• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

X射线衍射和TIMA研究陕南镇巴地区富锂黏土岩的矿物组成及锂的赋存状态

周伟, 张嘉升, 祁晓鹏, 徐磊, 杨杰

周伟,张嘉升,祁晓鹏,等. X射线衍射和TIMA研究陕南镇巴地区富锂黏土岩的矿物组成及锂的赋存状态[J]. 岩矿测试,2024,43(1):76−86. DOI: 10.15898/j.ykcs.202304170050
引用本文: 周伟,张嘉升,祁晓鹏,等. X射线衍射和TIMA研究陕南镇巴地区富锂黏土岩的矿物组成及锂的赋存状态[J]. 岩矿测试,2024,43(1):76−86. DOI: 10.15898/j.ykcs.202304170050
ZHOU Wei,ZHANG Jiasheng,QI Xiaopeng,et al. Mineralogical Composition and Occurrence State of Lithium in Lithium-Enriched Claystone in the Zhenba Area, Southern Shaanxi, by X-Ray Diffraction and TIMA Analysis[J]. Rock and Mineral Analysis,2024,43(1):76−86. DOI: 10.15898/j.ykcs.202304170050
Citation: ZHOU Wei,ZHANG Jiasheng,QI Xiaopeng,et al. Mineralogical Composition and Occurrence State of Lithium in Lithium-Enriched Claystone in the Zhenba Area, Southern Shaanxi, by X-Ray Diffraction and TIMA Analysis[J]. Rock and Mineral Analysis,2024,43(1):76−86. DOI: 10.15898/j.ykcs.202304170050

X射线衍射和TIMA研究陕南镇巴地区富锂黏土岩的矿物组成及锂的赋存状态

基金项目: 陕西省地质勘查基金项目(61201908341);中陕核工业集团公司科技攻关项目(61210103)
详细信息
    作者简介:

    周伟,硕士,工程师,主要研究方向为地质调查与矿产资源开发。E-mail:geovas@163.com

    通讯作者:

    祁晓鹏,高级工程师,主要研究方向为区域地质调查与矿产勘查。E-mail:78667395@qq.com

  • 中图分类号: P618.71;P619.23

Mineralogical Composition and Occurrence State of Lithium in Lithium-Enriched Claystone in the Zhenba Area, Southern Shaanxi, by X-Ray Diffraction and TIMA Analysis

  • 摘要:

    黏土岩型锂矿作为可利用锂资源的重要组成部分,由于其分布广、储量大而备受关注。陕西镇巴地区晚二叠世吴家坪组新发现黏土岩型锂矿(资源),Li2O最高含量可达0.39%,达到了黏土锂矿的工业指标(0.2%),具有一定的开发利用价值。为了查明陕南镇巴地区富锂黏土岩中黏土矿物种类、含量及富锂黏土岩中锂的赋存状态,本文选取陕西镇巴地区富锂黏土岩,通过偏光显微镜鉴定初步查明黏土岩的矿物组成,利用X射线衍射(XRD)、全自动综合矿物分析系统(TIMA)分析技术定量查明富锂黏土岩中黏土矿物及主要元素含量。结果表明:该黏土岩主要由高岭石、铝绿泥石、伊利石、锂绿泥石等黏土矿物以及赤铁矿组成,含少量绿泥石、金红石等矿物。TIMA分析表明样品中锂绿泥石最高含量为8.94%,对应锂含量为0.12%(Li2O含量为0.26%),略低于该样品全岩Li2O含量(0.31%)。锂绿泥石呈丝缕状,不规则粒状,嵌布于一水软铝石、伊利石、铝绿泥石之间。综合研究认为镇巴地区富锂黏土岩中锂主要赋存于锂绿泥石中,其他矿物的锂含量很低。锂绿泥石、伊利石、高岭石等层状结构硅酸岩矿物具有很好的吸附性,锂以Li+形式吸附于黏土矿物中。

     

  • 西藏处于典型的喜马拉雅地热带,是中国高温地热流体分布最密集的地区,其地热资源居中国第一1,境内共有709个地热带活动区,其中有131个地热系统温度高于150℃,8处地热层温度高于200℃2。位于境内的羊八井地热站是中国最大的地热发电站,也是中国所有热液系统中测得的储层温度最高的地热田3,其日开采汽水总量约为12000t2。砷(As)和氟(F)是西藏羊八井高温地热流体中两种典型的高浓度有害元素,通过地热开发可以进一步促进或加速地热源As和F向地表或近地表环境释放,从而威胁附近水土生态环境。因此,调查As和F浓度水平与水体水化学特征从而揭示水体As和F的富集规律,对丰富和认识西藏地区水环境中As和F的环境地球化学行为具有重要意义。

    关于羊八井地热水的水化学特征、水热蚀变和水体胶体粒子特征已开展前期研究4-6。研究表明,羊八井地热田热水水化学类型为Na-Cl型,大部分地热水为中性偏碱性,pH值在6.70~9.60之间,浅层热水主要来源于深层热水与地表水(冰川雪山融水和大气降水)的混合7-8。地表水补给来源于念青唐古拉山海拔4400~5800m的雪山融水8,融雪水渗入地下后由底层岩浆热源加热,由于热水密度低于融雪水,加热后的热水能自然地流向地表。相比水化学研究,羊八井地热储层流体中As和F浓度特征、地热源As和F引起的水土环境影响是地热利用过程中关注的热点环境问题9-12。郭清海等13报道了羊八井热田地热流体As和F浓度分别高达5.70mg/L和19.60mg/L,远高于西藏其他地区14-15,由于地热开发,输入地热邻近河流堆龙曲中主要的污染物为As和F。魏晓阳等11研究表明地热邻近河流堆龙曲中检出了高浓度F(0.41~1.31mg/L)。在As和F来源及富集机制方面,氟化物浓度受到氟石(CaF2)溶解度限制,其浓度与水化学类型密切相关,表现为F元素在Na-Cl或Na-Cl·SO4等Na型水中富集程度常高于Na·Ca-HCO3或Ca-HCO3等Ca型水体15,因此羊八井高温地热水氟化物浓度高达19.60mg/L13。同时,弱碱性pH水体也为As和F的富集提供了有利条件16。羊八井地热流体中As主要来自岩浆脱气17,As的富集与岩浆流体的浸取和地幔侵入高砷岩浆热源有关18,也就是说,决定岩浆热液流体中As浓度高低最关键的因素是岩浆流体的地质成因及其化学成分。综上所述,羊八井高温地热水中As和F的来源及富集机制主要有两方面:①深部地热流体的升流混合作用;②补给水向下渗流过程中与含As和F硅酸盐矿物的溶滤作用,因此地下水体中As和F往往表现为共生性19-20。尽管研究者在羊八井地热水中As和F的浓度特征及其来源方面有了前期研究基础,但仍需要深入分析地热源As和F浓度年变化趋势、水环境演变规律和水土环境生态风险。

    本文在前期研究的基础上,于2021—2022年对西藏羊八井地热田进行了三期的地热水、温泉水和土壤样品采集,分析羊八井热田水化学常规理化指标、水化学类型、阴阳离子组成,揭示地热水、温泉水和土壤样品中As和F浓度变化特征,剖析地热水和温泉水As和F的来源与富集机制,评价了水体和地表土壤超标风险情况,研究成果为羊八井地区地热的持续合理利用提供科学依据。

    西藏羊八井地热发电站位于西藏自治区拉萨市西北约90km的当雄县羊八井镇,海拔约4300m。羊八井地层主要由第四系沉积物和基岩风化壳组成,第四系沉积物主要为冲洪积砂砾石层和冰碛砂砾层,而基岩风化壳则主要由花岗岩风化而成。羊八井气候寒冷干燥,年平均气温在2.5℃左右,年降水量在500mm左右2。由于空气稀薄,太阳辐射强,日照时间长,全年无霜期短,羊八井热田是中国目前已知的热储温度最高的地热田,其深部热储平均温度为252℃,最高记录热储温度达329.8℃2,地表出露温度为68~84℃21。羊八井地热发电厂是中国建设的第一座最大的、海拔最高的地热试验田,也是当今世界迄今为止唯一利用中温浅层热储资源发电的电厂。地热站的建设为西藏地区的经济发展和社会稳定发挥了举足轻重的作用。羊八井地热站地势平坦,海拔7000m以上的念青唐古拉山屹立于地热站西北,东南方向为海拔6000m以上的唐山,终年覆盖有大量冰川,是地表径流的重要补给,地势上具有西北高、东南低的特点22。羊八井地热发电站和周边地理分布格局如图1所示。

