• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

四川省沐川县典型土壤剖面重金属分布特征和生态风险评价

廖碧霞, 沈文灵, 贺灵

廖碧霞,沈文灵,贺灵. 四川省沐川县典型土壤剖面重金属分布特征和生态风险评价[J]. 岩矿测试,2023,42(6):1203−1219. DOI: 10.15898/j.ykcs.202305090062
引用本文: 廖碧霞,沈文灵,贺灵. 四川省沐川县典型土壤剖面重金属分布特征和生态风险评价[J]. 岩矿测试,2023,42(6):1203−1219. DOI: 10.15898/j.ykcs.202305090062
LIAO Bixia,SHEN Wenling,HE Ling. Distribution Characteristics and Ecological Risk Assessment of Heavy Metals in Typical Soil Profiles of Muchuan County, Sichuan Province[J]. Rock and Mineral Analysis,2023,42(6):1203−1219. DOI: 10.15898/j.ykcs.202305090062
Citation: LIAO Bixia,SHEN Wenling,HE Ling. Distribution Characteristics and Ecological Risk Assessment of Heavy Metals in Typical Soil Profiles of Muchuan County, Sichuan Province[J]. Rock and Mineral Analysis,2023,42(6):1203−1219. DOI: 10.15898/j.ykcs.202305090062

四川省沐川县典型土壤剖面重金属分布特征和生态风险评价

基金项目: 中国地质调查局地质调查项目(DD20190522-03,DD20221641-02)
详细信息
    作者简介:

    廖碧霞,硕士研究生,主要研究方向为环境地球化学。E-mail:1470949680@qq.com

    通讯作者:

    贺灵,博士,高级工程师,主要研究方向为生态地球化学调查与评价。E-mail:lingh1237@163.com

  • 中图分类号: S151.93;X820.4

Distribution Characteristics and Ecological Risk Assessment of Heavy Metals in Typical Soil Profiles of Muchuan County, Sichuan Province

  • 摘要:

    根据全国土壤污染状况调查显示,全国土壤的环境状况总体不容乐观,耕地土壤环境质量令人担忧,已对粮食安全构成威胁。已有的研究工作多集中于土壤重金属的空间分布特征及污染源分析、重金属污染风险评估以及评估方法,但对于不同土壤深度重金属在耕地中的积累与剖面分布的变化及其生态风险分析相对较少。为研究四川省沐川县土壤剖面重金属分布特征和生态风险,本文在研究区选择三个不同地质背景区采集了土柱剖面样品开展相关工作。结果表明:样品中As、Cd、Hg、Pb、Ni、Cu、Zn七项指标中,除了Cu外,其余重金属元素含量都高于国家和四川省土壤背景值,表明这些元素在土壤中呈现不同程度地富集。土壤中7种重金属的浓度与土壤养分(氮、磷、钾),土壤有机碳和pH值存在相关性,如在玉米地剖面中,氮和磷与Cd呈显著正相关,相关系数分别为0.845、0.747。大量研究表明,磷肥中含有一定量的重金属。磷肥中重金属含量高低与磷矿及其来源有关,磷肥能够增加土壤 Cd 含量。土壤有机碳与Cd呈显著正相关,相关系数为0.934,其原因是土壤有机质对重金属的吸附作用,有机碳对土壤中重金属的保留起了重要作用。pH值与Cd呈显著负相关,相关系数为-0.964,随着pH值的增加,土壤对重金属离子的吸附会增加,从而导致土壤中活性重金属离子减少。土壤重金属之间存在显著的正相关关系,表明它们普遍存在同源性。采用地质积累指数($ {I}_{\mathrm{g}\mathrm{e}\mathrm{o}} $)评价土壤重金属污染程度,并选取潜在生态风险指数($ RI $)评价其潜在生态风险,结果表明土壤中主要污染元素为Cd。生态风险指数显示,玉米地的潜在生态风险较大,其中Cd、Hg的生态风险较高,潜在生态风险指数($ RI $)随着剖面深度的增加而降低。当地应采取适当措施,加强对该地区污染的防治工作,避免对人体健康造成危害。

     

  • 中国稀土资源丰富、种类齐全,稀土资源量占全球稀土资源总量的近一半。中国目前已发现的矿床类型有碱性岩型、花岗岩型、碳酸盐型和沉积变质型等类型,已发现的稀土矿物有30余种,如氟碳铈矿、独居石、硬钽矿、磷钍矿、铈钆钍矿和棱锰矿等1。中国内生稀土矿床多分布在长江以南地区,大地构造位置如扬子准地台、华南褶皱系、松潘—甘孜褶皱系、东南沿海褶皱系等,北方地区由于华北克拉通相对稳定,缺乏形成富集稀土元素的构造环境,仅在中朝准地台边缘出现一些稀土矿床,如内蒙古白云鄂博、山东微山郗山、辽宁凤城赛马、辽宁辽阳生铁岭等矿床2-3

    辽宁省已知稀土矿类型稀少,且以往稀土矿床的勘查评价多偏重于独居石砂矿和碱性岩型稀土矿,沉积变质型稀土原生矿涉及较少,矿石学、矿物学研究程度偏低。辽宁省在开展稀土矿产潜力评价工作时曾对省内的沉积变质型矿床(生铁岭稀土矿)成矿模式进行研究,总结了其成矿地质环境及矿床特征,认为其为含有少量独居石的磷灰岩型矿床4。籍魁5对辽宁辽阳郭家稀土矿床地质特征进行了研究,发现其矿石矿物主要为独居石、褐帘石,矿床类型为与古火山构造有关的沉积变质再造型矿床。本文研究的吉祥峪稀土矿床与生铁岭、郭家稀土矿床类型相似,矿石中稀土含量可观,但稀土矿物赋存状态、稀土元素在矿物中的分布规律以及稀土矿物能否被提取利用等问题尚需得到解决6-7

