈显著正相关,其原因应与有机质吸附作用有关。土壤重金属含量与pH值呈显著负相关,因为pH不仅影响土壤颗粒对重金属的静电吸附,而且会破坏母质的惰性部分,从而影响土壤中重金属含量。 $ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $分析表明,旱地土壤(种植玉米,剖面YS)受到Cd的污染,且旱地(剖面YS)的污染程度比旱地(剖面PS)和茶园地(剖面GS)严重。因为旱地(剖面YS)位于三叠系雷口坡组(T2l),岩性为粉砂岩与白云岩、泥质灰岩互层,夹黑色碳质页岩。表明研究区内土壤中重金属含量及生态风险与地质背景密切相关。潜在生态风险分析表明,Cd、Hg对玉米地土壤(剖面YS、PS)均具有较大的生态风险,对茶园地(剖面GS)生态风险相对较弱。
通过本次研究,较为客观地得出四川省沐川县土壤剖面重金属的累积和潜在生态风险状况,以及与土壤养分元素的关系,能够为研究区重金属污染防范提供科学支撑。耕地重金属负荷量的增加势必会造成农产品中重金属含量的增加,严重地将导致农产品中的重金属超标问题,因此要加强关注与当地土壤重金属直接相关的作物中的重金属含量。重金属、pH和土壤养分元素之间的多元统计分析有待进一步研究。针对研究结果,建议深入研究重金属在土壤中的累积特征,合理评估其生态危害,保证土地的安全利用。
致谢:特别感谢中国地质科学院地球物理地球化学勘查研究所孙彬彬、候树军在样品采集中付出的辛勤劳动。
-
图 6 三个采样点剖面土壤0~10cm深度(a)、30~40cm深度(b)、70~80cm深度(c)和100~110cm深度(d)的重金属地质累积指数($ {\mathit{I}}_{\mathbf{g}\mathbf{e}\mathbf{o}} $)
Figure 6. Geo-accumulation indexes ($ {\mathit{I}}_{\mathbf{g}\mathbf{e}\mathbf{o}} $) of heavy metals in profile soils at 0-10cm depth (a), 30-40cm depth (b), 70-80cm depth (c) and 100-110cm depth (d) at the three sampling sites.
表 1 研究区不同类型土柱剖面取样点概况
Table 1 Sampling points of different types of soil column profiles in the study area.
采样地点 采样深度(cm) 土地利用类型 土壤类型 地质背景 可见特征描述 剖面YS 140 山坡旱地,
种植玉米黄色黏质土 三叠系雷口坡组(T2l),岩性为粉砂岩与白云岩、泥质灰岩互层,夹黑色碳质页岩 0~50cm灰黄色黏质土,50~140cm黄色黏质土 剖面PS 110 山坡旱地,
种植玉米紫色黏质土 侏罗系蓬莱镇组(J3p)岩性
以泥岩、砂岩和粉砂岩为主0~80cm紫色黏质土,80~110cm紫色黏质土,
土壤水分降低剖面GS 130 茶园地 灰色黏质土 三叠系须家河组(T3x) ,岩性主要为砂岩、粉砂岩、泥岩及煤层组成的沉积旋回 0~40cm,灰色黏质土,有机质较丰富;40~70cm,土壤颜色变黄,细砂成分增多;80~90cm,青灰色淤泥,水分增多;90~100cm,土壤变灰黑色,水分变少;100~120cm,青灰色黏质土;120~130cm,灰绿色,底部为页岩、泥岩 表 2 各指标分析测试检出限
Table 2 Detection limit of each index analysis.
分析项目 检出限 分析项目 检出限 As 0.5$ \mathrm{m} $g/kg Zn 4$ \mathrm{m} $g/kg Cd 0.03$ \mathrm{m} $g/kg P 10$ \mathrm{m} $g/kg Cu 1.$ 0\mathrm{ } $mg/kg Corg 0.10% Hg 0.0005$ \mathrm{m} $g/kg K2O 0.05% Pb 2$ \mathrm{m} $g/kg pH 0.1 Ni 2$ \mathrm{m} $g/kg N 20$ \mathrm{m} $g/kg 表 3 三个采样点土壤剖面重金属与土壤养分指标的Pearson相关性
Table 3 Pearson correlation between heavy metals in soil profiles and soil nutrient indicators at three sampling points.