    图  1  羊八井地热发电站位置(a)及周围分布格局(b)
    Figure  1.  Geographical location (a) and surrounding distribution pattern (b) of Yangbajing geothermal power plant

    青藏公路将热田分为南北两区,北区分布有二电厂和国家地质公园,南区分布有一电厂,一电厂紧邻藏布曲。羊八井镇因地热资源丰富而闻名,镇内分布有规模宏大的喷泉、沸泉、涌射泉、热泉和热水湖等。在羊八井镇格达乡建设有规模仅次于羊八井地热站的羊易地热站。羊八井地热温泉洗浴已成为重要的旅游胜地,目前建成“蓝色天国”温泉旅游区。地热站于2019年进入休采期,休采期间“蓝色天国”温泉旅游区对外开放,钻井口仍有地热水流出,在地热休采期间,其水环境影响仍不容忽视。

    根据资料显示和现场勘察,三次采样分别于2021年6月(丰水期)、2021年11月(平水期)和2022年4月(枯水期)在羊八井地热发电站钻井口、温泉水口共设2个采样点,水样采集依照《水和废水监测分析方法》(GB/T 8538—2008)进行。现场采集2份平行水样约1L,测定常规指标,包括pH值、电导率(EC)、总溶解固体(TDS)和盐度(SAL)。测定方法是将优特PCS Testr 35型便携式多参数测量仪电极深入水面下10cm处23,待显示数字稳定后进行读数记录。地热水和温泉水出露温度采用水银温度计现场测定。

    土壤样品全部采集于温泉排废口,使用铁锹采集温泉水淋滤的土壤约2kg,沥水冷却后装于塑料密封袋中保存,土壤样品带回实验室自然风干,过100目筛保存备用。水样带回实验室自然冷却,一份经0.45μm滤膜过滤后,加入优级纯硝酸5mL酸化并保存在0~4℃冰箱中备用,用于As和其他元素分析;另一份水样过滤后用于F离子和其他阴离子分析。

    原子荧光光谱仪(AFS-9330型,AFS-8300型,北京吉天仪器有限公司)、高精度X射线荧光光谱仪(HD Rocksand型,美国XOS公司)、离子选择性电极(F090 ION 700型,美国Thermo Eutech公司)、电感耦合等离子体发射光谱仪(Optima 5300 DV型,美国PerkinElmer公司)、电感耦合等离子体质谱仪(ELAN DRC-e型,美国PerkinElmer公司)和离子色谱仪(IC,ICS-1000型,美国Dionex公司)用于目标物测定。

    (1) 水体和土壤中总As浓度采用原子荧光光谱法(AFS)和高精度X射线荧光光谱法(XRF)测定。水体总As浓度测定方法:地热水和温泉水逐级稀释200倍后,在9mL稀释后的待测水样中加入1mL 5%(硫脲+抗坏血酸)溶液,30℃恒温水浴反应30min,标准曲线的不同浓度点采用上述相同的操作进行,反应结束后进行总As浓度测定。土壤总As浓度测定方法:XRF测定土壤总As时,先用仪器自带能量校准样品(A750)进行能量校正,使用标准品(GBW07310)对仪器主要参数进行实验调试,以消除或减少元素间干扰,提高仪器准确度。

    (2) F离子浓度采用离子选择性电极法测定。土壤中总F浓度的测定方法:依据《土壤质量 氟化物的测定 离子选择电极法》(GB/T 22104—2008)。具体流程:称取0.20g土壤样品于坩埚中,加入2g氢氧化钠,高温550℃条件下熔融煅烧,煅烧后采用热水浸取并定容至100mL,测定前加入适量盐酸中和到pH为5~6,采用氟电极测定F离子浓度。10mL样品中加入1mL总离子强度调节缓冲溶液(TISAB)并以掩蔽溶液中Fe3+和Al3+干扰。水体中总F浓度的测定与土壤中F的浸取液测定方法相同。

    (3) 水体中元素Ca、K、Na、Mg、Fe、Al和Mn采用电感耦合等离子体发射光谱法(ICP-OES) 测定;Zn、Cr、Co、Ni、Mn、Cu和Cd 等元素采用电感耦合等离子体质谱法(ICP-MS) 测定,用浓度为10.00μg/L的Ba、Be、Ce、Co、In的调谐液优化仪器检测条件,使仪器灵敏度、氧化物离子产率、双电荷离子产率等各项指标达到测定要求。ICP-MS/OES元素分析采用在线加入内标物(In/Rh) 的方法降低基体干扰。水体Se、Hg和Sb通过原子荧光光谱仪测定。地热水和温泉水中阳离子(K+、Na+、Ca2+和Mg2+)和阴离子(Cl和NO3 )采用离子色谱法(IC)测定,CO3 2−和HCO3 采用容量法测定。水体阴阳离子IC分析和元素ICP-MS/OES分析是委托具有权威资质的第三方测试平台(西藏自治区地质矿产勘查开发局中心实验室)完成,样品测定值均为3次平行测定的平均值扣除空白后的结果,标准偏差小于5%。

    目标物的分析方法和测定条件及检出限如表1所示。

    表  1  样品分析方法及测定条件
    Table  1.  Sample analysis methods and measurement conditions
    样品类型和元素 分析方法 检出限 RSD 仪器测定条件
    水体As、Hg、Sb、Se AFS As:0.0096μg/L
    Hg:0.0017μg/L
    Sb:0.01μg/L
    Se:0.01μg/L
    <5% (1)还原剂:0.5% (m/m) NaOH+2% (m/m) KBH4
    (2)载液:5% (V/V)盐酸
    (3)载气(Ar)流速0.4L/min
    土壤As XRF 1mg/kg <5% 分析线Kβ;能量11.72keV;电压50kV;分析时间300s;滤光片Ag
    土壤和水体F ISE 定量下限0.09mg/L <5% 10mL样品+1mL总离子强度调节缓冲溶液(TISAB)
    水体Ca2+、K+、Na+、Mg2+、Cl、NO3 IC Ca2+:0.011mg/L
    K+:0.02mg/L
    Na+:0.005mg/L
    Mg2+:0.013mg/L
    Cl:0.032mg/L
    NO3 :0.054mg/L
    <5% (1) EGC-III淋洗液自动发生器;DS6型电导检测器
    阳离子测定条件:CSRS 300-4 mm阳离子抑制器;CS12A型分离柱(4mm×250mm);淋洗液20mmol/L硫酸;流速1mL/min;进样体积500μL
    (2)阴离子测定条件:ASRS 300-4 mm阴离子抑制器;Ion Pac AS19型分离柱(4mm×250mm);淋洗液:30mmol/L KOH; 流速1mL/min;进样体积500μL
    水体CO3 2−、HCO3 容量法 <1% 5%酚酞-乙醇指示剂;1%溴酚蓝指示剂;双指示剂滴定分析法
    水体Ca、K、Na、Mg、Fe、Al、Mn ICP-OES Ca:0.003mg/L
    K:0.06mg/L
    Na:0.02mg/L
    Mg:0.02mg/L
    Fe:0.002mg/L
    Al:0.03mg/L
    Mn:0.005mg/L
    <5% (1)射频功率1250W;等离子体气(Ar)流速15L/min;辅助气(Ar)流速0.2L/min;雾化器气体(Ar)流速0.75L/min;样品提升量1.5L/min;观测方式:垂直;冲洗时间30s;积分时间5s;重复测定3次
    (2)最佳波长选择:Ca 317.933nm、K 766.49nm、Na 588.995nm、Mg 285.213nm、Fe 238.204nm、Al 396.153nm、Mn 285.213nm
    水体V、Be、Zn、Cr、Co、Ni、Mn、Pb、Mo、Ti、Cu、Ba、Cd ICP-MS
    Zn、Cr、Be、Co、Ni、Mn、Cu、Cd: 1~10ng/L;
    Mo、Pb、Ba、Ti、V: 0.1~1ng/L
    <5% (1)射频功率1150W;等离子体气(Ar)流速17 L/min;辅助气(Ar)流速1.2 L/min;载气(Ar)流速1.06 L/min;扫描模式为跳峰;重复测定3次
    (2)m/z: 51V、9Be、66Zn、52Cr、59Co、60Ni、55Mn、208Pb、98Mo、48Ti、63Cu、115Ba、111Cd
    下载: 导出CSV 
    | 显示表格

