A Review of Rapid Detections for Emerging Contaminants in Groundwater
-
摘要:
国内外广泛关注的新污染物主要包括抗生素、内分泌干扰物、全氟或多氟化合物等污染物质,这些污染物通过径流、扩散、渗透等多种途径进入水体环境。由于新污染物多具有生物累积性、生物毒性及环境持久性等特征,对水生生物、人体健康和生态安全构成潜在威胁,存在环境风险,因此,国家对其污染现状开始进行调查。随着中国新污染物污染状况调查评价工作的开展,快速、灵敏的检测方法成为研究热点。本文基于近年文献重点评述了水环境中新污染物的检测方法,并对方法的性能和优缺点作了对比。结果表明:①目前新污染物的检测方法以大型仪器检测方法为主。仪器检测方法的检测浓度低、精度高,对设备的要求高,从采样到测试分析得到结果的周期长,不适用于新污染物的现场快速检测。②传感检测技术和免疫分析技术逐步应用于新污染物的快速检测。其中电化学传感器和酶联免疫分析法相对成熟,应用较多,具有设备简单、检测时间短,灵敏度和精确度良好等优点,可开展现场快速检测。本文认为,①快速检测技术多针对单一污染物进行检测,而实现同时检测多种污染物质还需进一步研究;②多种检测技术相结合可以达到更好的检测效果,是未来新污染物检测的发展方向;③利用新型材料改良检测方法、降低检出限、提高灵敏度和精确度实现新污染物快速检测是未来研究的难点和重点。
Abstract:In recent years, emerging contaminants, such as antibiotics, endocrine disruptors, perfluorinated and polyfluoroalkyl substances, are of great worldwide concern. These contaminants enter the water environment through runoff, diffusion, infiltration and other ways. Due to their bioaccumulation, biological toxicity, and environmental sustainability, emerging contaminants pose a potential threat to aquatic organisms, human health, and ecological safety[1]. Therefore, it is urgent to detect and investigate the pollution status of emerging contaminants in the water environment. Many investigations and evaluations have been carried out, making rapid detection methods a research hotspot. The detection methods of emerging contaminants in the water environment based on recent literature is reviewed, comparing the advantages and disadvantages of the emerging contaminants detection methods, summarizing the research progress of rapid detection technology for emerging contaminants in water, and prospecting its development trend. Emerging contaminants were widely detected in the water environment. For instance, antibiotics have been detected in groundwater in cities such as Harbin[2] and Shijiazhuang[3], in surface rivers such as the Fuyang River and Qin River[4], and in the source water such as Yichang City[5] and the Tuojiang River Basin[6], as well as in groundwater from major urban-rural settings of Pakistan[8]. Similarly, endocrine disruptors have been detected in different types of water in China, such as the Minjiang River Basin[11], as well as in groundwater of the Wuxi—Changzhou region[9] and Xuzhou region[10]. Some endocrine disruptor pollutants have been detected in seawater along the Romanian Black Sea coast[12]. In addition, perfluorinated and polyfluoroalkyl substances have been detected in the surface water of Beijing’s reclaimed groundwater irrigation area[13] and in Hongze Lake[15]. There is perfluoroalkyl acid pollution in the groundwater environment of farmland in some regions of Hainan Province[14]. Perfluorinated compounds have also been detected in major Southern Indian rivers[16]. There are emerging contaminants in the water environment both domestically and internationally. The concentrations and detection rates are high in some areas, posing a serious threat to groundwater and surface water resources. Nowadays, the emerging contaminants are mainly detected in the laboratory using advanced instruments. The emerging contaminants are widely present in the environment, but their concentrations are quite low, of which the content is in the nanogram to microgram level. In order to reduce the detection limits, the emerging contaminants samples will be concentrated and then tested using high-resolution instruments. Instrument detection technology has the advantages of high throughput, high accuracy, low detection limit, and low false positive rate. While the pre-treatment of samples is very complex, and the analytical instruments used are costly, this is not something that all laboratories can afford. Therefore, the analysis of emerging contaminants takes a long time from sampling to getting analysis results. Sensor detection technology is a commonly used on-site detection method in the field of environmental monitoring. It mainly includes electrochemical, optical, and biological sensing. The field rapid detection of emerging contaminants in water environment is a promising research direction. Electrochemical sensing has been extensively studied. Sensor detection technology can give results in minutes for emerging contaminants. However, most of the work was focused on detecting a single contaminant; significant progress has been made in the laboratory, but it has not yet been promoted for field testing; there were fewer examples of field rapid detection of emerging contaminants. Further research is needed on the technology for simultaneously determining multiple emerging contaminants in the meantime. Immunoassay detection technology is suitable for on-site rapid screening of emerging contaminants in the water environment. Enzyme linked immunosorbent assay can preliminarily screen for the emerging contaminants in the water environment, while immunochromatography can perform qualitative or semi-quantitative detection of emerging contaminants. Immunoassay technology has high specificity, strong sensitivity, simplicity, convenience, and no need for expensive instruments. It has great advantages in rapid detection of large amounts of samples and on-site detection. However, it is prone to false negatives and positives[89]. There are various types of rapid detection methods for emerging contaminants. Further, the focus of research should be on utilizing new materials to improve traditional detection methods to meet the needs of rapid and on-site detection of contaminants. Besides, researchers could combine multiple detection techniques to make detection methods simpler, faster, and more cost-effective, and with high sensitivity and accuracy to achieve rapid detection of multiple pollutants simultaneously.
