• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

水环境中新污染物快速检测技术研究进展

于开宁, 王润忠, 刘丹丹

于开宁,王润忠,刘丹丹. 水环境中新污染物快速检测技术研究进展[J]. 岩矿测试,2023,42(6):1063−1077. DOI: 10.15898/j.ykcs.202302080018
引用本文: 于开宁,王润忠,刘丹丹. 水环境中新污染物快速检测技术研究进展[J]. 岩矿测试,2023,42(6):1063−1077. DOI: 10.15898/j.ykcs.202302080018
YU Kaining,WANG Runzhong,LIU Dandan. A Review of Rapid Detections for Emerging Contaminants in Groundwater[J]. Rock and Mineral Analysis,2023,42(6):1063−1077. DOI: 10.15898/j.ykcs.202302080018
Citation: YU Kaining,WANG Runzhong,LIU Dandan. A Review of Rapid Detections for Emerging Contaminants in Groundwater[J]. Rock and Mineral Analysis,2023,42(6):1063−1077. DOI: 10.15898/j.ykcs.202302080018

水环境中新污染物快速检测技术研究进展

基金项目: 河北省高校生态环境地质应用技术研发中心开放基金项目(JSYF-Z202103);中国地质调查局地质调查项目 (DD20230456)
详细信息
    作者简介:

    于开宁,博士,教授,主要从事水文地质、环境地质方面的研究。E-mail:1211931193@qq.com

    通讯作者:

    刘丹丹,博士,副研究员,长期从事地下水污染调查评价工作。E-mail:Liudandan@mail.cgs.gov.cn

  • 中图分类号: X832;X52

A Review of Rapid Detections for Emerging Contaminants in Groundwater

  • 摘要:

    国内外广泛关注的新污染物主要包括抗生素、内分泌干扰物、全氟或多氟化合物等污染物质,这些污染物通过径流、扩散、渗透等多种途径进入水体环境。由于新污染物多具有生物累积性、生物毒性及环境持久性等特征,对水生生物、人体健康和生态安全构成潜在威胁,存在环境风险,因此,国家对其污染现状开始进行调查。随着中国新污染物污染状况调查评价工作的开展,快速、灵敏的检测方法成为研究热点。本文基于近年文献重点评述了水环境中新污染物的检测方法,并对方法的性能和优缺点作了对比。结果表明:①目前新污染物的检测方法以大型仪器检测方法为主。仪器检测方法的检测浓度低、精度高,对设备的要求高,从采样到测试分析得到结果的周期长,不适用于新污染物的现场快速检测。②传感检测技术和免疫分析技术逐步应用于新污染物的快速检测。其中电化学传感器和酶联免疫分析法相对成熟,应用较多,具有设备简单、检测时间短,灵敏度和精确度良好等优点,可开展现场快速检测。本文认为,①快速检测技术多针对单一污染物进行检测,而实现同时检测多种污染物质还需进一步研究;②多种检测技术相结合可以达到更好的检测效果,是未来新污染物检测的发展方向;③利用新型材料改良检测方法、降低检出限、提高灵敏度和精确度实现新污染物快速检测是未来研究的难点和重点。

  • 植硅石,又名植物硅酸体,是植物在生长过程中,通过根系从土壤中吸收的水溶性硅(单硅酸)并在细胞内或细胞间沉淀,形成各种形态的固体非晶质含水二氧化硅颗粒,植硅石主要成分为:SiO2含量约70%~95%,水分3%~12%,有机碳0.1%~6%及微量元素1。在植硅石形成过程中,通常会封存部分有机碳及微量元素,其中封闭的有机碳受硅质外壳的保护避免了与外界的污染,因此成为较好的测年材料。

    植硅石的14C放射性测年研究,在考古遗址、湖泊沉积、深海沉积和陆相沉积物中得到广泛运用2。此外,与有机质密切相关的定年研究中,全岩同位素中Re-Os同位素定年近年来越发受到学者关注。Re、Os同位素的亲有机性、富集过程与岩石沉积过程的同时性以及Re-Os同位素体系较好的封闭性等特点促使Re-Os同位素定年在富有机质沉积岩研究中的应用较为广泛3-4,定年对象已从黑色页岩、泥岩、片岩、板岩等拓展至原油、沥青、焦沥青、油砂以及油页岩等地质样品,并取得一系列重要进展5-9

