• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

碱性过硫酸钾-紫外分光光度法测定水质总氮方法的改进

刘振超, 李志雄, 陆迁树, 王晓娜, 张松, 胡耀华

刘振超,李志雄,陆迁树,等. 碱性过硫酸钾-紫外分光光度法测定水质总氮方法的改进[J]. 岩矿测试,2024,43(1):114−123. DOI: 10.15898/j.ykcs.202302280028
引用本文: 刘振超,李志雄,陆迁树,等. 碱性过硫酸钾-紫外分光光度法测定水质总氮方法的改进[J]. 岩矿测试,2024,43(1):114−123. DOI: 10.15898/j.ykcs.202302280028
LIU Zhenchao,LI Zhixiong,LU Qianshu,et al. Improvement of the Method for Determining Total Nitrogen in Water Quality Using Alkaline Potassium Persulfate Ultraviolet Spectrophotometry[J]. Rock and Mineral Analysis,2024,43(1):114−123. DOI: 10.15898/j.ykcs.202302280028
Citation: LIU Zhenchao,LI Zhixiong,LU Qianshu,et al. Improvement of the Method for Determining Total Nitrogen in Water Quality Using Alkaline Potassium Persulfate Ultraviolet Spectrophotometry[J]. Rock and Mineral Analysis,2024,43(1):114−123. DOI: 10.15898/j.ykcs.202302280028

碱性过硫酸钾-紫外分光光度法测定水质总氮方法的改进

基金项目: 中国地质调查局地质调查项目(DD20220879);自然资源部三江成矿作用及资源勘查利用重点实验室开放基金课题(SJSYS202302)
详细信息
    作者简介:

    刘振超,助理工程师,主要从事无机化学分析。E-mail:670002491@qq.com

    通讯作者:

    陆迁树,高级工程师,化学工程与工艺专业。E-mail:973039828@qq.com

  • 中图分类号: O657.31

Improvement of the Method for Determining Total Nitrogen in Water Quality Using Alkaline Potassium Persulfate Ultraviolet Spectrophotometry

  • 摘要:

    水质总氮是指示水体富营养化的重要标志物,因此,开发测定水体中总氮的准确方法,对研究水体中的污染物来源、污染程度及总氮的地球化学循环过程具有重要意义。测定水质样品中的总氮,通常采用碱性过硫酸钾-紫外分光光度法,但该法对空白吸光度有严苛的要求,空白吸光度一旦超过0.030,就有可能导致测定结果严重偏低,其中,过硫酸钾的纯度和存放时间可能对测定结果影响最大;同时,采用比色管捆绑方式高温高压消解水质样品,导热较慢,消解时间偏长,捆绑时一旦比色管上的标签或记号脱落,容易导致样品混乱;样品保存条件不当也很容易造成测定结果偏低。为提高水质样品中总氮测定结果的准确性和效率,本文通过对国内外不同厂家生产的过硫酸钾进行总氮空白吸光度和存放时间对比实验,然后对两种消解方法进行消解时间对比实验,最后,对比了两种不同水质样品保存方法对测定结果的影响。对比实验结果表明:国产优级纯碱性过硫酸钾存放时间在30天内,其水质总氮空白吸光度均小于0.030;在124℃条件下,使用插置法消解样品,只用20min就能使样品消解完全;对酸化后的水质样品,其保质期从1天延长至7天。研究认为,选用国产优级纯过硫酸钾和改良过的插置法消解水质样品,与捆绑法相比,其水质总氮检出限更低,消解效率更高,且不容易出现互相污染和样品错位等情况,提高了水质总氮测定的准确度。

     

  • 铊属于稀散元素,常分散赋存于岩石中;在地球化学上既有亲石性,又有亲硫性。亲石性表现为以类质同象的形式与钾、钠等元素在云母和钾长石等富钾矿物共生;而在低温高硫环境中,则表现为亲硫性,以类质同象的形式进入各种铅锌铜铁等硫化物矿物中。20世纪70年代,为了寻找放射性同位素205Pb曾经存在的证据和探究核素合成的机理,科研人员开始了对铊同位素的研究1。在早期的研究中,由于测试用的热电离质谱仪(TIMS)的质量分馏不稳定,且难以激发高电离能的元素,导致铊同位素分析结果的精密度较差,不能满足大部分研究的需要。近些年,随着具备高电离能力的多接收器电感耦合等离子体质谱仪(MC-ICP-MS)的出现,同时得益于铅对分析过程中铊同位素分馏的校正,使分析结果的精密度有了大幅提高(优于0.05‰)2-5