-
Keywords:
- emerging contaminants /
- rapid detection /
- instrument detection /
- sensor /
- immunoassay
-
中国稀土资源丰富、种类齐全,稀土资源量占全球稀土资源总量的近一半。中国目前已发现的矿床类型有碱性岩型、花岗岩型、碳酸盐型和沉积变质型等类型,已发现的稀土矿物有30余种,如氟碳铈矿、独居石、硬钽矿、磷钍矿、铈钆钍矿和棱锰矿等[1]。中国内生稀土矿床多分布在长江以南地区,大地构造位置如扬子准地台、华南褶皱系、松潘—甘孜褶皱系、东南沿海褶皱系等,北方地区由于华北克拉通相对稳定,缺乏形成富集稀土元素的构造环境,仅在中朝准地台边缘出现一些稀土矿床,如内蒙古白云鄂博、山东微山郗山、辽宁凤城赛马、辽宁辽阳生铁岭等矿床[2-3]。
辽宁省已知稀土矿类型稀少,且以往稀土矿床的勘查评价多偏重于独居石砂矿和碱性岩型稀土矿,沉积变质型稀土原生矿涉及较少,矿石学、矿物学研究程度偏低。辽宁省在开展稀土矿产潜力评价工作时曾对省内的沉积变质型矿床(生铁岭稀土矿)成矿模式进行研究,总结了其成矿地质环境及矿床特征,认为其为含有少量独居石的磷灰岩型矿床[4]。籍魁[5]对辽宁辽阳郭家稀土矿床地质特征进行了研究,发现其矿石矿物主要为独居石、褐帘石,矿床类型为与古火山构造有关的沉积变质再造型矿床。本文研究的吉祥峪稀土矿床与生铁岭、郭家稀土矿床类型相似,矿石中稀土含量可观,但稀土矿物赋存状态、稀土元素在矿物中的分布规律以及稀土矿物能否被提取利用等问题尚需得到解决[6-7]。
自动矿物识别和表征系统(AMICS)是以成分点原位分析为基础,连接高分辨率扫描电镜(SEM)和高通量能谱仪(EDS),釆用矿物边界分区法及图形处理技术,结合频谱列表快速、全面地对光谱进行合并及分类,比照矿物数据库自动拟合计算,能高效、全面、精确地测定样品的矿物成分、元素分布、粒度、连生关系以及孔隙度等信息,在含量低、颗粒细小的矿物定性、定量测试方面是一套先进、可行的技术方法[8-12]。该方法被广泛应用于地质、冶金等领域。例如,葛祥坤等[13]和张然等[14]运用该系统对鄂尔多斯盆地砂岩型铀矿矿物进行定量分析,查明了铀矿物类型和其他伴生矿物;温利刚等[15-18]、罗晓锋等[19]将该系统应用于稀土矿物的赋存状态研究,查明了稀土矿物种类和含量;王恩雷等[20]运用该系统对海城菱镁矿进行工艺矿物学研究,发现其矿物粒度细、脉石矿物与菱镁矿连生是矿石难选的主要原因;胡欢等[21]运用该系统研究了金属铍赋存状态,认为其对低含量铍元素的准确分析和微细含铍矿物的识别有良好的效果;范雨辰等[22]运用该系统对页岩储集空间的微观展布样式进行表征分类,通过扫描孔隙-矿物接触面积计算出孔隙类型和占比,有效地表征了含油(沥青)的储集空间。
因此,本文采用AMICS自动矿物识别和表征系统对正在开展勘查评价工作的吉祥峪稀土矿床进行矿物识别,目的是获得稀土元素在矿物中的分布规律,查明稀土矿物的种类和赋存状态,通过分析稀土矿物及相关矿物的成分、结构和嵌布特征,研究其成矿机制,揭示稀土矿床形成的约束条件,为矿床的勘查评价和有效利用提供矿物学依据。
1. 地质背景
吉祥峪稀土矿床大地构造位置处于华北陆块北缘,辽吉古元古代裂谷核部,吉祥峪—算盘峪背斜的核部。研究区出露地层主要为辽河群里尔峪组(Pt1lr)、高家峪组(Pt1g)和大石桥组(Pt1d),属于一套火山碎屑沉积变质建造(图1)[23-26]。本次发现的稀土矿体严格受里尔峪组一段浅粒岩夹变粒岩层位控制。钻孔中所取的基本分析样测试结果显示,矿石中铁平均品位为25.07×10−2,稀土平均品位为1.03×10−2,轻稀土元素占绝对优势(以镧铈为主,钐铕镨钕等次之)。矿石主要结构构造为粒柱状变晶结构,块状及条带状构造:磁铁矿、角闪石、黑云母、褐帘石等暗色矿物集聚组成深色条纹条带,与长石、磷灰石等组成的浅色矿物条带相间排列。稀土矿体呈似层状、扁豆状顺层产出于里尔峪组一段磁铁浅粒岩夹褐帘磷灰磁铁变粒岩层位中,与其顶底板浅粒岩呈整合渐变关系。主要的蚀变类型有碳酸盐化、云母化、绿帘石化和碎裂岩化。
图 1 吉祥峪稀土矿床地质简图及研究区位置图1—晚三叠纪二长花岗岩;2—里尔峪岩组;3—高家峪岩组;4—大石桥岩组;5—辉长岩;6—伟晶岩;7—闪长玢岩;8—稀土矿体;9—韧性剪切带;10—岩层产状;11—推测断裂;12—实测断裂;13—采样位置;14—二云片岩花纹;15—浅粒岩花纹;16—辉长岩花纹;17—伟晶岩花纹。Figure 1. Geological map and location map of Jixiangyu rare earth deposit. 1—Late Triassic monzogranite; 2—Lieryu Formation; 3—Gaojiayu Formation; 4—Dashiqiao Formation; 5—Gabbro; 6—Pegmatite; 7—Diorite porphyrite; 8— Rare earth ore body; 9—Ductile shear zone; 10—Occurrence of rock formation; 11—Presumed fault; 12— Measured fault; 13—Sampling location; 14—Two-mica schist pattern; 15—Leptite pattern; 16—Gabbro pattern; 17—Pegmatite pattern.2. 实验部分
2.1 样品采集与制备
本次实验样品采集于辽阳县隆昌镇吉祥峪研究区钻孔岩心,岩性为磷灰褐帘磁铁角闪变粒岩(样品编号XT-02),样品颜色为灰黑色,鳞片粒状变晶结构,块状构造。测试前先将样品混合破碎至1mm以下,筛出22~120目样品置于环氧树脂中抛磨出光滑平面,真空喷碳增加导电性,然后进行AMICS分析[27-28]。
2.2 实验仪器及测试条件
实验测试在河南省岩石矿物测试中心完成。实验仪器包括一台超高分辨率场发射扫描电镜(Zeiss Sigma 500)、一台电制冷能谱仪(Bruker XFlash6610)以及一套AMICS自动矿物识别和表征系统。
本次测试仪器均经过调整和标定,并引入了质控样品用于监测和验证仪器性能和数据准确性,对XT-02样品进行重复测试以检查数据的重复性和精确性,测试过程中出现“计数率低”和“未识别”时调整测试参数和颗粒数,以保证测试数据的可靠性。测试时实验条件为:高真空环境,加速电压20kV,工作距离11.8mm,点分析采集时间达到250kcps自动停止。
3. 结果与讨论
3.1 稀土矿物的种类
通过矿物自动分析技术完成了稀土矿物的识别,确定组成稀土矿石样品(XT-02)的矿物类型10余种,主要矿物有:磁铁矿、阳起石、褐帘石、磷灰石、独居石、方铈石,次要矿物有:石英、斜长石、钾长石、榍石、黑云母。矿石矿物含量由高至低依次为:磁铁矿63.48%、阳起石7.61%、石英7.36%、褐帘石6.25%、磷灰石5.73%、钾长石2.20%、斜长石2.14%、独居石0.73%、黑云母0.51%、榍石0.39%、方铈石0.25%、绿泥石0.14%、钙铁榴石0.01%、锆石0.01%(图2、表1)。由此可知,吉祥峪稀土矿主要含稀土矿物为褐帘石、独居石、方铈石和磷灰石。
表 1 吉祥峪稀土矿床样品AMICS矿物定量分析结果Table 1. Quantitative analysis results of minerals measured by AMICS in Jixiangyu rare earth deposit.矿物名称 质量分数
(%)面积百分比
(%)统计面积
(μm2)颗粒数
(个)统计相对误差
(%)矿物标准分子式[29-30] 褐帘石 6.25 6.62 3386157.37 809 0.14 (Ce,Ca)(Ce,La)(Nd,Pr)(Fe2+,Fe3+)(Al,Mg)[Si2O7][SiO4]O(OH) 独居石 0.73 0.57 289757.48 105 0.35 (Ce,La,Ca,Fe,Th,Nd,Pr)[SiO4] [PO4] 方铈石 0.25 0.50 257590.30 78 0.06 (Ce3+,Th,Fe,Pr,Nd)O2 磷灰石 5.73 7.22 3696466.51 861 0.10 FeFe2O4 磁铁矿 63.48 48.95 25056614.78 1891 0.07 Ca5[PO4]3(F,OH) 阳起石 7.61 9.94 5088796.43 524 0.11 Ca2Na(Mg,Fe)5(Al,Fe3+)[(Si,Al)4O11]2(OH)2 石英 7.36 11.16 5713847.71 1218 0.08 SiO2 钙铁榴石 0.01 0.01 70.14 1 2.00 Ca3Fe2[SiO4]3 斜长石 2.14 3.25 1663198.10 288 0.16 Na[AlSi3O8] 榍石 0.39 0.44 227134.51 301 0.20 CaTi[SiO4]O 锆石 0.01 0.01 1928.91 12 0.58 Zr(SiO4) 绿泥石 0.14 0.19 99300.33 166 0.18 Fe3 2+[Si4O10](OH)2(Mg,Al,Fe,Si)3(OH)6 钾长石 2.20 3.41 1743721.36 134 0.21 K[AlSi3O8] 黑云母 0.51 0.65 334115.41 344 0.15 K(Fe,Al)3AlSi3O10(F,OH)2 未知矿物 3.20 6.36 3255145.74 4728 0.05 / 孔隙 / 0.73 371809.84 22084 0.06 / 3.1.1 褐帘石
褐帘石是一种含有较高稀土组分的帘石族矿物,其轻稀土成分可占全岩类的90%以上,其中Ca可被REE3+、Th4+、U4+等替代,使其高度富集LREE、U、Th等微量元素,化学成分变化较大,Al可被Fe2+、Mg2+等替代[31-32]。