    自动矿物识别和表征系统(AMICS)是以成分点原位分析为基础,连接高分辨率扫描电镜(SEM)和高通量能谱仪(EDS),釆用矿物边界分区法及图形处理技术,结合频谱列表快速、全面地对光谱进行合并及分类,比照矿物数据库自动拟合计算,能高效、全面、精确地测定样品的矿物成分、元素分布、粒度、连生关系以及孔隙度等信息,在含量低、颗粒细小的矿物定性、定量测试方面是一套先进、可行的技术方法8-12。该方法被广泛应用于地质、冶金等领域。例如,葛祥坤等13和张然等14运用该系统对鄂尔多斯盆地砂岩型铀矿矿物进行定量分析,查明了铀矿物类型和其他伴生矿物;温利刚等15-18、罗晓锋等19将该系统应用于稀土矿物的赋存状态研究,查明了稀土矿物种类和含量;王恩雷等20运用该系统对海城菱镁矿进行工艺矿物学研究,发现其矿物粒度细、脉石矿物与菱镁矿连生是矿石难选的主要原因;胡欢等21运用该系统研究了金属铍赋存状态,认为其对低含量铍元素的准确分析和微细含铍矿物的识别有良好的效果;范雨辰等22运用该系统对页岩储集空间的微观展布样式进行表征分类,通过扫描孔隙-矿物接触面积计算出孔隙类型和占比,有效地表征了含油(沥青)的储集空间。

    因此,本文采用AMICS自动矿物识别和表征系统对正在开展勘查评价工作的吉祥峪稀土矿床进行矿物识别,目的是获得稀土元素在矿物中的分布规律,查明稀土矿物的种类和赋存状态,通过分析稀土矿物及相关矿物的成分、结构和嵌布特征,研究其成矿机制,揭示稀土矿床形成的约束条件,为矿床的勘查评价和有效利用提供矿物学依据。

    吉祥峪稀土矿床大地构造位置处于华北陆块北缘,辽吉古元古代裂谷核部,吉祥峪—算盘峪背斜的核部。研究区出露地层主要为辽河群里尔峪组(Pt1lr)、高家峪组(Pt1g)和大石桥组(Pt1d),属于一套火山碎屑沉积变质建造(图1)23-26。本次发现的稀土矿体严格受里尔峪组一段浅粒岩夹变粒岩层位控制。钻孔中所取的基本分析样测试结果显示,矿石中铁平均品位为25.07×10−2,稀土平均品位为1.03×10−2,轻稀土元素占绝对优势(以镧铈为主,钐铕镨钕等次之)。矿石主要结构构造为粒柱状变晶结构,块状及条带状构造:磁铁矿、角闪石、黑云母、褐帘石等暗色矿物集聚组成深色条纹条带,与长石、磷灰石等组成的浅色矿物条带相间排列。稀土矿体呈似层状、扁豆状顺层产出于里尔峪组一段磁铁浅粒岩夹褐帘磷灰磁铁变粒岩层位中,与其顶底板浅粒岩呈整合渐变关系。主要的蚀变类型有碳酸盐化、云母化、绿帘石化和碎裂岩化。

    图  1  吉祥峪稀土矿床地质简图及研究区位置图
    1—晚三叠纪二长花岗岩;2—里尔峪岩组;3—高家峪岩组;4—大石桥岩组;5—辉长岩;6—伟晶岩;7—闪长玢岩;8—稀土矿体;9—韧性剪切带;10—岩层产状;11—推测断裂;12—实测断裂;13—采样位置;14—二云片岩花纹;15—浅粒岩花纹;16—辉长岩花纹;17—伟晶岩花纹。
    Figure  1.  Geological map and location map of Jixiangyu rare earth deposit. 1—Late Triassic monzogranite; 2—Lieryu Formation; 3—Gaojiayu Formation; 4—Dashiqiao Formation; 5—Gabbro; 6—Pegmatite; 7—Diorite porphyrite; 8— Rare earth ore body; 9—Ductile shear zone; 10—Occurrence of rock formation; 11—Presumed fault; 12— Measured fault; 13—Sampling location; 14—Two-mica schist pattern; 15—Leptite pattern; 16—Gabbro pattern; 17—Pegmatite pattern.

    本次实验样品采集于辽阳县隆昌镇吉祥峪研究区钻孔岩心,岩性为磷灰褐帘磁铁角闪变粒岩(样品编号XT-02),样品颜色为灰黑色,鳞片粒状变晶结构,块状构造。测试前先将样品混合破碎至1mm以下,筛出22~120目样品置于环氧树脂中抛磨出光滑平面,真空喷碳增加导电性,然后进行AMICS分析27-28

    实验测试在河南省岩石矿物测试中心完成。实验仪器包括一台超高分辨率场发射扫描电镜(Zeiss Sigma 500)、一台电制冷能谱仪(Bruker XFlash6610)以及一套AMICS自动矿物识别和表征系统。

    本次测试仪器均经过调整和标定,并引入了质控样品用于监测和验证仪器性能和数据准确性,对XT-02样品进行重复测试以检查数据的重复性和精确性,测试过程中出现“计数率低”和“未识别”时调整测试参数和颗粒数,以保证测试数据的可靠性。测试时实验条件为:高真空环境,加速电压20kV,工作距离11.8mm,点分析采集时间达到250kcps自动停止。

    通过矿物自动分析技术完成了稀土矿物的识别,确定组成稀土矿石样品(XT-02)的矿物类型10余种,主要矿物有:磁铁矿、阳起石、褐帘石、磷灰石、独居石、方铈石,次要矿物有:石英、斜长石、钾长石、榍石、黑云母。矿石矿物含量由高至低依次为:磁铁矿63.48%、阳起石7.61%、石英7.36%、褐帘石6.25%、磷灰石5.73%、钾长石2.20%、斜长石2.14%、独居石0.73%、黑云母0.51%、榍石0.39%、方铈石0.25%、绿泥石0.14%、钙铁榴石0.01%、锆石0.01%(图2表1)。由此可知,吉祥峪稀土矿主要含稀土矿物为褐帘石、独居石、方铈石和磷灰石。