    作为植硅石的主要测年方法,当前14C放射性测年研究仍具有一定局限性,主要是受测试技术所限,其测试年代极限约为0.04Ma10,年代学研究严格受限于第四纪。而Re-Os同位素体系的测试年代虽覆盖较广,但研究对象多集中为富有机质的海相沉积岩样品,而湖相沉积岩样品的定年研究少见成功报道。李欣尉等9认为,相较于海相沉积物,湖相沉积物形成过程受物质来源、经历的地质作用以及更多的陆源碎屑物等诸多复杂因素的影响,这会造成Re-Os同位素体系在湖相沉积物测年研究中面临挑战。

    江西省丰城石炉坑天然微纳米硅碳矿为全球首例由植硅石沉积形成的矿床,矿石主要由微米至纳米级石英和碳组成11,硅碳矿与常规石英、石墨等矿种相比,在分布范围、成因类型、资源类型等方面均具有自身特点,当前正作为新矿种开展研究,极具研究价值。矿石经简单加工后可制备高纯石英、纳米硅微粉、介孔硅、介孔碳等,在信息技术、新能源、新材料、高端制造等战略性新兴产业中可以发挥关键作用12,对解决新一轮找矿突破战略行动中关于战略性矿产资源开发利用的问题亦可提供有力支撑。当前,石炉坑硅碳矿床研究工作尚处初期,仅开展了矿区地质特征、矿石特征以及工艺矿物学等方面的研究1113。对于沉积型矿床的研究,成岩成矿年代的精确厘定具有重要意义,不仅可为矿床成矿规律及找矿方向研究提供年代学依据,也可为邻区地层对比提供新的参考,并有望推动相似层位取得找矿突破。植硅石岩作为湖相沉积岩,考虑到区域地质特征、矿石含有机质以及Re-Os同位素的亲有机性等特点,本文尝试利用Re-Os同位素分析测试法开展年代学研究。

    丰城地区位于萍乐坳陷中段,清江盆地北东缘(图1)。萍乐坳陷位于江西中北部,在大地构造位置上北接江南造山带,南接华夏板块,南北两侧分别受宜丰—景德镇断裂和萍乡—鹰潭断裂两条长期发育的深大断裂所限(图1a)。萍乐坳陷自晚古生代以来主要发育海相、海陆交互相及陆相地层:泥盆纪至二叠纪早期,主要发育以浅海、滨海相碎屑岩及碳酸盐岩为主的海相沉积岩;二叠纪中晚期,受东吴运动影响,区内海水退出,转为海陆交互相沉积环境,主要发育海陆交互相的含煤碎屑岩和海相碳酸盐岩;三叠纪早中期的印支运动进一步结束了区内大规模的海侵,主要发育以陆相碎屑岩为主的陆相地层14-17。自白垩纪始,受赣江断裂带活动影响18,在萍乐坳陷海相地层上开始发育以清江盆地、鄱阳盆地等为主(图1b)的中、新生代陆相断陷盆地19

    图  1  江西石炉坑矿床(a)大地构造位置图(据胡正华等20)和(b)矿区地质图
    1—第四系进贤组; 2—古近系石炉坑组; 3—二叠系中统茅口组; 4—石炭系下统梓山组; 5—泥盆系上统—石炭系下统华山岭组; 6—取样位置; 7—断层;; 8—地层界线; 9—勘探线; 10—矿区边界。
    Figure  1.  (a) Geotectonic location (Modified after Hu, et al20); (b) Mining geology map of the Shilukeng deposit in Jiangxi Province.
    1—Quaternary Jinxian Formation; 2—Neogene Shilukeng Formation; 3—Maokou Formation of middle Permian; 4—The lower Carboniferous Zishan Formation; 5—Devonian—Carboniferous Huashanling Formatimon; 6—Sample position; 7—Fault; 8—Formation boundary; 9—Exploration line; 10—Mining area boundary.

    矿区总体为一断坳盆地,出露地层有:华山岭组(D3-C1h)、梓山组(C1z)、茅口组(P2m)、石炉坑组(E2s)和第四系进贤组(Qp2j)(图1b)。区内地表无岩浆岩出露,经少数钻孔揭示存在隐伏玄武岩,呈似层状产出。矿体产状与石炉坑组地层基本一致,走向NEE,倾向NW,倾角5°~10°,矿体厚1.09~52.03m,平均21.5m。石炉坑组(E2s)为主要的赋矿地层,上段由紫红色-土黄色黏土岩、泥岩组成,为不含矿层位,与上覆第四系进贤组(Qp2j)不整合接触;下段岩性为灰黑色、深灰色植硅石岩,间夹硅质黏土岩或含矿黏土岩与浅灰色-灰白色黏土岩(图2a),是硅碳矿的主要赋矿层位,岩性特征显示其为较平静的湖相沉积环境,并与下部茅口组(P2m)深灰色、灰色钙质泥砂岩呈不整合接触。矿石特征主要为:深灰至灰黑色,块状、粉末状构造,微细层状。具有较多孔隙,质轻且自然状态下可浮于水,断口呈参差状,染手,含炭质和黏土矿物(图2b)。矿石经分析测试后13,主要成分、含量为:81.28% SiO2、10.77% C、4.56% Al2O3以及2.01% Fe2S。主要矿物为石英,在镜下多为异形,颗粒表面锐角偏多(图2c),经电镜扫描多见植硅体结构(图2d)。

