• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

中国西沙海域永兴岛—七连屿海域鱼体内有机污染物含量特征与来源解析及风险评价

姚慧敏, 陆天启, 钟奕昕, 寻看雨, 颜巧丽, 黄磊

姚慧敏,陆天启,钟奕昕,等. 中国西沙海域永兴岛—七连屿海域鱼体内有机污染物含量特征与来源解析及风险评价[J]. 岩矿测试,2024,43(1):152−165. DOI: 10.15898/j.ykcs.202304280057
引用本文: 姚慧敏,陆天启,钟奕昕,等. 中国西沙海域永兴岛—七连屿海域鱼体内有机污染物含量特征与来源解析及风险评价[J]. 岩矿测试,2024,43(1):152−165. DOI: 10.15898/j.ykcs.202304280057
YAO Huimin,LU Tianqi,ZHONG Yixin,et al. Concentration and Distribution of Organic Pollutants in Fish of Yongxing and Qilianyu Islands, Xisha, China[J]. Rock and Mineral Analysis,2024,43(1):152−165. DOI: 10.15898/j.ykcs.202304280057
Citation: YAO Huimin,LU Tianqi,ZHONG Yixin,et al. Concentration and Distribution of Organic Pollutants in Fish of Yongxing and Qilianyu Islands, Xisha, China[J]. Rock and Mineral Analysis,2024,43(1):152−165. DOI: 10.15898/j.ykcs.202304280057

中国西沙海域永兴岛—七连屿海域鱼体内有机污染物含量特征与来源解析及风险评价

基金项目: 中国地质调查局地质调查项目(DD20190209,DD20230479, DD20221725)
详细信息
    作者简介:

    姚慧敏,硕士,工程师,主要从事地球化学、生态环境污染研究。E-mail:yhuimin1995@163.com

    通讯作者:

    黄磊,博士,正高级工程师,主要从事水文地球化学、海岸带环境地质研究。E-mail:lei841004@163.com

  • 中图分类号: X592;X820.4

Concentration and Distribution of Organic Pollutants in Fish of Yongxing and Qilianyu Islands, Xisha, China

  • 摘要:

    环境中的有机污染物对生态系统和人类健康产生严重威胁。有机污染物在全球海域鱼体内普遍检出,且长期食用会对人类造成一定的健康风险。为研究中国西沙海域鱼体内有机污染物污染情况、来源及生态风险,本文利用气相色谱-质谱法(GC-MS)分析测定了永兴岛和七连屿鱼体内有机氯农药(OCPs)、多环芳烃(PAHs)和多氯联苯(PCBs)的含量,采集了包括蜂巢石斑鱼、红裸颊鲷、黑身蓝子鱼在内的17种鱼类共50条。结果表明:鱼体内OCPs、PAHs和PCBs的总含量均值范围分别为2.23~91.57ng/g ww、2.11~31.70ng/g ww和1.55~54.04ng/g ww,平均值分别为32.50ng/g ww、17.29ng/g ww和18.79ng/g ww,中位数分别为16.92ng/g ww、13.34ng/g ww和7.61ng/g ww。双对氯苯基三氯乙烷(DDTs)类农药在美欧沿海鱼体内的含量分别为0.65~107.6ng/g ww和763~5357ng/g lw,中国浙江沿海水域鱼体内PAHs含量为10.4~140ng/g ww,地中海、意大利沿海和美国查尔斯顿港口采集的鱼体内PCBs含量分别为1234~12327ng/g lw、56.8~4791ng/g lw和5.02~232.20ng/g ww,研究区DDTs和PAHs含量水平处于全球海域的低端,推测由于研究区远离污染源。利用DDTs/[双对氯苯基二氯乙烯(DDE)+双对氯苯基二氯乙烷(DDD)]比值来判断DDTs的来源,研究区50%鱼体内DDTs/(DDE+DDD)>1,表明中国西沙海域有部分新近输入的DDTs,研究区沉积物来源为陆源,推测中国西沙海域DDTs为陆源DDTs和永兴岛农业活动的综合作用。利用蒽(ANT)/[ANT+菲(PHE)]比值>0.1或该比值<0.1来判断PAHs的来源是燃烧源还是石油源,研究区88%鱼体内ANT/(ANT+PHE)>0.1,表明PAHs来源于化石燃料燃烧。风险评价结果显示,鱼体内OCPs和PCBs生态风险低。

    要点

    (1)中国西沙海域鱼体内有机污染物浓度较低。

    (2)永兴岛七连屿海域鱼体内OCPs部分源自新近输入,PAHs主要来自燃烧源,PCBs可能与局部工业活动相关。

    (3) OCPs和PCBs可能不会造成生态风险,仅污色鹦嘴鱼等少量鱼体内的PAHs终身癌症风险指数(ILCR)超出美国环保署限值。

    HIGHLIGHTS

    (1) The concentrations of organic pollutants in fish in Xisha Sea area of China were low.

    (2) OCPs in fish in Yongxing and Qilianyu islands were partly derived from recent inputs, while PAHs mainly came from combustion sources, PCBs might be related to local industrial activities.

    (3) OCPs and PCBs might not pose ecological risks, and incremental lifetime cancer risk (ILCR) index of PAHs in only several fishes such as the spotted parrotfish (Scarus sordidus) exceeded the standard recommended by the United States Environmental Protection Agency (US EPA).

    BRIEF REPORT

    Significance: OCPs, PAHs and PCBs pose a serious threat to human health and sustainable development due to their persistence, bioaccumulation and toxicity, and have attracted great attention worldwide for decades. Although organic pollutants have been banned for many years, they can still be widely detected in organisms near the coast of China and the United States, Antarctica, and the abyss. In order to reduce and prevent organic pollutants, the Ministry of Ecology and Environment and six other departments have released the “Key Control New Pollutant List (2023 Edition)” which still includes OCPs and PCBs. According to statistics from the Food and Agriculture Organization of the United Nations, fish catching in the South China Sea accounts for about 12% of global catches, which is an important protein source for the approximately 300 million coastal countries’ residents (https://m.thepaper.cn/baijiahao_24290238) indicating that the determination and analysis of organic pollutants in fish are of great significance. Xisha is located in the northwest of the South China Sea (SCS), surrounded by multiple developing countries that have extensively used organochlorine pesticides for agricultural production. It is also an important center for electronic waste disposal and a maritime transportation hub, and these factors are potential sources of organic pollutants in the SCS. Organic pollutants enter the SCS through surface runoff, rainwater erosion and atmospheric deposition, thereby affecting marine biota. The marine organisms in Xisha, are rich and diverse. Currently, research on pollutants in Xisha, mainly focuses on seawater and sediment samples[17,28-32], which cannot represent the pollution status of marine biota. Therefore, bioaccumulation of organic pollutants in marine organisms from Xisha, is urgently needed for risk evaluation.

    Methods: OCPs, PAHs and PCBs were determined by GC-MS in marine fish. 50 fish were collected, including the honeycomb grouper (Epinephelus merra), red bare cheeked bream (Lethrimus rubrioperculatus), and black bodied bluefish (Siganus punctatissimus)-17 species of fishes. The ratio of DDTs/[dichlorophenyl dichloroethylene (DDE)+dichlorophenyl dichloroethane (DDD)] was used to determine the source of dichlorophenyltrichloroethane (DDTs), the ratio of anthracene (ANT)/[ANT+phenanthrene (PHE)] and fluorene (FL)/[FL+pyrene (PYR)] was used to determine the source of PAHs, and the lifelong cancer risk (ILCR) model was used for ecological risk assessment of fish.

    Data and Results: OCPs, PAHs and PCBs concentrations in fish ranged from 2.23-91.57ng/g ww, 2.11-31.70ng/g ww and 1.55-54.04ng/g ww, respectively, average concentrations were 32.50ng/g ww, 17.29ng/g ww and 18.79ng/g ww, respectively, and median concentrations were 16.92ng/g ww, 13.34ng/g ww and 7.61ng/g, respectively. The DDTs concentrations in coastal fish of the United States and Europe ranged from 0.65-107.6ng/g ww, and 763-5357ng/g ww, respectively. The PAHs concentrations in coastal fish in Zhejiang, China ranged from 10.4-140ng/g ww. The PCBs concentrations in fish collected from Mediterranean, Italian coast and the Charleston Harbor in the United States ranged from 1234-12327ng/g lw, 56.8-4791ng/g lw, and 5.02-232.20ng/g ww, respectively. DDTs PCBs and PAHs of the study area were at the lower end of the global range.