采样地点 养分元素 As Cd Cu Hg Ni Pb Zn 剖面YS N 0.186 0.813** 0.706** −0.419 −0.147 0.724** 0.135 P 0.401 0.947** 0.758** −0.188 −0.120 0.828** 0.307 K2O 0.155 −0.399 −0.486 0.795** 0.526 −0.669** 0.638* Corg 0.003 0.759** 0.764** −0.721** −0.340 0.861** −0.150 pH −0.492 −0.455 −0.120 −0.627* −0.088 −0.265 −0.836** 剖面PS N 0.814** 0.845** 0.828** 0.924** −0.160 −0.072 0.724* P 0.458 0.747** 0.504 0.632* −0.209 0.481 0.695* K2O −0.113 −0.266 0.047 −0.295 0.924** −0.121 0.424 Corg 0.865** 0.934** 0.865** 0.955** −0.283 0.065 0.717* pH −0.897** −0.964** −0.884** −0.944** 0.287 −0.223 −0.735** 剖面GS N 0.934** 0.448 −0.262 0.899** −0.765** 0.897** −0.612* P 0.186 0.144 0.661* 0.084 0.265 0.485 0.425 K2O −0.713** −0.237 0.801** −0.721** 0.937** −0.366 0.863** Corg 0.947** 0.552 −0.303 0.953** −0.824** 0.893** −0.673* pH −0.451 −0.039 −0.054 −0.358 0.227 −0.649* 0.110 注:“**”表示在 0.01 级别(双尾),相关性显著;“*”表示在 0.05 级别(双尾),相关性显著。 表 4 土壤剖面重金属之间的Pearson相关性
Table 4 Pearson correlation between heavy metals in soil profiles.
元素 As Cd Cu Hg Ni Pb Zn As 1 Cd 0.546** 1 Cu 0.187 0.644** 1 Hg 0.772** 0.141 −0.288 1 Ni −0.369* 0.141 0.683** −0.769** 1 Pb 0.822** 0.672** 0.310 0.566** −0.311 1 Zn 0.029 0.500** 0.783** −0.484** 0.864** 0.065 1 注:“**”表示在 0.01 级别(双尾),相关性显著;“*”表示在 0.05 级别(双尾),相关性显著。 表 5 三个采样点土壤剖面重金属潜在生态风险指数
Table 5 Potential ecological risk index of heavy metals in soil profiles of three sampling points.
采样地点 采样深度
(cm)$ {E}_{i} $ RI As Cd Cu Hg Ni Pb Zn 剖面YS 10 21.9 278.4 5.0 83.3 5.0 8.7 1.2 403.5 30 21.1 141.6 4.3 72.9 4.9 7.8 1.0 253.6 60 20.0 125.3 4.5 66.7 5.1 6.9 1.0 229.6 90 18.0 95.7 3.7 88.6 4.7 6.4 1.1 218.1 110 20.6 96.5 3.8 96.9 5.1 6.2 1.1 230.1 140 20.7 146.6 4.3 90.5 5.6 6.0 1.2 274.9 剖面PS 10 7.7 177.3 4.8 27.8 6.9 5.5 1.4 231.4 30 8.0 171.6 5.0 22.5 7.2 6.0 1.4 221.7 60 7.0 103.3 4.7 16.8 7.4 5.0 1.3 145.5 90 6.3 80.5 4.1 15.2 7.0 4.8 1.3 147.6 110 6.3 80.1 4.3 13.7 8.0 5.4 1.4 119.2 剖面GS 10 9.6 56.6 3.4 74.2 3.4 6.3 0.7 154.3 30 9.7 101.8 3.8 78.6 3.9 6.2 0.8 204.8 60 6.9 33.8 3.5 64.8 4.2 5.0 0.8 119.1 90 2.3 64.2 3.0 31.6 5.2 3.9 0.9 111.0 110 0.9 21.6 3.9 30.4 6.0 3.6 0.9 67.5 130 1.5 85.1 5.0 25.7 7.4 3.8 1.2 129.7 -
[1] Chai L, Wang Y, Wang X, et al. Pollution characteristics, spatial distributions, and source apportionment of heavy metals in cultivated soil in Lanzhou, China[J]. Ecological Indicators, 2021, 125: 107507. doi: 10.1016/j.ecolind.2021.107507
[2] Zhang L X, Zhu G Y, Ge X, et al. Novel insights into heavy metal pollution of farmland based on reactive heavy metals (RHMs): Pollution characteristics, predictive models, and quantitative source apportionment[J]. Journal of Hazardous Materials, 2018, 360: 32−42. doi: 10.1016/j.jhazmat.2018.07.075
[3] Zeng F, Ali S, Zhang H, et al. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants[J]. Environmental Pollution, 2011, 159(1): 84−91. doi: 10.1016/j.envpol.2010.09.019
[4] Zhuo H, Wang X, Liu H, et al. Source analysis and risk assessment of heavy metals in development zones: A case study in Rizhao, China[J]. Environmental Geochemistry and Health, 2019, 42: 135−146.