    水体总As和F浓度测定结果采用加标回收率的方法进行了准确性验证,结果如表2所示,水体总As的回收率在103.00%~114.80%,F的加标回收率在98.20%~99.90%。F的测定较As更准确,主要是F离子选择性电极法测定浓度为mg/L水平,而原子荧光光谱法测定总As浓度在μg/L水平,因而F的测定准确度更高。总体而言,As和F的加标回收率结果都在理论范围(80%~120%),表明测定方法可靠。在土壤总As和F含量测定中,采用国家一级标准物质的方法对分析方法准确度进行了检验。选择了沉积物标准品GBW07310作为分析样品,在相同分析方法下进行测定,总As和F的回收率分别为113.5%和92.6%,总As和F的测定值与标准值吻合,综上所述,方法的准确性良好,数据可靠。

    表  2  水体和土壤中As和F浓度测定准确性验证
    Table  2.  The accuracy of measuring As and F concentrations in water and soil samples
    样品类型 元素 加标值
    (mg/L)
    测定值
    (mg/L)
    回收率
    (%)
    地热水As03.16±0.10
    36.25±0.12103.0±2.69
    F015.91±0.24
    1530.65±0.4798.2±3.16
    温泉水As04.18±0.07
    48.78±0.12114.8±2.98
    F017.67±0.23
    2037.65±0.1599.9±0.75
    土壤样品元素标准值
    (mg/kg)
    测定值
    (mg/kg)
    回收率
    (%)
    沉积物GBW07310As25±3.028.4±0.85113.5±3.40
    F149±25138.0±16.5792.6±11.10
    下载: 导出CSV 
    | 显示表格

    地热水主要用于电热发电厂发电,而温泉水主要用于蓝色天国洗浴中心。水质常规理化参数如表3所示,钻井口地热水出露温度在76~78℃之间,出露温度随季节性变化差异较小。温泉水水温在28.30~41.40℃,温泉洗浴水入口温度为41.40℃,温泉利用后,随着冷却水和生活水的共排放,温度会降低,排废温度在28.30~29.60℃。温泉水pH范围在7.87~9.42之间,入口pH值更高,排废口pH值低,地热水pH在8.95~9.15之间。温泉水和地热水的电导变化范围在1670~1882μS/cm之间,TDS值在1126~1340mg/L之间,盐度在914~983mg/L之间,水质变化基本呈现枯水期>平水期>丰水期的趋势。

    表  3  水质常规理化参数
    Table  3.  Conventional physicochemical parameters of the water quality
    采样时间 水期 样品类型 采样位置 水温
    (℃)
    pH 电导
    (μS/cm)
    TDS
    (mg/L)
    盐度
    (mg/L)
    2021年6月 丰水期 温泉水 温泉洗浴入口 41.4 9.42 1690 1180 914
    地热水 电站钻井口 76.0 9.15 1699 1220 952
    2021年11月 平水期 温泉水 温泉洗浴排废口 29.6 7.87 1882 1340 956
    地热水 电站钻井口 78.0 8.95 1670 1213 935
    2022年4月 枯水期 温泉水 温泉洗浴排废口 28.3 7.93 1783 1238 974
    地热水 电站钻井口 77.5 9.14 1678 1126 983
    下载: 导出CSV 
    | 显示表格

    以平水期地热水和温泉水样品为代表,测定了8个阴阳离子浓度,结果如表4所示,水体中阳离子Na+占主导,温泉水中的阴离子HCO3 和SO4 2−占主导,而地热水中阴离子Cl和HCO3 占主导。此外,阴阳离子平衡和相对误差也列入表4中,地热水阴阳离子平衡相对误差小于5%,表明分析数据可靠。在温泉水中,阴阳离子平衡相对误差较高,最高达13.15%,因为温泉水Na+占比较高,Cl占比太低,导致阴阳离子平衡失调,从而导致相对误差偏高。

    表  4  地热水和温泉水中主要阴阳离子浓度
    Table  4.  Concentrations of major anion and cation ions in the geothermal and hot spring waters
    样品类型 阳离子浓度(mg/L) 阴离子浓度(mg/L) 阳离子当量浓度
    (mmol/L)
    阴离子当量浓度
    (mmol/L)
    相对误差
    (%)
    Ca2+ Mg2+ K+ Na+ Cl SO4 2− CO3 2− HCO3
    地热水
    (钻井口)一电厂
    6.66 0.20 35.19 445.5 331.6 16.79 85.95 546.4 20.63 21.53 2.13
    地热水
    (废井口)二电厂
    3.31 0.013 3.42 147.2 59.26 26.30 14.51 260.1 6.66 6.97 2.28
    温泉水洗浴
    (入口)
    38.23 10.86 15.91 183.4 72.46 99.9 4.84 262.3 11.19 8.59 13.15
    温泉水洗浴
    (排废)
    31.45 5.66 47.02 328.5 91.60 229 ND 428.9 17.53 14.38 9.85
    注:“ND”为未检出。
    下载: 导出CSV 
    | 显示表格

    采用Origin 9.2软件绘制了水体水化学Piper三线图,如图2所示,Piper三线图左侧三角形体现了主要阳离子的比例,右侧三角形体现了主要阴离子的比例,中间菱形体现了主要阴阳离子情况。数据点往高占比区域分布,表明水化学类型主要为高占比区域类型。地热水数据点集中分布在低Ca2+、高K++Na+占比方向,占阳离子总量的80%以上,而地热水中Na+浓度占K++Na+总浓度的87.50%~97.70%,因此阳离子主要以Na+为主导。水体Na+浓度高达445.5mg/L,Ca2+浓度低至3.31mg/L。在右下角的主要阴离子分布图中,阴离子主要分布在低Cl和高CO2− 3+HCO 3占比方向,而地热水中HCO 3的浓度占CO2− 3+HCO 3总浓度的86.50%~100%,因此阴离子主要以HCO 3为主导。此外地热水Cl占比最高达60%,综上所述,地热水水化学类型为Na-HCO3∙Cl,与文献[10]报道一致。

    图  2  水体水化学成分Piper三线图
    Figure  2.  Piper three-line diagram of the hydrochemical composition of water samples