      DDTs/(DDE+DDD) were used to determine the source of DDTs, and the ratios of DDTs/(DDE+DDD) were >1 in 50% of fish. The ratio of ANT/(ANT+PHE)>0.1 indicated that PAHs were the combustion source, while the ratio ANT/(ANT+PHE)<0.1 indicated that PAHs were the petroleum source. The ratio of ANT/(ANT+PHE) was >0.1 in 88% of fish, indicating that PAHs originated from fossil fuel combustion. The sources of PCBs might be related to local industrial activities on Yongxing Island. The ecological risk assessment showed that the ecological risk of OCPs and PCBs in fish was low, but the ILCR values of PAHs in honeycomb grouper (Epinephelus merra, 3.49$ \times {10}^{-6} $), red bare cheeked bream (Lethrimus rubrioperculatus, 4.82$ \times {10}^{-6} $), black bodied bluefish (Siganus punctatissimus, 6.21$ \times {10}^{-6} $), tricolor parrotfish (Scarus tricolore, 4.26×$ {10}^{-6} $), cloverleaf lip fish (Cheilinus trilobatus, 1.37$ \times {10}^{-6} $), dirty colored parrotfish (Scarus sordidus, 6.06$ \times {10}^{-6} $), and silver bluefish (Siganus argenteus, 1.63$ \times {10}^{-6} $) exceeded the standard recommended by the US EPA.

  • 金(Au)是中国重要的战略性资源,但金矿的金品位普遍较低,需借助半自磨机或搅拌磨降低颗粒粒度并促进金相颗粒解离1-2。为获得较高的金精矿品位,提高金元素富集比,通常需利用复杂的多次粗选扫选和精选配合的浮选工艺,而在长流程浮选体系中,以镍、铜、镉、铅等为代表的有害元素选择性富集或随机分散在各工艺产品中3-4,影响了各金矿浮选产品的质量,但当前针对金矿浮选过程中有害元素定量的研究较少,有必要建立金矿浮选样品中有害元素的检测方法。

    金矿中有害元素含量与金品位相当,但相对于金矿主量伴生元素则存在巨大的浓度差异;而高基体背景下准确定量有害元素的关键是如何有效地控制或消除基体差异带来的非质谱干扰5-6。虽然目前分析检测手段已逐步应用于选矿领域,但较多的是针对原矿的工艺矿物学分析,即在分析含金组分的赋存形态、嵌布特征基础上为金矿磨浮工艺优化提供支撑7-9。一些痕量元素定量的检测方法包括电感耦合等离子体发射光谱或质谱法(ICP-OES/MS)10-13、辉光放电质谱法14-16、X射线衍射法(XRD)17-18等,在分析复杂基体样品时通常会使用基体纯净的标准溶液或物质,难以高质量校正待测元素标准溶液与样品消解液之间的基体差异。上述检测手段配合基体匹配方法的检测领域,多为基体唯一的合金钢中杂质元素定量,譬如张馨元等19分别利用无基体匹配和2000μg/mL镍基体的铜、锌、钡元素标准溶液来定量镍基高温合金标准物质中痕量铜锌钡,前者测试结果较认定值存在15%~20%偏差,而后者检测结果均在标准物质中痕量元素认定浓度范围内。沈健等20利用基体匹配ICP-MS测定煤中钽铀镱含量时,采用标准煤样消解液为基体,配制待测元素标准溶液,但未关注标准煤样消解液中无机组分的基体影响,欠缺标准煤样所含微量钽铀镱元素对标准曲线线性和方法检测下限的讨论。因此,当前针对复杂基体自然矿产中有害元素的准确定量方法,仍需进一步优化研究。

    本文以金矿浮选过程样品为研究对象,采用基体匹配ICP-MS测试方法,在明确各样品基体元素种类后,开展高浓度基体溶液添加痕量有害元素的测定实验,分析基体种类和浓度对有害元素定量结果相对偏差的影响。在此基础上,利用高浓度基体有害元素标准溶液对金矿各浮选样品进行定量实验,与纯试剂有害元素标准溶液定量结果和测试过程内标回收率比对,并通过消解加标、测试加标以及平行实验分析基体匹配ICP-MS方法的准确度和精密度,评估方法的测试质量。

    研究对象为金矿浮选矿浆产品,采自紫金矿业集团股份有限公司某金矿选厂,采集物料包括浮选入料、各浮选段精矿和尾矿产品。取样前准备足够数量的料筒并做好标记,样品采集工具为取样勺。浮选入料由溜槽给入浮选设备,取样时使用取样勺对整个料流截面均匀取样;浮选精矿泡沫取样则是用取样勺截取全部溢流面;浮选尾矿取样是用取样勺对准矿浆流取样。每个样品采集点的取样时间均为10min。

    采用实验室小型过滤机处理某金矿浮选流程的22个矿浆产品(样品编号为样品1~样品22),获得各样品滤饼及滤液。滤饼置于烘箱中105℃干燥3h后冷却,缩分后用于样品消解与元素组成分析。为确保有害元素全部从固体矿物转移至溶液,减少有害元素定量的制样误差,样品消解以溶液澄清、无固体颗粒残留为目标。消解实验采用耗酸少、速度快的微波消解,经探索确定了如下消解方案。

    (1) 样品称取0.1g,置于可溶性聚四氟乙烯消解罐中;

    (2) 向消解罐中加入3.75mL盐酸、1.25mL硝酸和2mL氢氟酸;

    (3) 将消解罐置于微波消解仪中,升温到150℃,保持20min;再升温至220℃,保持40min,取下冷却后在通风橱内缓慢泄压后打开消解罐;

    (4) 将消解罐置于石墨赶酸仪中,180℃开盖赶酸,待样品蒸干后取下冷却,加入1mL浓硝酸复溶后加超纯水定容至100mL。

    经测试,微波消解过程空白中镍、铜、镉和铅元素含量分别为0.2741μg/L、0.3435μg/L、0.0019μg/L和0.0263μg/L。消解过程空白溶液中的有害元素含量较低,对样品中的有害元素定量结果影响较小。

    镍、铜、镉、铅单元素标准储备液(1×106μg/L,美国Agilent公司);Re内标储备溶液(100μg/mL,美国Agilent公司),使用时稀释至0.5μg/mL。

    硫标准溶液(2×104μg/mL,购自钢研纳克有限公司);铁和铝则分别选用分析纯标准物质三氧化铁和三氧化铝,用硝酸溶解,获得质量浓度为10mg/mL的单元素溶液。

    UPS级纯硝酸、盐酸和氢氟酸(晶锐电子材料股份有限公司)。

    超纯水(ELGA Option Q15 纯水机纯化,电阻率≥18MΩ·cm)。

    浮选样品元素组成分析采用S8 Tiger型X射线荧光光谱仪(德国Bruker有限公司),并通过元素校正曲线定量。

    样品中痕量有害元素定量采用Aglient 7900电感耦合等离子体质谱仪(美国Aglient公司),仪器测试参数列于表1

    表  1  电感耦合等离子体质谱仪测试条件
    Table  1.  Measurement parameters of ICP-MS instrument
    工作参数 设定值 工作参数 设定值
    射频功率 1550W 截取锥直径 0.45mm
    取样深度 8mm 扫描方式 跳峰方式
    等离子气体(Ar)流速 15L/min 每峰点数 1
    辅助气体(Ar)流速 0.80L/min 扫描次数 100
    载气(Ar)流速 1.05L/min Cd元素积分时间 1s
    镍采样锥直径 1mm Ni、Cu、Pb等
    元素积分时间
    0.30s
    下载: 导出CSV 
    | 显示表格

    本文使用的Agilent 7900型电感耦合等离子体质谱仪,配备了碰撞反应池,可有效地降低有害元素含量测试的质谱干扰;此外,定量测试中还针对性地选择了质量数干扰最低的同位素,即60Ni、65Cu、111Cd和208Pb。金矿浮选样品消解液中的主量基体元素在测试过程会产生非质谱干扰,对有害元素离子流形成抑制。为削弱该影响,本文采用高浓度的代表性基体元素标准溶液稀释有害元素储备溶液后,形成复杂基体有害元素标准溶液。与纯试剂有害元素标准溶液相比,复杂基体有害元素标准溶液与金矿浮选样品消解液具有同一数量级的基体背景21,再配合内标元素铼(Re,浓度0.50μg/mL)后,可有效地抑制非质谱干扰。