    由于铊兼有亲石和亲硫性,其同位素组成对吸附、共沉淀、氧化还原等过程较为敏感,因此可以被应用于天体演化6、古环境变化7、矿床成因8及污染物迁移9-11等过程的示踪。但因为自然界样品中铊的含量低(地壳中铊的平均含量仅为0.75mg/kg),且同位素组成的变化范围和自然分馏效应很小12,导致很难获得高精度和高准确度的铊同位素数据。因此,除高精度的仪器测量外,样品的消解、分离和纯化等化学前处理流程对铊同位素分析结果的准确与否也至关重要。对于铊含量的分析,分解试样时如果不知道矿石中铊的赋存状态,一般选用含有氢氟酸的混合酸或强碱性熔剂分解13-16。而对于富含有机质的样品,由于亚铊的氧化物、氯化物等具有挥发性,应避免使用直接灼烧法除去有机质,而是采用湿法氧化分解1416。目前国内外地质样品中铊同位素测定的消解方法主要为电热板加热法。这种方法便于在洁净的化学实验室完成,但清洗容器和样品消解过程的用时较长,耗时往往超过一周4。根据地质样品岩性的不同,消解所用的混合酸体系也不相同,尚无统一的标准。铊的分离和纯化一般利用Tl+和Tl3+在盐酸介质中与Cl络合能力的不同。需要注意的是,在纯化后的铊馏分中应尽可能减小铅量,否则由于残留的铅同位素组成是未知的(校正时添加标液的铅同位素是已知的),会影响铊的同位素分馏校正;此外,天然样品204Pb的自然丰度虽然仅有铅总量的1.4%,但204Pb1H多原子离子干扰对于铊同位素的高精度测量仍不可忽视。目前,使用阴离子交换树脂(如AG1-X8或AG-MP-1M树脂)二次过柱是普遍采用的铊提纯方法。该方法由Rehkämper等2首次提出,后经Nielsen等3、Baker等6、Owens等17研究团队发展和完善。该方法两次过柱均采用同一种阴离子交换树脂,第一次分离时采用装有1.5mL树脂的石英柱,依次用硝酸-氢溴酸-饱和溴水淋洗液洗脱基体元素、盐酸-饱和溴水淋洗液洗脱干扰元素铅,最后用盐酸-二氧化硫淋洗液收集铊。收集到的铊馏分经硝酸蒸干后,加入氢溴酸-饱和溴水提取液进行二次过柱,以保证完全消除干扰组分的影响。第二次过柱时,除所用体积与第一次不同之外,淋洗液的类型和浓度均与第一次相同。此外,Wang等5开发了磷酸三丁酯(TBP)树脂和AG50W-X12阳离子交换树脂的两级串联分离纯化方案,以NIST 997为参考物质测定BHVO-2、BCR-2、AGV-2、GSP-2、COQ-1、NOD-P-1、NOD-A-1、GBW07406、SCO-1共9种地质标准样品的同位素组成,获得了理想的结果。

    微波消解是一种利用微波的穿透性和激活反应能力加热密闭容器内的试剂和样品的技术,具有省时、省酸、安全、空白值低、易实现自动监控、污染小以及损失少等优点,已广泛应用于食物18-19、环境20、生物21、植物22以及矿物23-26等样品中重金属元素的分析。本文为提高铊同位素分析中化学前处理流程的效率,研究了利用微波消解技术分解地质样品进行铊同位素分析的可行性,比较了硝酸-氢氟酸-盐酸-过氧化氢和硝酸-氢氟酸-高氯酸混合酸体系对样品的消解情况。消解后的样品经AG1-X8阴离子交换树脂分离纯化后,采用MC-ICP-MS结合铅标准溶液(NIST SRM981)质量分馏校正法进行同位素分析。使用优化后的实验方案分析了4个地质标准物质的铊同位素组成,获得较为满意的结果。

    铊同位素组成的测试运用Neptune plus多接收器电感耦合等离子体质谱仪(MC-ICP-MS,美国ThermoFisher公司)完成,进样系统包括双路气旋式雾化室、Jet样品锥和X截取锥,检测器包括9个法拉第杯和1个离子计数器。

    淋洗曲线标定及回收率测试应用7500cx电感耦合等离子体质谱仪(ICP-MS,美国Agilent公司)完成,内标溶液为10ng/mL铑(2%硝酸介质)。MC-ICP-MS和ICP-MS质谱仪的主要工作参数见表1

    表  1  MC-ICP-MS和ICP-MS仪器主要工作参数
    Table  1.  Main operation conditions of MC-ICP-MS and ICP-MS instruments
    工作参数 设定值
    MC-ICP-MS ICP-MS
    冷却气(Ar)流速(L/min) 16.00 14.95
    辅助气(Ar)流速(L/min) 0.86 0.28
    雾化气(Ar)流速(L/min) 0.05 0.92
    射频功率(W) 1152 1470
    积分时间(s) 4.194 /
    每组测量次数 30 /
    测量组数 1 /
    下载: 导出CSV 
    | 显示表格

    实验用水由超纯水系统(美国Millipore公司)制备,电阻率18.2MΩ·cm。

    高纯酸由NJ-SCH-I酸纯化器(南京滨正红仪器有限公司)纯化。

    样品消解由Ethos1微波消解仪(意大利Milestone公司)完成。

    PFA微型离子交换柱:北京博明远科技有限公司,下部为0.65cm(内径)×10.0cm(高),上部为1.5cm(内径)×5cm(高),总容量约15mL,底部为孔径20μm的亲水性筛板。

    铅同位素标准溶液NIST SRM981、铊标准溶液GSB 04-1758-2004和地质标准物质(NOD-P-1、NOD-A-1、GBW07406、GSP-2)详细信息见表2

    表  2  地质标准物质和同位素标准溶液的详细信息
    Table  2.  Details of geological reference materials and isotope reference solutions
    标准物质编号 样品类型 研制单位 推荐值
    NIST SRM 981 铅同位素标准溶液 美国标准与技术研究院(NIST) / 10μg/mL
    GSB 04-1758-2004 铊标准溶液 中国有色金属及电子材料分析测试中心 1000μg/mL /
    NOD-P-1 铁锰结核 美国地质调查局(USGS) 210±2μg/g 560±6μg/g
    NOD-A-1 铁锰结核 美国地质调查局(USGS) 120±1.0μg/g 846±8.2μg/g
    GBW07406 土壤 中国地质科学院地球物理地球化学勘查研究所 2.2±0.6μg/g 314±25μg/g
    GSP-2 花岗岩 美国地质调查局(USGS) 1.1±0.1μg/g 43±3μg/g
    下载: 导出CSV 
    | 显示表格

    阴离子交换树脂(AG1-X8,100~200目):购自美国Bio-Rad公司。

    优级纯的盐酸、硝酸和氢氟酸(上海国药集团化学试剂有限公司):经二次亚沸蒸馏纯化后使用;高氯酸(优级纯,上海国药集团化学试剂有限公司);过氧化氢、饱和溴水(分析纯,广州西陇化工股份有限公司);二氧化硫标准气体(99.9%,广东英德市西洲气体有限公司)。