    高温地热水中As的来源主要为岩浆脱气,表现为深层地热水中总As浓度(5.70mg/L)大于浅层地热水(2.99mg/L)24。此外,As的浓度还会受到水体pH值影响,在碱性条件下硫代砷酸盐浓度占比高达83%25。羊八井地热水和温泉水总As浓度如图3a所示,钻井口地热水浓度在3.16~3.56mg/L之间,平均值为3.32mg/L,几乎不随水期的变化而变化。地热水总As浓度与张庆等10报道的羊八井地热水中总As浓度(3.54~3.56mg/L)一致。同时,对比了位于同一流域上游的羊易电站地热水中总As浓度,羊八井地热水中总As浓度高于羊易电站(2.24~2.30mg/L),这主要是地热区岩浆背景不同。相比钻井口地热水,温泉水总As浓度在4.18~6.50mg/L,浓度更高。地热水中F离子浓度如图3b所示,羊八井钻井口地热水F离子浓度在15.90~16.20mg/L,几乎不随水期的变化而变化,远高于西藏日多温泉中F离子浓度(6.20mg/L)。同时,对比了同一流域上游的羊易电站地热水中F离子浓度,羊八井地热水中F离子浓度显著(P<0.01)高于羊易电站钻井口(12.63mg/L)和羊易电站喷射泉(5.19mg/L)。显著(P<0.01)高于其他地区地热水(1.00~12.70mg/L)26-27,与文献[28-29]报道的F离子浓度(17.00~18.90mg/L)相当,低于美国黄石公园报道的热泉氟化物浓度(31.60mg/L)30。地热水总F离子浓度与2012年报道的羊八井地热水(18.00~18.90mg/L)和羊易电站地热水(19.20mg/L)24相比,F离子浓度呈下降趋势。与As的分布规律一致,温泉洗浴水中总F离子浓度更高,在14.56~17.89mg/L,这是因为受水气蒸发浓缩影响(图3c),温泉水中As和F的浓度高于地热水。地热水来源于钻井口,水汽未发生分离或分离较少(图3d),因而浓度低于温泉水。温泉水中As和F浓度呈现枯水期>平水期>丰水期,这与季节蒸发量大小一致。地热水和温泉水As和F浓度显著高于《地热资源评价方法》(DZ40—85)对有害成分规定的最高允许排放浓度(总As为0.50mg/L,氟化物为10mg/L),地热废水的不当处理存在As和F的暴露风险。

    图  3  水体中总As(a)和F浓度(b),温泉水水汽蒸发(c)和地热钻井口(d)照片
    Figure  3.  The concentrations of total As (a) and F (b) in water samples, and pictures of hot spring (c) and geothermal water (d)

    As和F是高温地热水中典型的高浓度有害元素,主要来源于深层岩浆。通常,一些羟基矿物如白云母和黑云母常与F离子发生离子交换,当地下水为碱性时交换作用更容易发生,OH能取代含F矿物质中的F离子,增加了地热水中F离子浓度,其基本过程存在如下反应31

    白云母:

    $$ \begin{split} & \mathrm{K}\mathrm{A}\mathrm{l}_2\left[\mathrm{A}\mathrm{l}\mathrm{S}\mathrm{i}_3\mathrm{O}_{10}\right]\mathrm{F}_2+2\mathrm{O}\mathrm{H}^-= \\ &\mathrm{\ \ \ K}\mathrm{A}\mathrm{l}_2\left[\mathrm{A}\mathrm{l}\mathrm{S}\mathrm{i}_3\mathrm{O}_{10}\right]\left[\mathrm{O}\mathrm{H}\right]_2+2\mathrm{F}^- \end{split} $$ (1)

    黑云母:

    $$ \begin{split} & \mathrm{K}\mathrm{M}\mathrm{g}_3\left[\mathrm{A}\mathrm{l}\mathrm{S}\mathrm{i}_3\mathrm{O}_{10}\right]\mathrm{F}_2+2\mathrm{O}\mathrm{H}^-= \\ &\mathrm{\ \ \ K}\mathrm{M}\mathrm{g}\left[\mathrm{A}\mathrm{l}\mathrm{S}\mathrm{i}_3\mathrm{O}_{10}\right]\left[\mathrm{O}\mathrm{H}\right]_2+2\mathrm{F}^- \end{split} $$ (2)

    羊八井浅层地热流体,pH值为8.95~9.15,偏碱性的水体为As和F溶出提供了有利条件。此外,水体中F离子浓度受氟石(CaF2)溶解度限制,Ca2+浓度越低,溶液中F离子浓度就会越高,而地热水中Ca2+浓度低至3.31mg/L,低浓度Ca2+是地热流体中F离子浓度富集的另一有利条件。

    图4a为温泉排废口废水淋滤的土壤样品总As浓度。如图所示,枯水期和平水期总As浓度变化差异不大,总As浓度在97.60~99.08mg/kg之间,显著(P<0.01)大于丰水期浓度(79.50mg/kg)。丰水期土壤浓度较低,可能是河水受雨水补给,周边泥沙冲刷,稀释了土壤中总As的量,使其浓度偏低。土壤中总As浓度随季节性变化差异不大。与西藏土壤总As背景值(18.70mg/kg)相比32,地热区的总As浓度显著高于背景值(P<0.01),是背景值的4.25~5.31倍,表明地热区土壤浓度处于高As污染风险。与济南温泉水尾水土壤中As浓度相比(15.45μg/kg)33,羊八井地热区As浓度约高出3个数量级。与污染的寨上金矿矿区河流沉积物中As浓度(55~189mg/kg)相当34

    图  4  土壤中总As浓度(a)和总F浓度(b)
    Figure  4.  The concentrations of total As (a) and F (b) in the soil samples

    土壤母质是土壤中氟化物的基本来源。土壤中总F浓度如图4b所示,总F浓度在1162.70~1285.10mg/kg之间,三次采样的平均值为1237.40mg/kg。表现为丰水期、平水期浓度大于枯水期,土壤总F浓度随季节变化差异不大。与西藏土壤总F背景值(542mg/kg)相比32,温泉淋滤的土壤总F浓度显著高于背景值,是背景值的2.28倍。与全国土壤F背景值(453mg/kg)以及世界土壤F中位值(200mg/kg)相比35,温泉淋滤的土壤氟化物显著偏高(P<0.01)。与云南省洱源县高氟温泉点附近土壤总F浓度相比(630.48~1000.27mg/kg)36,其浓度也处于居高水平,其来源主要受高氟温泉水的冲刷、沉降和土壤吸附。水溶性的氟化物会对周边地下水和生物体产生富集影响,从而造成氟威胁。因此,对温泉水淋洗过的土壤样品进行了可溶态氟离子测定,土壤可溶态氟离子浓度在3.47~9.37mg/kg之间,表明温泉淋洗后的土壤可溶态氟浓度占比较高。

    以平水期为代表,测定了地热水和温泉水样品中的元素组成。结果如表5所示,地热水常量组成主要为Na和K;而温泉水中Na离子占主导,其次为Ca。通常,F离子浓度受氟石(CaF2)溶解积(Ksp)约束,Ca离子浓度越低,溶液中F离子浓度就会越高,地热水和温泉水中Ca离子浓度在6.36~35.74mg/L之间,低浓度Ca离子为F离子富集提供有利条件。此外,地热流体F离子溶解还会受到多因素的影响,如温度、pH、配体、共存离子等,使得F离子浓度分布出现反常。温泉水检出10.20mg/L的Mg离子,而在地热水却几乎未检出,Mn离子也出现了相同的规律。考虑到Mg和Mn两元素主要存在于母质矿石中,猜测温泉水与地表母质岩石中的Mg和Mn氧化物发生了交换。其他金属如Be、Cr、Pb、Sb和Mo等组分的浓度分布几乎没有显著差异。

    表  5  地热水和温泉水中金属元素浓度
    Table  5.  The metal element concentrations in geothermal and hot spring waters
    样品类型
    金属元素浓度(mg/L)
    Ca K Mg Na Fe V Be Mn Cr Pb Sb
    温泉水 35.74 15.46 10.20 195.4 0.091 0.009 0.002 0.14 0.035 0.0002 0.014
    地热水 6.36 36.63 <0.013 456.5 0.047 0.013 0.005 0.012 0.049 0.0002 0.027
    样品类型 Mo Cd Ti Se Zn Cu Ni Co Ba Hg
    温泉水 0.035 0.0002 0.018 ND 0.002 0.0008 0.0032 0.00013 0.16 <0.0004
    地热水 0.070 0.0001 0.025 ND 0.003 0.0014 0.0029 0.00003 0.090 <0.0004
    注:“ND”表示未检出。
    下载: 导出CSV 
    | 显示表格