褐帘石在XT-02样品中分布不均匀,含量为6.25%。样品中的褐帘石多呈柱状或厚板状,解理不完全,自形-半自形,粒径0.01~0.595mm。对其进行能谱分析,得到褐帘石平均含有O 37.07%、Fe 16.38%、Si 11.88%、Ca 7.96%、Al 5.35%、Mg 0.55%、Ce 10.69%、La 6.79%、Nd 2.24%、Pr 1.09%(表2)。矿物中富含轻稀土元素,以Ce、La、Nd为主,含少量Pr,未见U元素和Th元素的替代[33-34]。镜下观察发现,褐帘石常与磷灰石、磁铁矿连生,与磁铁矿关系密切(图3a;图4中a,c)。
表 2 褐帘石能谱分析结果Table 2. Energy spectrum analysis results of allanite.样品编号 质量分数(%) O Fe Si Ca Al Mg Ce La Nd Pr XT02-07 37.43 16.07 11.74 7.76 5.27 0.59 11.06 6.95 2.04 1.08 XT02-13 35.73 15.11 12.31 7.76 5.50 0.59 11.60 7.81 2.33 1.25 XT02-29 38.23 15.73 11.30 8.39 5.02 0.41 10.94 7.07 1.94 0.98 XT02-30 37.13 17.78 11.63 8.06 5.17 0.47 10.27 6.18 2.31 1.00 XT02-31 36.85 16.50 12.80 7.41 6.17 0.82 9.77 6.17 2.26 1.25 XT02-32 37.03 17.08 11.49 8.39 4.99 0.42 10.48 6.58 2.54 1.00 平均值 37.07 16.38 11.88 7.96 5.35 0.55 10.69 6.79 2.24 1.09 图 4 样品XT-02(磷灰褐帘磁铁角闪变粒岩)的显微组构特征a—褐帘石与磷灰石、磁铁矿连生; b—独居石被磷灰石包裹; c—褐帘石与磷灰石连生,被磁铁矿包裹; d—独居石与磁铁矿连生,被角闪石包裹。Aln—褐帘石;Ap—磷灰石;Mag—磁铁矿;Mnz—独居石;Cam—角闪石。Figure 4. Microfabric characteristics of sample XT-02 (apatite-allanite-magnet-hornblende granulite): (a) Allanite, apatite and magnetite coexisting; (b) Monazite surrounded by apatite; (c) Allanite and apatite coexisting, surrounded by magnetite; (d) Monazite associated with magnetite and wrapped by amphibole. Aln—Allanite; Ap—Apatite; Mag—Magnetite; Mnz—Monazite; Cam—Amphibole.3.1.2 方铈石
方铈石在XT-02样品中少量分布,多以单体形式存在,含量为0.25%。样品中方铈石常呈不规则粒状及聚粒状,粒径0.01~0.5mm(图3b)。对其进行能谱分析,得到方铈石平均含有Ce 53.67%、O 21.07%、Fe 8.56%、Si 3.67%、P 3.36%、Pr 2.35%、Nd 1.79%、Ca 1.30%、Th 1.29%、Al 1.23%、La 0.87%、Mn 0.56%、Mg 0.28%(表3),矿物中富含轻稀土元素,以Ce、La、Nd为主,常见Mg元素等被Th元素替代[35]。
表 3 方铈石能谱分析结果Table 3. Energy spectrum analysis results of cerianite.样品编号 质量分数(%) Ce O Fe Si P Pr Nd Ca Th Al La Mn Mg XT02-38 57.32 17.24 8.32 3.63 3.96 3.84 2.80 1.36 / 1.53 / / / XT02-39 52.73 16.46 8.53 4.17 3.58 4.15 2.35 1.29 / 1.75 / 3.95 1.04 XT02-54 45.70 23.43 13.12 4.25 2.71 0.98 1.13 1.79 1.95 2.04 2.02 / 0.89 XT02-61 53.13 25.81 5.44 4.38 3.06 1.30 1.36 1.04 2.02 1.11 1.35 / / XT02-62 66.35 15.50 4.47 2.79 3.22 1.65 1.59 1.02 1.61 / 1.80 / / XT02-63 55.86 21.51 6.37 2.63 4.07 2.56 1.83 1.57 2.84 0.74 / / / XT02-64 44.60 27.54 13.65 3.86 2.93 1.94 1.48 1.02 0.62 1.46 0.89 / / 平均值 53.67 21.07 8.56 3.67 3.36 2.35 1.79 1.30 1.29 1.23 0.87 0.56 0.28 3.1.3 独居石
独居石是一种富含轻稀土元素的磷酸盐矿物,含有放射性元素Th、U。独居石常与绿泥石、阳起石等变质矿物交叉共生或作为包裹体镶嵌其中(图3中c,d)。在背散射图像中,独居石较其他矿物具有更高的亮度,其亮度与Th含量呈正比[36-38]。
独居石在XT-02样品中多以单体形式存在,含量为0.73%。样品中的独居石呈自形-半自形板状,解理完全,粒径0.01~2.1mm。对其进行能谱分析,得到独居石平均含有O 29.38%、P 13.87%、Ce 20.08%、La 20.43%、Nd 8.68%、Pr 2.92%、Ca 1.55%、Fe 1.05%、Si 0.81%、Th 1.25%(表4)。矿物中富含轻稀土元素,以Ce、La、Nd为主,常见Ca元素等被Th元素替代。镜下观察发现,独居石与磁铁矿连生,常被褐帘石、磷灰石等矿物包裹[39](图4中b,d)。
表 4 独居石能谱分析结果Table 4. Energy spectrum analysis results of monazite.样品编号 质量分数(%) O Ce La P Nd Pr Ca Fe Si Th XT02-06 27.53 24.44 17.99 14.39 7.11 2.49 2.20 2.20 0.93 0.72 XT-02-40 21.03 12.05 28.06 14.69 12.33 4.81 3.46 2.34 0.88 0.33 XT02-46 25.81 11.32 26.81 12.77 11.69 4.49 2.40 1.35 1.71 1.65 XT02-47 26.91 9.71 26.13 13.38 11.81 4.71 2.16 1.64 1.38 2.17 XT02-53 32.08 9.84 24.95 12.25 10.93 4.13 1.90 0.89 1.07 1.96 XT02-55 31.13 20.20 19.32 13.69 7.65 2.45 4.33 1.24 / / XT02-56 38.95 14.45 19.58 12.79 8.18 2.67 2.06 / 1.32 / XT02-68 39.31 14.25 18.25 11.32 6.91 2.53 3.14 2.85 0.54 0.90 XT02-69 30.77 26.29 16.70 15.64 7.28 2.30 / / / 1.02 XT02-71 27.88 27.67 17.08 13.91 7.96 2.16 / 0.27 0.65 2.43 XT02-73 28.40 28.23 18.51 14.91 6.78 1.99 / 0.30 / 0.88 XT02-74 26.63 27.20 17.16 14.08 7.92 2.07 / 0.39 1.01 3.55 XT02-75 28.00 27.00 17.16 14.73 7.52 2.08 / 0.82 0.77 1.91 XT02-76 26.93 28.47 18.32 15.59 7.42 2.06 / 0.38 1.01 / 平均值 29.38 20.08 20.43 13.87 8.68 2.92 1.55 1.05 0.81 1.25 3.1.4 其他含稀土矿物
矿石中还含有磷灰石(5.73%)。磷灰石是一种重要的稀土元素累积矿物,其在变质岩中作为常见的副矿物出现,已报道的磷灰石中的稀土含量最高可达11.14%(RE2O3),且主要为轻稀土[40-41]。饶金山等[42]通过实验揭示了磷灰石含稀土的机制:①磷灰石包裹微细独立稀土矿物(独居石、褐帘石)(图4b)。②RE3+晶格替代磷灰石中的Ca2+。
3.2 AMICS方法的优势与不足
AMICS系统的优势明显:①以往的稀土矿物鉴定工作需要先在目镜下区分矿物,圈定矿物位置,然后才能进行实验,且目标稀土矿物颗粒细小,光性特征复杂不易区分,这些都使得实验效率和准确性明显降低。该系统通过多种信号联合分析快速、准确地获得矿物微区准确的结构信息和化学成分。通过分析和比对大量的矿物样本图像和特征,快速、准确地识别出不同矿物类型,确定矿石的成分和矿物组合、尺寸分布、颗粒形状、矿物之间的关系等。②该系统可以对大量的样本数据进行分析和处理。能有效地识别出矿物的特征模式和相关性、潜在的规律和趋势,以指导矿产资源的合理开发利用[43-44]。
但该方法仍然存在一些缺点:①在样品制备阶段需保证光片表面的平整度、凹凸表面及倒角会影响X射线的产生和激发。②AMICS测量的面积只有15mm2左右,选择样品时需注意所选样品的代表性。③测试过程中需尝试调整仪器参数和矿物测试颗粒数,控制测试相对误差率在10%左右,保证置信度大于95%。④分析系统不能区分同质多象及成分相似的矿物,需要人工识别分析数据,辅以岩矿鉴定知识加以辨认,改变分类结果,或者借助电子探针(EPMA)进一步确定矿物[45-46]。
4. 结论
通过AMICS测试,完成了辽东吉祥峪稀土矿石(样品编号XT-02)的原位解离分析,得到该稀土矿床稀土矿物主要为褐帘石、独居石和方铈石,其中褐帘石占矿物总量的比例为6.25%,独居石占比为0.73%,方铈石占比为0.25%,稀土元素以La、Ce、Pr、Nd等轻稀土元素为主,且主要在褐帘石、独居石和方铈石中富集,少量稀土元素以类质同象形式赋存在磷灰石中。脉石矿物有阳起石、石英、斜长石、钾长石、榍石、黑云母等。
通过背散射图像结合光学显微镜观察得出,矿石中的稀土矿物褐帘石、独居石、方铈石及磷灰石具有较好的连生关系。这些矿物以单颗粒或聚粒结构与磁铁矿交叉镶嵌,或分布在磁铁矿边缘及间隙中,与磁铁矿呈现出较复杂的共生关系。该结果和样品中稀土与磁铁矿含量呈正相关相一致,分析其形成过程可能为以下原因:①沉积富集:吉祥峪稀土矿位于辽吉裂谷的核部,裂谷为矿床提供了有利的沉积环境,沉积物经过长时间的聚集、压实和蚀变作用,可能会同时释放稀土元素和铁元素并逐渐富集形成矿床。②岩浆改造:岩浆热液可能与里尔峪组一段变粒岩产生反应,形成稀土矿物和磁铁矿的矿化过程可能同时发生或相互交织,使其中高背景值的稀土元素和铁元素活化并在同一地质环境下富集。③构造控制:特定的地质过程或成矿作用可能对稀土元素和铁元素的分布产生共同的控制作用。吉祥峪稀土矿体位于辽吉裂谷带核部—吉祥峪算盘峪背斜核部的穹隆构造上,断裂带和褶皱可能在地壳的应力作用下形成矿质富集的通道,使矿质从深部运移至浅部。
-
表 1 仪器检测技术可检测抗生素种类及其性能
Table 1 The antibiotics types and performance of instrument detection technology that can be detected.