[5] Pecina V, Brtnický M, Baltazár T, et al. Human health and ecological risk assessment of trace elements in urban soils of 101 cities in China: A meta-analysis[J]. Chemosphere, 2020, 267: 129215.
[6] Yunus K, Zuraidah M A, John A. A review on the accumulation of heavy metals in coastal sediment of Peninsular Malaysia[J]. Ecofeminism and Climate Change, 2020, 1(1): 21−35. doi: 10.1108/EFCC-03-2020-0003
[7] 贺灵, 吴超, 曾道明, 等. 中国西南典型地质背景区土壤重金属分布及生态风险特征 [J]. 岩矿测试, 2021, 40(3): 384-396. He L, Wu C, Zeng D M, et al. Soil heavy metal distribution and ecological risk characteristics in typical geological background areas of Southwestern China[J]. Rock and Mineral Analysis, 2021, 40(3): 384-396.
[8] Zhang Q, Han G, Liu M, et al. Distribution and contamination assessment of soil heavy metals in the Jiulongjiang River catchment, Southeast China[J]. International Journal of Environmental Research and Public Health, 2019, 16: 4674. doi: 10.3390/ijerph16234674
[9] Frišták V, Pipíška M, Lesný J, et al. Utilization of biochar sorbents for Cd2+, Zn2+, and Cu2+ ions separation from aqueous solutions: Comparative study[J]. Environmental Monitoring and Assessment, 2014, 187(1): 4093.
[10] Kumar V, Sharma A, Kaur P, et al. Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art[J]. Chemosphere, 2019, 216: 449−462. doi: 10.1016/j.chemosphere.2018.10.066
[11] 周亚龙, 王乔林, 王成文, 等. 雄安新区企业周边农田土壤-作物系统重金属污染风险及累积效应[J]. 环境科学, 2021, 42(12): 5977-5987. Zhou Y L, Wang Q L, Wang C W, et al. Risk and cumulative effect of heavy metal pollution in farmland soil crop system around enterprises in Xiong’an[J]. Environmental Science, 2021, 42 (12): 5977-5987.
[12] 宋绵, 龚磊, 王艳, 等. 河北阜平县表层土壤重金属对人体健康的风险评估[J]. 岩矿测试, 2022, 41(1): 133-144. Song M, Gong L, Wang Y, et al. Risk assessment of heavy metals in surface soil of Fuping County, Hebei Province on human health[J]. Rock and Mineral Testing, 2022, 41(1): 133-144.
[13] Huang H B, Lin C Q, Yu R L, et al. Contamination assessment, source apportionment and health risk assessment of heavy metals in paddy soils of Jiulong River Basin, Southeast China[J]. RSC Advances, 2019, 9: 14736−14744. doi: 10.1039/C9RA02333J
[14] Barrena-González J, Contador J F L, Fernández M P. Mapping soil properties at a regional scale: Assessing deterministic vs. geostatistical interpolation methods at different soil depths[J]. Sustainability, 2022, 14: 10049. doi: 10.3390/su141610049
[15] 谢龙涛, 潘剑君, 白浩然, 等. 基于GIS的农田土壤重金属空间分布及污染评价——以南京市江宁区某乡镇为例[J]. 土壤学报, 2020, 57(2): 316-325. Xie L T, Pan J J, Bai H R, et al. GIS based spatial distribution and pollution assessment of heavy metals in farmland soil—Taking a township in Jiangning District of Nanjing as an example[J]. Journal of Soil Science, 2020, 57 (2): 316-325.