    基体匹配ICP-MS方法研究中(技术路线如图1所示),首先使用XRF确定主量基体元素,然后利用基体元素标准溶液配制具有浓度梯度的有害元素标准溶液;利用ICP-MS测试具有浓度梯度的有害元素标准溶液后,获得各有害元素标准曲线;在读取有害元素测试背景值后,调整配制复杂基体有害元素标准溶液所需的基体元素标准溶液与有害元素储备液体积,进而获得有害元素浓度准确的复杂基体有害元素标准溶液,提升基体匹配ICP-MS方法测试结果的准确性。

    图  1  基体匹配ICP-MS法测定金矿浮选样品中有害元素的实验流程
    Figure  1.  Experimental flow chart for the determination of harmful elements in flotation samples of gold ore by the method of matrix matching coupled with ICP-MS

    方法准确性:在样品消解和测试环节,采用标准加入方式评价金矿浮选样品中痕量有害元素定量方法的准确性。称取0.10g的14号样品两份,其中一份加入有害元素镍、铜、镉和铅各10μg,消解后定容至100mL测试。分别称取0.10g的6号和13号样品,消解定容至100mL后取两份平行样,一份直接测试,一份加入浓度100μg/L等体积的复杂基体有害元素标准溶液后混匀后测试。

    方法精密度:分别称取6份5号和12号样品,每份质量0.10g,按照1.2节样品前处理方法消解获得平行消解溶液后测试各样品中有害元素含量,并计算各有害元素定量结果的相对标准偏差(RSD)。

    22个金矿浮选样品的主量元素及含量分析结果列于表2。受浮选过程的各组分分离和富集作用影响,样品中主量基体元素种类及含量有所差异。依据元素组成,将样品分为铝基体(样品编号:1、7、14和22),铁硫基体(样品编号:2、3、8、10、12和13),铁铝基体(样品编号:4~6、9、11和15~21)共计三类(Si元素在消解中与氟结合形成四氟化硅SiF4挥发22-23,因而未将Si列为基体元素)。4种铝基体样品中铝含量接近(1号样品主量元素仅为Si,为简化样品种类将其归类为铝基体样品);6种铁硫基体各样品中铁和硫元素含量差异在10%附近(8号样品主量元素仅为Fe,为简化样品种类将其归类为铁硫基体样品);12种铁铝基体样品的Si、Fe、Al元素含量均较为接近。

    表  2  金矿浮选样品的主量基体元素种类及含量
    Table  2.  Major matrix elements in flotation samples of gold ore
    样品编号 基体类型 主要元素及含量 样品编号 基体类型 主要元素及含量
    1 铝基体 Si (29.75%) 5 铁铝基体 Si (27.66%); Fe (10.60%); Al (10.27%)
    7 Si (29.84%); Al (9.78%) 6 Si (28.66%); Fe (8.27%); Al (10.58%)
    14 Si (31.27%); Al (10.43%) 9 Si (27.93%); Fe (9.35%); Al (11.02%)
    22 Si (30.47%); Al (9.63%) 11 Si (24.76%); Fe (15.85%); Al (10.99%)
    2 铁硫基体 Si (14.92%); Fe (22.87%); S (12.76%) 15 Si (26.64%); Fe (10.74%); Al (10.23%)
    3 Si (19.06%); Fe (22.36%); S (13.52%) 16 Si (28.45%); Fe (10.33%); Al (10.95%)
    8 Si (13.16%); Fe (23.50%) 17 Si (27.75%); Fe (10.97%); Al (10.60%)
    10 Si (14.08%); Fe (20.57%); S (17.27%) 18 Si (25.64%); Fe (10.92%); Al (10.17%)
    12 Si (13.59%); Fe (26.39%); S (22.35%) 19 Si (28.27%); Fe (11.21%); Al (10.71%)
    13 Fe (30.48%); S (24.16%) 20 Si (26.96%); Fe (9.39%); Al (10.38%)
    4 铁铝基体 Si (25.89%); Fe (14.46%); Al (10.37%) 21 Si (27.43%); Fe (10.62%); Al (10.84%)
    下载: 导出CSV 
    | 显示表格

    为探究高浓度基体加入对Ni、Cu、Cd和Pb元素含量测试准确性的影响,分别利用基体元素浓度为500μg/mL和1000μg/mL的一种和两种基体元素溶液稀释500μg/L纯试剂有害元素标准溶液,获得理论浓度为10μg/L的复杂基体有害元素标准溶液。随后,利用纯试剂有害元素标准溶液测试(内标选用185Re)并扣除基体溶液中有害元素含量(譬如1000μg/mL铝基体中,Cu元素浓度为11μg/L),计算测试结果的相对偏差,结果列于表3。整体上,高浓度基体元素溶液对痕量有害元素在ICP-MS测试过程的影响较小。与理论值(10μg/L)相比,不同浓度和基体元素种类溶液中各有害元素定量结果的相对偏差在±10%以内。因此,利用复杂基体有害元素标准溶液进行金矿浮选样品中有害元素的定量测试,是可行的。

    表  3  不同浓度/种类基体元素溶液中痕量有害元素定量的相对偏差
    Table  3.  Relative deviation of each hazardous element after adding different concentrations/types of matrix elements
    基体元素及浓度
    (μg/mL)
    各有害元素测定值与理论值的相对偏差(%)
    Ni Cu Cd Pb
    铝(500) −0.85 7.96 −0.74 3.00
    铁(500) −4.62 6.74 −2.31 −0.79
    硫(500) −5.22 3.46 −3.85 6.29
    铁硫(500) 0.97 9.72 −9.32 2.03
    铁硫(1000) −1.97 8.31 −7.07 1.22
    铁铝(1000) 5.74 −5.42 −2.70 −2.48
    下载: 导出CSV 
    | 显示表格

    选择金矿浮选8号样品(铁硫基体)、9号样品(铁铝基体)、13号样品(铁硫基体)和17号样品(铝基体)共4种代表性样品,在分别配制1000μg/mL铝元素、铁元素、硫元素、铁硫、铁铝元素基体溶液后,将有害元素标准储备液逐级稀释至10、20、50、100、200和500μg/L(因铝基体溶液中含一定量Cu,配制铝和铁铝基体的有害元素标准溶液时,依据Cu含量再次计算所用有害元素标准储备液、铝溶液、铁溶液和稀硝酸的用量),测试样品中Ni、Cu、Cd、Pb含量。此外,同步开展纯试剂(2%硝酸)有害元素标准溶液对代表性样品中有害元素定量测试。依据公式(1)将液体样品中的有害元素含量(单位μg/L)转换为固体中的有害元素含量24(单位μg/g)。

    $$ c=\frac{\left(c_1-c_0\right) \times V \times d}{m} \times 10^{-3} $$ (1)

    式中:c为样品中有害元素含量(μg/g);c1c0分别为消解稀释液和消解过程空白中有害元素浓度(μg/L);V为消解液体积,此处为100mL;d为稀释倍数,根据样品浓度与方法定量上限确定;m为样品质量,此处为0.10g。

    不同基体有害元素标准溶液对部分金矿浮选样品中有害元素的定量结果列于表4。譬如,铁硫基体样品分别用铁基体、硫基体、铁硫基体和纯试剂有害元素标准溶液测试,其他样品测试安排以此类推。表4数据显示在1000μg/mL基体浓度前提下,复杂基体有害元素标准溶液中基体元素种类和数量,对金矿浮选样品中有害元素测试结果并未产生明显影响。复杂基体与纯试剂有害元素标准溶液,对4个代表性金矿样品中有害元素定量结果的相对标准偏差小于7.73%(大部分小于5%)。因此,可利用有害元素标准溶液开展不同基体类型的所有金矿浮选样品中有害元素的定量分析。