检测方法 仪器设备 可检测抗生素种类 检出限 RSD(%) 参考文献 毛细管电泳
(CE)高效毛细管电泳仪 磺胺类、喹诺酮类、四环素类等 0.4~1.0μg/L − [17−18] 高效液相色谱法
(HPLC)高效液相色谱-
串联质谱仪磺胺类、喹诺酮类、大环内酯类、四环素类、
氯霉素类等七大类0.06~2.28ng/L − [19] 高效液相色谱-串联
紫外/荧光检测器磺胺类、喹诺酮类、氯霉素类等 4.2~22.8μg/L − [20] 液相色谱-质谱联用法
(LC-MS)液相色谱-串联质谱仪 磺胺类、喹诺酮类、大环内酯类、
四环素类等0.15~0.9ng/L 0.36~2.25 [21−22] 液相色谱仪;
三重四极杆质谱仪磺胺类、喹诺酮类、大环内酯类、
四环素类等1.2~15ng/L <22 [23] 高效液相色谱-串联质谱法
(HPLC-MS/MS)三重四级杆质谱仪;
高效液相色谱仪磺胺类、喹诺酮类、大环内酯类、
头孢霉素类等0.0056~3.9675ng/L <11 [24−25] 高效液相色谱-
串联质谱仪喹诺酮类 0.1μg/L 0.71~12.80 [26] 超高效液相色谱-
串联质谱法
(UPLC-MS/MS)超高效液相色谱仪;
三重四极杆质谱仪磺胺类、喹诺酮类、大环内酯类、
四环素类、氯霉素类等七大类0.01~10.6ng/L ≤16 [27−30] 表 2 仪器检测技术可检测内分泌干扰物种类及其性能
Table 2 The environmental endocrine disruptors types and performance of instrument detection technology that can be detected.
检测方法 仪器设备 可检测内分泌干扰物种类 检出限 RSD(%) 参考文献 气相色谱-质谱
联用法
(GC-MS)气相色谱-质谱仪 类固醇类、酚类等 0.5~140ng/L 2.54~5.36 [31] 高效液相色谱法
(HPLC)高效液相色谱仪-串联荧光检测器 三氯生、β-雌二醇、壬基酚和4-辛基酚 1.1~1.9ng/L − [32−33] 高效液相色谱仪 邻苯二甲酸二丁(辛)酯 0.1μg/L <4.47 [34] 高效液相色谱仪-串联二极管阵列检测器 三氯生、三氯卡班和甲基三氯生 0.05~0.2μg/L <10 [35] 高效液相色谱-
串联质谱法
(HPLC-MS/MS)高效液相色谱仪;质谱仪 对乙酰氨基酚等17种 0.07~1.88ng/L − [36] 高效液相色谱系统;
三重四极杆质谱仪黄体酮代谢物、类固醇类、酚类等 0.02~50ng/L <15 [37−39] 超高效液相色谱
串联质谱法
(UPLC-MS/MS)超高效液相色谱-串联质谱仪 雌激素类、雄激素类、肾上腺皮质激素类、
酚类和非甾类激素类等0.05~2.00ng/L 0.99~12.0 [40−41] 超高效液相色谱系统;三重四极杆质谱仪 酚类、黄体酮等 0.03ng/L~5.0μg/L ≤11.6 [42−44] 表 3 仪器检测技术可检测全氟化合物种类及其性能
Table 3 The perfluorinated and polyfluoroalkyl substances types and performance of instrument detection technology that can be detected.
检测方法 仪器设备 可检测全氟化合物种类 检出限 RSD(%) 参考文献 气相色谱-质谱
联用法
(GC-MS)气相色谱-质谱仪 中性全氟烷基化合物、
全氟羧酸化合物等0.02ng/L~1.5μg/L <14.5 [46-47] 液相色谱-质谱联用法
(LC-MS/MS)液相色谱仪;
三重四极杆质谱仪全氟辛烷磺酸等22种以上
全氟烷基化合物0.16~5.13ng/L 3~18 [48-49] 高效液相色谱-串联质谱法
(HPLC-MS/MS)高效液相色谱仪;质谱仪 全氟辛烷磺酸等21种全氟化合物 0.01~0.08ng/L 1.1~11.2 [50] 超高效液相色谱-串联质谱法
(UPLC-MS/MS)超高效液相色谱-串联四极杆
质谱仪全氟羧酸、全氟磺酸、全氟醚羧酸等
57种以上全氟化合物0.01ng/L~0.1μg/L 0.4~23.0 [51-53] 超高效液相色谱-质谱仪 全氟丁烷磺酸、全氟辛酸和全氟
辛烷磺酸等16种以上全氟化合物0.06ng/L~0.25μg/L 2.1~9.19 [54-56] 表 4 水中新污染物传感检测技术优缺点对比
Table 4 Comparison of advantages and disadvantages of emerging contaminants sensor detection methods for water samples.
传感检测技术 优点 缺点 电化学传感 操作简单,成本低廉,分析速度快,仪器体积小,
易携带,适用于现场检测检出限较高,电极构造耗时、繁琐,电极易被污染,
需定期更换电极光学传感 操作简单,成本低,可实时检测 灵敏度一般,容易受环境干扰,使用寿命较短,
大多只能对特定污染物进行检测生物传感 操作简单,费用低,适用于批量样品快速筛选 易受到水样中其他物质干扰,专一性和精确度不足 表 5 不同类别新污染物可选择的快速检测方法总结
Table 5 Summary of emerging contaminants that can be detected by rapid detection methods.
快速检测技术分类 方法名称 抗生素类 全氟化合物类 内分泌干扰物类 传感检测技术 电化学传感 √ √ √ 光学传感 √ √ √ 生物传感 √ √ √ 免疫检测技术 酶联免疫分析法 √ √ √ 免疫层析法 − − √ 其他快速检测技术 平面波导免疫传感器 √ − √ 荧光免疫生物传感器 − − √ 阵列倏逝波荧光传感器 − − √ 单扫描极谱 − √ − 原位显色反应 − − √ 注:“−”表示该类新污染物不涉及。 -
[1] 孔慧敏, 赵晓辉, 徐琬, 等. 我国地下水环境抗生素赋存现状及风险评价[J]. 环境工程, 2023, 41(2): 219−226. Kong H M, Zhao X H, Xu W, et al. Occurrence and risk assessment of antibiotics in groundwater environment in China[J]. Environmental Engineering, 2023, 41(2): 219−226.
[2] 马健生, 王卓, 张泽宇, 等. 哈尔滨市地下水中29种抗生素分布特征研究[J]. 岩矿测试, 2021, 40(6): 944−953. doi: 10.3969/j.issn.0254-5357.2021.6.ykcs202106013 Ma J S, Wang Z, Zhang Z Y, et al. Distribution characteristics of 29 antibiotics in groundwater in Harbin[J]. Rock and Mineral Analysis, 2021, 40(6): 944−953. doi: 10.3969/j.issn.0254-5357.2021.6.ykcs202106013
[3] 陈慧, 剧泽佳, 赵鑫宇, 等. 石家庄地下水中喹诺酮类抗生素生态风险及其与环境因子的相关性[J]. 环境科学, 2022, 43(9): 4556−4565. Chen H, Ju Z J, Zhao X Y, et al. Ecological risk assessment of quinolones antibiotics and the correlation analysis between QNS and physical-chemical parameters in groundwater, Shijiazhuang City[J]. Environmental Science, 2022, 43(9): 4556−4565.
[4] 李清雪, 董天羽, 孙王茹, 等. 典型北方城市河流中抗生素污染特征及风险评价[J]. 生态毒理学报, 2022, 17(4): 213−229. Li Q X, Dong T Y, Sun W R, et al. Pollution characteristics and risk assessment of antibiotics in typical northern urban rivers[J]. Asian Journal of Ecotoxicology, 2022, 17(4): 213−229.
[5] 刘军, 万正杨, 杨财平, 等. 宜昌市水源水中抗生素污染特征与健康风险评价[J]. 公共卫生与预防医学, 2023, 34(2): 65−68. doi: 10.3969/j.issn.1006-2483.2023.02.014 Liu J, Wan Z Y, Yang C P, et al. Antibiotic pollution characteristics and health risk assessment of source water in Yichang City[J]. Journal of Public Health and Preventive Medicine, 2023, 34(2): 65−68. doi: 10.3969/j.issn.1006-2483.2023.02.014
[6] 王若男, 何吉明, 向秋实, 等. 沱江流域饮用水源地抗生素污染的时空变化、生态风险及人体暴露评估[J]. 环境科学研究, 2022, 35(10): 2404−2412. doi: 10.13198/j.issn.1001-6929.2022.07.11 Wang R N, He J M, Xiang Q S, et al. Spatial and temporal distribution, ecological risk and human exposure assessment of antibiotics in drinking water sources in Tuojiang River Basin[J]. Research of Environmental Sciences, 2022, 35(10): 2404−2412. doi: 10.13198/j.issn.1001-6929.2022.07.11
[7] 牛颖, 安圣, 陈凯,等. 2012—2021年中国地下水抗生素污染现状及分析技术研究进展[J]. 岩矿测试, 2023, 42(1): 39−58. Niu Y, An S, Chen K, et al. A review of current status and analysis methods of antibiotic contamination in groundwater in China (2012—2021)[J]. Rock and Mineral Analysis, 2023, 42(1): 39−58.