    本文结合野外调查和室内分析对西藏羊八井地热区的地热水和温泉水水样开展了水化学、As和F浓度调查,阐明了水体水化学类型及As和F浓度变化趋势,揭示了水体As和F的来源及富集机制,评价了水体和土壤As和F超标情况和生态风险,具体结论如下:①富Na贫Ca高pH是羊八井地热水和温泉水最主要的水化学特征,为As和F离子溶出富集提供了有利条件;②地热废水的不当处理存在As和F的暴露风险,受水汽蒸发浓缩影响,温泉水As和F风险相比地热水更高;③水体As和F来源主要为水-岩浸溶相互作用,温泉淋滤促进了地表土壤As和F的富集,导致土壤总As和总F浓度均显著高于西藏土壤背景值。

    本文丰富了西藏地区水环境中的As和F来源探析及环境地球化学行为,为地热水持续合理开发利用和水土环境风险评价提供依据。需要进一步完善覆盖地热流经区堆龙曲流域地表水、地下水As和F生态风险评价,加强环境监测预警。其次,需要关注温泉洗浴中As和F暴露风险。

    BRIEF REPORT

    Significance: It is of great significance to study the concentration characteristics and sources of As and F to understand the environmental geochemical behavior of As and F in the geothermal system and their impact on the surrounding water and soil environment. Xizang Plateau is the region of China where high-temperature hydrothermal systems are intensively distributed, and the distribution of heat flow in the Xizang Plateau ranks first in China[1]. The Yangbajing Geothermal Power Plant is the highest and largest geothermal power plant in China, setting a record for the highest reservoir temperature in China[3]. The release of As and F can cause surface water and soil environmental pollution. Although researchers have made preliminary research on the concentration of these two typical harmful elements in geothermal fluids and their impact on the surrounding water environment[9-12], it is still necessary to conduct in-depth analysis of the annual variation trend of As and F concentrations in a geothermal system, the contribution of hydrochemical characteristics to the enrichment of As and F, and the ecological risks of the surrounding soil and water environment caused by As and F leakage. On the basis of previous studies, we investigated the As and F concentrations of geothermal water, hot spring water and soil samples in the Yangbajing geothermal field, analyzed the hydrochemical characteristics of the water bodies, identified the source and enrichment mechanism of As and F in a geothermal system, and evaluated the ecological risks of As and F in water bodies and surface soils.

    Methods: Three periods of field collection of geothermal water, hot spring water and soil samples were carried out in the Yangbajing geothermal field in Xizang from 2021 to 2022. Conventional physicochemical parameters were measured on site, including pH value, conductivity (EC), total dissolved solids (TDS), salinity (SAL), and temperature. The indoor analysis used atomic fluorescence spectrometer and X-ray fluorescence spectrometer to determine the concentration of total As in water and soil, respectively. The F concentration was measured using the ion selective electrode method. The pollution of As and F in water samples and soils was evaluated by comparing with the allowable maximum emission values of harmful elements in the standard and specified soil background values, respectively.

    Data and Results: (1) The main hydrochemical characteristics. The conventional physicochemical parameters of water quality are shown in Table 3. The pH value of geothermal fluids is between 7.87 and 9.42. Geothermal fluids have a complex matrix, with conductivity, TDS, and salinity ranging from 1670−1882μS/cm, 1126−1340mg/L, and 914−983mg/L, respectively. The changes in water quality physicochemical parameters generally show a trend of dry season>normal season>high season. The analysis of the concentration composition of eight major anions and cations shows that cation Na+ dominates in water, anions HCO 3 and SO4 2− dominate in hot spring water, and anions Cl and HCO 3 dominate in geothermal water. As the result of the Fig.E.1(a), the hydrochemical type of geothermal water is Na-HCO3∙Cl, consistent with literature[10]. Rich Na, poor Ca, and high pH are the main hydrochemical characteristics of Yangbajing geothermal and hot spring water.

      E.1.  Hydrochemical composition of water sample (a), the concentrations of total As and F in water sample (b), pictures of hot spring and geothermal water (c), and the concentrations of total As and F in the soils (d).

    (2) Concentration levels of As and F in geothermal fluids and ecological risk assessment. The total As and F concentrations of Yangbajing geothermal water and hot spring water are shown in Fig.E.1(b). The concentrations of total As and F in geothermal water are 3.16−6.50mg/L and 15.90−17.89mg/L, respectively, which hardly changes with the change of water period. The total As concentration in geothermal water is consistent with the total As concentration in Yangbajing geothermal water reported by Zhang et al.[10] (3.54−3.56mg/L). The F concentration of geothermal water shows a decreasing trend compared to the reported Yangbajing geothermal water (18.0−18.9mg/L) and Yangyi hydropower station geothermal water (19.2mg/L)[24]. As shown in Fig.E.1(c), influenced by the evaporation of water, the total concentration of As (4.18−6.50mg/L) and F (14.56−17.89mg/L) in hot spring water are higher than those in geothermal water. The concentration of As and F shows a trend of dry season>normal season>flood season. Notably, the total concentration of As and F in waters are significantly (P<0.01) higher than the maximum allowable emission concentrations for harmful components (0.5mg/L for As, and 10mg/L for F) in the Geothermal Resources Assessment Method (DZ40—85). Improper treatment of geothermal wastewater may pose exposure risks to As and F in the surrounding environment.

    (3) Concentration levels of As and F in soils and ecological risk assessment. Fig.E.1(d) shows the total As and F concentrations of soil samples leached from the wastewater at the hot spring discharge outlet. There is no significant difference in the total As concentration between the dry season and the normal season. The total As concentration ranges from 97.6 to 99.08mg/kg, which is significantly higher (P<0.01) than the concentration during the flood season (79.5mg/kg). The total F concentration ranges from 1162.7 to 1285.1mg/kg, showing no significant variation with the seasons. Compared with the background values of total As (18.7mg/kg) and F (542mg/kg) in Xizang soil[32], the total As and F concentrations in the geothermal area are significantly higher than the background values (P<0.01), which are 4.25−5.31 and 2.28 times of the background values respectively. The results show that the soil in the geothermal area is at risk of high As and F pollution.

    (4) The main sources of As and F in geothermal water and surface soil are water-rock leaching interaction, and the unique hydrochemical characteristics provide favourable conditions for the leaching of As and F. Rock leaching in the geothermal reservoir is the main resource of As and F enrichment in geothermal water. The geothermal fluids in Yangbajing have a pH value of 7.87−9.42. In addition, some hydroxyl minerals such as muscovite and biotite often undergo ion exchange with F. If the groundwater is alkaline, the exchange is more likely to occur. OH- can replace F in fluorinated minerals, increasing the concentration of F in geothermal water. It is known that the concentration of F in a water system is restricted by the solubility of fluorite. The alkaline environment caused by the hydrolysis of minerals due to water-rock interaction has a significant impact on the dissolution of fluoride, and the alkaline environment with high concentrations of Na+ and low concentrations of Ca2+ is an important reason for the formation of high fluoride. Additionally, low sulfide concentrations (as low as 16.79mg/L) further promote high arsenic geothermal water. It is worth noting that the geothermal water in Xizang has high sodium (up to 445.5mg/L), low sulfur (16.79−26.3mg/L), low calcium (3.31−6.66mg/L), and weakly alkaline (8.95−9.15), providing better convenient conditions for the dissolution of high As and F in Yangbajing geothermal fluids.

  • 图  1   镇巴地区吴家坪组富锂黏土岩实验样品特征

    Figure  1.   Characteristics of experimental samples from lithium-enriched claystones in Wujiaping Formation, Zhenba area.

    图  2   镇巴地区吴家坪组富锂黏土岩样品(a)WP-5、(b)WP-3和(c)WP-1的X射线衍射分析图谱

    Figure  2.   X-ray diffraction analysis patterns of lithium-enriched claystone sample (a) WP-5, (b) WP-3 and (c) WP-1 in Wujiaping Formation, Zhenba area.

    图  3   镇巴地区吴家坪组富锂黏土岩代表性样品扫描电镜图(SEM)和矿物相图(Phases)

    Figure  3.   Scanning electron microscopy (SEM) and mineral phase diagrams (Phases) of representative samples of lithium-enriched claystones in Wujiaping Formation, Zhenba area.