    图  2  吉祥峪稀土矿床样品(a)电子图像和(b)AMICS分析结果
    Figure  2.  Electron image (a) and AMICS analysis result (b) of Jixiangyu rare earth deposit sample.
    表  1  吉祥峪稀土矿床样品AMICS矿物定量分析结果
    Table  1.  Quantitative analysis results of minerals measured by AMICS in Jixiangyu rare earth deposit.
    矿物名称质量分数
    (%)
    面积百分比
    (%)
    统计面积
    (μm2)
    颗粒数
    (个)
    统计相对误差
    (%)
    矿物标准分子式29-30
    褐帘石6.256.623386157.378090.14(Ce,Ca)(Ce,La)(Nd,Pr)(Fe2+,Fe3+)(Al,Mg)[Si2O7][SiO4]O(OH)
    独居石0.730.57289757.481050.35(Ce,La,Ca,Fe,Th,Nd,Pr)[SiO4] [PO4]
    方铈石0.250.50257590.30780.06(Ce3+,Th,Fe,Pr,Nd)O2
    磷灰石5.737.223696466.518610.10FeFe2O4
    磁铁矿63.4848.9525056614.7818910.07Ca5[PO4]3(F,OH)
    阳起石7.619.945088796.435240.11Ca2Na(Mg,Fe)5(Al,Fe3+)[(Si,Al)4O11]2(OH)2
    石英7.3611.165713847.7112180.08SiO2
    钙铁榴石0.010.0170.1412.00Ca3Fe2[SiO4]3
    斜长石2.143.251663198.102880.16Na[AlSi3O8]
    榍石0.390.44227134.513010.20CaTi[SiO4]O
    锆石0.010.011928.91120.58Zr(SiO4)
    绿泥石0.140.1999300.331660.18 Fe3 2+[Si4O10](OH)2(Mg,Al,Fe,Si)3(OH)6
    钾长石2.203.411743721.361340.21K[AlSi3O8]
    黑云母0.510.65334115.413440.15K(Fe,Al)3AlSi3O10(F,OH)2
    未知矿物3.206.363255145.7447280.05/
    孔隙/0.73371809.84220840.06/
    下载: 导出CSV 
    | 显示表格

    褐帘石是一种含有较高稀土组分的帘石族矿物,其轻稀土成分可占全岩类的90%以上,其中Ca可被REE3+、Th4+、U4+等替代,使其高度富集LREE、U、Th等微量元素,化学成分变化较大,Al可被Fe2+、Mg2+等替代31-32

    褐帘石在XT-02样品中分布不均匀,含量为6.25%。样品中的褐帘石多呈柱状或厚板状,解理不完全,自形-半自形,粒径0.01~0.595mm。对其进行能谱分析,得到褐帘石平均含有O 37.07%、Fe 16.38%、Si 11.88%、Ca 7.96%、Al 5.35%、Mg 0.55%、Ce 10.69%、La 6.79%、Nd 2.24%、Pr 1.09%(表2)。矿物中富含轻稀土元素,以Ce、La、Nd为主,含少量Pr,未见U元素和Th元素的替代33-34。镜下观察发现,褐帘石常与磷灰石、磁铁矿连生,与磁铁矿关系密切(图3a图4中a,c)。

    表  2  褐帘石能谱分析结果
    Table  2.  Energy spectrum analysis results of allanite.
    样品编号质量分数(%)
    OFeSiCaAlMgCeLaNdPr
    XT02-0737.4316.0711.747.765.270.5911.066.952.041.08
    XT02-1335.7315.1112.317.765.500.5911.607.812.331.25
    XT02-2938.2315.7311.308.395.020.4110.947.071.940.98
    XT02-3037.1317.7811.638.065.170.4710.276.182.311.00
    XT02-3136.8516.5012.807.416.170.829.776.172.261.25
    XT02-3237.0317.0811.498.394.990.4210.486.582.541.00
    平均值37.0716.3811.887.965.350.5510.696.792.241.09
    下载: 导出CSV 
    | 显示表格
    图  3  稀土矿物背散射图像
    a—褐帘石;b—方铈石;c—粒状独居石;d—放射状独居石。
    Figure  3.  Backscattering images of rare earth ores: (a) Allanite; (b) Cerianite; (c) Granular monazite; (d) Radial monazite.
    图  4  样品XT-02(磷灰褐帘磁铁角闪变粒岩)的显微组构特征
    a—褐帘石与磷灰石、磁铁矿连生; b—独居石被磷灰石包裹; c—褐帘石与磷灰石连生,被磁铁矿包裹; d—独居石与磁铁矿连生,被角闪石包裹。Aln—褐帘石;Ap—磷灰石;Mag—磁铁矿;Mnz—独居石;Cam—角闪石。
    Figure  4.  Microfabric characteristics of sample XT-02 (apatite-allanite-magnet-hornblende granulite): (a) Allanite, apatite and magnetite coexisting; (b) Monazite surrounded by apatite; (c) Allanite and apatite coexisting, surrounded by magnetite; (d) Monazite associated with magnetite and wrapped by amphibole. Aln—Allanite; Ap—Apatite; Mag—Magnetite; Mnz—Monazite; Cam—Amphibole.