    图  2  (a)石炉坑天然微纳米硅碳矿柱状简图及样品特征;(b)植硅石岩照片;(c)矿物电镜扫描图;(d)电镜扫描下植硅体形状
    Figure  2.  (a) Stratigraphic column of Shilukeng natural micro/nano silicon-carbon deposit and sample characteristics; (b) Phytolith rock sample; (c) SEM image of ore sample; (d) SEM image of phytolith.

    本次样品主要来自矿区ZK8-13、ZK14-9中的两个钻孔(图1b),共采集了7件植硅石岩样品用于Re-Os同位素测年,所采集样品主要来自于石炉坑组下段地层(E2s2)15.41~41.5m处,从而保证样品的同时性、同源性。此外,需控制适量取样间距及取样量,防止样品可能存在Re-Os失耦问题影响定年结果21。Re-Os同位素样品制备、溶样和测试分析工作均是在国家地质实验测试中心(中国地质调查局铼-锇同位素地球化学重点实验室)完成。

    整个实验流程如下:准确称取岩石样品2g,通过细颈漏斗加入Carius管内,缓慢将液氮加到有半杯乙醇的保温杯中,使成黏稠状(−50~80℃)。将装好样品的Carius管置于该保温杯中。用3mL 10mol/L盐酸通过细颈漏斗将准确称取的185Re和190Os混合稀释剂转入Carius管底部。再依次加入5mL 16mol/L硝酸和1mL 30%过氧化氢分解样品。

    当Carius管底溶液冻实后,用液化石油气和氧气火焰加热封好Carius管的细颈部分。擦净表面残存的乙醇,放入不锈钢套管内。轻轻放套管入鼓风烘箱内,待回到室温后,逐渐升温到230℃(岩石样品)保温24h。取出,冷却后在底部冻实的情况下,先用细强火焰烧熔Carius管细管部分一点,使内部压力得以释放。再用玻璃刀划痕,并用烧热的玻璃棒烫裂划痕部分。对样品溶液采用直接蒸馏法分离Re,微蒸馏法提纯Os以及丙酮溶液萃取分离Re。

    实验中采用Triton-plus热表面电离质谱仪(美国ThermoFisher公司)测定同位素比值22。对于Re,采用静态法拉第杯模式同时测定185ReO4187ReO4;对于Os,采用法拉第杯多接收模式测定186OsO3187OsO3188OsO3189OsO3190OsO3192OsO3。对测量数据利用氧同位素自然丰度和统计学中的等概率模型,采用逐级剥谱法进行氧同位素干扰扣除。采用普通Re的185Re/187Re=0.59738作为外标对Re同位素进行质量分馏校正,采用迭代法以192Os/188Os=3.0827作为内标对Os元素进行质量分馏校正。

    本次实验使用的国家一级标准物质GBW04477(JCBY)是采自甘肃省金川铜镍硫化物矿二矿区的网状硫化物矿石,经球磨粉碎后,再进行人工混匀,然后直接分装于棕色玻璃瓶中,采用负离子热电离质谱(N-TIMS)、高分辨电感耦合等离子体质谱(HR-ICP-MS)、多接收电感耦合等离子体质谱(MC-ICP-MS)和ICP-MS标定。本次样品全流程空白Re含量为3.8pg,Os含量为0.48±0.01pg,均远远小于植硅石岩样品Re、Os含量,可忽略不计。标准物质GBW04477(JCBY)的测定结果Re含量为37.99±0.28ng/g,Os含量为15.59±0.12ng/g,187Os/188Os值为0.3369±0.0008,与该标准物质相应的标准值(Re含量38.61±0.54ng/g,Os含量16.23±0.17ng/g,187Os/188Os值0.3363±0.0029)在误差范围内一致,表明本次测试数据真实可靠。