[8] Zainab S M, Junaid M, Rehman M Y A, et al. First insight into the occurrence, spatial distribution, sources, and risks assessment of antibiotics in groundwater from major urban-rural settings of Pakistan[J]. Science of the Total Environment, 2021, 791: 148298. doi: 10.1016/j.scitotenv.2021.148298
[9] 王淑婷, 饶竹, 郭峰, 等. 无锡—常州地下水中内分泌干扰物的赋存特征和健康风险评价[J]. 环境科学, 2021, 42(1): 166−174. Wang S T, Rao Z, Guo F, et al. Occurrence characteristics and health risk assessment of endocrine disrupting chemicals in groundwater in Wuxi—Changzhou[J]. Environmental Science, 2021, 42(1): 166−174.
[10] 杜娟, 胡红娟, 杨靖, 等. 徐州地区地下水中内分泌干扰物的监测与风险评估[J]. 环境监测管理与技术, 2016, 28(6): 38−40. doi: 10.3969/j.issn.1006-2009.2016.06.009 Du J, Hu H J, Yang J, et al. Analysis and risk assessment of endocrine disruptors in groundwater in Xuzhou Region[J]. The Administration and Technique of Environmental Monitoring, 2016, 28(6): 38−40. doi: 10.3969/j.issn.1006-2009.2016.06.009
[11] 华永有, 卢翠英, 林麒, 等. 闽江流域水体中8种酚类内分泌干扰物污染特征[J]. 环境与健康杂志, 2021, 38(3): 226−228. doi: 10.16241/j.cnki.1001-5914.2021.03.010 Hua Y Y, Lu C Y, Lin Q, et al. Pollution characteristics of eight phenolic endocrine disruptors in water body in Minjiang River Basin[J]. Journal of Environment and Health, 2021, 38(3): 226−228. doi: 10.16241/j.cnki.1001-5914.2021.03.010
[12] Chiriac F L, Pirvu F, Paun I. Investigation of endocrine disruptor pollutants and their metabolites along the Romanian Black Sea Coast: Occurrence, distribution and risk assessment[J]. Environmental Toxicology and Pharmacology, 2021, 86(86): 103673.
[13] 陈典, 张照荷, 赵微, 等. 北京市再生水灌区地下水中典型全氟化合物的分布现状及生态风险[J]. 岩矿测试, 2022, 41(3): 499−510. Chen D, Zhang Z H, Zhao W, et al. The occurrence, distribution and risk assessment of typical perfluorinated compounds in groundwater from a reclaimed wastewater irrigation area in Beijing[J]. Rock and Mineral Analysis, 2022, 41(3): 499−510.
[14] 谭冬飞, 张艳伟, 王璐, 等. 海南省部分区域农田地下水中全氟烷基酸类浓度水平和潜在污染源分析[J]. 农业环境科学学报, 2018, 37(2): 350−357. doi: 10.11654/jaes.2017-1212 Tan D F, Zhang Y W, Wang L, et al. Distribution and potential PFAA pollution sources in farmland groundwater from Hainan Province[J]. Journal of Agro-Environment Science, 2018, 37(2): 350−357. doi: 10.11654/jaes.2017-1212
[15] 黄家浩, 陶艳茹, 黄天寅, 等. 洪泽湖水体全氟化合物的污染特征、来源及健康风险[J]. 环境科学研究, 2023, 36(4): 694−703. Huang J H, Tao Y R, Huang T Y, et al. Occurrence, sources and health risk assessment of per- and polyfluoroalkyl substances in surface water of Hongze Lake[J]. Research of Environmental Sciences, 2023, 36(4): 694−703.
[16] Selvaraj K K, Murugasamy M, Patil N N, et al. Investigation of distribution, sources and flux of perfluorinated compounds in major Southern Indian Rivers and their risk assessment[J]. Chemosphere, 2021, 277(277): 130228.
[17] 谭韬, 刘应杰, 唐倩, 等. 毛细管电泳对水体中多类抗生素的同时分离检测[J]. 重庆医学, 2018, 47(35): 4530−4533. Tan T, Liu Y J, Tang Q, et al. Simultaneous separation and detection of multiple antibiotics in water by capillary electrophoresis[J]. Chongqing Medicine, 2018, 47(35): 4530−4533.
[18] 李兴华, 苗俊杰, 康凯, 等. 固相萃取-高效毛细管电泳法同时分离测定水体和土壤中13种抗生素[J]. 理化检验(化学分册), 2019, 55(7): 769−777. Li X H, Miao J J, Kang K, et al. Simultaneous separation and determination of thirteen antibiotics in soil and water by high performance capillary electrophoresis with pretreatment by solid phase extraction[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 55(7): 769−777.
[19] Yi X Z, Bayen S, Kelly B C, et al. Improved detection of multiple environmental antibiotics through an optimized sample extraction strategy in liquid chromatography-mass spectrometry analysis[J]. Analytical and Bioanalytical Chemistry, 2015, 407: 9071−9083. doi: 10.1007/s00216-015-9074-7
[20] 曹君, 张雪娇, 赵青, 等. 液相色谱紫外-荧光串联检测器法检测我国污水中常见11种抗生素[J]. 生态学杂志, 2022, 41(1): 190−198. Cao J, Zhang X J, Zhao Q, et al. Determination of 11 antibiotics frequently detected in municipal wastewater in China by high-performance liquid chromatography with ultraviolet and fluorescence detector[J]. Chinese Journal of Ecology, 2022, 41(1): 190−198.
[21] Tlili I, Caria G, Ouddane B, et al. Simultaneous detection of antibiotics and other drug residues in the dissolved and particulate phases of water by an off-line SPE combined with on-line SPE-LC-MS/MS: Method development and application[J]. Science of the Total Environment, 2016, 563: 424−433.
[22] Omotola E O, Olatunji O S. Quantification of selected pharmaceutical compounds in water using liquid chromatography-electrospray ionisation mass spectrometry (LC-ESI-MS)[J]. Heliyon, 2020, 6(12): e05787. doi: 10.1016/j.heliyon.2020.e05787
[23] Panditi V R, Batchu S R, Gardinali P R. Online solid-phase extraction–liquid chromatography-electrospray tandem mass spectrometry determination of multiple classes of antibiotics in environmental and treated waters[J]. Analytical and Bioanalytical Chemistry, 2013, 405: 5953−5964. doi: 10.1007/s00216-013-6863-8
[24] 李明明. SPE-HPLC-MS/MS检测地表水中的萘啶酸、吡哌酸、培氟沙星、氧氟沙星、司帕沙星和加替沙星残留[J]. 中国测试, 2021, 47(4): 67−71. Li M M. Determination of nalidixic acid, pipemidic acid, pefloxacin, ofloxacin, sparfloxacin and gatifloxacin residues in surface water by SPE-HPLC-MS/MS[J]. China Measurement & Test, 2021, 47(4): 67−71.
[25] 史晓, 卜庆伟, 吴东奎, 等. 地表水中10种抗生素SPE-HPLC-MS/MS检测方法的建立[J]. 环境化学, 2020, 39(4): 1075−1083. Shi X, Bu Q W, Wu D K, et al. Simultaneous determination of 10 antibiotic residues in surface water by SPE-HPLC-MS/MS[J]. Environmental Chemistry, 2020, 39(4): 1075−1083.
[26] 甄建辉, 田浩, 艾连峰, 等. 液相色谱-串联质谱法测定水体中8种典型喹诺酮类抗生素[J]. 食品安全质量检测学报, 2022, 13(7): 2230−2235. Zhen J H, Tian H, Ai L F, et al. Determination of 8 kinds of typical quinolones antibiotics by liquid chromatography-tandem mass spectrometry in water[J]. Journal of Food Safety and Quality, 2022, 13(7): 2230−2235.
[27] 营娇龙, 秦晓鹏, 郎杭, 等. 超高效液相色谱-串联质谱法同时测定水体中37种典型抗生素[J]. 岩矿测试, 2022, 41(3): 394−403. Ying J L, Qin X P, Lang H, et al. Determination of 37 typical antibiotics by liquid chromatography-triple quadrupole mass spectrometry[J]. Rock and Mineral Analysis, 2022, 41(3): 394−403.
[28] Yuan S F, Liu Z H, Yin H, et al. Trace determination of sulfonamide antibiotics and their acetylated metabolites via SPE-LC-MS/MS in wastewater and insights from their occurrence in a municipal wastewater treatment plant[J]. Science of the Total Environment, 2019, 653: 815−821. doi: 10.1016/j.scitotenv.2018.10.417
[29] 王建凤, 王嘉琦, 刘喆, 等. 超高效液相色谱串联质谱测定中水中喹诺酮类抗生素[J]. 中国给水排水, 2018, 34(6): 116−119. Wang J F, Wang J Q, Liu Z, et al. Determination of quinolones antibiotics in reclaimed water by ultra high performance liquid chromatography tandem mass spectrometer[J]. China Water & Wastewater, 2018, 34(6): 116−119.
[30] Ran Y, Liang C, Rong S, et al. Quantification of ultratrace levels of fluoroquinolones in wastewater by molecularly imprinted solid phase extraction and liquid chromatography triple quadrupole mass[J]. Environmental Technology & Innovation, 2020, 19: 100919.