    0.1mol/L盐酸-6%二氧化硫溶液的配制:将二氧化硫标准气体通入0.1mol/L盐酸中,使其质量增加6%,现用现配。

    根据铊在样品中的含量,称取50~300mg粉末状样品(200目,105℃烘干2h)于干净的PFA(可溶性聚四氟乙烯)消解罐中,用少量水润湿,加入2mL氢氟酸、2mL硝酸和0.5mL高氯酸;充分混匀,放置反应1h后,加盖拧紧;按表3的升温程序进行微波消解。冷却后,缓慢泄压放气,打开消解罐,将样品转移至15mL 聚四氟乙烯杯中180℃加热至白烟冒尽,加入2mL 6mol/L盐酸溶解,120℃蒸干,重复一次(除尽氢氟酸、硝酸和高氯酸)。最后加入2mL 2mol/L硝酸-1%饱和溴水,加盖密闭后80℃加热12h,待溶液冷却,离心后进行色谱分离。

    表  3  样品处理微波消解程序
    Table  3.  Microwave digestion procedure for sample pretreatment
    步骤消解温度
    (℃)
    消解功率
    (W)
    加热时间
    (min)
    保持时间
    (min)
    112040055
    215080055
    31901200520
    下载: 导出CSV 
    | 显示表格

    需要特别注意的是:①所有的敞口操作必须在超净工作台进行,以防外部环境中铅及其他元素的污染;②为避免酸的损失和安全伤害,消解罐必须完全冷却后才能泄压开盖22

    铊的纯化流程在Nielsen等327的研究基础上作了部分优化,优化内容主要包括:①将双柱淋洗修改为单柱淋洗;②控制淋洗液的总体积在28mL。详细步骤如下(流程见表4):采用湿法填充树脂柱,将约2mL AG1-X8树脂置于微型离子交换柱中,依次用1mL 0.1mol/L盐酸-6%二氧化硫和1mL超纯水清洗两遍,再用2mL 2mol/L硝酸-1%溴水平衡树脂2次;然后将离心后的样品溶液加载于树脂柱上,用2mL 2mol/L硝酸-1%溴水淋洗6次和2mL超纯水淋洗1次,以除去基体元素;随后用2mL 0.1mol/L盐酸-6%二氧化硫淋洗5次,收集铊。最后将收集到的0.1mol/L盐酸-6%二氧化硫溶液置于电热板120℃蒸干,然后用0.5mL 0.1%硫酸-2%硝酸溶解,准备进行质谱测试。

    表  4  铊同位素的离子交换流程(2mL AG1-X8树脂,100~200目)
    Table  4.  Chemical purification procedure for Tl isotopes (2mL AG1-X8 resin, 100-200 mesh)
    步骤 淋洗液 淋洗液体积
    (mL)
    淋洗
    次数
    实验目的
    1 0.1mol/L盐酸-6%二氧化硫 1 2 清洗树脂
    2 超纯水 1 2 清洗树脂
    3 2mol/L硝酸-1%溴水 2 2 清洗/平衡树脂
    4 2mol/L硝酸-1%溴水 2 / 装载样品
    5 2mol/L硝酸-1%溴水 2 6 洗脱基质
    6 超纯水 2 1 洗脱NO3和BrO
    7 0.1mol/L盐酸-6%二氧化硫 2 5 收集铊
    下载: 导出CSV 
    | 显示表格

    铊同位素的分析测定在桂林理工大学广西隐伏金属矿产勘查重点实验室进行。由于自然界样品的铊同位素组成的变化范围很小,用传统的千分偏差“δ”往往不能有效地反映其同位素组成的差异,所以国际上铊同位素测试结果普遍以万分偏差“ε”来表示1。另外,由于未购买到国际上普遍认可的铊同位素标准物质NIST 997,本文选择以中国有色金属及电子材料分析测试中心研制的铊同位素物质GSB 04-1758-2004为参照,即用ε205TlGSB Tl表示:

    $$ \varepsilon^{205}\mathrm{T}\mathrm{l}_{\mathrm{G}\mathrm{S}\mathrm{B}\ \mathrm{T}\mathrm{l}}=\left[\frac{(^{205}\mathrm{T}\mathrm{l}/^{203}\mathrm{T}\mathrm{l})_{\mathrm{s}\mathrm{a}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}}}{(^{205}\mathrm{T}\mathrm{l}/^{203}\mathrm{T}\mathrm{l})_{\mathrm{G}\mathrm{S}\mathrm{B}\mathrm{ }\ \mathrm{T}\mathrm{l}}}-1\right]\times10000 $$

    测试时MC-ICP-MS仪器的法拉第杯结构为:L3(202Hg)、L2(203Tl)、L1(204Pb)、C(205Tl)、H1(206Pb)、H2(207Pb)、H3(208Pb),其他主要工作参数见表1。样品引入时的介质均采用2%的硝酸,2ng/mL GSB 04-1758-2004标准溶液对应205Tl电压信号约为1.2V。测试过程产生的质量歧视通过加入已知铅同位素组成的溶液(NIST SRM981)进行校正,计算方法参考文献[5]。在这项研究中,铅标准溶液的质量按照mPb/mTl=10/1加入。在每次测量开始之前,都需要仔细调整仪器参数,以确保铊和铅的信号强度最大化;同时,进行重复的质量扫描,以检查法拉第杯位置是否合适并监测峰形,确保同位素比值测量的仪器条件。此外,为了校正样品的铊同位素组成,在每次分析前后均测量一次标准物质GSB 04-1758-2004。