    表  1   吴家坪组富锂黏土岩XRD分析结果

    Table  1   XRD analysis results of lithium-enriched claystones in Wujiaping Formation, Zhenba area.

    富锂黏土岩中
    的矿物
    矿物含量(%)
    样品WP-5 样品WP-3 样品WP-1
    石英 2.3 1.2 1.3
    斜长石 2.9 0.6 2.3
    钾长石 2.5 1.5
    伊利石 39.0 9.7
    高岭石 7.2 59.1 18.7
    锐钛矿 5.5 7.3 7.9
    赤铁矿 11.6 8.7 12.6
    针铁矿 29.0 13.0 6.7
    硬水铝石 8.6 40.3
    叶蜡石 0.5
    黏土矿物总量 46.2 67.7 69.2
    注:“−”代表低于检测限,下同。
    下载: 导出CSV

    表  2   镇巴地区吴家坪组富锂黏土岩矿物及元素组成分析结果

    Table  2   Analytical results of minerals and elements of lithium-enriched claystones in Wujiaping Formation, Zhenba area.

    富锂黏土岩
    中的矿物
    矿物含量(%)
    样品WP-1 样品WP-2 样品WP-5 样品WP-3#1 样品WP-3#2 样品WP-4
    高岭石 18.69 30.56 10.47 70.83 68.32 10.24
    赤铁矿/磁铁矿 42.74 20.01 7.02 16.97 17.16 66.68
    铝绿泥石 29.49 44.04 6.22 1.97 4.07 12.97
    一水软铝石 0.02 45.90 0.21 0.18 0.57
    伊利石 3.78 1.04 18.71 4.04 3.99 1.13
    绿泥石 5.18 4.23 2.01 0.85 1.57 7.40
    锂绿泥石 0.07 0.03 8.94 0.01 0.05
    金红石 0.03 0.08 0.43 3.65 2.69 0.36
    钛铁矿 0.02 0.03 0.01 0.01 0.24
    蒙脱石 0.07 0.00 0.02
    石英 0.01 0.02 0.02 0.01
    锆石 0.01 0.01
    黏土矿物总量 57.21 79.91 92.33 77.91 78.15 32.38
    矿物总量 100.00 99.99 99.83 98.57 98.05 99.67
    富锂黏土岩
    中的元素
    元素含量(%)
    样品WP-1 样品WP-2 样品WP-5 样品WP-3#1 样品WP-3#2 样品WP-4
    O 41.09 48.08 41.77 47.61 47.30 36.42
    Fe 32.41 16.65 5.73 12.20 12.62 49.43
    Al 9.82 15.05 26.44 15.32 15.22 5.22
    Si 9.31 14.00 4.97 15.84 15.72 5.22
    Mg 2.79 3.96 0.64 0.22 0.43 1.52
    H 0.77 1.16 1.19 1.15 1.14 0.43
    Ti 0.02 0.05 0.27 2.19 1.62 0.29
    Li 0.12
    未识别元素 3.78 1.05 18.88 5.47 5.94 1.46
    元素总量 100.00 100.00 100.00 100.00 100.00 100.00
    下载: 导出CSV

    表  3   镇巴地区吴家坪组富锂黏土岩锂绿泥石粒度分布范围(样品WP-5)

    Table  3   Size distribution of cookeite in lithium-enriched claystone sample WP-5 of Wujiaping Formation, Zhenba area .

    粒度范围
    (μm)
    占比
    (%)
    粒度范围
    (μm)
    占比
    (%)
    3.3~3.6 0.03 14.42~15.73 0.53
    3.6~3.93 0 15.73~17.16 0.62
    3.93~4.67 0 17.16~18.71 0.66
    4.67~5.09 0.11 18.71~20.41 0.66
    5.09~5.55 0 20.41~22.26 0.59
    5.55~6.06 0.16 22.26~24.27 0.51
    6.06~6.61 0 24.27~26.47 0.46
    6.61~7.86 0.18 26.47~28.87 0.35
    7.21~7.86 0.21 28.87~31.49 0.31
    7.86~8.57 0.23 31.49~34.35 0.18
    8.57~9.35 0.24 34.35~37.46 0.18
    9.35~10.19 0.50 37.46~40.85 0.10
    10.19~11.12 0.24 40.85~44.56 0.05
    11.12~12.13 0.47 44.56~48.60 0.03
    12.13~13.22 0.68 48.60~53.00 0.01
    13.22~14.42 0.62 总量 8.94
    下载: 导出CSV

    表  4   镇巴地区吴家坪组富锂黏土岩元素含量(样品WP-5)

    Table  4   Element content in lithium-enriched claystone sample WP-5 from Wujiaping Formation, Zhenba area.

    元素 WP-5样品中
    元素含量(%)
    元素 WP-5样品中
    元素含量(%)
    SiO2 26.54 Na2O 1.57
    Al2O3 23.88 K2O 1.67
    TFe2O3 32.16 P2O5 0.08
    MgO 0.15 TiO2 3.74
    CaO 0.21 Li2O 0.31
    下载: 导出CSV
  • [1] 王核, 黄亮, 白洪阳, 等. 中国锂资源的主要类型、分布和开发利用现状: 评述和展望[J]. 大地构造与成矿学, 2022, 46(5): 848−866.

    Wang H, Huang L, Bai H Y, et al. Types, distribution, development and utilization of lithium mineral resources in China: Review and perspective[J]. Geotectonica et Metallogenia, 2022, 46(5): 848−866.

    [2] 张英利, 陈雷, 王坤明, 等. 豫西巩义地区上石炭统本溪组泥岩地球化学和富锂特征及其控制因素[J]. 地球科学与环境学报, 2023, 45(2): 208−226.

    Zhang Y L, Chen L, Wang K M, et al. Geochemistry and Li-rich characteristics of mudstones from upper Carboniferous Benxi Formation in Gongyi area, the Western Henan, China and their controlling factors[J]. Journal of Earth Science and Environment, 2023, 45(2): 208−226.

    [3] 温汉捷, 罗崇光, 杜胜江, 等. 碳酸盐黏土型锂资源的发现及意义[J]. 科学通报, 2020, 65(1): 53−59. doi: 10.1360/TB-2019-0179

    Wen H J, Luo C G, Du S J, et al. Carbonate-hosted clay-type lithium deposit and its prospecting significance[J]. Chinese Science Bulletin, 2020, 65(1): 53−59. doi: 10.1360/TB-2019-0179

    [4] 姚双秋, 庞崇进, 温淑女, 等. 桂西上二叠统合山组富锂黏土岩的发现及意义[J]. 大地构造与成矿学, 2020, 45(5): 952−962.

    Yao S Q, Pang C J, Wen S N, et al. Li-rich claystone in the upper Permian Heshan Formation in Western Guangxi and its prospecting significance[J]. Geotectonica et Metallogenia, 2020, 45(5): 952−962.

    [5] 邓旭升, 余文超, 杜远生, 等. 贵州狮溪铝土岩型锂资源的发现及意义[J]. 地质论评, 2023, 69(1): 1−15.

    Deng X S, Yu W C, Du Y S, et al. Discovery and significance of Shixi bauxitite-type lithium deposit in Guizhou Province[J]. Geological Review, 2023, 69(1): 1−15.

    [6] 崔燚, 温汉捷, 于文修, 等. 滇中下二叠统倒石头组富锂黏土岩系锂的赋存状态及富集机制研究[J]. 岩石学报, 2022, 38(7): 2080−2094. doi: 10.18654/1000-0569/2022.07.16

    Cui Y, Wen H J, Yu W X, et al. Study on the occurrence state and enrichment mechanism of lithium in lithium-rich clay rock series of the Daoshitou Formation of lower Permian in Central Yunnan[J]. Acta Petrologica Sinica, 2022, 38(7): 2080−2094. doi: 10.18654/1000-0569/2022.07.16

    [7]

    Liu L, Liu X F, Yang S J, et al. Mineralogical and geochemical investigations on the early Permian Yuxi karstic bauxite deposit, Central Yunnan, China[J]. Ore Geology Reviews, 2023, 153: 105296. doi: 10.1016/j.oregeorev.2023.105296

    [8] 贾永斌, 于文修, 温汉捷, 等. 滇中盆地南缘富锂黏土岩地球化学特征及沉积环境初探[J]. 沉积学报, 2023, 41(1): 170−182.