    石炉坑硅碳矿植硅石岩的Re-Os同位素测试结果列于表1。其中7件植硅石岩样品的Re含量范围为22.72~299.20ng/g,普通Os含量为0.789~2.544ng/g,187Os含量为0.1873~0.7056ng/g,187Re/188Os值为139.1~813.8,187Os/188Os值为1.824~2.301(表1),采用剩余7件样品的Re-Os数据获得等时线年龄为43.1±3.7Ma(MSWD=6.2)(图3),187Os/188Os初始值等于1.713±0.0036。上述特征表明,石炉坑硅碳矿中植硅石岩沉积成岩的时代为古近纪始新世。

    表  1  江西丰城石炉坑植硅石岩Re-Os同位素数据
    Table  1.  Re-Os isotope data of phytolith rock from Shilukeng deposit in Fengcheng area, Jiangxi Province.
    样品编号 取样
    深度
    (m)
    Re含量(ng/g) 普通Os含量(ng/g) 187Os含量(ng/g) 187Re/188Os 187Os/188Os
    测定值 不确定度 测定值 不确定度 测定值 不确定度 测定值 不确定度 测定值 不确定度
    ZK8-13-H6 15.41 108.6 0.8 1.227 0.012 0.3242 0.0029 406.5 4.4 1.991 0.004
    ZK14-9-Y1 26.0 292.8 2.5 2.544 0.031 0.7056 0.0073 556.0 8.3 2.131 0.034
    ZK14-9-Y2 26.2 270.4 2.0 1.996 0.016 0.5658 0.0043 654.4 6.8 2.177 0.005
    ZK14-9-Y3 26.4 229.9 1.7 2.168 0.018 0.5894 0.0045 512.1 5.5 2.091 0.006
    ZK14-9-Y4 26.6 226.7 2.1 1.844 0.020 0.5123 0.0044 593.8 8.4 2.135 0.029
    ZK14-9-Y11 36.4 22.72 0.20 0.789 0.0068 0.1873 0.0018 139.1 1.7 1.824 0.023
    ZK14-9-H16 41.5 299.2 2.2 1.727 0.015 0.5214 0.0043 813.8 8.8 2.301 0.004
    下载: 导出CSV 
    | 显示表格
    图  3  江西丰城石炉坑矿床植硅石岩Re-Os等时线年龄
    Figure  3.  Re-Os isochron ages of phytolith in Shilukeng deposit of Fengcheng area, Jiangxi Province.

    本文以植硅石岩为研究对象,得到了较好的Re-Os同位素等时线,说明样品具备以下条件:①同源性。187Os/188Os初始值相同,成矿物质的来源保持一致;②同时性。矿物矿石形成年龄大致相同;③封闭性。矿物矿石形成后,Re-Os同位素体系较为封闭,后期成岩作用很难使其发生同位素分馏23,能很好地保持成岩过程中的原始信息,即Re-Os等时线年龄可以代表岩石的沉积年龄。研究结果表明Re-Os同位素定年对植硅石岩这类陆相沉积岩具有适用性。

    187Os/188Os值(表2)可以看出,灰岩、黑色页岩以及碳质泥岩等富有机质样品的比值一般小于1,而石墨、沥青等富有机质地质样品的187Os/188Os值虽大于1,却被认为只是其变质过程中Re-Os同位素体系发生重置重新计时的结果24-25。与石墨、沥青不同,植硅石岩的岩性特征显示其主要为生物沉积成岩,区内偶见的玄武岩对植硅石岩影响甚微,未发生明显的热变质作用,因此Re-Os同位素等时线年龄可以代表植硅石岩成岩年代。

    表  2  富有机质地质样品及各种不同储库中的187Os/188Os初始值
    Table  2.  Data of initial 187Os/188Os of various organic-enriched geological samples and geochemical reservoirs.
    富有机质
    地质样品
    187Os/188Os文献来源
    石墨约1.69陈郑辉等24
    沥青1.48~1.80David等25
    黑色页岩0.78~0.89Jiang等26;裴浩翔等27
    严清高等28
    灰岩0.53~0.63赵鸿等7
    碳质泥岩约0.70李欣尉等29
    现代海水约1.06杨競红等30
    宇宙尘埃约0.12
    海底热液约0.127
    河流约1.4
    下载: 导出CSV 
    | 显示表格