[31] 项萍, 汤江江. 气质联用法(GC-MS)检测环境水体中8种内分泌干扰物[J]. 河南理工大学学报(自然科学版), 2019, 38(1): 76−82. doi: 10.16186/j.cnki.1673-9787.2019.1.11 Xiang P, Tang J J. Determination of eight endocrine disrupting chemicals in environmental water samples by gas chromatography-mass spectrometry (GC-MS)[J]. Journal of Henan Polytechnic University (Natural Science), 2019, 38(1): 76−82. doi: 10.16186/j.cnki.1673-9787.2019.1.11
[32] 孙怡琳, 亢洋, 郑龙芳, 等. 衍生化-磁固相萃取高效液相色谱荧光检测内分泌干扰物[J]. 分析化学, 2019, 47(1): 86−92. Sun Y L, Kang Y, Zheng L F, et al. Determination of endocrine disruptors by high performance liquid chromatography-fluorescence detection using magnetic dispersive solid phase extraction[J]. Chinese Journal of Analytical Chemistry, 2019, 47(1): 86−92.
[33] Zhang G, Yang Y, Lu Y, et al. Effect of heavy metal ions on steroid estrogen removal and transport in SAT using DLLME as a detection method of steroid estrogen[J]. Water, 2020, 12(2): 589. doi: 10.3390/w12020589
[34] 纪晓娜, 薛路遥, 任志敏, 等. 高效液相色谱法检测城市污水中的邻苯二甲酸二丁(辛)酯[J]. 化学试剂, 2021, 43(10): 1376−1380. Ji X N, Xue L Y, Ren Z M, et al. Detecting dibutyl (di- n-octyl) phthalate in municipal sewage water with high performance liquid chromatography[J]. Chemical Reagents, 2021, 43(10): 1376−1380.
[35] Nur’Hafiz R M, Bahruddin S, Noorfatimah Y, et al. Determination of three endocrine disruptors in water samples by ultrasound-assisted salt-induced liquid-liquid microextraction (UA-SI-LLME) and high-performance liquid chromatography-diode array detection (HPLC-DAD)[J]. Analytical Letters, 2022, 55(1): 132−145. doi: 10.1080/00032719.2021.1919691
[36] Li Y, Taggart M A, McKenzie C, et al. A SPE-HPLC-MS/MS method for the simultaneous determination of prioritised pharmaceuticals and EDCs with high environmental risk potential in freshwater[J]. Journal of Environmental Sciences, 2021, 100: 18−27. doi: 10.1016/j.jes.2020.07.013
[37] Zhang K, Fent K. Determination of two progestin metabolites (17 α-hydroxypregnanolone and pregnanediol) and different classes of steroids (androgens, estrogens, corticosteroids, progestins) in rivers and wastewaters by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS)[J]. Science of the Total Environment, 2018, 610-611: 1164−1172. doi: 10.1016/j.scitotenv.2017.08.114
[38] 罗洲飞, 徐梦薇, 陆静, 等. 高效液相色谱-三重四极杆串联质谱测定环境水样中20种环境内分泌干扰物[J]. 环境化学, 2020, 39(7): 1923−1933. doi: 10.7524/j.issn.0254-6108.2019050706 Luo Z F, Xu M W, Lu J, et al. Determination of 20 endocrine-disrupting compounds in environmental water samples by high performance liquid chromatography-tandem mass spectrometry[J]. Environmental Chemistry, 2020, 39(7): 1923−1933. doi: 10.7524/j.issn.0254-6108.2019050706
[39] Li Y J, Yang L Y, Zhen H J, et al. Determination of estrogens and estrogen mimics by solid-phase extraction with liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography B, 2021: 1168.
[40] 李建平, 郝思文, 张毅, 等. 饮用水中11种雌激素类内分泌干扰物的固相萃取-超高效液相色谱-串联质谱测定法[J]. 环境与健康杂志, 2020, 37(8): 722−725. doi: 10.16241/j.cnki.1001-5914.2020.08.016 Li J P, Hao S W, Zhang Y, et al. Determination of 11 kinds of estrogens EDCs in drinking water by solid-phase extraction-ultra performance liquid chromatography-tandem mass spectrometry[J]. Journal of Environment and Health, 2020, 37(8): 722−725. doi: 10.16241/j.cnki.1001-5914.2020.08.016
[41] 邹小南, 罗丹, 李贵洪, 等. 超高效液相色谱-串联质谱法同时分析地下水中24种内分泌干扰物[J]. 中国环境监测, 2022, 38(4): 31−40. Zou X N, Luo D, Li G H, et al. Simultaneous analysis of 24 endocrine disruptors in groundwater by ultra-high performance liquid chromatography tandem mass spectrometry[J]. Environmental Monitoring in China, 2022, 38(4): 31−40.
[42] AlAmmari A M, Khan M R, Aqel A. Trace identification of endocrine-disrupting bisphenol a in drinking water by solid-phase extraction and ultra-performance liquid chromatography-tandem mass Spectrometry[J]. Journal of King Saud University-Science, 2020, 32(2): 1634−1640. doi: 10.1016/j.jksus.2019.12.022
[43] Shen X Y, Chang H, Sun D Z, et al. Trace analysis of 61 natural and synthetic progestins in river water and sewage effluents by ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Water Research, 2018, 133: 142−152. doi: 10.1016/j.watres.2018.01.030
[44] 刘蔚, 陈芳梅, 李伟, 等. 分散液液微萃取-超高效液相色谱-串联质谱法快速测定市售饮用水样中7种双酚-二环氧甘油醚[J]. 环境化学, 2018, 37(11): 2462−2472. doi: 10.7524/j.issn.0254-6108.2017122204 Liu W, Chen F M, Li W, et al. Rapid determination of seven bisphenol diglycidyl ethers in drinking water samples by dispersive liquid microextraction-ultra high performance liquid chromatography-tandem mass spectrometry[J]. Environmental Chemistry, 2018, 37(11): 2462−2472. doi: 10.7524/j.issn.0254-6108.2017122204
[45] 刘丹丹. 紫外光和自然光降解全氟辛酸及机理研究[D]. 北京:中国地质大学(北京), 2013. Liu D D. PFOA degradation under UV and solar light[D].Beijing: China University of Geoscience (Beijing), 2013.
[46] Ayala-Cabrera J F, Contreras-Llin A, Moyano E, et al. A novel methodology for the determination of neutral perfluoroalkyl and polyfluoroalkyl substances in water by gas chromatography-atmospheric pressure photoionisation-high resolution mass spectrometry[J]. Analytica Chimica Acta, 2020, 1100: 97−106. doi: 10.1016/j.aca.2019.12.004
[47] 王晓研, 沈伟健, 王红, 等. 气相色谱-负化学源-质谱法检测水中10种全氟羧酸化合物[J]. 色谱, 2019, 37(1): 32−39. doi: 10.3724/SP.J.1123.2018.07019 Wang X Y, Shen W J, Wang H, et al. Determination of 10 perfluorinated carboxylic acid compounds in water by gas chromatography-mass spectrometry coupled with negative chemical ionization[J]. Chinese Journal of Chromatography, 2019, 37(1): 32−39. doi: 10.3724/SP.J.1123.2018.07019
[48] Zhong M M, Wang T L, Qi C D, et al. Automated online solid-phase extraction liquid chromatography tandem mass spectrometry investigation for simultaneous quantification of per- and polyfluoroalkyl substances, pharmaceuticals and personal care products, and organophosphorus flame retardants in environmental waters[J]. Journal of Chromatography A, 2019, 1602: 350−358. doi: 10.1016/j.chroma.2019.06.012
[49] Borrull J, Colom A, Fabregas J, et al. A liquid chromatography tandem mass spectrometry method for determining 18 per- and polyfluoroalkyl substances in source and treated drinking water[J]. Journal of Chromatography A, 2020, 1629: 461485. doi: 10.1016/j.chroma.2020.461485
[50] Liang M, Xian Y P, Wang B, et al. High throughput analysis of 21 perfluorinated compounds in drinking water, tap water, river water and plant effluent from Southern China by supramolecular solvents-based microextraction coupled with HPLC-orbitrap HRMS[J]. Environmental Pollution, 2020, 263: 114389. doi: 10.1016/j.envpol.2020.114389
[51] 杨愿愿, 李偲琳, 赵建亮, 等. 超高效液相色谱-串联质谱法同时测定水、沉积物和生物样品中57种全/多氟化合物[J]. 分析化学, 2022, 50(8): 1243−1251,139-144. Yang Y Y, Li C L, Zhao J L, et al. Determination of 57 kinds of per- and polyfluoroalkyl substances in waters, sediments and biological samples by ultra high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2022, 50(8): 1243−1251,139-144.