    表  4  不同基体有害元素标准溶液对部分金矿浮选样品中有害元素定量分析结果
    Table  4.  Quantification results of harmful elements in some gold ore flotation products using standard solutions of harmful elements in various matrixes
    样品编号 有害元素标准溶液
    基体元素
    Ni测定值
    (μg/g)
    Cu测定值
    (μg/g)
    Cd测定值
    (μg/g)
    Pb测定值
    (μg/g)
    8号样品
    (铁硫基体)
    铁硫 363.38 596.78 24.61 1540.22
    344.59 547.18 23.88 1569.77
    372.52 564.39 24.15 1611.48
    纯试剂 356.31 574.64 23.50 1625.51
    RSD(%) 3.28 3.63 1.94 2.46
    9号样品
    (铁铝基体)
    铁铝 112.66 186.65 2.32 263.37
    113.77 196.41 2.52 292.44
    117.31 210.64 2.57 294.22
    纯试剂 115.64 194.62 2.32 264.84
    RSD(%) 1.79 5.07 5.41 6.06
    13号样品
    (铁硫基体)
    铁硫 336.18 311.63 17.54 1135.47
    294.45 315.54 19.18 1199.29
    301.20 321.80 19.05 1145.17
    纯试剂 317.10 366.45 18.89 1322.70
    RSD(%) 5.95 7.73 4.07 7.17
    17号样品
    (铝基体)
    124.75 303.10 2.23 275.80
    2%硝酸 118.06 288.17 2.20 257.33
    RSD(%) 3.90 3.57 0.96 4.90
    下载: 导出CSV 
    | 显示表格

    本文首先使用不同基体元素的复杂基体有害元素标准溶液测试对应基体类型样品中有害元素含量,然后利用铁硫基体有害元素标准溶液开展铝基体和铁铝基体样品中有害元素测试。不同基体的有害元素标准溶液对金矿浮选样品中有害元素定量结果列于表5。利用不同基体元素的有害元素标准溶液对各金矿浮选样品中有害元素的定量结果接近,各有害元素的回收率在80%~120%范围内。因此,在1000μg/mL基体浓度前提下,有害元素标准溶液的基体元素差异并未对测试过程产生影响,基体匹配方法中使用铁硫基体有害元素标准溶液,能够获得准确的测试结果。

    表  5  不同基体有害元素标准溶液对铝基体和铁铝基体金矿浮选样品中有害元素测试结果
    Table  5.  Quantification results of harmful elements in gold ore flotation samples with Al- and Fe-Al matrix using standard solutions of harmful elements in various matrixes.
    样品编号 有害元素标准溶液基体元素 Ni
    (μg/g)
    Cu
    (μg/g)
    Cd
    (μg/g)
    Pb
    (μg/g)
    有害元素标准溶液基体元素 Ni
    (μg/g)
    Cu
    (μg/g)
    Cd
    (μg/g)
    Pb
    (μg/g)
    1 58.62 67.33 1.60 102.58 铁硫 57.22 63.85 1.61 90.96
    7 44.56 102.80 0.71 96.42 42.56 98.20 0.63 96.06
    14 59.10 125.33 1.00 108.18 59.10 116.57 0.82 119.4
    22 34.18 63.03 0.32 70.24 36.13 65.14 0.34 66.88
    4 铁铝 160.93 282.57 5.40 497.02 160.93 267.77 5.41 513.4
    5 94.30 249.38 5.21 436.7 116.83 206.86 5.89 377.65
    6 82.92 159.46 2.45 265.68 92.34 140.05 2.24 254.67
    9 112.66 186.65 2.32 263.37 120.39 161.81 2.05 225.93
    11 197.97 340.82 6.22 697.57 197.97 290.04 6.31 663.41
    15 105.21 428.65 2.25 303.61 111.45 365.18 1.86 303.45
    16 107.84 338.23 1.87 186.06 96.84 297.13 1.55 183.48
    17 124.75 303.10 2.23 275.8 115.88 297.02 2.10 264.64
    18 149.36 422.74 2.51 266.65 136.23 441.74 2.15 268.78
    19 68.25 384.89 1.85 256.20 56.95 341.4 1.74 263.90
    20 86.69 250.90 1.99 152.05 95.12 253.08 1.83 173.13
    21 94.00 349.36 2.40 282.20 92.33 358.58 2.30 276.88
    下载: 导出CSV 
    | 显示表格

    为进一步比较复杂基体与纯试剂有害元素标准溶液对金矿浮选样品有害元素测试过程的影响,对比两类有害元素标准溶液测试22个金矿样品内标回收率,如图2所示(图中样品编号1~7为标准溶液,编号8~29代指金矿浮选的1~22号样品)。基体匹配方法测试各样品内标回收率较纯试剂测试稳定,前者的回收率分布在90%~110%之间,后者则在85%~100%之间。基体匹配测试各样品内标回收率与100%差值绝对值的平均差为1.64%,而后者则为2.16%(平均差,即各差值绝对值与其平均数的离差绝对值的算术平均数),基体匹配法内标回收率平均差较无基体匹配测试低24.07%。纯试剂有害元素标准溶液与消解样品之间有较大的基体差异,在一定程度上对元素离子化产生抑制作用。采用基体匹配方法可降低非质谱干扰,削弱测试过程的信号波动。

    图  2  铁硫基体与纯试剂有害元素标准溶液测试金矿浮选样品的内标回收率
    Figure  2.  Recovery of internal standard of gold ore floatation samples using harmful element standard solutions with Fe-S matrix compared with that of pure regent

    在样品消解和测试环节,采用标准加入方式评价金矿选冶样品中有害元素定量方法的准确性。消解和测试加标实验参照1.6节所述,各元素加标回收率列于表6。根据表中数据计算,消解加标实验中各有害元素加标回收率在92.08%~105.36%之间,表明微波消解过程中各有害元素基本无损失;而测试加标实验中各有害元素加标回收率在95.68%~106.05%之间,显示不同基体类型样品的消解溶液对加标有害元素回收率影响较小,与2.2节实验结果相呼应。较好的加标回收率指标表明此测试方法准确性高。

    表  6  消解和测试加标回收实验结果
    Table  6.  Results of spiked recovery experiment for the dissolution and measurement
    样品名称 Ni测定值
    (μg/g)
    Cu测定值
    (μg/g)
    Cd测定值
    (μg/g)
    Pb测定值
    (μg/g)
    14号样品 59.10 116.57 0.82 119.40
    14号样品+10μg各元素(消解) 161.72 221.93 97.55 211.48
    加标回收率(%) 102.62 105.36 96.73 92.08
    6号样品 92.34 140.05 2.24 254.67
    6号样品+等体积标液(测试) 97.08 122.16 50.22 177.92
    加标回收率(%) 101.82 104.27 98.20 101.17
    13号样品 336.18 311.63 17.54 1135.47
    13号样品+等体积标液(测试) 215.93 208.84 57.71 619.26
    加标回收率(%) 95.68 106.05 97.88 103.05
    下载: 导出CSV 
    | 显示表格

    两组样品的6个平行消解实验样品中有害元素的测定结果列于表7。整体上,平行实验中元素含量较低的Cd元素的RSD值相对较高,但高浓度元素的RSD值则较低。各元素的RSD在1.21%~4.69%之间。精密度实验的指标较高,数据波动小,重现性高。

    表  7  加标回收实验结果
    Table  7.  Results of spiked recovery experiments
    样品编号 元素 6次平行实验检测值(μg/g) 平均值
    (μg/g)
    RSD
    (%)
    5号样品 Ni 116.83 119.04 114.52 121.75 118.08 111.61 116.97 3.04
    Cu 206.86 208.96 212.57 204.88 210.73 209.09 208.85 1.31
    Cd 5.89 5.98 5.66 5.42 6.07 6.15 5.86 4.69
    Pb 377.65 360.19 384.57 366.42 379.76 359.97 371.43 2.86
    12号样品 Ni 330.05 344.47 327.59 335.04 338.73 349.62 337.58 2.50
    Cu 356.31 347.87 342.46 360.93 354.52 361.42 353.92 2.11
    Cd 20.18 18.25 18.57 19.62 19.74 20.09 19.41 4.16
    Pb 1227.43 1268.87 1239.15 1241.06 1251.53 1231.50 1243.26 1.21
    下载: 导出CSV 
    | 显示表格