    针对土壤和沉积物样品中的金属总量分析,中国环境保护标准《土壤和沉积物 金属元素总量的消解-微波消解法》(HJ 832—2017)推荐使用11mL硝酸-氢氟酸-盐酸的混合酸组合对样品进行消解。然而,若地质样品中的有机质或难溶矿物含量较高时,样品难以被完全分解,需使用硝酸-氢氟酸-高氯酸进行二次消解28。高氯酸和过氧化氢可以提高消解体系的分解能力,因此,本文试验了硝酸-氢氟酸-盐酸-过氧化氢和硝酸-氢氟酸-高氯酸两种混合酸体系对样品的消解情况。此外,为了控制干扰元素(特别是铅)的引入,实验中对酸的用量也进行了优化。

    选择土壤标样GBW07406,称样量0.2g,加入不同的混合酸组合,按表3中程序进行微波消解,测定结果见表5。在硝酸-氢氟酸-盐酸-过氧化氢混合酸体系中,当用酸量总体积为4mL(组号1-1)时,消解液中有少量不溶的白色沉淀,此时铊回收率仅有84.7%,说明酸用量太少,不足以将0.2g样品消解完全。将酸用量进一步提升(组号1-2和1-3),所得消解液为清亮透彻的黄色溶液,铊回收率均接近100%,说明硝酸-氢氟酸-盐酸-过氧化氢体系中,7mL酸用量(组号1-2)就可以将0.2g样品消解完全。在硝酸-氢氟酸-高氯酸混合酸体系中,消解样品所用的酸量要少,仅4.5mL(组号2-2)就可将0.2g样品消解完全,此时得到的消解液为清澈透亮的黄色溶液,铊回收率为98.2%。鉴于同位素分析中尽可能低本底的需求,本实验选择2mL硝酸-2mL氢氟酸-0.5mL高氯酸(组号2-2)的混合酸体系对样品进行消解。

    表  5  不同无机酸种类及用量的消解效果对比(n=3)
    Table  5.  Comparison of digestion effects of different types and volumes of inorganic acids (n=3)
    混合酸体系实验组号混合酸体系各酸用量
    (mL)
    样品消解效果观察铊回收率
    (%)
    硝酸-氢氟酸-
    盐酸-过氧化氢
    1-11+1+1+1有少量不溶白色沉淀84.7
    1-22+2+2+1黄色消解液清澈透亮98.4
    1-35+3+3+1黄色消解液清澈透亮98.6
    硝酸-氢氟酸-
    高氯酸
    2-11+1+0.5有少量不溶白色沉淀81.9
    2-22+2+0.5黄色消解液清澈透亮98.2
    2-35+3+0.5黄色消解液清澈透亮99.0
    下载: 导出CSV 
    | 显示表格

    需要特别指出的是,高氯酸与有机质在密闭系统中反应剧烈,易发生爆炸,使用时不仅要严格控制其用量,还要在微波消解之前放置反应一段时间(本文建议时长为1h)。

    为了考察微波消解程序中的最高温度和保持时间对消解效果影响,本文选择土壤标样GBW07406为试验样品,保持其他条件不变;以表3中步骤3的消解温度和保持时间为因素,进行正交试验,分析结果如表6所示。结果表明,当消解温度设定在190℃,保持时间为20min时,铊的回收率大于98%。继续升高消解温度和增加保持时间并不能使铊的回收率显著提高,且高温高压易造成微波消解内管变形,影响其密闭性。因此,190℃保持20min为本文推荐使用的微波消解条件,此时总的微波消解时间为45min。

    表  6  消解温度和保持时间的正交试验结果(n=3)
    Table  6.  Orthogonal test results of digestion temperature and holding time (n=3)
    编号 因素水平 铊回收率
    (%)
    消解温度(℃) 时间(min)
    1 180 15 86.6
    2 180 20 93.1
    3 190 15 94.0
    4 190 20 98.2
    5 200 15 97.8
    6 200 20 99.1
    下载: 导出CSV 
    | 显示表格

    203Tl和205Tl的干扰主要来自163Dy40Ar、165Ho40Ar、187Re16O、189Os16O、202Hg1H、204Hg1H和204Pb1H等多原子离子团,因此在进行铊的纯化时需特别关注共存元素镝、钬、铼、锇、汞和铅的分离情况。

    选择0.2g消解后的标准物质GBW07406为试验样品,按表4中铊同位素的离子交换流程,以1mL为单位接取馏分;利用ICP-MS测定各馏分中相应元素的含量并绘制淋洗曲线,结果如图1所示。从淋洗曲线中可以看出,绝大多数基质元素及干扰元素(包括镝、钬、铼、锇、汞和铅)被最开始的6mL 2mol/L硝酸-1%溴水洗脱。为了尽可能地减少铅的残留,本课题组继续使用了6mL 2mol/L硝酸-1%溴水淋洗;接下来,用2mL超纯水将树脂中的氧化性离子(NO3和BrO)洗脱。随后以10mL 0.1mol/L盐酸-6%二氧化硫淋洗并收集馏分中的铊。通过对该馏分的组分分析发现,铊的回收率约为98.5%,镝、钬、铼、锇和汞几乎无残留,铅的残留量不足铊量的1/10,钡有一定的残留,约为总钡量的4%。其中,接取液中钡和极少量铅的残留对铊的同位素测试没有影响,当地质样品中的铅/铊比值大于1000时,铅的残留可能会导致铊同位素组成测定结果偏高5,此时建议进行二次过柱。

    图  1  铊的淋洗曲线(AG1-X8树脂,100~200目),其中2mol/L硝酸-1%溴水洗脱基体元素,超纯水洗脱残留NO3和BrO,0.1mol/L盐酸-6%二氧化硫收集铊
    Figure  1.  Elution curves of Tl (AG1-X8 resin, 100-200 mesh), 2mol/L HNO3-1% Br2 for eluting matrix elments, ultrapure water for eluting NO3 and BrO, 0.1mol/L HCl-6% SO2 for collecting Tl.