    方铈石在XT-02样品中少量分布,多以单体形式存在,含量为0.25%。样品中方铈石常呈不规则粒状及聚粒状,粒径0.01~0.5mm(图3b)。对其进行能谱分析,得到方铈石平均含有Ce 53.67%、O 21.07%、Fe 8.56%、Si 3.67%、P 3.36%、Pr 2.35%、Nd 1.79%、Ca 1.30%、Th 1.29%、Al 1.23%、La 0.87%、Mn 0.56%、Mg 0.28%(表3),矿物中富含轻稀土元素,以Ce、La、Nd为主,常见Mg元素等被Th元素替代35

    表  3  方铈石能谱分析结果
    Table  3.  Energy spectrum analysis results of cerianite.
    样品编号质量分数(%)
    CeOFeSiPPrNdCaThAlLaMnMg
    XT02-3857.3217.248.323.633.963.842.801.36/1.53///
    XT02-3952.7316.468.534.173.584.152.351.29/1.75/3.951.04
    XT02-5445.7023.4313.124.252.710.981.131.791.952.042.02/0.89
    XT02-6153.1325.815.444.383.061.301.361.042.021.111.35//
    XT02-6266.3515.504.472.793.221.651.591.021.61/1.80//
    XT02-6355.8621.516.372.634.072.561.831.572.840.74///
    XT02-6444.6027.5413.653.862.931.941.481.020.621.460.89//
    平均值53.6721.078.563.673.362.351.791.301.291.230.870.560.28
    下载: 导出CSV 
    | 显示表格

    独居石是一种富含轻稀土元素的磷酸盐矿物,含有放射性元素Th、U。独居石常与绿泥石、阳起石等变质矿物交叉共生或作为包裹体镶嵌其中(图3中c,d)。在背散射图像中,独居石较其他矿物具有更高的亮度,其亮度与Th含量呈正比36-38

    独居石在XT-02样品中多以单体形式存在,含量为0.73%。样品中的独居石呈自形-半自形板状,解理完全,粒径0.01~2.1mm。对其进行能谱分析,得到独居石平均含有O 29.38%、P 13.87%、Ce 20.08%、La 20.43%、Nd 8.68%、Pr 2.92%、Ca 1.55%、Fe 1.05%、Si 0.81%、Th 1.25%(表4)。矿物中富含轻稀土元素,以Ce、La、Nd为主,常见Ca元素等被Th元素替代。镜下观察发现,独居石与磁铁矿连生,常被褐帘石、磷灰石等矿物包裹39(图4中b,d)。

    表  4  独居石能谱分析结果
    Table  4.  Energy spectrum analysis results of monazite.
    样品编号质量分数(%)
    OCeLaPNdPrCaFeSiTh
    XT02-0627.5324.4417.9914.397.112.492.202.200.930.72
    XT-02-4021.0312.0528.0614.6912.334.813.462.340.880.33
    XT02-4625.8111.3226.8112.7711.694.492.401.351.711.65
    XT02-4726.919.7126.1313.3811.814.712.161.641.382.17
    XT02-5332.089.8424.9512.2510.934.131.900.891.071.96
    XT02-5531.1320.2019.3213.697.652.454.331.24//
    XT02-5638.9514.4519.5812.798.182.672.06/1.32/
    XT02-6839.3114.2518.2511.326.912.533.142.850.540.90
    XT02-6930.7726.2916.7015.647.282.30///1.02
    XT02-7127.8827.6717.0813.917.962.16/0.270.652.43
    XT02-7328.4028.2318.5114.916.781.99/0.30/0.88
    XT02-7426.6327.2017.1614.087.922.07/0.391.013.55
    XT02-7528.0027.0017.1614.737.522.08/0.820.771.91
    XT02-7626.9328.4718.3215.597.422.06/0.381.01/
    平均值29.3820.0820.4313.878.682.921.551.050.811.25
    下载: 导出CSV 
    | 显示表格

    矿石中还含有磷灰石(5.73%)。磷灰石是一种重要的稀土元素累积矿物,其在变质岩中作为常见的副矿物出现,已报道的磷灰石中的稀土含量最高可达11.14%(RE2O3),且主要为轻稀土40-41。饶金山等42通过实验揭示了磷灰石含稀土的机制:①磷灰石包裹微细独立稀土矿物(独居石、褐帘石)(图4b)。②RE3+晶格替代磷灰石中的Ca2+

    AMICS系统的优势明显:①以往的稀土矿物鉴定工作需要先在目镜下区分矿物,圈定矿物位置,然后才能进行实验,且目标稀土矿物颗粒细小,光性特征复杂不易区分,这些都使得实验效率和准确性明显降低。该系统通过多种信号联合分析快速、准确地获得矿物微区准确的结构信息和化学成分。通过分析和比对大量的矿物样本图像和特征,快速、准确地识别出不同矿物类型,确定矿石的成分和矿物组合、尺寸分布、颗粒形状、矿物之间的关系等。②该系统可以对大量的样本数据进行分析和处理。能有效地识别出矿物的特征模式和相关性、潜在的规律和趋势,以指导矿产资源的合理开发利用43-44

    但该方法仍然存在一些缺点:①在样品制备阶段需保证光片表面的平整度、凹凸表面及倒角会影响X射线的产生和激发。②AMICS测量的面积只有15mm2左右,选择样品时需注意所选样品的代表性。③测试过程中需尝试调整仪器参数和矿物测试颗粒数,控制测试相对误差率在10%左右,保证置信度大于95%。④分析系统不能区分同质多象及成分相似的矿物,需要人工识别分析数据,辅以岩矿鉴定知识加以辨认,改变分类结果,或者借助电子探针(EPMA)进一步确定矿物45-46

    通过AMICS测试,完成了辽东吉祥峪稀土矿石(样品编号XT-02)的原位解离分析,得到该稀土矿床稀土矿物主要为褐帘石、独居石和方铈石,其中褐帘石占矿物总量的比例为6.25%,独居石占比为0.73%,方铈石占比为0.25%,稀土元素以La、Ce、Pr、Nd等轻稀土元素为主,且主要在褐帘石、独居石和方铈石中富集,少量稀土元素以类质同象形式赋存在磷灰石中。脉石矿物有阳起石、石英、斜长石、钾长石、榍石、黑云母等。