[52] Liu S Q, Junaid M, Zhong W, et al. A sensitive method for simultaneous determination of 12 classes of per- and polyfluoroalkyl substances (PFASs) in groundwater by ultrahigh performance liquid chromatography coupled with quadrupole orbitrap high resolution mass spectrometry[J]. Chemosphere, 2020, 251: 126327. doi: 10.1016/j.chemosphere.2020.126327
[53] 钱佳浩, 朱清禾, 万江, 等. 超高效液相色谱-串联质谱法测定土壤中18种全氟和多氟烷基化合物[J]. 分析测试学报, 2022, 41(3): 319−326. Qian J H, Zhu Q H, Wang J, et al. Determination of 18 perfluorinated and polyfluoroalkyl compounds in soil by ultra performance liquid chromatography-tandem mass spectrometry[J]. Journal of Instrumental Analysis, 2022, 41(3): 319−326.
[54] Deng H L, Wang H B, Liang M H, et al. A novel approach based on supramolecular solvent microextraction and UPLC-Q-Orbitrap HRMS for simultaneous analysis of perfluorinated compounds and fluorine-containing pesticides in drinking and environmental water[J]. Microchemical Journal, 2019, 151: 104250. doi: 10.1016/j.microc.2019.104250
[55] 刘明睿, 汪伶俐, 陈亮. 超高效液相色谱串联质谱法快速测定地下水和含水层介质中16种全氟烷基酸[J]. 地学前缘, 2019, 26(4): 307−314. doi: 10.13745/j.esf.sf.2019.5.32 Liu M R, Wang L L, Chen L. Quick analysis of sixteen PFAAS in groundwater and aquifer by ultra-performance liquid chromatography-triple quadrupole mass spectrometry[J]. Earth Science Frontiers, 2019, 26(4): 307−314. doi: 10.13745/j.esf.sf.2019.5.32
[56] Olomukoro A A, Emmons R V, Godage N H, et al. Ion exchange solid phase microextraction coupled to liquid chromatography/laminar flow tandem mass spectrometry for the determination of perfluoroalkyl substances in water samples[J]. Journal of Chromatography A, 2021, 1651: 462335. doi: 10.1016/j.chroma.2021.462335
[57] 姚晶晶, 吴东海, 陆光华, 等. 水环境中PPCPs检测技术及风险评价研究进展[J]. 水资源保护, 2018, 34(1): 76−82. doi: 10.3880/j.issn.1004-6933.2018.01.13 Yao J J, Wu D H, Lu G H, et al. Research progress of aquatic PPCPs detection technology and risk assessment[J]. Water Resources Protection, 2018, 34(1): 76−82. doi: 10.3880/j.issn.1004-6933.2018.01.13
[58] 李征, 方芳, 郑君杰, 等. 荧光定量技术快速检测生乳中磺胺类药物残留[J]. 食品安全质量检测学报, 2021, 12(11): 4352−4357. doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.11.007 Li Z, Fang F, Zheng J J, et al. Rapid detection of sulfonamides residues in raw milk by fluorescence quantitative technique[J]. Journal of Food Safety and Quality, 2021, 12(11): 4352−4357. doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.11.007
[59] 郭润泽. 传感器的工作原理及发展趋势[J]. 中国战略新兴产业, 2017(36): 100. doi: 10.19474/j.cnki.10-1156/f.002149 Guo R Z. Working principle and development trend of sensor[J]. China Strategic Emerging Industry, 2017(36): 100. doi: 10.19474/j.cnki.10-1156/f.002149
[60] 黄翠萍, 黎杉珊, 陆杜鹃, 等. 用于抗生素检测的纳米材料基电化学传感器研究进展[J]. 化学通报, 2021, 84(2): 139−148. doi: 10.14159/j.cnki.0441-3776.2021.02.005 Haung C P, Li S S, Lu D J, et al. Progress in nanomaterial-based electrochemical sensors for antibiotic detection[J]. Chemistry, 2021, 84(2): 139−148. doi: 10.14159/j.cnki.0441-3776.2021.02.005
[61] 黄鹏程, 孙健, 靳伟, 等. TiO2/聚乙烯醇纳米复合材料电化学检测雨水径流中微量抗生素[J]. 安全与环境学报, 2022, 22(5): 2872−2878. Huang P C, Sun J, Jin W, et al. TiO2/PVA nano-composite electrochemical detection of trace antibiotics in rainwater runoff[J]. Journal of Safety and Environment, 2022, 22(5): 2872−2878.
[62] 王群. 电化学传感器检测水中氯霉素和氧氟沙星的研究[D]. 北京: 中国地质大学(北京), 2021. Wang Q. Study on the detection of chloramphenicol and ofloxacin in water by electrochemical sensor[D]. Beijing: China University of Geosciences (Beijing), 2021.
[63] 孙心悦. 基于氧化石墨烯的电化学传感器对酚类内分泌干扰物的检测研究[D]. 上海: 上海师范大学, 2022. Sun X Y. Study on the detection of phenolic endocrine disruptors by electrochemical sensor based on graphene oxide[D]. Shanghai: Shanghai Normal University, 2022.
[64] Verma D, Yadav A K, Mukherjee M D, et al. Fabrication of a sensitive electrochemical sensor platform using reduced graphene oxide-molybdenum trioxide nanocomposite for BPA detection: An endocrine disruptor[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105504. doi: 10.1016/j.jece.2021.105504
[65] 孙俊永, 张利军, 司瑞茹, 等. 双模板分子印迹电化学传感器的构建及同时检测磺胺类抗生素[J]. 信阳师范学院学报(自然科学版), 2022, 35(2): 274−279. Sun J Y, Zhang L J, Si R R, et al. Fabrication of double template molecularly imprinted electrochemical sensor and simultaneous determination of sulfonamide antibiotics[J]. Journal of Xinyang Normal University (Natural Science Edition), 2022, 35(2): 274−279.
[66] 王孟龙. 基于分子印迹电化学传感检测水体痕量环境激素的研究[D]. 湖南: 中南林业科技大学, 2020. Wang M L. Detection of trace environmental hormones in water based on molecularly imprinted electrochemical sensing[D]. Hunan: Central South University of Forestry and Technology, 2020.
[67] 雷小玲. 基于导电金属有机框架的电化学传感器及其用于环境激素的检测研究[D]. 常州: 常州大学, 2021. Lei X L. Research on electrochemical sensor based on conductive metal-organic framework and its application in environmental hormone detection[D]. Changzhou: Changzhou University, 2021.
[68] Cheng Y H, Dushyant B, Soltis J A, et al. Metal-organic framework-based microfluidic impedance sensor platform for ultrasensitive detection of perfluorooctanesulfonate[J]. Applied Materials & Interfaces, 2020, 12(9): 10503−10514.
[69] 马海宽, 张旭, 钟石磊, 等. 基于静电富集-表面增强拉曼光谱联用技术的抗生素检测[J]. 中国激光, 2018, 45(2): 306−313. Ma H K, Zhang X, Zhong S L, et al. Detection of antibiotics based on hyphenated technique of electrostatic-preconcentration and surface-enhanced-Raman-spectroscopy[J]. Chinese Journal of Lasers, 2018, 45(2): 306−313.
[70] Gao M, Yao J C, Li J, et al. A novel strategy for improving SERS activity by cerium ion f→d transitions for rapid detection of endocrine disruptor[J]. Chemical Engineering Journal, 2022, 430: 131467. doi: 10.1016/j.cej.2021.131467
[71] 李晶, 刘璐, 郭会琴, 等. 基于氟-氟相互作用的上转换荧光法快速测定水中的全氟辛烷磺酸[J]. 分析化学, 2019, 47(3): 380−387. doi: 10.19756/j.issn.0253-3820.181639 Li J, Liu L, Guo H Q, et al. An upconversion fluorescent method for rapid detection of perfluorooctane sulfonate in water samples based on fluorine-fluorine interaction[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3): 380−387. doi: 10.19756/j.issn.0253-3820.181639
[72] Sullivan M V, Henderson A, Hand R A, et al. A molecularly imprinted polymer nanoparticle-based surface plasmon resonance sensor platform for antibiotic detection in river water and milk[J]. Analytical and Bioanalytical Chemistry, 2022, 414: 3687−3696. doi: 10.1007/s00216-022-04012-8
[73] Hu S J, Wei Y Q, Wang J, et al. A photo-renewable ZIF-8 photo-electrochemical sensor for the sensitive detection of sulfamethoxazole antibiotic[J]. Analytica Chimica Acta, 2021: 1178.