    铊在地质样品中的含量通常低于0.1μg/g,往往需要加大称样量来提高测试精度。大多数样品以硅质或碳质为主,经消解后,硅和碳都挥发除去,所留下的盐分很少,而富含赤铁矿(铁高)、灰岩(钙高)和高岭土(铝高)等类型的地质样品,消解后的溶液中金属离子的浓度很高,而树脂的总离子交换容量一般在3~6mmol/g(干基)或1~2mmol/g(湿基)。因此,为考察这三种阳离子对淋洗流程的干扰,本文采用标准加入法考察了三氧化二铁、氧化钙和三氧化二铝对上述淋洗曲线中铊回收率的影响。操作步骤为:取三组1mL 1μg/mL铊标准溶液(GSB 04-1758-2004),分别加入0.1~0.5g的Fe2O3、CaO和Al2O3,按第1.3、1.4、1.5节进行前处理和样品测试。三种元素的加入量与铊回收率之间的关系如图2所示。

    图  2  三氧化二铁、氧化钙和三氧化二铝对铊回收率的影响(n=3)
    Figure  2.  Influences of the load of Fe2O3, CaO and Al2O3 on the recovery of Tl (n=3)

    图2可以看出,CaO的加入对铊回收率的影响很小,可以忽略。Fe2O3的影响最大,当其加入量为0.4g(约2.56mmol)时,铊的回收率开始下降,约为90%;当加入量为0.5g时,铊的回收率下降到只有75%左右。这可能是因为随着样品中Fe3+的增多,用盐酸淋洗时容易形成络合物FeCl4,占据离子交换反应位点,使树脂的交换容量达到饱和,从而降低了铊的回收率。而对于Al2O3,当其加入量为0.5g(约4.90mmol)时,铊的回收率略有下降,约为93%,从观察到的实验现象判断,原因应是Al2O3有部分结晶,夹杂着少量铊进入固相析出而导致的。因此,对于基质中含铁、铝矿物较高的样品应控制其称样量,以防树脂的交换容量饱和而导致铊回收率偏低。

    通过三份空白试验使用第1.3、1.4、1.5节步骤中的流程进行铊同位素分析,最终确定整个实验流程中铊的空白值低于10pg,远低于普通地质样品中铊含量的1‰,对测试结果的影响可以忽略23

    为了确保MC-ICP-MS测定铊同位素的长期可重复性,对铊标准溶液GSB 04-1758-2004进行40次测量,结果如图3所示。图中的205Tl/203Tl值是以铅标准溶液NIST SRM981为外标校正后的结果(相对于208Pb/206Pb=2.1076)。本实验室的测量结果为205Tl/203Tl=2.38775,标准偏差(2σ)为0.00011,说明仪器的稳定性较好。

    图  3  铊标准溶液GSB 04-1758-2004测量结果的稳定性(n=40)
    Figure  3.  The reproducibility of analytical results for Tl standard solution GSB 04-1758-2004 (n=40)

    按照优化后的化学流程,处理4个地质标准物质,并进行铊同位素组成的测定。从表7中的测定结果可以发现,4个标准物质的2SD均优于0.3(n=6),说明本方法具有较高的精密度。由于与文献选用的同位素标准物质不同,方法的准确度可以用两者间差值变化情况来考察。通过与文献的结果对比发现,标准物质NOD-P-1、GBW07406和GSP-2的ε205Tl差值(ε205TlNIST 997ε205TlGSB Tl)均为0.8,NOD-A-1的ε205Tl差值为0.7,说明方法具有较好的准确性;此外,可以估算标准物质GSB 04-1758-2004相对于NIST 997的ε205Tl值应约等于0.8。

    表  7  地质标准物质中铊同位素组成的测定结果及文献对比
    Table  7.  Comparison of analytical results of Tl isotope composition in geological reference materials determined by this method and those in the literatures
    标准物质编号 岩性 ε205TlGSB Tl
    (2SD)
    ε205TlNIST 997
    (2SD)
    测量次数
    (n)
    数据来源 ε205Tl差值
    NOD-P-1 铁锰结核 / 3.3±0.7 6 5 0.8
    2.5±0.2 / 6 本文研究
    NOD-A-1 铁锰结核 / 10.7±0.5 6 28 0.7
    10.0±0.3 / 6 本文研究
    GBW07406 土壤 / −2.2±0.2 4 5 0.8
    −3.0±0.2 / 6 本文研究
    GSP-2 花岗岩 / −2.5±0.6 9 4 0.8
    −3.3±0.3 / 6 本文研究
    下载: 导出CSV 
    | 显示表格

    通过对铊同位素分析中的消解方法、淋洗曲线和流程空白的分析讨论可知,采用微波消解法,在2mL硝酸-2mL氢氟酸-0.5mL高氯酸的混合酸体系中选用适当的消解程序,可以将0.2g土壤标准物质GBW07406彻底消解;利用AG1-X8阴离子交换树脂,依次以2mL 2mol/L硝酸-1%饱和溴水淋洗6次、2mL超纯水淋洗1次和2mL 0.1mol/L盐酸-6%二氧化硫淋洗5次,并收集0.1mol/L盐酸-6%二氧化硫的馏分,可有效地纯化地质样品中的铊。该淋洗流程所允许上样溶液中含有三价铁和三价铝离子的量分别不应超过2.56mmol和4.90mmol,否则引起树脂的离子交换容量饱和而导致铊回收率降低。与前人相比,该流程缩短了消解时间,采用AG1-X8树脂单柱法进行铊同位素的纯化,将淋洗液的总体积优化至24mL。本工作提高了铊同位素分析中化学前处理流程的效率,将此方法应用于4个不同地质标准物质的铊同位素比值的测定,结果证明具有较好的精密度和准确性。

    需要指出的是,由于外界因素的制约,国际上普遍认可的NIST 997标准物质在中国已很难购买,影响了国内铊同位素地球化学研究工作的开展,所以中国亟需研制出国际上认可的铊同位素标准物质。

  • 图  1   不同存放时间的碱性过硫酸钾溶液与空白吸光度的关系试验统计结果

    Figure  1.   Statistical results of the relationship between alkaline potassium persulfate solution and blank absorbance at different storage times.