    通过背散射图像结合光学显微镜观察得出,矿石中的稀土矿物褐帘石、独居石、方铈石及磷灰石具有较好的连生关系。这些矿物以单颗粒或聚粒结构与磁铁矿交叉镶嵌,或分布在磁铁矿边缘及间隙中,与磁铁矿呈现出较复杂的共生关系。该结果和样品中稀土与磁铁矿含量呈正相关相一致,分析其形成过程可能为以下原因:①沉积富集:吉祥峪稀土矿位于辽吉裂谷的核部,裂谷为矿床提供了有利的沉积环境,沉积物经过长时间的聚集、压实和蚀变作用,可能会同时释放稀土元素和铁元素并逐渐富集形成矿床。②岩浆改造:岩浆热液可能与里尔峪组一段变粒岩产生反应,形成稀土矿物和磁铁矿的矿化过程可能同时发生或相互交织,使其中高背景值的稀土元素和铁元素活化并在同一地质环境下富集。③构造控制:特定的地质过程或成矿作用可能对稀土元素和铁元素的分布产生共同的控制作用。吉祥峪稀土矿体位于辽吉裂谷带核部—吉祥峪算盘峪背斜核部的穹隆构造上,断裂带和褶皱可能在地壳的应力作用下形成矿质富集的通道,使矿质从深部运移至浅部。

  • 图  1   研究区位置和地质简图

    Figure  1.   Location and geological map of the study area.

    图  2   三个采样点土壤剖面重金属平均含量对比

    黑色虚线表示全国土壤背景值,红色虚线表示四川土壤背景值。

    Figure  2.   Comparison of average heavy metal contents in soil profiles at three sampling points. The black dotted line indicates the background value of national soil, and the red dotted line indicates the background value of Sichuan soil.

    图  3   三个采样点土壤剖面重金属垂向分布特征

    Figure  3.   Vertical distribution characteristics of heavy metals in soil profiles at three sampling points.

    图  4   三个采样点土壤剖面有机碳(Corg)、氮(N)、磷(P)、氧化钾(K2O)含量和pH的垂向分布特征

    Figure  4.   Vertical distribution characteristics of organic carbon (Corg), nitrogen (N), phosphorus (P), potassium oxide (K2O) contents and pH in soil profiles at three sampling points.

    图  5   紫色黏质土(PS剖面) Cd与Corg (a)、Hg与Corg (b)、Cd与pH值(c)、Hg与pH值(d)相关关系

    Figure  5.   The correlation between Cd and Corg (a), Hg and Corg (b), Cd and pH (c), Hg and pH (d) in purple clay soil (profile PS).

    图  6   三个采样点剖面土壤0~10cm深度(a)、30~40cm深度(b)、70~80cm深度(c)和100~110cm深度(d)的重金属地质累积指数($ {\mathit{I}}_{\mathbf{g}\mathbf{e}\mathbf{o}} $)

    Figure  6.   Geo-accumulation indexes ($ {\mathit{I}}_{\mathbf{g}\mathbf{e}\mathbf{o}} $) of heavy metals in profile soils at 0-10cm depth (a), 30-40cm depth (b), 70-80cm depth (c) and 100-110cm depth (d) at the three sampling sites.

    表  1   研究区不同类型土柱剖面取样点概况

    Table  1   Sampling points of different types of soil column profiles in the study area.

    采样地点 采样深度(cm) 土地利用类型 土壤类型 地质背景 可见特征描述
    剖面YS 140 山坡旱地,
    种植玉米
    黄色黏质土 三叠系雷口坡组(T2l),岩性为粉砂岩与白云岩、泥质灰岩互层,夹黑色碳质页岩 0~50cm灰黄色黏质土,50~140cm黄色黏质土
    剖面PS 110 山坡旱地,
    种植玉米
    紫色黏质土 侏罗系蓬莱镇组(J3p)岩性
    以泥岩、砂岩和粉砂岩为主
    0~80cm紫色黏质土,80~110cm紫色黏质土,
    土壤水分降低
    剖面GS 130 茶园地 灰色黏质土 三叠系须家河组(T3x) ,岩性主要为砂岩、粉砂岩、泥岩及煤层组成的沉积旋回 0~40cm,灰色黏质土,有机质较丰富;40~70cm,土壤颜色变黄,细砂成分增多;80~90cm,青灰色淤泥,水分增多;90~100cm,土壤变灰黑色,水分变少;100~120cm,青灰色黏质土;120~130cm,灰绿色,底部为页岩、泥岩
    下载: 导出CSV

    表  2   各指标分析测试检出限

    Table  2   Detection limit of each index analysis.

    分析项目 检出限 分析项目 检出限
    As 0.5$ \mathrm{m} $g/kg Zn 4$ \mathrm{m} $g/kg
    Cd 0.03$ \mathrm{m} $g/kg P 10$ \mathrm{m} $g/kg
    Cu 1.$ 0\mathrm{ } $mg/kg Corg 0.10%
    Hg 0.0005$ \mathrm{m} $g/kg K2O 0.05%
    Pb 2$ \mathrm{m} $g/kg pH 0.1
    Ni 2$ \mathrm{m} $g/kg N 20$ \mathrm{m} $g/kg
    下载: 导出CSV

    表  3   三个采样点土壤剖面重金属与土壤养分指标的Pearson相关性

    Table  3   Pearson correlation between heavy metals in soil profiles and soil nutrient indicators at three sampling points.