    提出采用基体匹配ICP-MS法定量金矿浮选样品中的痕量有害元素。首先采用XRF确认各浮选样品的主量基体元素后,将其分为铝基体、铁铝基体和铁硫基体三类。在500μg/mL和1000μg/mL基体溶液中,基体元素种类和数量对痕量有害元素定量结果差异较小,其相对偏差在±10%以内。表明采用高浓度的基体元素溶液配制有害元素标准溶液,不会对有害元素定量结果产生影响,且复杂基体有害元素标准溶液在定量金矿浮选样品中有害元素时还可起到削弱基体差异的作用。在有害元素标准溶液基体浓度相同(1000μg/mL)的前提下,金矿浮选样品中有害元素定量结果不受基体元素种类和数量影响,且与纯试剂有害元素标准溶液定量结果的相对标准偏差小于7.73%,而内标回收率与100%理想值差值绝对值的平均差较纯试剂有害元素标准溶液测试低24.07%。因此,采用了铁硫基体有害元素标准溶液测试不同基体类型的金矿浮选样品,该方法消解和测试的加标元素回收率在92.08%~105.36%之间,测试环节加标回收率为95.68%~106.05%,精密度(RSD)为1.21%~4.69%,具有准确度高的特点。

    本文方法虽仅针对金矿浮选样品中部分有害元素的定量测试,但对于其他复杂金属矿产或合金类等样品中的痕量有害元素测试仍具有借鉴意义和实践参考,在地质矿产样品检测领域具有一定实用性。

  • 图  1   中国西沙海域采样站位图

    (a)基于国家测绘地理信息局标准地图服务网站下载的审图号为 GS(2016)1665 的标准地图制作;(b)基于Google Earth地图制作。

    Figure  1.   Sampling stations in Xisha, China

    图  2   永兴岛—七连屿海域鱼体内多环芳烃来源分析

    F1—斑点九棘鲈; F2—黑鳍粗唇鱼; F3—侧牙鲈; F4—东方胡椒鲷; F5—蜂巢石斑鱼; F6—黑边石斑鱼; F7—黄带副鲱鲤; F8—红裸颊鲷; F9—黑身蓝子鱼; F10—棘尾前孔鲀; F11—三带副鲱鲤; F12—三色鹦嘴鱼; F13—三叶唇鱼; F14—条斑副鲱鲤; F15—污色鹦嘴鱼; F16—眼带蓝子鱼; F17—银蓝子鱼。

    Figure  2.   Source analysis of PAHs in fish from Yongxing and Qilianyu islands. Fossil fuel combustion might be the main source of PAHs

    图  3   永兴岛—七连屿海域鱼体内(a)PAHs的TEQ值和(b)PCBs的TEQ值

    Figure  3.   (a) The TEQ value of PAHs and (b) the TEQ value of PCBs in fish from Yongxing and Qilianyu islands. The ecological risks of PCBs in fish were low.

    表  1   永兴岛—七连屿海域鱼类体型特征及采样点

    Table  1   Biological information and sampling sites of fish in Yongxing and Qilianyu islands

    序号鱼类样品种类鱼类样品体长(cm)鱼类样品质量(g)平行样
    编号
    采样站位
    编号
    平均值±标准差样品体长范围平均值±标准差样品质量范围
    1斑点九棘鲈
    Cephalopholis argus
    22.03±1.0620.50~23.50192.37±21.58159.82~236.03F1-1S10
    F1-2S12
    F1-3S15
    2黑鳍粗唇鱼
    Hemigymnus melapterus
    29.74±1.8126.40~32.50572.35±88.13456.66~720.35F2-1S01
    F2-2S03
    F2-3S06
    3侧牙鲈
    Variola louti
    28.24±4.4521.50~34.60484.27±225.6161.41~800.74F3-1S07
    F3-2S06
    F3-3S03
    4东方胡椒鲷
    Plectorhynchus orientalis
    31.35±6.7323.90~39.80597.61±461.89208.07~1372.36F4-1S12
    F4-2S08
    F4-3S12
    5蜂巢石斑鱼
    Epinephelus merra
    16.85±1.2315.00~19.0072.66±18.3749.81~109.25F5-1S08
    F5-2S12
    F5-3S08
    6黑边石斑鱼
    Epinephelus fasciatus
    20.78±2.3315.70~23.60153.94±47.9562.98~203.29F6-1S04
    F6-2S12
    F6-3S08
    7黄带副鲱鲤
    Upeneus sulphureus
    23.42±2.1219.90~26.80286.6±86.07188.48~447.00F7-1S06
    F7-2S06
    F7-3S07
    8红裸颊鲷
    Lethrimus rubrioperculatus
    24.57±2.8621.70~30.20261.1±97.13174.51~443.59F8-1S12
    F8-2S02
    F8-3S06
    9黑身蓝子鱼
    Siganus punctatissimus
    30.16±2.0727.20~34.20603.73±55.29519.11~686.02F9-1S09
    F9-2S09
    F9-3S02
    10棘尾前孔鲀
    Cantherhines dumerilii
    28.18±2.3424.80~31.40493.23±146.58300.88~704.29F10-1S15
    F10-2S09
    11三带副鲱鲤
    Parupeneus trifasciatus
    20.85±3.5417.50~28.50236.04±143.34114.91~577.27F11-1S09
    F11-2S08
    F11-3S01
    12三色鹦嘴鱼
    Scarus tricolore
    25.83±3.8420.80~31.90434.52±200.26185.01~762.01F12-1S04
    F12-2S15
    13三叶唇鱼
    Cheilinus trilobatus
    20.62±1.2418.80~22.50189.52±46.79120.82~287.57F13-1S02
    F13-2S08
    F13-3S04
    14条斑副鲱鲤
    Parupeneus barberinus
    24.51±2.1921.50~27.20305.17±100.85196.15~459.4F14-1S12
    F14-2S02
    F14-3S12
    15污色鹦嘴鱼
    Scarus sordidus
    25.5±1.6824.00~27.90418.26±80.97350.29~511.28F15-1S11
    F15-2S14
    F15-3S01
    F15-4S11
    16眼带蓝子鱼
    Siganus puellus
    21.5±1.7318.40~23.90191.04±47.64129.54~271.4F16-1S12
    F16-2S12
    F16-3S02
    17银蓝子鱼
    Siganus argenteus
    25.89±2.4421.00~29.20319.09±105.58148.79~495.53F17-1S09
    F17-2S02
    F17-3S09
    下载: 导出CSV

    表  2   永兴岛—七连屿海域鱼体内有机污染物含量水平

    Table  2   Concentrations of organic pollutants in fish in Yongxing and Qilianyu islands. Polluted parrotfish (Scarus sordidus) had the highest content of OCPs, PAHs and PCBs, which might be related to its habitat and scraping coral reef algae habits.