    图  2   捆绑法和插置法的消解固定设备结构对比示意图

    Figure  2.   Comparative schematic diagram of the structure of digestion fixed equipment using binding method and insertion method.

    图  3   不同消解时间三件典型含量段水质样品总氮测定结果统计

    Figure  3.   Statistics of total nitrogen content determination results for three typical water quality samples at different digestion times.

    图  4   水质样品在酸化和未酸化条件下不同保存时间对比试验的总氮测定结果统计

    Figure  4.   Statistics of total nitrogen determination results in comparative experiments of water quality samples under acidified and non acidified conditions for different storage times.

    表  1   捆绑法和插置法的准确度和精密度试验统计结果

    Table  1   Statistical results of accuracy and precision comparison experiments between binding method and insertion method.

    消解方法 标准样品
    批号
    测定值
    (mg/L)
    平均值
    (mg/L)
    标准值
    (mg/L)
    准确度RE
    (%)
    精密度RSD
    (%)
    加标量
    (mg/L)
    测定值
    (mg/L)
    回收率
    (%)
    捆绑法 203277 0.52 0.64 0.51 0.59 0.705±0.06 16.5 9.26 1 1.61 1.62 1.64 91 92 94
    0.67 0.62 0.58 1.60 1.63 1.67 90 93 97
    203278 2.25 2.41 2.65 2.42 2.62±0.16 7.82 8.72 2 4.44 4.48 4.46 91 93 92
    2.71 2.35 2.12 4.36 4.46 4.58 87 92 98
    203267 3.52 3.95 4.62 3.97 4.43±0.24 10.5 8.92 2 6.25 6.21 6.35 91 89 96
    3.61 3.96 4.13 6.31 6.27 6.37 94 92 97
    插置法 203277 0.68 0.66 0.71 0.67 0.705±0.06 4.30 3.43 1 1.64 1.69 1.81 96 99 106
    0.69 0.64 0.68 1.72 1.76 1.60 101 103 94
    203278 2.35 2.38 2.55 2.52 2.62±0.16 3.69 7.65 2 4.57 4.48 4.62 99 97 100
    2.36 2.85 2.65 4.76 4.57 4.90 103 99 106
    203267 4.28 4.25 4.42 4.36 4.43±0.24 1.62 3.46 2 6.69 6.75 6.37 104 105 99
    4.21 4.36 4.63 6.43 6.49 6.62 100 101 103
    下载: 导出CSV

    表  2   捆绑法和插置法的方法检出限对比试验统计结果

    Table  2   Comparative experimental statistical results of detection limits between binding method and insertion method.

    分析方法 水质总氮空白测定结果
    (mg/L)
    标准偏差
    s(mg/L)
    检出限
    (mg/L)
    方法检出限规范要求
    (mg/L)
    捆绑法 0.048 0.026 0.048 0.048 0.044 0.018 0.029 0.013 0.040 0.050
    插置法 0.028 0.036 0.019 0.024 0.026 0.025 0.035 0.006 0.020
    下载: 导出CSV

    表  3   不同厂家生产的不同纯度过硫酸钾与空白吸光度的关系试验统计结果

    Table  3   Experimental statistical results on the relationship between potassium persulfate of different purities produced by different manufacturers and blank absorbance.

    样品编号公司名称及规格总氮量
    (%)
    空白吸光度
    n=6)
    1#四川西陇科学有限公司(AR)≤0.0050.096
    2#天津市科密欧化学试剂有限公司(GR)≤0.0050.010
    3#德国默克公司(AR)≤0.00050.0095
    下载: 导出CSV
  • [1] 左航, 徐晋, 王雪娇, 等. 水质总氮在线分析仪器研究与应用现状[J]. 电子测量技术, 2021, 44(14): 173−176.

    Zuo H, Xu J, Wang X J, et al. Research and application of instruments for on-line monitoring water quality of total nitrogen[J]. Electronic Measurement Technology, 2021, 44(14): 173−176.

    [2] 王玉功, 王华, 刘建军, 等. 沙棘树干茎流液中总氮总磷联合消解的测定方法[J]. 岩矿测试, 2014, 33(5): 665−669.

    Wang Y G, Wang H, Liu J J, et al. Determination method on total nitrogen and total phosphorus in seabuckthorn stem flow liquid with combined digestion[J]. Rock and Mineral Analysis, 2014, 33(5): 665−669.

    [3] 任坤, 潘晓东, 彭聪, 等. 氮氧同位素和水化学解析昭通盆地地下水硝酸盐来源及对环境的影响[J]. 中国地质, 2022, 49(2): 409−419.

    Ren K, Pan X D, Peng C, et al. Identification of nitrate sources of groundwaters in the Zhaotong Basin using hydrochemistry, nitrogen and oxygen isotopes and its impact on the environment[J]. Geology in China, 2022, 49(2): 409−419.

    [4] 张华, 王宽, 宋箭, 等. 不同溶解氧水平上覆水中DOM荧光特性及总氮含量评估[J]. 光谱学与光谱分析, 2016, 36(3): 890−895.