    采样地点 养分元素 As Cd Cu Hg Ni Pb Zn
    剖面YS N 0.186 0.813** 0.706** −0.419 −0.147 0.724** 0.135
    P 0.401 0.947** 0.758** −0.188 −0.120 0.828** 0.307
    K2O 0.155 −0.399 −0.486 0.795** 0.526 −0.669** 0.638*
    Corg 0.003 0.759** 0.764** −0.721** −0.340 0.861** −0.150
    pH −0.492 −0.455 −0.120 −0.627* −0.088 −0.265 −0.836**
    剖面PS N 0.814** 0.845** 0.828** 0.924** −0.160 −0.072 0.724*
    P 0.458 0.747** 0.504 0.632* −0.209 0.481 0.695*
    K2O −0.113 −0.266 0.047 −0.295 0.924** −0.121 0.424
    Corg 0.865** 0.934** 0.865** 0.955** −0.283 0.065 0.717*
    pH −0.897** −0.964** −0.884** −0.944** 0.287 −0.223 −0.735**
    剖面GS N 0.934** 0.448 −0.262 0.899** −0.765** 0.897** −0.612*
    P 0.186 0.144 0.661* 0.084 0.265 0.485 0.425
    K2O −0.713** −0.237 0.801** −0.721** 0.937** −0.366 0.863**
    Corg 0.947** 0.552 −0.303 0.953** −0.824** 0.893** −0.673*
    pH −0.451 −0.039 −0.054 −0.358 0.227 −0.649* 0.110
    注:“**”表示在 0.01 级别(双尾),相关性显著;“*”表示在 0.05 级别(双尾),相关性显著。
    下载: 导出CSV

    表  4   土壤剖面重金属之间的Pearson相关性

    Table  4   Pearson correlation between heavy metals in soil profiles.

    元素 As Cd Cu Hg Ni Pb Zn
    As 1
    Cd 0.546** 1
    Cu 0.187 0.644** 1
    Hg 0.772** 0.141 −0.288 1
    Ni −0.369* 0.141 0.683** −0.769** 1
    Pb 0.822** 0.672** 0.310 0.566** −0.311 1
    Zn 0.029 0.500** 0.783** −0.484** 0.864** 0.065 1
    注:“**”表示在 0.01 级别(双尾),相关性显著;“*”表示在 0.05 级别(双尾),相关性显著。
    下载: 导出CSV

    表  5   三个采样点土壤剖面重金属潜在生态风险指数

    Table  5   Potential ecological risk index of heavy metals in soil profiles of three sampling points.

    采样地点 采样深度
    (cm)
    $ {E}_{i} $  RI
    As Cd Cu Hg Ni Pb Zn
    剖面YS 10 21.9 278.4 5.0 83.3 5.0 8.7 1.2 403.5
    30 21.1 141.6 4.3 72.9 4.9 7.8 1.0 253.6
    60 20.0 125.3 4.5 66.7 5.1 6.9 1.0 229.6
    90 18.0 95.7 3.7 88.6 4.7 6.4 1.1 218.1
    110 20.6 96.5 3.8 96.9 5.1 6.2 1.1 230.1
    140 20.7 146.6 4.3 90.5 5.6 6.0 1.2 274.9
    剖面PS 10 7.7 177.3 4.8 27.8 6.9 5.5 1.4 231.4
    30 8.0 171.6 5.0 22.5 7.2 6.0 1.4 221.7
    60 7.0 103.3 4.7 16.8 7.4 5.0 1.3 145.5
    90 6.3 80.5 4.1 15.2 7.0 4.8 1.3 147.6
    110 6.3 80.1 4.3 13.7 8.0 5.4 1.4 119.2
    剖面GS 10 9.6 56.6 3.4 74.2 3.4 6.3 0.7 154.3
    30 9.7 101.8 3.8 78.6 3.9 6.2 0.8 204.8
    60 6.9 33.8 3.5 64.8 4.2 5.0 0.8 119.1
    90 2.3 64.2 3.0 31.6 5.2 3.9 0.9 111.0
    110 0.9 21.6 3.9 30.4 6.0 3.6 0.9 67.5
    130 1.5 85.1 5.0 25.7 7.4 3.8 1.2 129.7
    下载: 导出CSV
  • [1]

    Chai L, Wang Y, Wang X, et al. Pollution characteristics, spatial distributions, and source apportionment of heavy metals in cultivated soil in Lanzhou, China[J]. Ecological Indicators, 2021, 125: 107507. doi: 10.1016/j.ecolind.2021.107507

    [2]

    Zhang L X, Zhu G Y, Ge X, et al. Novel insights into heavy metal pollution of farmland based on reactive heavy metals (RHMs): Pollution characteristics, predictive models, and quantitative source apportionment[J]. Journal of Hazardous Materials, 2018, 360: 32−42. doi: 10.1016/j.jhazmat.2018.07.075

    [3]

    Zeng F, Ali S, Zhang H, et al. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants[J]. Environmental Pollution, 2011, 159(1): 84−91. doi: 10.1016/j.envpol.2010.09.019

    [4]

    Zhuo H, Wang X, Liu H, et al. Source analysis and risk assessment of heavy metals in development zones: A case study in Rizhao, China[J]. Environmental Geochemistry and Health, 2019, 42: 135−146.

    [5]

    Pecina V, Brtnický M, Baltazár T, et al. Human health and ecological risk assessment of trace elements in urban soils of 101 cities in China: A meta-analysis[J]. Chemosphere, 2020, 267: 129215.

    [6]

    Yunus K, Zuraidah M A, John A. A review on the accumulation of heavy metals in coastal sediment of Peninsular Malaysia[J]. Ecofeminism and Climate Change, 2020, 1(1): 21−35. doi: 10.1108/EFCC-03-2020-0003

    [7] 贺灵, 吴超, 曾道明, 等. 中国西南典型地质背景区土壤重金属分布及生态风险特征 [J]. 岩矿测试, 2021, 40(3): 384-396.

    He L, Wu C, Zeng D M, et al. Soil heavy metal distribution and ecological risk characteristics in typical geological background areas of Southwestern China[J]. Rock and Mineral Analysis, 2021, 40(3): 384-396.

    [8]

    Zhang Q, Han G, Liu M, et al. Distribution and contamination assessment of soil heavy metals in the Jiulongjiang River catchment, Southeast China[J]. International Journal of Environmental Research and Public Health, 2019, 16: 4674. doi: 10.3390/ijerph16234674

    [9]

    Frišták V, Pipíška M, Lesný J, et al. Utilization of biochar sorbents for Cd2+, Zn2+, and Cu2+ ions separation from aqueous solutions: Comparative study[J]. Environmental Monitoring and Assessment, 2014, 187(1): 4093.