    鱼类样品种类 采样数量
    (件)
    ∑OCPs(ng/g ww) ∑PAHs(ng/g ww) ∑PCBs(ng/g ww)
    平均值,中位数(数据范围) 平均值,中位数(数据范围) 平均值,中位数(数据范围)
    斑点九棘鲈
    Cephalopholis argus
    3 26.81,39.21(1.41~39.82) 8.23,11.61(ND~13.09) 12.23,7.49(4.55~24.65)
    黑鳍粗唇鱼
    Hemigymnus melapterus
    3 2.23,2.36(0.88~3.44) 2.11,2.02(0.89~3.42) 1.55,1.64(0.99~2.02)
    侧牙鲈
    Variola louti
    3 18.23,11.74(10.39~32.57) 15.20,12.22(4.14~29.24) 11.29,6.89(4.82~22.17)
    东方胡椒鲷
    Plectorhynchus orientalis
    3 11.65,14.43(4.83~15.69) 8.96,11.18(2.79~12.9) 10.86,9.90(5.69~16.97)
    蜂巢石斑鱼
    Epinephelus merra
    3 24.76,13.85(1.93~58.51) 28.14,30.63(1.20~52.59) 5.30,4.85(2.88~8.18)
    黑边石斑鱼
    Epinephelus fasciatus
    3 5.30,4.12(3.11~8.68) 7.10,6.12(5.68~9.49) 4.64,3.57(2.23~8.13)
    黄带副鲱鲤
    Upeneus sulphureus
    3 46.98,38.18(17.42~85.35) 26.23,27.66(15.60~35.44) 6.06,7.04(2.34~8.80)
    红裸颊鲷
    Lethrimus rubrioperculatus
    3 45.34,16.57(11.38~108.05) 16.29,9.98(7.48~31.40) 34.22,7.44(3.57~91.65)
    黑身蓝子鱼
    Siganus punctatissimus
    3 64.68,24.77(17.27~151.99) 16.89,16.69(14.34~19.63) 52.88,18.89(4.52~135.24)
    棘尾前孔鲀
    Cantherhines dumerilii
    2 24.04,24.04(16.24~31.83) 8.77,8.77(0.63~16.91) 13.84,13.84(2.59~25.09)
    三带副鲱鲤
    Parupeneus trifasciatus
    3 33.74,15.88(12.90~72.44) 22.89,25.19(9.36~34.11) 23.83,12.27(7.29~51.94)
    三色鹦嘴鱼
    Scarus tricolore
    2 31.56,31.56(9.15~53.98) 26.08,26.08(7.70~44.46) 22.80,22.80(6.44~39.17)
    三叶唇鱼
    Cheilinus trilobatus
    3 44.54,15.77(10.58~107.28) 26.58,15.50(2.00~62.23) 23.85,12.26(5.05~54.24)
    条斑副鲱鲤
    Parupeneus barberinus
    3 17.79,22.08(7.6~23.69) 14.56,14.34(13.56~15.76) 8.24,7.73(5.09~11.91)
    污色鹦嘴鱼
    Scarus sordidus
    4 91.57,88.15(37.91~152.08) 31.70,33.17(16.87~43.60) 54.04,53.79(39.48~69.11)
    眼带蓝子鱼
    Siganus puellus
    3 24.52,26.81(16.20~30.55) 14.15,13.13(9.61~19.72) 8.70,8.51(7.26~10.34)
    银蓝子鱼
    Siganus argenteus
    3 15.88,19.49(8.63~19.51) 15.35,12.74(8.13~25.18) 12.97,5.02(2.87~31.03)
    注:ND表示未检出;ww表示湿重。
    下载: 导出CSV

    表  3   国内外海域鱼体内有机污染物含量及来源

    Table  3   The concentration and source of organic pollutants in fish in domestic and foreign sea. The concentrations of organic pollutants in marine fish in study area were low.

    采样海域 采样时间 样品类型 有机污染物含量范围 含量单位 有机污染物来源分析 参考
    文献
    ∑DDTs ∑HCHs ∑PAHs ∑PCBs
    中国浙江沿海 2005年 海洋贝类、鱼类、虾类 1.5~94
    (∑OCPs)
    10.4~140 0.06~75 ng/g WW DDTs主要源自陆源输入 8
    中国渤海湾 2002年
    5月、6月、
    9月
    浮游生物、无脊椎动物、鱼类、海鸟 2~64.5 ng/g WW 22
    中国广东沿海 2007年2月 海洋贝类、鱼类、虾类 1.99~1400.01 ND ND ng/g WW 9
    中国南海北部 2013年
    4月—8月
    金线鱼 2.3~76.5 8.3~228 ng/g LW DDTs有新近输入的可能性 27
    中国南海涠洲岛 2018年
    4月—5月
    珊瑚礁
    鱼类
    7.7~401 1.12~2.61 0.87~19.8 ng/g LW DDTs、HCHs和PCBs均主要来源于历史残留 16
    中国南海永兴岛 2012年
    7月—8月
    鱼类 9.7~5831 6.3~199 ng/g LW DDTs主要来源于历史残留,部分新输入来源于渔船使用的防污涂料 21
    中国南海七连屿 鱼类 16~31.6 6.88~113.2 ng/g LW DDTs主要来源于历史残留 6
    美国索尔顿 水域 2001年5月 海洋鱼类 17.1~239 2.5~18.6 ng/g WW 50
    美国查尔斯顿港口及其支流 2014年 鱼类 0.65~107.6 5.02~232.20 ng/g WW 7
    韩国沿海 1997、1998、1999年 贝类 4.4~422
    (∑OCPs)
    9.95~131.37 ng/g DW 陆源输入 51
    阿拉伯海亚丁湾 2016、2007、2018年 鲨鱼 ND~740 10.1~471 ng/g DW DDTs来源于新近输入 52
    印度喀拉拉邦Calicut地区 2003年
    4月—9月
    鱼类 0.10~10.47
    (∑OCPs)
    ng/g WW 25
    南极威德尔海 2015年
    12月—
    2016年
    2月
    鱼类 140~480 9.8~310.9 427~2425 pg/g FW 11
    地中海 2006年6月 鱼类 763~5357 1234~12327 ng/g LW 53
    意大利那不勒斯湾 2003年
    2月—7月
    鱼类 ND~2096 56.8~4791 ng/g LW 24
    中国西沙海域
    永兴岛—七连屿
    (本文研究)
    2020年
    10月—
    11月
    海洋鱼类 2.13~37.12 ND~21.27 2.11~31.70 1.55~54.04 ng/g WW DDTs、HCHs部分源自历史残留,部分源自新近输入;PAHs源自燃料高温燃烧后产物;PCBs源自永兴岛垃圾焚烧 本文
    研究
    注:LW—脂质重;WW—湿重;DW—干重;FW—鲜重;ND—未检出;“−”表示无相关数据或内容;本文认为湿重等同于鲜重。
    下载: 导出CSV
  • [1]

    Salem D M S A, El Sikaily A, El Nemr A. Organochlorines and their risk in marine shellfish collected from the Mediterranean coast[J]. Egyptian Journal of Aquatic Research, 2014, 40(2): 93−101. doi: 10.1016/j.ejar.2014.03.004

    [2]

    Lorenzo M, Campo J, Morales Suárez-Varela M, et al. Occurrence, distribution and behavior of emerging persistent organic pollutants (POPs) in a Mediterranean wetland protected area[J]. Science of the Total Environment, 2019, 646: 1009−1020. doi: 10.1016/j.scitotenv.2018.07.304

    [3] 田芹, 佟玲, 安子怡, 等. 沉积物中多环芳烃、有机氯农药和多氯联苯成分分析标准物质研制[J]. 岩矿测试, 2022, 41(3): 511−520.

    Tian Q, Tong L, An Z Y, et al. Development of certified reference materials of polycyclic aromatic hydrocarbons, organochlorine pesticides and polychlorinated biphenyls in sediments[J]. Rock and Mineral Analysis, 2022, 41(3): 511−520.

    [4] 史敬文, 张瑞杰, 韩民伟, 等. 北部湾涠洲岛珊瑚礁区多环芳烃污染特征研究[J]. 中国环境科学, 2023, 43(4): 1802−1811.

    Shi J W, Zhang R J, Han M W, et al. Pollution characteristics and ecological risk of polycyclic aromatic hydrocarbons in multi-environmental media in coral reef regions of Weizhou Island, Beibu Gulf[J]. China Environmental Science, 2023, 43(4): 1802−1811.

    [5] 刘亚雯, 李有绅, 杨忆菁, 等. 海洋环境中持久性有机污染物的生物累积研究进展[J]. 生态毒理学报, 2022, 17(6): 14−31.

    Liu Y W, Li Y S, Yang Y Q, et al. Bioaccumulation and trophic magnification of persistent organic pollutants in marine environment[J]. Asian Journal of Ecotoxicology, 2022, 17(6): 14−31.

    [6]

    Wang Q L, Xie C M, Long C Y, et al. Bioaccumulation and biomagnification of polychlorinated biphenyls and dichlorodiphenyltrichloroethane in biota from Qilianyu Island, South China Sea[J]. Toxics, 2022, 10(6): 324. doi: 10.3390/toxics10060324

    [7]

    Fair P A, White N D, Wolf B, et al. Persistent organic pollutants in fish from Charleston Harbor and tributaries, South Carolina, United States: A risk assessment[J]. Environmental Research, 2018, 167: 598−613. doi: 10.1016/j.envres.2018.08.001

    [8] 方杰. 浙江沿海沉积物和海洋生物中持久性有机污染物及重金属的分析与研究[D]. 杭州: 浙江大学, 2007: 1-196.

    Fang J. Persistent organic pollutants and heavy metals in surface sediments and marine organisms from coastal areas of Zhejiang Province[D]. Hangzhou: Zhejiang University, 2007: 1-196.

    [9] 秦春艳. 广东沿海海洋生物体内有毒物质的生物积累与污染评价[D]. 广州: 华南师范大学, 2007: 1-112.