    始新世中晚期是全球气候条件从温室向初始冰室过渡的重要时期(约33~49Ma),在此期间出现如中始新世气候适宜期(MECO)31-32这样突然而短暂的变暖事件。同时受东亚季风的影响,更多的湿气自太平洋输送至中国东部,东部地区变得温暖而湿润33。而前人对清江盆地的孢子花粉研究发现,与古新世地层中出现大量麻黄粉34所反映的干旱古气候环境不同,始新世中晚期地层中出现的亚热带、热带植物的孢子、花粉指示古气候开始变得温暖而湿润35-36,这种温暖、湿润的气候为区内单子叶植物生长提供了有利条件,繁茂的单子叶植物年复更替的生长与死亡则为植硅石的形成提供了物质来源。在晚白垩世至古近纪,东亚地区发生了太平洋板块俯冲和华南板内构造变形37-38,华夏系主干断裂的活动造成丰城地区自古新世开始抬升,该构造事件致使连为一体的清江盆地、鄱阳盆地分隔开,造成了清江盆地逐渐发展为封闭的闭流盆地34。梁兴等39将清江盆地、鄱阳盆地发育的古近纪地层划分为清江组(E1q)、新余组(E2x)或临江组(E2-3l)。

    植硅石可以在地层中保存数百万年之久,研究表明目前植硅石多出现在古近纪及更晚时代的地层中2,最早则出现在晚白垩世地层40。通过比对清江盆地、鄱阳盆地相似层位的岩石组合以及沉积环境,本文认为石炉坑组(E2s)与区内同属湖相沉积的临江组(E2-3l)具有相似之处,应与临江组(E2-3l)下部并齐。而临江组(E2-3l)地层的沉积年代学研究中,在岩层中发现的包括Taxodiaceae pollenites(杉粉)以及非海相腹足类化石的组合41均指示其沉积时代应为古近纪始新世。综合区域地质环境、相似层位沉积时代以及植硅石岩的Re-Os年龄的讨论结果,可以认为石炉坑硅碳矿床的成岩成矿时代应为古近纪始新世。

    海相沉积岩中的Os主要来自于海水,影响海水Os组成的端元组分主要有(表2):河水带入的陆源Os(187Os/188Os值约为1.4)、海底热液输入的幔源Os(187Os/188Os值约为0.127)以及宇宙尘埃带来的Os(187Os/188Os值约为0.12)。不同来源的Os共同影响海相沉积岩中Os的组成,通过分析比对187Os/188Os值,可以有效地示踪沉积时的物源,并进一步为古环境研究等方面提供证据。

    本文对石炉坑硅碳矿的植硅石岩开展Re-Os同位素示踪研究显示,植硅石岩样品的187Re/188Os值较高,7件样品的187Re/188Os平均值为525.1。较高的Re/Os分异不仅与沉积环境有关,也可能与沉积地层生物的类型具有相关性。李超等5认为Re受风化作用影响明显比Os大,更多的Re会丢失随雨水进入河流。Danish等42研究了印度吉尔卡湖(泻湖)的沉积物中Re含量的影响因素,发现Re含量与Mg、Al元素及TN(总氮)含量具有正相关性,并认为其中60%的Re通过黏土吸附;其余40%的Re通过生物活动作用吸附,且主要在植物的细胞膜形成过程中通过氨基酸吸附。植硅石岩的沉积环境及生物沉积成因则进一步解释了岩石具有Re/Os高分异的原因。

    植硅石岩的187Os/188Os初始值(1.713±0.0036)远高于海底热液、宇宙尘埃的Os同位素比值,也高于现代海水的187Os/188Os值(约1.06)以及河流的Os同位素比值(约1.4)。Georgiev等43研究认为黑色页岩中的Os高含量和较高的迁移率可以显著提升海水的187Os/188Os高值,特别是上二叠纪至始新世早期页岩具有较高的187Os/188Os值(>10),该时期岩石的侵蚀可以显著提升海水的187Os/188Os值。Lúcio等44研究了Araripe盆地的Ipubi地层黑色页岩,认为其较高的187Os/188Os初始值(1.75~2.054)可能与该盆地为一个高度受限的水团有关。而区内石炉坑组(E2S)与下部茅口组(P2m)不整合接触,并缺失中生代的海相地层(图2),缺失地层岩石可能具有较高的187Os/188Os值。因此,前文所述区内的构造运动不仅导致岩石风化作用增强,也造成了封闭的闭流盆地环境,共同推动了陆源Os输入,并进一步提高植硅石岩的187Os/188Os值。