[74] 王涛, 刘厦, 刘宝林, 等. 基于适配体和抗体的生物传感器在雌二醇检测中的应用[J]. 应用化学, 2022, 39(3): 374−390. doi: 10.19894/j.issn.1000-0518.210108 Wang T, Liu X, Liu B L, et al. Application of biosensors based on aptamers and antibodies in the detection of estradiol[J]. Chinese Journal of Applied Chemistry, 2022, 39(3): 374−390. doi: 10.19894/j.issn.1000-0518.210108
[75] 卓雨欣, 徐文娟, 程源, 等. 倏逝波光纤传感器快速检测诺氟沙星[J]. 中国环境科学, 2022, 42(5): 2283−2288. doi: 10.3969/j.issn.1000-6923.2022.05.034 Zhuo Y X, Xu W J, Cheng Y, et al. Rapid detection of norfloxacin in water by evanescent wave fiber optic biosensor[J]. China Environmental Science, 2022, 42(5): 2283−2288. doi: 10.3969/j.issn.1000-6923.2022.05.034
[76] Cennamo N, Zeni L, Tortora P, et al. A high sensitivity biosensor to detect the presence of perfluorinated compounds in environment[J]. Talanta, 2018, 178: 955−961. doi: 10.1016/j.talanta.2017.10.034
[77] Zhang N, Liu B S, Cui X L, et al. Recent advances in aptasensors for mycotoxin detection: On the surface and in the colloid[J]. Talanta, 2021, 223: 121729. doi: 10.1016/j.talanta.2020.121729
[78] 王紫璇, 孙洁芳, 邵兵. 核酸适配体生物传感器用于内分泌干扰物快速检测研究进展[J]. 食品安全质量检测学报, 2022, 13(18): 5939−5945. doi: 10.3969/j.issn.2095-0381.2022.18.spaqzljcjs202218021 Wang Z X, Sun J F, Shao B, et al. Advanced in the rapid detection of endocrine disrupting chemicals by the aptamer-based biosensor[J]. Journal of Food Safety & Quality, 2022, 13(18): 5939−5945. doi: 10.3969/j.issn.2095-0381.2022.18.spaqzljcjs202218021
[79] 刘晓, 朱成龙, 庞月红, 等. 基于黑磷纳米片的荧光适配体传感器检测雌激素17 β-雌二醇[J]. 食品工业科技, 2021, 42(11): 248−254. doi: 10.13386/j.issn1002-0306.2020090046 Liu X, Zhu C L, Pang Y H, et al. Fluorescence aptasensor for 17 β-estradiol determination based on blackphosphorus nanosheets[J]. Science and Technology of Food Industry, 2021, 42(11): 248−254. doi: 10.13386/j.issn1002-0306.2020090046
[80] Yang R, Liu J Y, Song D, et al. Reusable chemiluminescent fiber optic aptasensor for the determination of 17 β-estradiol in water samples[J]. Microchimica Acta, 2019, 186: 726. doi: 10.1007/s00604-019-3813-y
[81] 马建国. 水中抗生素高通量免疫检测技术研究及应用[D]. 济南: 山东大学, 2019. Ma J G. Research and application of high-throughput immunoassay technology for antibiotics in water[D]. Jinan: Shandong University, 2019.
[82] 张玉超, 刘旭东. 基于单克隆抗体的双酚A间接竞争酶联免疫分析法的建立[J]. 食品研究与开发, 2020, 41(17): 172−177. doi: 10.12161/j.issn.1005-6521.2020.17.028 Zhang Y C, Liu X D. Establishment of indirect competitive immunoassay for bisphenol A based on monoclonal antibody[J]. Food Research and Development, 2020, 41(17): 172−177. doi: 10.12161/j.issn.1005-6521.2020.17.028
[83] 贾文哲, 李奕君, 张天牧, 等. 基于免疫分析技术的雌二醇与壬基酚同时检测方法[J]. 环境化学, 2021, 40(4): 1020−1028. doi: 10.7524/j.issn.0254-6108.2019111102 Jia W Z, Li Y J, Zhang T M, et al. Simultaneous detection of estradiol and nonylphenol based on immunosorbent assay[J]. Environmental Chemistry, 2021, 40(4): 1020−1028. doi: 10.7524/j.issn.0254-6108.2019111102
[84] 朱江, 杨道丽, 李炳智, 等. 全氟辛烷磺酸酶联免疫检测方法的研究[J]. 上海交通大学学报(农业科学版), 2014, 32(2): 74−78. Zhu J, Yang D L, Li B Z, et al. Development of an indirect competitive ELISA for the detection of the perfluorooctane sulphonate[J]. Journal of Shanghai Jiaotong University (Agricultural Science), 2014, 32(2): 74−78.
[85] Wang Y, Zhao X D, Zhang M, et al. Immunosorbent assay based on upconversion nanoparticles controllable assembly for simultaneous detection of three antibiotics[J]. Journal of Hazardous Materials, 2021, 406: 124703. doi: 10.1016/j.jhazmat.2020.124703
[86] 常青. 四环素荧光免疫层析检测方法研究[D]. 天津: 天津科技大学, 2019. Chang Q. Development of fluorescence immunochromatographic assay for detection of tetracycline[D]. Tianjin: Tianjin University of Science and Technology, 2019.
[87] 杜志辉, 李森林, 高志贤, 等. 壬基酚免疫层析快速检测试纸条的研制[J]. 解放军预防医学杂志, 2007(4): 238−241. doi: 10.3969/j.issn.1001-5248.2007.04.002 Du Z H, Li S L, Gao Z X, et al. Preparation of immunochromatographic test strip for rapid detection of nonylphenol[J]. Journal of Preventive Medicine of Chinese People’s Liberation Army, 2007(4): 238−241. doi: 10.3969/j.issn.1001-5248.2007.04.002
[88] Pu H B, Huang Z B, Sun D W, et al. Development of a highly sensitive colorimetric method for detecting 17β-estradiol based on combination of gold nanoparticles and shortening DNA aptamers[J]. Water, Air, & Soil Pollution, 2019, 230(6): 124.
[89] 曹金博, 王耀, 胡骁飞, 等. 免疫分析技术在四环素类抗生素残留检测中的应用[J]. 饲料工业, 2019, 40(12): 53−59. doi: 10.13302/j.cnki.fi.2019.12.010 Cao J B, Wang Y, Hu X F, et al. The application of immunoassay technique in the detection of tetracycline antibiotics residue[J]. Feed Industry, 2019, 40(12): 53−59. doi: 10.13302/j.cnki.fi.2019.12.010
[90] 贾文哲. 水中内分泌干扰物快速检测技术研究及应用[D]. 武汉: 武汉科技大学, 2020. Jia W Z. Research and application of rapid detection technology for endocrine disruptors in water[D]. Wuhan: Wuhan University of Science and Technology, 2020.
[91] 徐玮琦, 张永明, 周小红, 等. 基于平面波导型荧光免疫传感器的双酚A检测适用性研究[J]. 环境科学, 2015, 36(1): 338−342. doi: 10.13227/j.hjkx.2015.01.045 Xu W Q, Zhang Y M, Zhou X H, et al. Applicability of bisphenol a detection by a planar waveguide fluorescent biosensor[J]. Environmental Science, 2015, 36(1): 338−342. doi: 10.13227/j.hjkx.2015.01.045
[92] 李树莹, 田艳, 陈蓓, 等. 基于平面波导传感器的恩诺沙星与诺氟沙星同时检测方法[J]. 环境科学学报, 2018, 38(5): 1899−1905. doi: 10.13671/j.hjkxxb.2017.0429 Li S Y, Tian Y, Chen B, et al. Simultaneous detection of enrofloxacin and norfloxacin by planar waveguide immunosensor[J]. Acta Scientiae Circumstantiae, 2018, 38(5): 1899−1905. doi: 10.13671/j.hjkxxb.2017.0429
[93] 单迪迪, 文晓刚, 刘兰华, 等. 基于阵列倏逝波荧光传感器的雌二醇免疫检测方法[J]. 光谱学与光谱分析, 2018, 38(10): 3148−3152. Shan D D, Wen X G, Liu L H, et al. Immunoassay of estradiol by an array evanescent wave fluorescent biosensor[J]. Spectroscopy and Spectral Analysis, 2018, 38(10): 3148−3152.
[94] 高燕梅, 陈文, 张之琛. 极谱法检测环境水体中的全氟辛烷磺酸[J]. 分析科学学报, 2022, 38(3): 297−302. Gao Y M, Chen W, Zhang Z C. Determination of perfluorooctane sulfonic acid in environmental water by polarography[J]. Journal of Analytical Science, 2022, 38(3): 297−302.
[95] 王硕, 何欢, 王俊平, 等. 基于分子印迹材料的雌酮快速检测方法研究[J]. 食品工业科技, 2011, 32(3): 393−395. doi: 10.13386/j.issn1002-0306.2011.03.030 Wang S, He H, Wang J P, et al. Rapid determination estrone method on the basis of molecular imprinted polymer[J]. Science and Technology of Food Industry, 2011, 32(3): 393−395. doi: 10.13386/j.issn1002-0306.2011.03.030
[96] He J C, Qiu P P, Song J Y, et al. A resonance Rayleigh scattering and colorimetric dual-channel sensor for sensitive detection of perfluorooctane sulfonate based on toluidine blue[J]. Analytical and Bioanalytical Chemistry, 2020, 412(22): 5329−5339. doi: 10.1007/s00216-020-02748-9
-
期刊类型引用(4)
1. 侯将,肖传晶,姚阔为. 快速检测技术在水环境污染物检测中的应用研究进展. 实验室检测. 2024(07): 30-33 . 百度学术
2. 高启宇. SPE-UFLC-MS法测定医药废水中8种四环素类抗生素. 化学工程师. 2024(08): 30-34 . 百度学术
3. 赵静,侯静云,高超,包虹艳. 无机及分析化学实验的综合应用教学研究. 保山学院学报. 2024(05): 103-108 . 百度学术
4. 王宝丽,张逸君,张宇航,陈艳. 生物炭基材料及其在电化学传感领域的应用. 岩矿测试. 2024(06): 967-981 . 本站查看
其他类型引用(2)