    Qin C Y. Study of bioaccumulation and evaluation on pollutions in marine organisms from the coast site along Guangdong Province[D]. Guangzhou: South China Normal University, 2007: 1-112.

    [10]

    Strobel A, Schmid P, Segner H, et al. Persistent organic pollutants in tissues of the white-blooded Antarctic fish Champsocephalus gunnari and Chaenocephalus aceratus[J]. Chemosphere, 2016, 161: 555−562. doi: 10.1016/j.chemosphere.2016.01.089

    [11]

    Strobel A, Schmid P, Burkhardt-Holm P, et al. Persistent organic pollutants in red- and white-blooded high Antarctic notothenioid fish from the remote Weddell Sea[J]. Chemosphere, 2018, 193: 213−222. doi: 10.1016/j.chemosphere.2017.11.020

    [12]

    Lana N B, Berton P, Covaci A, et al. Fingerprint of persistent organic pollutants in tissues of Antarctic notothenioid fish[J]. Science of the Total Environment, 2014, 499: 89−98. doi: 10.1016/j.scitotenv.2014.08.033

    [13]

    Jamieson A J, Malkocs T, Piertney S B. et al. Bioaccumulation of persistent organic pollutants in the deepest ocean fauna[J]. Nature Ecology & Evolution, 2017, 1: 1−4.

    [14]

    O’Driscoll K, Mayer B, Ilyina T, et al. Modelling the cycling of persistent organic pollutants (POPs) in the North Sea system: Fluxes, loading, seasonality, trends[J]. Journal of Marine Systems, 2013, 111-112: 69−82. doi: 10.1016/j.jmarsys.2012.09.011

    [15] 郝青. 持久性有机污染物在南海海域鱼体中的富集特征及人体饮食暴露风险[D]. 北京: 中国科学院大学, 2014: 1-103.

    Hao Q. Persistent organic pollutants in marine fish from South China Sea: Levels, bioaccumulation and human dietary exposure assessment[D]. Beijing: University of Chinese Academy of Sciences, 2014: 1-103.

    [16] 丁洋. 涠洲岛珊瑚礁鱼类中OCPs, PCBs和OPEs生物积累的研究[D]. 南宁: 广西大学, 2019: 1-148.

    Ding Y. Bioaccumulation of OCPs, PCBs and OPEs in coral reef fish from Weizhou Island[D]. Xining: Guangxi University, 2019: 1-148.

    [17] 汪伟薇, 孙毓鑫, 徐向荣. 西沙永兴岛土壤中多环芳烃的分布特征及来源[J]. 生态科学, 2021, 40(5): 1−7.

    Wang W W, Sun Y X, Xu X R. Distribution and sources of polycyclic aromatic hydrocarbons in soils from Yongxing Island, Xisha Archipelago[J]. Ecological Science, 2021, 40(5): 1−7.

    [18] 周涛, 韩彬, 徐亚岩, 等. 南中国海海水中有机氯农药和多氯联苯的含量及分布特征[J]. 岩矿测试, 2014, 33(1): 90−95.

    Zhou T, Han B, Xu Y Y, et al. Concentrations and distribution characteristics of organochlorine pesticides and polychlorinated biphenyls in seawaters of the South Sea[J]. Rock and Mineral Analysis, 2014, 33(1): 90−95.

    [19]

    Ael E V, Covaci A, Das K, et al. Factors influencing the bioaccumulation of persistent organic pollutants in food webs of the Scheldt Estuary[J]. Environmental Science & Technology, 2013, 47(19): 11221−11231.

    [20] 曹磊, 韩彬, 郑立, 等. 桑沟湾水体中有机氯农药和多氯联苯的浓度水平及分布特征[J]. 海洋科学, 2011, 35(4): 44−50.

    Cao L, Han B, Zheng L, et al. Concentrations and distribution characteristics of organochlorine pesticides and polychlorinated biphenyls in seawaters of the Sanggou Bay[J]. Marine Science, 2011, 35(4): 44−50.

    [21]

    Sun Y X, Hao Q, Xu X R, et al. Persistent organic pollutants in marine fish from Yongxing Island, South China Sea: Levels, composition profiles and human dietary exposure assessment[J]. Chemosphere, 2014, 98: 84−90. doi: 10.1016/j.chemosphere.2013.10.008

    [22]

    Wan Y, Hu J, Zhang K, et al. Trophodynamics of polybrominated diphenyl ethers in the marine food web of Bohai Bay, North China[J]. Environmental Science & Technology, 2008, 42(4): 1078−1083.

    [23]

    Perugini M, Cavaliere M, Giammarino A, et al. Levels of polychlorinated biphenyls and organochlorine pesticides in some edible marine organisms from the Central Adriatic Sea[J]. Chemosphere, 2004, 57(5): 391−400. doi: 10.1016/j.chemosphere.2004.04.034

    [24]

    Naso B, Perrone D, Ferrante M C, et al. Persistent organic pollutants in edible marine species from the Gulf of Naples, Southern Italy[J]. Science of the Total Environment, 2005, 343(1-3): 83−95. doi: 10.1016/j.scitotenv.2004.10.007

    [25]

    Sankar T V, Zynudheen A A, Anandan R, et al. Distribution of organochlorine pesticides and heavy metal residues in fish and shellfish from Calicut region, Kerala, India[J]. Chemosphere, 2006, 65(4): 583−590. doi: 10.1016/j.chemosphere.2006.02.038

    [26]

    Hardell S, Tilander H, Welfinger-Smith G, et al. Levels of polychlorinated biphenyls (PCBs) and three organochlorine pesticides in fish from the Aleutian Islands of Alaska[J]. PloS ONE, 2010, 5(8): e12396. doi: 10.1371/journal.pone.0012396

    [27]

    Hao Q, Sun Y X, Xu X R, et al. Geographical distribution and risk assessment of persistent organic pollutants in golden threads (Nemipterus virgatus) from the Northern South China Sea[J]. Ecotoxicology, 2015, 24: 7−8.

    [28] 黄磊, 李芊, 徐向荣, 等. 西沙群岛海域表层海水中微塑料的组成与分布特征[J]. 科学通报, 2020, 65(24): 2627−2635. doi: 10.1360/TB-2020-0220

    Huang L, Li Q, Xu X R, et al. Composition and distribution of microplastics in the surface seawater of Xisha Islands[J]. Chinese Science Bulletin, 2020, 65(24): 2627−2635. doi: 10.1360/TB-2020-0220

    [29] 周静, 杨东, 彭子成, 等. 西沙海域海水中溶解态重金属的含量及其影响因子[J]. 中国科学技术大学学报, 2007, 37(8): 1036−1041.

    Zhou J, Yang D, Peng Z C, et al. The concentrations of dissolved heavy metals in Xisha waters and their influential factors[J]. Journal of University of Science and Technology of China, 2007, 37(8): 1036−1041.

    [30] 徐阁, 王德鸿, 王诗文, 等. 西沙永兴岛附近海域沉积物的环境质量评价[J]. 海洋学报, 2022, 44(1): 137−146.

    Xu G, Wang D H, Wang S W, et al. Evaluation on sediments quality around the Yongxing Island of Xisha[J]. Haiyang Xuebao, 2022, 44(1): 137−146 .

    [31] 贺仕昌, 蔚广鑫, 王德鸿, 等. 七连屿海域表层海水及沉积物重金属环境质量评估[J]. 应用海洋学学报, 2020, 39(2): 246−252.

    He S C, Wei G X, Wang D H, et al. Environmental quality assessment of heavy metals in the surface seawater and sediments around Qilianyu Island[J]. Application Oceanology, 2020, 39(2): 246−252.

    [32]

    Chen Q, Liu X, Xu L, et al. High levels of methylmercury in guano and ornithogenic coral sand sediments on Xisha Islands, South China Sea[J]. Archives of Environmental Contamination & Toxicology, 2012, 63(2): 177−188.

    [33] 李元超, 陈石泉, 郑新庆, 等. 永兴岛及七连屿造礁石珊瑚近10年变化分析[J]. 海洋学报, 2018, 40(8): 97−109.

    Li Y C, Chen S Q, Zheng X Q, et al. Analysis of the change of hermatypic corals in Yongxing Island and Qilian Island in nearly a decade[J]. Haiyang Xuebao, 2018, 40(8): 97−109.