    Jia Y B, Yu W X, Wen H J, et al. Geochemical characteristic and sedimentary environment of Li-rich clay rocks at the southern margin of the Central Yunnan Basin[J]. Acta Sedimentologica Sinica, 2023, 41(1): 170−182.

    [9] 凌坤跃, 温汉捷, 张起钻, 等. 广西平果上二叠统合山组关键金属锂和铌的超异常富集与成因[J]. 中国科学:地球科学, 2021, 51(6): 853−873.

    Ling K Y, Wen H J, Zhang Q Z, et al. Super-enrichment of lithium and niobium in the upper Permian Heshan Formation in Pingguo, Guangxi, China[J]. Science China: Earth Sciences, 2021, 51(6): 853−873.

    [10]

    Ling K Y, Zhu X Q, Tang H S, et al. Geology and geochemistry of the Xiaoshanba bauxite deposit, Central Guizhou Province, SW China: Implications for the behavior of trice end rare earth elements[J]. Journal of Geochemical Exploration, 2018, 190: 170−186. doi: 10.1016/j.gexplo.2018.03.007

    [11] 赵浩男, 邢乐才, 何洪涛, 等. 广西平果上二叠统合山组铝土矿中铌的赋存状态[J]. 矿物学报, 2022, 42(4): 453−460.

    Zhao H N, Xing L C, He H T, et al. The mode of occurrence of niobium in bauxite of the upper Permian Heshan Formation in the Pingguo area, Guangxi Autonomous Region, China[J]. Acta Mineralogica Sinica, 2022, 42(4): 453−460.

    [12] 梁航, 温淑女, 姚双秋, 等. 桂西上二叠统合山组锂超常富集黏土岩的物源分析与地质意义[J]. 桂林理工大学学报, 2022, 42(3): 535−548.

    Ling H, Wen S N, Yao S Q, et al. Provenance analysis and geological significance of Li-rich claystone in upper Permian Heshan Formation, Western Guangxi[J]. Journal of Guilin University of Technology, 2022, 42(3): 535−548.

    [13] 覃顺桥, 雷美荣, 凌坤跃, 等. 桂中地区上二叠统合山组关键金属分布富集特征[J]. 矿物岩石地球化学通报, 2023, 42(1): 157−166.

    Qin S Q, Lei M R, Ling K Y, et al. Distribution and enrichment characteristics of critical metals in the upper Permian Heshan Formation in the Central Guangxi[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2023, 42(1): 157−166.

    [14] 叶小拼. 桂西沉积型锂资源潜力分析[J]. 地质与资源, 2020, 29(5): 429−434.

    Ye X P. Resource potential analysis of sedimentary lithium deposits in West Guangxi region[J]. Geology and Resources, 2020, 29(5): 429−434.

    [15] 廖家隆, 李宝庆, 张福强, 等. 广西晚二叠世煤系沉积型锂矿研究现状及展望[J]. 中国煤炭地质, 2022, 34(10): 9−14.

    Liao J L, Li B Q, Zhang F Q, et al. Research status and prospect of sedimentary lithium resources of late Permian coal measure in Guangxi[J]. Coal Geology of China, 2022, 34(10): 9−14.

    [16] 密静强, 陈远荣, 于浩, 等. 广西平果沉积型铝土矿Ga的分布特征与沉积环境关联性探讨[J]. 地质力学学报, 2022, 28(3): 417−431.

    Mi J Q, Chen Y R, Yu H, et al. Correlation between the distribution characteristics of gallium and sedimentary environment of sedimentary bauxite in Pingguo County, Guangxi, China[J]. Journal of Geomechanics, 2022, 28(3): 417−431.

    [17] 崔燚, 罗重光, 徐林, 等. 黔中九架炉组富锂黏土岩系的风化成因及锂的富集规律[J]. 矿物岩石地球化学通报, 2018, 37(4): 696−704.

    Cui Y, Luo C G, Xu L, et al. Weathering origin and enrichment of lithium in Central Guizhou Province, clay rocks of the Jiujialu Formation, Southwest China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(4): 696−704.

    [18] 惠博, 龚大兴, 陈伟, 等. 贵州六枝地区沉积型锂矿中锂的赋存状态研究[J]. 有色金属(选矿部分), 2021(2): 1-4.

    Hui B, Gong D X, Chen W, et al. Study on the occurrence of lithium in sedimentary lithium deposits in Liuzhi area Guizhou Province[J]. Nonferrous Metals (Mineral Processing Section), 2021(2): 1-4.

    [19] 沈丽璞, 宋云华, 彭昭瑞, 等. 河南某地黏土矿中锂绿泥石的发现及初步研究[J]. 矿物学报, 1986, 6(1): 86−91.

    Shen L P, Song Y H, Peng Z R, et al. Discovery and preliminary study of Li-chlorite in claystone from a certain location of Henan Province[J]. Acta Mineralogica Sinica, 1986, 6(1): 86−91.

    [20] 王新彦, 张荣臻, 杨松林, 等. 河南渑池地区铝土矿工艺矿物学及锂的赋存状态研究[J]. 矿产综合利用, 2020(6): 163−169.

    Wang X Y, Zhang R Z, Yang S L, et al. Studying on the process mineralogy and existing state of lithium in bauxite ore from Mianchi district, Henan Province[J]. Multipurpose Utilization of Mineral Resources, 2020(6): 163−169.

    [21] 李荣改, 宋翔宇, 高志, 等. 河南某地低品位含锂黏土矿提锂新工艺研究[J]. 矿冶工程, 2014, 34(6): 81−84.

    Li R G, Song X Y, Gao Z, et al. New technology for extracting Li from low-grade lithium-bearing clay[J]. Mining and Metallurgical Engineering, 2014, 34(6): 81−84.

    [22]

    Swain B. Recovery and recycling of lithium—A review[J]. Separation and Purification Technology, 2017, 172: 388−403. doi: 10.1016/j.seppur.2016.08.031

    [23] 朱士飞, 曹泊, 吴国强, 等. 广西上林万福矿区煤中锂、镓和稀土元素逐级提取实验研究[J]. 中国煤炭地质, 2021, 33(9): 38−41.

    Zhu S F, Cao B, Wu G Q, et al. Experimental study of coal lithium, gallium and REE stepwise extraction in Wanfu mine area, Shanglin, Guangxi[J]. Coal Geology of China, 2021, 33(9): 38−41.

    [24] 徐璐, 惠博, 龚大兴, 等. 从黏土型锂矿中高效浸出锂的研究[J]. 有色金属(冶炼部分), 2021(9): 37−40.

    Xu L, Hui B, Gong D X, et al. Study on high-efficient leaching of lithium from clay-type lithium ore[J]. Nonferrous Metals (Extractive Metallurgy), 2021(9): 37−40.

    [25] 朱丽, 顾汉念, 杨永琼, 等. 黏土型锂矿资源提锂工艺研究进展[J]. 轻金属, 2020(12): 8−13.

    Zhu L, Gu H N, Yang Y Q, et al. Research progress of lithium extraction from clay-type lithium ore resources[J]. Light Metals, 2020(12): 8−13.

    [26] 石贵明, 周意超, 陈海蛟, 等. 滇中某沉积黏土型锂矿焙烧-酸浸工艺提锂试验研究[J]. 金属矿山, 2023(1): 199−203.

    Shi G M, Zhou Y C, Chen H J, et al. Experiment study on lithium extraction with roasting and acid leaching process for a sedimentary clay-type lithium ore in Central Yunnan Province[J]. Metal and Mine, 2023(1): 199−203.