    Re、Os同位素体系应用于富有机质样品的主要原理是5:在氧化条件下,海水中的Re、Os分别以$\mathrm{ReO}_4^{-} $、$\mathrm{HOsO}_5^{-} $形式存在并易于迁移。在还原条件下,$\mathrm{ReO}_4^{-} $会被还原成较难溶解的组分被有机物吸附,高价态的Os则被还原为活动性很弱的低价形式富集。不同学者在Re、Os同位素的富集机制研究中认为,Re、Os同位素的富集主要与还原环境、富有机质等条件紧密相关32845-46。植硅石岩中Re、Os同位素平均含量较地壳丰度高出两个数量级47-48,指示植硅石岩在成岩成矿过程中对Re、Os同位素存在明显富集作用。而植硅石岩主要是由生长在温暖湿润环境下的单子叶草本植物,年复更替地生长、死亡并在原地堆积,植物细胞内腔或细胞之间沉淀堆积的难容的硅酸以及炭质被保存在原地,经压实作用形成11,同期较平静的湖相沉积环境也提供了较好的还原条件。据此,本项目组认为矿区植硅石岩中Re、Os同位素赋存富集机制是:湖水中大量植物死亡后形成的沉积物,在微生物作用下产生大量有机质。在此富有机质的还原沉积环境下,$\mathrm{ReO}_4^{-} $被还原成较难溶解的组分,$\mathrm{HOsO}_5^{-} $也被还原发生富集作用,被有机质吸附并随着植物细胞内腔或细胞之间沉淀堆积的难溶硅酸一起淀积。

    关于Re、Os同位素在植硅石岩中的适用性原因,主要有两点:一是体系的封闭性问题。Re-Os同位素体系的封闭性与稳定性是能否得到成功应用的决定性因素49。植硅石具备稳定的硅氧结构,具有耐高温、耐腐蚀的特性,在形成过程中会包裹C、H、O、N等多种元素。受特殊结构的保护,这些包裹的元素才得以长期封存50。其中,植硅石中的有机碳主要赋存于植硅石的微小空腔中51,而有机碳因封存其中未与外界发生交换,进而为测年提供了有利条件。因此,植硅石岩的Re、Os同位素在赋存富集过程中,随有机碳吸附并封存在植硅石中,进而有效地避免了Re、Os的流失并保障了体系的封闭性与稳定性;二是Re、Os在主要矿物中的富集含量问题。刘桂建等52通过分析测定淮北煤田中煤的Re、Os含量,因含量低于检出限未能成功获取年龄数据。在以往植硅石的测年研究中,植硅石含量和提取也制约了相关的测年研究,前人认为因考古地层中含量高、较易提取,自然地层中的钻孔样品难以满足其需要,导致植硅石作为非常规的测年材料在考古方面运用多于自然地层的主要原因2。植硅石岩为植硅石沉积而成,在植硅石含量和提取中具有得天独厚的条件,样品中植硅石的数量优势扩大了植硅石中的有机碳及吸附Re、Os同位素的含量,进而被分析仪器成功检出。

    在前人研究的基础上,结合区内地质背景、矿区(床)地质特征等方面研究,通过对丰城石炉坑硅碳矿床植硅石岩样品采样并进行Re-Os同位素测试,获得Re-Os同位素年龄为43.1±3.7Ma,认为该矿床的成岩成矿时代为古近纪始新世。本研究成功获取了植硅石岩的Re-Os等时线年龄,为该矿成矿年代学研究提供了直接、准确的年代学依据,对于Re-Os同位素体系在湖相沉积岩中的成功运用,不仅增加了植硅石的有效测年方法,也拓展了Re-Os同位素定年体系在沉积岩中的运用范围。

    植硅石岩的Re、Os同位素研究有待深入,特别是亟需加强对Re、Os同位素来源、富集机制以及对测试结果的影响因素等方面的研究,从而扩大植硅石的测年范围并进一步推动Re、Os同位素定年体系的发展。

    致谢:感谢江西省地质局能源地质大队石晓燕工程师、朱强工程师,江西理工大学王平教授在论文资料等方面提供的帮助。

  • 图  1   传感器检测原理示意图

    Figure  1.   Principle diagram of sensor detection.

    图  2   免疫检测原理示意图

    Figure  2.   Principle diagram of immunoassay detection.

    表  1   仪器检测技术可检测抗生素种类及其性能

    Table  1   The antibiotics types and performance of instrument detection technology that can be detected.