    [10]

    Kumar V, Sharma A, Kaur P, et al. Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art[J]. Chemosphere, 2019, 216: 449−462. doi: 10.1016/j.chemosphere.2018.10.066

    [11] 周亚龙, 王乔林, 王成文, 等. 雄安新区企业周边农田土壤-作物系统重金属污染风险及累积效应[J]. 环境科学, 2021, 42(12): 5977-5987.

    Zhou Y L, Wang Q L, Wang C W, et al. Risk and cumulative effect of heavy metal pollution in farmland soil crop system around enterprises in Xiong’an[J]. Environmental Science, 2021, 42 (12): 5977-5987.

    [12] 宋绵, 龚磊, 王艳, 等. 河北阜平县表层土壤重金属对人体健康的风险评估[J]. 岩矿测试, 2022, 41(1): 133-144.

    Song M, Gong L, Wang Y, et al. Risk assessment of heavy metals in surface soil of Fuping County, Hebei Province on human health[J]. Rock and Mineral Testing, 2022, 41(1): 133-144.

    [13]

    Huang H B, Lin C Q, Yu R L, et al. Contamination assessment, source apportionment and health risk assessment of heavy metals in paddy soils of Jiulong River Basin, Southeast China[J]. RSC Advances, 2019, 9: 14736−14744. doi: 10.1039/C9RA02333J

    [14]

    Barrena-González J, Contador J F L, Fernández M P. Mapping soil properties at a regional scale: Assessing deterministic vs. geostatistical interpolation methods at different soil depths[J]. Sustainability, 2022, 14: 10049. doi: 10.3390/su141610049

    [15] 谢龙涛, 潘剑君, 白浩然, 等. 基于GIS的农田土壤重金属空间分布及污染评价——以南京市江宁区某乡镇为例[J]. 土壤学报, 2020, 57(2): 316-325.

    Xie L T, Pan J J, Bai H R, et al. GIS based spatial distribution and pollution assessment of heavy metals in farmland soil—Taking a township in Jiangning District of Nanjing as an example[J]. Journal of Soil Science, 2020, 57 (2): 316-325.

    [16]

    Ye X, Li H, Ma Y, et al. The bioaccumulation of Cd in rice grains in paddy soils as affected and predicted by soil properties[J]. Journal of Soils and Sediments, 2014, 14: 1407−1416. doi: 10.1007/s11368-014-0901-9

    [17] 成晓梦, 孙彬彬, 贺灵, 等. 四川省沐川县西部地区土壤硒含量特征及影响因素[J]. 岩矿测试, 2021, 40(6): 808-819.

    Cheng X M, Sun B B, He L, et al. Characteristics and influencing factors of soil selenium content in Western Muchuan County, Sichuan Province[J]. Rock and Mineral Analysis, 2021, 40(6): 808-819.

    [18] 韩伟, 王乔林, 宋云涛, 等. 四川省沐川县北部土壤硒地球化学特征与成因探讨[J]. 物探与化探, 2021, 45(1): 215-222.

    Han W, Wang Q L, Song Y T, et al. Geochemical characteristics and genesis of soil selenium in Northern Muchuan County, Sichuan Province[J]. Geophysical and Geochemical Exploration, 2021, 45(1): 215-222.

    [19]

    Müller G. Index of geoaccumulation in sediments of the Rhine River[J]. GeoJournal, 1969, 2: 108−118.

    [20]

    Hakanson L. An ecological risk index for aquatic pollution control—A sedimentological approach[J]. Water Research, 1980, 14(8): 975−1001. doi: 10.1016/0043-1354(80)90143-8

    [21] 魏复盛, 陈静生, 吴燕玉, 等. 中国土壤环境背景值研究[J]. 环境科学, 1991(4): 12−19,94.

    Wei F S, Chen J S, Wu Y Y, et al. Study on the background values of soil environment in China[J]. Environmental Science, 1991(4): 12−19,94.

    [22] 徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, 21(2): 112-115.

    Xu Z Q, Ni S J, Tuo X G, et al. Calculation of heavy metal toxicity coefficient in potential ecological hazard index evaluation[J]. Environmental Science and Technology, 2008, 21(2): 112-115.

    [23] 成杭新, 彭敏, 赵传冬, 等. 表生地球化学动力学与中国西南土壤中化学元素分布模式的驱动机制[J]. 地学前缘, 2019, 26(6): 159-191.

    Cheng H X, Peng M, Zhao C D, et al. The driving mechanism of supergene chemical kinetics and the distribution pattern of chemical elements in soils in Southwest China[J]. Geoscience Frontiers, 2019, 26(6): 159-191.

    [24]

    Huang Y, Li T, Wu C, et al. An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils[J]. Journal of Hazardous Materials, 2015, 299: 540−549. doi: 10.1016/j.jhazmat.2015.07.041

    [25]

    Sun C, Liu J, Wang Y, et al. Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui, Northeast China[J]. Chemosphere, 2013, 92(5): 517−523. doi: 10.1016/j.chemosphere.2013.02.063

    [26]

    Pan L B, Ma J, Wang X L, et al. Heavy metals in soils from a typical county in Shanxi Province, China: Levels, sources and spatial distribution[J]. Chemosphere, 2016, 148: 248−254. doi: 10.1016/j.chemosphere.2015.12.049

    [27]

    Dumat C, Quenea K, Bermond A, et al. Study of the trace metal ion influence on the turnover of soil organic matter in cultivated contaminated soils[J]. Environmental Pollution, 2006, 142(3): 521−529. doi: 10.1016/j.envpol.2005.10.027

    [28]

    Huang B, Li Z, Li D, et al. Distribution characteristics of heavy metal(loid)s in aggregates of different size fractions along contaminated paddy soil profile[J]. Environmental Science and Pollution Research, 2017, 24(30): 23939−23952. doi: 10.1007/s11356-017-0012-4

    [29]

    Kelepertzis E, Paraskevopoulou V, Argyraki A, et al. Evaluation of single extraction procedures for the assessment of heavy metal extractability in citrus agricultural soil of a typical Mediterranean environment (Argolida, Greece)[J]. 2015, 15(11): 2275.