[16] Ye X, Li H, Ma Y, et al. The bioaccumulation of Cd in rice grains in paddy soils as affected and predicted by soil properties[J]. Journal of Soils and Sediments, 2014, 14: 1407−1416. doi: 10.1007/s11368-014-0901-9
[17] 成晓梦, 孙彬彬, 贺灵, 等. 四川省沐川县西部地区土壤硒含量特征及影响因素[J]. 岩矿测试, 2021, 40(6): 808-819. Cheng X M, Sun B B, He L, et al. Characteristics and influencing factors of soil selenium content in Western Muchuan County, Sichuan Province[J]. Rock and Mineral Analysis, 2021, 40(6): 808-819.
[18] 韩伟, 王乔林, 宋云涛, 等. 四川省沐川县北部土壤硒地球化学特征与成因探讨[J]. 物探与化探, 2021, 45(1): 215-222. Han W, Wang Q L, Song Y T, et al. Geochemical characteristics and genesis of soil selenium in Northern Muchuan County, Sichuan Province[J]. Geophysical and Geochemical Exploration, 2021, 45(1): 215-222.
[19] Müller G. Index of geoaccumulation in sediments of the Rhine River[J]. GeoJournal, 1969, 2: 108−118.
[20] Hakanson L. An ecological risk index for aquatic pollution control—A sedimentological approach[J]. Water Research, 1980, 14(8): 975−1001. doi: 10.1016/0043-1354(80)90143-8
[21] 魏复盛, 陈静生, 吴燕玉, 等. 中国土壤环境背景值研究[J]. 环境科学, 1991(4): 12−19,94. Wei F S, Chen J S, Wu Y Y, et al. Study on the background values of soil environment in China[J]. Environmental Science, 1991(4): 12−19,94.
[22] 徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, 21(2): 112-115. Xu Z Q, Ni S J, Tuo X G, et al. Calculation of heavy metal toxicity coefficient in potential ecological hazard index evaluation[J]. Environmental Science and Technology, 2008, 21(2): 112-115.
[23] 成杭新, 彭敏, 赵传冬, 等. 表生地球化学动力学与中国西南土壤中化学元素分布模式的驱动机制[J]. 地学前缘, 2019, 26(6): 159-191. Cheng H X, Peng M, Zhao C D, et al. The driving mechanism of supergene chemical kinetics and the distribution pattern of chemical elements in soils in Southwest China[J]. Geoscience Frontiers, 2019, 26(6): 159-191.
[24] Huang Y, Li T, Wu C, et al. An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils[J]. Journal of Hazardous Materials, 2015, 299: 540−549. doi: 10.1016/j.jhazmat.2015.07.041
[25] Sun C, Liu J, Wang Y, et al. Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui, Northeast China[J]. Chemosphere, 2013, 92(5): 517−523. doi: 10.1016/j.chemosphere.2013.02.063
[26] Pan L B, Ma J, Wang X L, et al. Heavy metals in soils from a typical county in Shanxi Province, China: Levels, sources and spatial distribution[J]. Chemosphere, 2016, 148: 248−254. doi: 10.1016/j.chemosphere.2015.12.049
[27] Dumat C, Quenea K, Bermond A, et al. Study of the trace metal ion influence on the turnover of soil organic matter in cultivated contaminated soils[J]. Environmental Pollution, 2006, 142(3): 521−529. doi: 10.1016/j.envpol.2005.10.027
[28] Huang B, Li Z, Li D, et al. Distribution characteristics of heavy metal(loid)s in aggregates of different size fractions along contaminated paddy soil profile[J]. Environmental Science and Pollution Research, 2017, 24(30): 23939−23952. doi: 10.1007/s11356-017-0012-4
[29] Kelepertzis E, Paraskevopoulou V, Argyraki A, et al. Evaluation of single extraction procedures for the assessment of heavy metal extractability in citrus agricultural soil of a typical Mediterranean environment (Argolida, Greece)[J]. 2015, 15(11): 2275.
[30] Sun R, Yang J, Xia P, et al. Contamination features and ecological risks of heavy metals in the farmland along shoreline of Caohai Plateau wetland, China[J]. Chemosphere, 2020, 254: 126828. doi: 10.1016/j.chemosphere.2020.126828
[31] 王美, 李书田. 肥料重金属含量状况及施肥对土壤和作物重金属富集的影响[J]. 植物营养与肥料学报, 2014, 20(2): 466−480. Wang M, Li S T. The status of heavy metal content in fertilizers and the impact of fertilization on heavy metal enrichment in soil and crops[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(2): 466−480.