    [34] 李学杰, 王大伟, 吴时国, 等. 三沙海底峡谷识别与地貌特征分析[J]. 海洋地质与第四纪地质, 2017, 37(3): 28−36.

    Li X J, Wang D W, Wu S G, et al. Geomorphology of Sansha canyons: Identification and implication[J]. Marine Geology and Quaternary Geology, 2017, 37(3): 28−36.

    [35]

    Han M W, Zhang R J, Yu K F, et al. Polycyclic aromatic hydrocarbons (PAHs) in corals of the South China Sea: Occurrence, distribution, bioaccumulation, and considerable role of coral mucus[J]. Journal of Hazrdous Aterials, 2020, 384: 121299. doi: 10.1016/j.jhazmat.2019.121299

    [36]

    Minh T B, Watanabe M, Nakata H, et al. Contamination by persistent organochlorines in small cetaceans from Hong Kong coastal water[J]. Marine Polution Bulletin, 1999, 39(1-12): 383−392. doi: 10.1016/S0025-326X(99)00066-1

    [37]

    Mai B X, Fu H M, Sheng G Y, et al. Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta, China[J]. Environmental Pollution, 2002, 117(3): 457−474. doi: 10.1016/S0269-7491(01)00193-2

    [38]

    Mai B X, Qi S H, Zeng E Y, et al. Distribution of polycyclic aromatic hydrocarbons in the coastal region off Macao, China: Assessment of input sources and transport pathways using compositional analysis[J]. Environmental Science & Technology, 2003, 37(21): 4855−4863.

    [39]

    Yang N Q, Matsuda M, Kawano M, et al. PCBs and organichlorine pesticide (OCPs) in edible fish and shellfish from China[J]. Chemosphere, 2006, 63: 1342−1352. doi: 10.1016/j.chemosphere.2005.09.029

    [40]

    Hong H S, Xu L J, Zhang L, et al. Environment fate and chemistry of organic pollution in the sediment of Xiamen and virtoria harbours[J]. Marine Polution Bulletin, 1995, 31: 229−236. doi: 10.1016/0025-326X(95)00115-4

    [41]

    Hitch R K, Day H R. Unusual persistence of DDT in some western USA soils[J]. Bulletin of Environmental Contamination and Toxicology, 1992, 48(2): 259−264.

    [42]

    Pereira W E, Hostettler F D, Rapp J B, et al. Distributions and fate of chlorinated pesticides, biomarkers and polycyclic aromatic hydrocarbon in sediments along a contamination gradient from a point-source in San Francisco Bay, California[J]. Marine Environmental Research, 1994, 41(3): 299−314.

    [43]

    Chau K W. Persistent organic pollution characterization of sediments in Pearl River Estuary[J]. Chemosphere, 2006, 64: 1545-1549.

    [44] 傅飘儿, 庄畅, 刘坚, 等. 南海西沙海槽XH-CL16柱状沉积物稀土元素特征及其物源[J]. 海洋地质与第四纪地质, 2015, 35(4): 63−71.

    Fu P E, Zhuang C, Liu J, et al. Rare earth elements geochemostry and provenance of the sediments from core XH-CL16 in the Xisha Trough, South China Sea[J]. Marine Geology and Quaternary Geology, 2015, 35(4): 63−71.

    [45] 罗慧, 王新红, 汤丽, 等. 中国部分沿海海域水体中溶解态有机氯农药和多氯联苯的残留分布特征[J]. 海洋环境科学, 2010, 29(1): 115−120. doi: 10.3969/j.issn.1007-6336.2010.01.026

    Luo H, Wang X H, Tang L, et al. Distributions of dissolved organoxhlorine pesticides and polychlorinated bipheyls in China coastal waters[J]. Marine Environmental Science, 2010, 29(1): 115−120. doi: 10.3969/j.issn.1007-6336.2010.01.026

    [46]

    Yunker M B, Macdonald R W, Vingarzan R, et al. PAHs in the Fraser River Basin: A critical appraisal of PAH ratios as indicators of PAH source and composition[J]. Organic Geochemistry, 2002, 33(4): 489−515. doi: 10.1016/S0146-6380(02)00002-5

    [47]

    Baumard P, Budzinski H, Garrigues P. Polycyclic aromatic hydrocarbons in sediment and mussels of the western Mediterranean Sea[J]. Environmental Toxicology and Chemistry, 1998, 17(5): 765−776. doi: 10.1002/etc.5620170501

    [48] 邝伟明, 林彩, 林辉, 等. 南海海洋生物体内多环芳烃污染特征及风险评价[J]. 环境保护科学, 2021, 47(4): 127−132.

    Kuang W M, Lin C, Lin H, et al. Characteristics and risk assessment of polycyclic aromatic hydrocarbons in marine organisms from South China Sea[J]. Environmental Protection Science, 2021, 47(4): 127−132.

    [49] 罗孝俊. 珠江三角洲河流、河口和邻近南海海域水体、沉积物中多环芳烃与有机氯农药研究[D]. 广州: 中国科学院研究生院(广州地球化学研究所), 2004: 1-114.

    Luo X J. Research on polycyclic aromatic hydrocarbons and organochlorine pesticides in rivers, estuaries and adjacent South China Sea waters and sediments in the Pearl River Delta[D]. Guangzhou: Graduate School of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry), 2004: 1-114.

    [50]

    Rieddel R, Schlenk D, Frank D. Analyses of organic and inorganic contaminants in Salton Sea fish[J]. Marine Pollution Bulletin, 2002, 44(5): 403−411. doi: 10.1016/S0025-326X(01)00254-5

    [51]

    Kim S K, Oh J R, Shim W J, et al. Geographical distribution and accumulation features of organochlorine residues in bivalves from coastal areas of South Korea[J]. Marine Pollution Bulletin, 2002, 45(1): 268−279.

    [52]

    Boldrocchi G, Monticelli D, Omar Y M, et al. Trace elements and POPs in two commercial shark species from Djibouti: Implications for human exposure[J]. Science of the Total Environment, 2019, 669: 637−648. doi: 10.1016/j.scitotenv.2019.03.122

    [53]

    Storelli M M, Losada S, Marcotrigiano G O, et al. Polychlorinated biphenyl and organochlorine pesticide contamination signatures in deep-sea fish from the Mediterranean Sea[J]. Environmental Research, 2009, 109: 851−856. doi: 10.1016/j.envres.2009.07.008

    [54]

    Binelli A, Provini A. POPs in edible clams from different Italian and European markets and possible human health risk[J]. Marine Pollution Bulletin, 2003, 46: 879−886. doi: 10.1016/S0025-326X(03)00043-2

    [55] 朱丹尼, 周长松, 李军, 等. 西南典型地下河系统无机-有机指标特征及健康风险评价[J]. 岩矿测试, 2022, 41(3): 463−475.

    Zhu D N, Zhou C S, Li J, et al. Inorganic-organic characteristics and health risk assessment of typical underground river system in Southwest China[J]. Rock and Mineral Analysis, 2022, 41(3): 463−475.

    [56] 李丽君, 王海娇, 马健生. 下辽河平原地下水中挥发性有机物的污染特征及健康风险评价[J]. 岩矿测试, 2021, 40(6): 930−943.

    Li L J, Wang H J, Ma J S. Pollution characteristics and health risk assessment of volatile organic compounds in groundwater in the lower Liaohe River Plain[J]. Rock and Mineral Analysis, 2021, 40(6): 930−943.

    [57]

    Berg M, Birnbaum L, Bosveld A T C, et al. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife[J]. Environmental Health Perspectives, 1999, 106(12): 775−792.

    [58]

    Lundebye A K, Berntssen M H G, Lie Ø, et al. Dietary uptake of dioxins (PCDD/PCDFs) and dioxin‐like PCBs in Atlantic salmon (Salmo salar)[J]. Aquaculture Nutrition, 2004, 10(3): 199−207. doi: 10.1111/j.1365-2095.2004.00299.x

图(3)  /  表(3)
计量
  • 文章访问数:  179
  • HTML全文浏览量:  33
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-27
  • 修回日期:  2024-01-05
  • 录用日期:  2024-01-15
  • 网络出版日期:  2024-01-16
  • 刊出日期:  2024-02-28

目录

/

返回文章
返回