    检测方法 仪器设备 可检测抗生素种类 检出限 RSD(%) 参考文献
    毛细管电泳
    (CE)
    高效毛细管电泳仪 磺胺类、喹诺酮类、四环素类等 0.4~1.0μg/L 1718
    高效液相色谱法
    (HPLC)
    高效液相色谱-
    串联质谱仪
    磺胺类、喹诺酮类、大环内酯类、四环素类、
    氯霉素类等七大类
    0.06~2.28ng/L 19
    高效液相色谱-串联
    紫外/荧光检测器
    磺胺类、喹诺酮类、氯霉素类等 4.2~22.8μg/L 20
    液相色谱-质谱联用法
    (LC-MS)
    液相色谱-串联质谱仪 磺胺类、喹诺酮类、大环内酯类、
    四环素类等
    0.15~0.9ng/L 0.36~2.25 2122
    液相色谱仪;
    三重四极杆质谱仪
    磺胺类、喹诺酮类、大环内酯类、
    四环素类等
    1.2~15ng/L <22 23
    高效液相色谱-串联质谱法
    (HPLC-MS/MS)
    三重四级杆质谱仪;
    高效液相色谱仪
    磺胺类、喹诺酮类、大环内酯类、
    头孢霉素类等
    0.0056~3.9675ng/L <11 2425
    高效液相色谱-
    串联质谱仪
    喹诺酮类 0.1μg/L 0.71~12.80 26
    超高效液相色谱-
    串联质谱法
    (UPLC-MS/MS)
    超高效液相色谱仪;
    三重四极杆质谱仪
    磺胺类、喹诺酮类、大环内酯类、
    四环素类、氯霉素类等七大类
    0.01~10.6ng/L ≤16 2730
    下载: 导出CSV

    表  2   仪器检测技术可检测内分泌干扰物种类及其性能

    Table  2   The environmental endocrine disruptors types and performance of instrument detection technology that can be detected.

    检测方法 仪器设备 可检测内分泌干扰物种类 检出限 RSD(%) 参考文献
    气相色谱-质谱
    联用法
    (GC-MS)
    气相色谱-质谱仪 类固醇类、酚类等 0.5~140ng/L 2.54~5.36 31
    高效液相色谱法
    (HPLC)
    高效液相色谱仪-串联荧光检测器 三氯生、β-雌二醇、壬基酚和4-辛基酚 1.1~1.9ng/L 3233
    高效液相色谱仪 邻苯二甲酸二丁(辛)酯 0.1μg/L <4.47 34
    高效液相色谱仪-串联二极管阵列检测器 三氯生、三氯卡班和甲基三氯生 0.05~0.2μg/L <10 35
    高效液相色谱-
    串联质谱法
    (HPLC-MS/MS)
    高效液相色谱仪;质谱仪 对乙酰氨基酚等17种 0.07~1.88ng/L 36
    高效液相色谱系统;
    三重四极杆质谱仪
    黄体酮代谢物、类固醇类、酚类等 0.02~50ng/L <15 3739
    超高效液相色谱
    串联质谱法
    (UPLC-MS/MS)
    超高效液相色谱-串联质谱仪 雌激素类、雄激素类、肾上腺皮质激素类、
    酚类和非甾类激素类等
    0.05~2.00ng/L 0.99~12.0 4041
    超高效液相色谱系统;三重四极杆质谱仪 酚类、黄体酮等 0.03ng/L~5.0μg/L ≤11.6 4244
    下载: 导出CSV

    表  3   仪器检测技术可检测全氟化合物种类及其性能

    Table  3   The perfluorinated and polyfluoroalkyl substances types and performance of instrument detection technology that can be detected.

    检测方法 仪器设备 可检测全氟化合物种类 检出限 RSD(%) 参考文献
    气相色谱-质谱
    联用法
    (GC-MS)
    气相色谱-质谱仪 中性全氟烷基化合物、
    全氟羧酸化合物等
    0.02ng/L~1.5μg/L <14.5 46-47
    液相色谱-质谱联用法
    (LC-MS/MS)
    液相色谱仪;
    三重四极杆质谱仪
    全氟辛烷磺酸等22种以上
    全氟烷基化合物
    0.16~5.13ng/L 3~18 48-49
    高效液相色谱-串联质谱法
    (HPLC-MS/MS)
    高效液相色谱仪;质谱仪 全氟辛烷磺酸等21种全氟化合物 0.01~0.08ng/L 1.1~11.2 50
    超高效液相色谱-串联质谱法
    (UPLC-MS/MS)
    超高效液相色谱-串联四极杆
    质谱仪
    全氟羧酸、全氟磺酸、全氟醚羧酸等
    57种以上全氟化合物
    0.01ng/L~0.1μg/L 0.4~23.0 51-53
    超高效液相色谱-质谱仪 全氟丁烷磺酸、全氟辛酸和全氟
    辛烷磺酸等16种以上全氟化合物
    0.06ng/L~0.25μg/L 2.1~9.19 54-56
    下载: 导出CSV

    表  4   水中新污染物传感检测技术优缺点对比

    Table  4   Comparison of advantages and disadvantages of emerging contaminants sensor detection methods for water samples.