    [27]

    Sui T, Song B T, Dluhos J, et al. Nanoscale chemical mapping of Li-ion battery cathode material by FIB-SEM and TOF-SIMS multi-modal microscopy[J]. Nano Energy, 2015, 17: 254−260. doi: 10.1016/j.nanoen.2015.08.013

    [28] 孔令安, 李正要, 钟振宇, 等. 黏土型锂矿硫酸铵焙烧-酸浸提锂[J]. 有色金属工程, 2022, 12(12): 66−72.

    Kong L A, Li Z Y, Zhong Z Y, et al. Extraction of lithium by adding ammonium sulfate roasting-acid leaching from clay-type lithium ore[J]. Nonferrous Metals Engineering, 2022, 12(12): 66−72.

    [29] 钟振宇, 李正要, 孔令安, 等. 黏土型锂矿氯化焙烧-酸浸提锂工艺试验研究[J]. 有色金属(选矿部分), 2023(2): 63−70.

    Zhong Z Y, Li Z Y, Kong L A, et al. Experimental study on clay-type lithium ore chlorination roasting-acid leaching to extract lithium process[J]. Nonferrous Metals (Mineral Processing Section), 2023(2): 63−70.

    [30] 朱丽, 杨永琼, 顾汉念, 等. 电感耦合等离子质谱-X射线衍射法研究云南玉溪和美国内华达地区黏土型锂资源矿物学特征[J]. 岩矿测试, 2021, 40(4): 532−541.

    Zhu L, Yang Y Q, Gu H N, et al. Mineralogical characteristics of two clay-type lithium resources in Yuxi, China, and Nevada, the United States of America[J]. Rock and Mineral Analysis, 2021, 40(4): 532−541.

    [31] 夏瑜, 罗星, 吴杰, 等. 应用X粉晶衍射和SEM-EDX分析铝土矿物的微观结构与元素特征[J]. 轻金属, 2020(9): 6−12.

    Xia Y, Luo X, Wu J, et al. Analysis of micro-structure and element of bauxite minerals by X-powder diffraction characteristics and SEM-EDX[J]. Light Metals, 2020(9): 6−12.

    [32]

    Ling K Y, Tang H S, Zhang Z W, et al. Host minerals of Li–Ga–V–rare earth elements in Carboniferous karstic bauxites in Southwest China[J]. Ore Geology Reviews, 2020, 119: 103325. doi: 10.1016/j.oregeorev.2020.103325

    [33] 杨波, 杨莉, 沈茂森, 等. TIMA测试技术在白云鄂博矿床铌工艺矿物学中的应用[J]. 矿冶工程, 2021, 41(6): 65−68.

    Yang B, Yang L, Shen M S, et al. Application of TIMA in process mineralogy study of niobium minerals in Bayan Obo deposit[J]. Mining and Metallurgical Engineering, 2021, 41(6): 65−68.

    [34] 陈倩, 宋文磊, 杨金昆, 等. 矿物自动定量分析系统的基本原理及其在岩矿研究中的应用——以捷克泰思肯公司TIMA为例[J]. 矿床地质, 2021, 40(2): 345−368.

    Chen Q, Song W L, Yang J K, et al. Principle of automated mineral quantitative analysis system and its application in petrology and mineralogy: An example from TESCAN TIMA[J]. Mineral Deposits, 2021, 40(2): 345−368.

    [35] 李秋杭, 谢远云, 康春国, 等. 基于人工和TIMA自动化方法的松花江水系重矿物组成: 对源-汇物源示踪的指示[J]. 海洋地质与第四纪地质, 2022, 42(3): 170−183.

    Li Q H, Xie Y Y, Kang C G, et al. Heavy mineral composition of the Songhua River system identified by manual and TIMA automatic methods and implications for provenance tracing[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 170−183.

    [36] 温利刚, 曾普胜, 詹秀春, 等. 矿物表征自动定量分析系统(AMICS)技术在稀土稀有矿物鉴定中的应用[J]. 岩矿测试, 2018, 37(2): 121−129.

    Wen L G, Zeng P S, Zhan X C, et al. Application of the automated mineral identification and characterization system (AMICS) in the identification of rare earth and rare minerals[J]. Rock and Mineral Analysis, 2018, 37(2): 121−129.

    [37] 谢小敏, 李利, 袁秋云, 等. 应用TIMA分析技术研究Alum页岩有机质和黄铁矿粒度分布及沉积环境特征[J]. 岩矿测试, 2021, 40(1): 50−60.

    Xie X M, Li L, Yuan Q Y, et al. Grain size distribution characterized by TIMA of organic matter and pyrite in Alum shales and its paleo-environmental significance[J]. Rock and Mineral Analysis, 2021, 40(1): 50−60.

    [38]

    Zhou Y, Fan F P, Xing G F, et al. Characteristics and genesis of the Fanshan lithocap, Zhejiang Province: Exploration implications from the largest alunite deposit of China[J]. Ore Geology Reviews, 2022, 149: 105038. doi: 10.1016/j.oregeorev.2022.105038

    [39]

    Zhao L, Ward C R, French D, et al. Origin of a kaolinite-NH4-illite-pyrophyllite-chlorite assemblage in a marine-influenced anthracite and associated strata from the Jincheng Coalfield, Qinshui Basin, Northern China[J]. International Journal of Coal Geology, 2018, 185: 61−78. doi: 10.1016/j.coal.2017.11.013

    [40] 赵蕾, 王西勃, 代世峰. 煤系中的锂矿产: 赋存分布、成矿与资源潜力[J]. 煤炭学报, 2022, 47(5): 1750−1760.

    Zhao L, Wang X B, Dai S F. Lithium resources in coal-bearing strata: Occurrence, mineralization and resource potential[J]. Journal of China Coal Society, 2022, 47(5): 1750−1760.

    [41] 薛颖瑜, 刘海洋, 孙卫东. 锂的地球化学性质与富集机理[J]. 大地构造与成矿学, 2021, 45(6): 1202−1215.

    Xue Y Y, Liu H Y, Sun W D. The geochemical properties and enrichment mechanism of lithium[J]. Geotectonica et Metallogenia, 2021, 45(6): 1202−1215.

    [42] 钟海仁. 重庆南川铝土矿沉积物源及含矿岩系伴生锂赋存状态和富集机理研究[D]. 北京: 中国地质大学(北京), 2020.

    Zhong H R. Provenance of bauxite, and occurrence state, enrichment mechanism of associated lithium in ore-bearing rocks of deposits in Nanchuan district, Chongqing[D]. Beijing: China University of Geosciences (Beijing), 2020.

    [43]

    Jeldres R I, Uribe L, Cisternas L A, et al. The effect of clay minerals on the process of flotation of copper ores—A critical review[J]. Applied Clay Science, 2019, 170: 57−69. doi: 10.1016/j.clay.2019.01.013

    [44] 赵越, 马万平, 杨洋, 等. 黏土矿物对Li+的吸附实验研究——对黏土型锂矿成矿启示[J]. 矿物学报, 2022, 42(2): 141−153.

    Zhao Y, Ma W P, Yang Y, et al. Experimental study on the adsorption of Li+ by clay minerals-implications for the mineralization of clay-type lithium deposit[J]. Acta Mineralogica Sinica, 2022, 42(2): 141−153.

    [45]

    Crothers A R, Radke C J. A grahame triple-layer model unifies mica monovalent ion exchange, Zeta potential, and surface forces[J]. Advances in Colloid and Interface Science, 2021, 288: 102335. doi: 10.1016/j.cis.2020.102335

    [46] 钟海仁, 孙艳, 杨岳清, 等. 铝土矿(岩)型锂资源及其开发利用潜力[J]. 矿床地质, 2019, 38(4): 898−916.

    Zhong H R, Sun Y, Yang Y Q, et al. Bauxite (aluminum)-type lithium resources and analysis of its development and utilization potential[J]. Mineral Deposits, 2019, 38(4): 898−916.

  • 其他相关附件

图(3)  /  表(4)
计量
  • 文章访问数:  259
  • HTML全文浏览量:  59
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-16
  • 修回日期:  2023-07-30
  • 录用日期:  2023-09-26
  • 网络出版日期:  2023-12-21
  • 刊出日期:  2024-02-28

目录

/

返回文章
返回