[32] Jiang B, Adebayo A, Jia J, et al. Impacts of heavy metals and soil properties at a Nigerian e-waste site on soil microbial community[J]. Journal of Hazardous Materials, 2019, 362: 187−195. doi: 10.1016/j.jhazmat.2018.08.060
[33] Khaledian Y, Pereira P, Brevik E C, et al. The influence of organic carbon and pH on heavy metals, potassium, and magnesium levels in lithuanian podzols[J]. Land Degradation & Development, 2017, 28(1): 345−354.
[34] Xu J, Kleja D B, Biester H, et al. Influence of particle size distribution, organic carbon, pH and chlorides on washing of mercury contaminated soil[J]. Chemosphere, 2014, 109: 99−105. doi: 10.1016/j.chemosphere.2014.02.058
[35] Ahmad M, Soo lee S, Yang J E, et al. Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil[J]. Ecotoxicology and Environmental Safety, 2012, 79: 225−231. doi: 10.1016/j.ecoenv.2012.01.003
[36] Huang B, Li Z, Huang J, et al. Aging effect on the leaching behavior of heavy metals (Cu, Zn, and Cd) in red paddy soil[J]. Environmental Science and Pollution Research, 2015, 22(15): 11467−11477. doi: 10.1007/s11356-015-4386-x
[37] Zhang H, Luo Y, Makino T, et al. The heavy metal partition in size-fractions of the fine particles in agricultural soils contaminated by waste water and smelter dust[J]. Journal of Hazardous Materials, 2013, 248: 303−312.
[38] Li X P, Feng L. Multivariate and geostatistical analyzes of metals in urban soil of Weinan industrial areas, northwest of China[J]. Atmospheric Environment, 2012, 47: 58−65. doi: 10.1016/j.atmosenv.2011.11.041
[39] Li X, Yang H, Zhang C, et al. Spatial distribution and transport characteristics of heavy metals around an antimony mine area in Central China[J]. Chemosphere, 2017, 170: 17−24. doi: 10.1016/j.chemosphere.2016.12.011
[40] Wang X P, Wang L Q, Zhang Q, et al. Integrated assessment of the impact of land use types on soil pollution by potentially toxic elements and the associated ecological and human health risk[J]. Environmental Pollution, 2022, 299: 118911.1−118911.9.
[41] Novara A, Ruehl J, la Mantia T, et al. Litter contribution to soil organic carbon in the processes of agriculture abandon[J]. Solid Earth, 2015, 6(2): 425−432. doi: 10.5194/se-6-425-2015
[42] Zhao S, Qiu S, He P. Changes of heavy metals in soil and wheat grain under long-term environmental impact and fertilization practices in North China[J]. Journal of Plant Nutrition, 2018, 41(15): 1970−1979. doi: 10.1080/01904167.2018.1485158
[43] 陈文轩, 李茜, 王珍, 等. 中国农田土壤重金属空间分布特征及污染评价[J]. 环境科学, 2020, 41(6): 2822-2833. Chen W X, Li Q, Wang Z, et al. Spatial distribution characteristics and pollution assessment of heavy metals in farmland soils in China[J]. Environmental Science, 2020, 41(6): 2822-2833.
[44] Yang Q, Li Z, Lu X, et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment[J]. Science of the Total Environment, 2018, 642: 690−700. doi: 10.1016/j.scitotenv.2018.06.068
[45] Wei M, Pan A, Ma R, et al. Distribution characteristics, source analysis and health risk assessment of heavy metals in farmland soil in Shiquan County, Shaanxi Province[J]. Process Safety and Environmental Protection, 2023, 171: 225−237. doi: 10.1016/j.psep.2022.12.089
[46] 张小敏, 张秀英, 钟太洋, 等. 中国农田土壤重金属富集状况及其空间分布研究[J]. 环境科学, 2014, 35(2): 692−703. doi: 10.13227/j.hjkx.2014.02.047 Zhang X M, Zhang X Y, Zhong T Y, et al. Study on the enrichment and spatial distribution of heavy metals in farmland soils in China[J]. Environmental Science, 2014, 35(2): 692−703. doi: 10.13227/j.hjkx.2014.02.047
-
期刊类型引用(1)
1. 李晋,黄杉,田野,尹鹏,罗斌. 嘉陵区地下水重金属含量特征及健康风险评估. 山东化工. 2024(21): 253-256 . 百度学术
其他类型引用(2)
-
其他相关附件