    Zhang H, Wang K, Song J, et al. The fluorescent properties of dissolved organic matter and assessment of total nitrogen in overlying water with different dissolved oxygen conditions[J]. Spectroscopy and Spectral Analysis, 2016, 36(3): 890−895.

    [5] 刘斯文, 黄园英, 赵文博, 等. 赣南北部黄陂河流域离子型稀土矿地区水质与健康风险评价[J]. 岩矿测试, 2022, 41(1): 120−132.

    Liu S W, Huang Y Y, Zhao W B, et al. Water quality and health risk assessment of an ion-adsorption type REE mining area of the Huangpi River Basin, Northern Ganzhou of China[J]. Rock and Mineral Analysis, 2022, 41(1): 120−132.

    [6] 郭子宁, 王旭升, 向师正, 等. 再生水入渗区典型抗生素分布特征与地下水微生物群落 影响因素研究[J]. 岩矿测试, 2022, 41(3): 451−462.

    Guo Z N, Wang X S, Xiang S Z, et al. Distribution characteristics of typical antibiotics in reclaimed water infiltration area and influencing factors of groundwater microbial community[J]. Rock and Mineral Analysis, 2022, 41(3): 451−462.

    [7] 李谨丞, 曹文庚, 潘登, 等. 黄河冲积扇平原浅层地下水中氮循环对砷迁移富集的影响[J]. 岩矿测试, 2022, 41(3): 488−498.

    Li J C, Cao W G, Pan D, et al. Influences of nitrogen cycle on arsenic enrichment in shallow groundwater from the Yellow River alluvial fan plain[J]. Rock and Mineral Analysis, 2022, 41(3): 488−498.

    [8] 韩斌, 林法祥, 丁宇, 等. 海州湾近岸海域水质状况调查与风险评价[J]. 岩矿测试, 2019, 38(4): 429−437.

    Han B, Lin F X, Ding Y, et al. Quality survey and risk assessment of the coastal waters of Haizhou Bay[J]. Rock and Mineral Analysis, 2019, 38(4): 429−437.

    [9] 王燕, 王艳洁, 赵仕兰, 等. 海水中溶解态总氮测定方法比对及影响因素分析[J]. 海洋环境科学, 2019, 38(4): 644−648.

    Wang Y, Wang Y J, Zhao S L, et al. Method comparison and analysis of influence factors for determination of dissolved total nitrogen in seawater[J]. Marine Environmental Science, 2019, 38(4): 644−648.

    [10] 丁明军, 杨慧中. 水中总磷和总氮含量的离子色谱测定法[J]. 分析化学, 2012, 40(3): 381−385.

    Ding M J, Yang H Z. Determination of total phosphorus and nitrogen in water by ion chromatography[J]. Chinese Journal of Analytical Chemistry, 2012, 40(3): 381−385.

    [11] 欧阳钧. 离子色谱法测定水中总氮[J]. 理化检验(化学分册), 2014, 50(7): 906−907.

    Ouyang J. Determination of total nitrogen in water by ion chromatography[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2014, 50(7): 906−907.

    [12] 张国郁. 离子色谱法测定生活饮用水中总氮和总磷[J]. 理化检验(化学分册), 2014, 50(12): 1577−1578.

    Zhang G Y. Determination of total nitrogen and total phosphorus in drinking water by ion chromatography[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2014, 50(12): 1577−1578.

    [13] 杨雪. 离子色谱法测定地表水中总氮和总磷[J]. 理化检验(化学分册), 2015, 51(11): 1619−1620.

    Yang X. Determination of total nitrogen and total phosphorus in surface water by ion chromatography[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2015, 51(11): 1619−1620.

    [14] 唐景静, 黎丽萍, 区一杭. 燃烧氧化-电化学法测定地表水和废水中的总氮[J]. 中国环境监测, 2016, 32(1): 108−111.

    Tang J J, Li L P, Qu Y H. The determination of total nitrogen in surface water and waste water samplers by burning oxidation-electrochemical method[J]. Environmental Monitoring in China, 2016, 32(1): 108−111.

    [15] 赵洋甬, 赵建平, 黄绍荣, 等. 闭管消解-萘乙二胺分光光度法测定水中总氮[J]. 中国环境监测, 2012, 28(1): 57−59.

    Zhao Y Y, Zhao J P, Huang S R, et al. Determination of total nitrogen in water by closed digestion N-(1-naphthyl)ethyle chromogenic reaction[J]. Environmental Monitoring in China, 2012, 28(1): 57−59.

    [16] 梁康甫, 杨慧中. 水质总氮在线检测的光谱数据校正方法[J]. 环境工程学报, 2016, 10(12): 7396−7400.

    Liang K F, Yang H Z. Calibration method for spectral data of on-line total-nitrogen detection in water[J]. Chinese Journal of Environmental Engineering, 2016, 10(12): 7396−7400.

    [17] 凌琪, 李组成, 罗梦洋, 等. 智能消解/紫外分光光度法测定高氨氮污水中总氮[J]. 中国给水排水, 2014, 30(16): 117−119.

    Ling Q, Li Z C, Luo M Y, et al. Measuring TN in high ammonia nitrogen domestics sewage by smart digester and ultraviolet spectrophotometry[J]. China Water & Wastewater, 2014, 30(16): 117−119.

    [18] 王中荣, 魏福祥, 王盼盼, 等. 微顺序注射-镉柱还原分光光度法测定海水中总氮[J]. 分析化学, 2016, 44(9): 1328−1334.

    Wang Z R, Wei F X, Wang P P, et al. Determination of total nitrogen in seawater by micro sequential injection-cadmium column reduction spectrophotometry[J]. Chinese Journal of Analytical Chemistry, 2016, 44(9): 1328−1334.

    [19] 杨颖, 程祥圣, 刘鹏霞. 紫外光照还原-流动注射分光光度法测定海水中硝酸盐[J]. 理化检验(化学分册), 2011, 47(5): 514−516.