    [30]

    Sun R, Yang J, Xia P, et al. Contamination features and ecological risks of heavy metals in the farmland along shoreline of Caohai Plateau wetland, China[J]. Chemosphere, 2020, 254: 126828. doi: 10.1016/j.chemosphere.2020.126828

    [31] 王美, 李书田. 肥料重金属含量状况及施肥对土壤和作物重金属富集的影响[J]. 植物营养与肥料学报, 2014, 20(2): 466−480.

    Wang M, Li S T. The status of heavy metal content in fertilizers and the impact of fertilization on heavy metal enrichment in soil and crops[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(2): 466−480.

    [32]

    Jiang B, Adebayo A, Jia J, et al. Impacts of heavy metals and soil properties at a Nigerian e-waste site on soil microbial community[J]. Journal of Hazardous Materials, 2019, 362: 187−195. doi: 10.1016/j.jhazmat.2018.08.060

    [33]

    Khaledian Y, Pereira P, Brevik E C, et al. The influence of organic carbon and pH on heavy metals, potassium, and magnesium levels in lithuanian podzols[J]. Land Degradation & Development, 2017, 28(1): 345−354.

    [34]

    Xu J, Kleja D B, Biester H, et al. Influence of particle size distribution, organic carbon, pH and chlorides on washing of mercury contaminated soil[J]. Chemosphere, 2014, 109: 99−105. doi: 10.1016/j.chemosphere.2014.02.058

    [35]

    Ahmad M, Soo lee S, Yang J E, et al. Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil[J]. Ecotoxicology and Environmental Safety, 2012, 79: 225−231. doi: 10.1016/j.ecoenv.2012.01.003

    [36]

    Huang B, Li Z, Huang J, et al. Aging effect on the leaching behavior of heavy metals (Cu, Zn, and Cd) in red paddy soil[J]. Environmental Science and Pollution Research, 2015, 22(15): 11467−11477. doi: 10.1007/s11356-015-4386-x

    [37]

    Zhang H, Luo Y, Makino T, et al. The heavy metal partition in size-fractions of the fine particles in agricultural soils contaminated by waste water and smelter dust[J]. Journal of Hazardous Materials, 2013, 248: 303−312.

    [38]

    Li X P, Feng L. Multivariate and geostatistical analyzes of metals in urban soil of Weinan industrial areas, northwest of China[J]. Atmospheric Environment, 2012, 47: 58−65. doi: 10.1016/j.atmosenv.2011.11.041

    [39]

    Li X, Yang H, Zhang C, et al. Spatial distribution and transport characteristics of heavy metals around an antimony mine area in Central China[J]. Chemosphere, 2017, 170: 17−24. doi: 10.1016/j.chemosphere.2016.12.011

    [40]

    Wang X P, Wang L Q, Zhang Q, et al. Integrated assessment of the impact of land use types on soil pollution by potentially toxic elements and the associated ecological and human health risk[J]. Environmental Pollution, 2022, 299: 118911.1−118911.9.

    [41]

    Novara A, Ruehl J, la Mantia T, et al. Litter contribution to soil organic carbon in the processes of agriculture abandon[J]. Solid Earth, 2015, 6(2): 425−432. doi: 10.5194/se-6-425-2015

    [42]

    Zhao S, Qiu S, He P. Changes of heavy metals in soil and wheat grain under long-term environmental impact and fertilization practices in North China[J]. Journal of Plant Nutrition, 2018, 41(15): 1970−1979. doi: 10.1080/01904167.2018.1485158

    [43] 陈文轩, 李茜, 王珍, 等. 中国农田土壤重金属空间分布特征及污染评价[J]. 环境科学, 2020, 41(6): 2822-2833.

    Chen W X, Li Q, Wang Z, et al. Spatial distribution characteristics and pollution assessment of heavy metals in farmland soils in China[J]. Environmental Science, 2020, 41(6): 2822-2833.

    [44]

    Yang Q, Li Z, Lu X, et al. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment[J]. Science of the Total Environment, 2018, 642: 690−700. doi: 10.1016/j.scitotenv.2018.06.068

    [45]

    Wei M, Pan A, Ma R, et al. Distribution characteristics, source analysis and health risk assessment of heavy metals in farmland soil in Shiquan County, Shaanxi Province[J]. Process Safety and Environmental Protection, 2023, 171: 225−237. doi: 10.1016/j.psep.2022.12.089

    [46] 张小敏, 张秀英, 钟太洋, 等. 中国农田土壤重金属富集状况及其空间分布研究[J]. 环境科学, 2014, 35(2): 692−703. doi: 10.13227/j.hjkx.2014.02.047

    Zhang X M, Zhang X Y, Zhong T Y, et al. Study on the enrichment and spatial distribution of heavy metals in farmland soils in China[J]. Environmental Science, 2014, 35(2): 692−703. doi: 10.13227/j.hjkx.2014.02.047

  • 期刊类型引用(1)

    1. 许耿,肖方景,崔小梅,布多,张强英. 西藏羊八井高温地热水砷和氟浓度及来源探析. 岩矿测试. 2024(03): 487-500 . 本站查看

    其他类型引用(0)

  • 其他相关附件

图(6)  /  表(5)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  149
  • PDF下载量:  26
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-05-08
  • 修回日期:  2023-07-05
  • 录用日期:  2023-08-05
  • 网络出版日期:  2023-12-07
  • 刊出日期:  2023-12-30

目录

/

返回文章
返回