    Yang Y, Cheng X S, Liu P X. FI-spectrophotometric determination of nitrate in seawater by UV irradiation reduction[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2011, 47(5): 514−516.

    [20] 贾岳清, 周昊, 殷惠民, 等. 水中总氮测定方法的研究进展[J]. 工业水处理, 2020, 40(2): 1−5.

    Jia Y Q, Zhou H, Yin H M, et al. Progress in determination of total nitrogen in water[J]. Industrial Water Treatment, 2020, 40(2): 1−5.

    [21] 周英杰, 王淑梅, 陈少华. 影响总氮测定的关键因素研究[J]. 环境工程, 2012, 30(1): 106−110.

    Zhou Y J, Wang S M, Chen S H. Key factors on the accuracy of total nitrogen analysis[J]. Environmental Engineering, 2012, 30(1): 106−110.

    [22] 祝旭初, 周雪莲, 雷迅, 等. 对测定总氮新标准( HJ636—2012)的探讨[J]. 中国给水排水, 2013, 29(16): 94−97.

    Zhu X C, Zhou X L, Lei X, et al. Discussion on new standard method HJ636—2012 for determining total nitrogen[J]. China Water & Wastewater, 2013, 29(16): 94−97.

    [23] 郝冬亮. 碱性过硫酸钾消解紫外分光光度法测定总氮的影响因素[J]. 中国给水排水, 2014, 30(12): 148−150.

    Hao D L. Influence factors of alkaline potassium persulfate digestion UV spectrophotometry for determination of total nitrogen[J]. China Water & Wastewater, 2014, 30(12): 148−150.

    [24] 张念, 刘祖文, 郭云, 等. 浸矿废水中总氮测量的影响因素及相关对策[J]. 工业水处理, 2016, 36(5): 102−105.

    Zhang N, Liu Z W, Guo Y, et al. Influential factors and related countermeasures of the determination of TN in mine leaching wastewater[J]. Industrial Water Treatment, 2016, 36(5): 102−105.

    [25] 林莉莉, 钟旋, 包思聪, 等. 影响水中总氮检测准确度的关键因素探析[J]. 环境工程, 2017, 35(Supplement): 119−122.

    Lin L L, Zhong X, Bao S C, et al. Research on the key factors influencing on detection of total nitrogen in water[J]. Environmental Engineering, 2017, 35(Supplement): 119−122.

    [26] 蒋然, 柴欣生, 张翠. 影响总氮准确定量的光谱检测因素[J]. 中国环境监测, 2012, 28(4): 45−47.

    Jiang R, Chai X S, Zhang C. Effects of spectroscopic uncertainties on total nitrogen quantification[J]. Environmental Monitoring in China, 2012, 28(4): 45−47.

    [27] 罗琼, 刘则华, 尹华, 等. 国产过硫酸钾不能用于水样总氮测定的原因解析和对策[J]. 中国给水排水, 2018, 34(4): 110−113.

    Luo Q, Liu Z H, Yin H, et al. Analysis and countermeasure of total nitrogen determination failure in water sample with domestic potassium persulfate[J]. China Water & Wastewater, 2018, 34(4): 110−113.

    [28] 王小剑, 张海霞, 蔡昂祖, 等. 总氮测定过程中空白吸光值偏高的原因分析[J]. 化学研究与应用, 2021, 33(4): 741−748.

    Wang X J, Zhang H X, Cai A Z, et al. Cause analysis of high blank absorbance in determination of total nitrogen[J]. Chemical Research and Application, 2021, 33(4): 741−748.

    [29] 晁雷, 曹雨, 李亚峰. 水质总氮测定时空白值的影响因素[J]. 沈阳建筑大学学报(自然科学版), 2021, 37(5): 949−954.

    Chao L, Cao Y, Li Y F. Influencing factors of blank value in the determination of total nitrogen in water[J]. Journal of Shenyang Jianzhu University (Natural Science), 2021, 37(5): 949−954.

    [30] 潘忠成, 李敏. HJ636—2012测定总氮时影响空白值因素分析[J]. 环境工程, 2016, 34(1): 126−129.

    Pan Z C, Li M. Analysis of influencing factors on the blank value of total nitrogen determination by HJ636—2012[J]. Environmental Engineering, 2016, 34(1): 126−129.

    [31] 薛程, 吕晓杰, 王允. 水中总氮测定方法存在问题的研究及改进[J]. 中国环境监测, 2018, 34(3): 123−127.

    Xue C, Lyu X J, Wang Y. Research on the problems and improvement of total nitrogen determination method in water[J]. Environmental Monitoring in China, 2018, 34(3): 123−127.

    [32] 陈松, 梁娟, 蒲宗耀, 等. 碱性过硫酸钾测定总氮的改进[J]. 印染, 2018(1): 54−56.

    Chen S, Liang J, Pu Z Y, et al. Improvement for determination of total nitrogen in water with alkaline potassium persulfate[J]. China Dyeing & Finishing, 2018(1): 54−56.

    [33] 钟金鸣, 王树谦. 滏阳河总氮测定中水样保存条件的探究[J]. 水电能源科学, 2018, 36(7): 43−46.

    Zhong J M, Wang S Q. Prediction model of total nitrogen concentration in Qinghe Reservoir based on grey relational grade and BP neural network[J]. Water Resources and Power, 2018, 36(7): 43−46.

  • 其他相关附件

图(4)  /  表(3)
计量
  • 文章访问数:  295
  • HTML全文浏览量:  92
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-27
  • 修回日期:  2023-08-04
  • 录用日期:  2023-09-25
  • 网络出版日期:  2023-11-07
  • 刊出日期:  2024-02-28

目录

/

返回文章
返回