    传感检测技术 优点 缺点
    电化学传感 操作简单,成本低廉,分析速度快,仪器体积小,
    易携带,适用于现场检测
    检出限较高,电极构造耗时、繁琐,电极易被污染,
    需定期更换电极
    光学传感 操作简单,成本低,可实时检测 灵敏度一般,容易受环境干扰,使用寿命较短,
    大多只能对特定污染物进行检测
    生物传感 操作简单,费用低,适用于批量样品快速筛选 易受到水样中其他物质干扰,专一性和精确度不足
    下载: 导出CSV

    表  5   不同类别新污染物可选择的快速检测方法总结

    Table  5   Summary of emerging contaminants that can be detected by rapid detection methods.

    快速检测技术分类 方法名称 抗生素类 全氟化合物类 内分泌干扰物类
    传感检测技术 电化学传感
    光学传感
    生物传感
    免疫检测技术 酶联免疫分析法
    免疫层析法
    其他快速检测技术 平面波导免疫传感器
    荧光免疫生物传感器
    阵列倏逝波荧光传感器
    单扫描极谱
    原位显色反应
    注:“−”表示该类新污染物不涉及。
    下载: 导出CSV
  • [1] 孔慧敏, 赵晓辉, 徐琬, 等. 我国地下水环境抗生素赋存现状及风险评价[J]. 环境工程, 2023, 41(2): 219−226.

    Kong H M, Zhao X H, Xu W, et al. Occurrence and risk assessment of antibiotics in groundwater environment in China[J]. Environmental Engineering, 2023, 41(2): 219−226.

    [2] 马健生, 王卓, 张泽宇, 等. 哈尔滨市地下水中29种抗生素分布特征研究[J]. 岩矿测试, 2021, 40(6): 944−953. doi: 10.3969/j.issn.0254-5357.2021.6.ykcs202106013

    Ma J S, Wang Z, Zhang Z Y, et al. Distribution characteristics of 29 antibiotics in groundwater in Harbin[J]. Rock and Mineral Analysis, 2021, 40(6): 944−953. doi: 10.3969/j.issn.0254-5357.2021.6.ykcs202106013

    [3] 陈慧, 剧泽佳, 赵鑫宇, 等. 石家庄地下水中喹诺酮类抗生素生态风险及其与环境因子的相关性[J]. 环境科学, 2022, 43(9): 4556−4565.

    Chen H, Ju Z J, Zhao X Y, et al. Ecological risk assessment of quinolones antibiotics and the correlation analysis between QNS and physical-chemical parameters in groundwater, Shijiazhuang City[J]. Environmental Science, 2022, 43(9): 4556−4565.

    [4] 李清雪, 董天羽, 孙王茹, 等. 典型北方城市河流中抗生素污染特征及风险评价[J]. 生态毒理学报, 2022, 17(4): 213−229.

    Li Q X, Dong T Y, Sun W R, et al. Pollution characteristics and risk assessment of antibiotics in typical northern urban rivers[J]. Asian Journal of Ecotoxicology, 2022, 17(4): 213−229.

    [5] 刘军, 万正杨, 杨财平, 等. 宜昌市水源水中抗生素污染特征与健康风险评价[J]. 公共卫生与预防医学, 2023, 34(2): 65−68. doi: 10.3969/j.issn.1006-2483.2023.02.014

    Liu J, Wan Z Y, Yang C P, et al. Antibiotic pollution characteristics and health risk assessment of source water in Yichang City[J]. Journal of Public Health and Preventive Medicine, 2023, 34(2): 65−68. doi: 10.3969/j.issn.1006-2483.2023.02.014

    [6] 王若男, 何吉明, 向秋实, 等. 沱江流域饮用水源地抗生素污染的时空变化、生态风险及人体暴露评估[J]. 环境科学研究, 2022, 35(10): 2404−2412. doi: 10.13198/j.issn.1001-6929.2022.07.11

    Wang R N, He J M, Xiang Q S, et al. Spatial and temporal distribution, ecological risk and human exposure assessment of antibiotics in drinking water sources in Tuojiang River Basin[J]. Research of Environmental Sciences, 2022, 35(10): 2404−2412. doi: 10.13198/j.issn.1001-6929.2022.07.11

    [7] 牛颖, 安圣, 陈凯,等. 2012—2021年中国地下水抗生素污染现状及分析技术研究进展[J]. 岩矿测试, 2023, 42(1): 39−58.

    Niu Y, An S, Chen K, et al. A review of current status and analysis methods of antibiotic contamination in groundwater in China (2012—2021)[J]. Rock and Mineral Analysis, 2023, 42(1): 39−58.

    [8]

    Zainab S M, Junaid M, Rehman M Y A, et al. First insight into the occurrence, spatial distribution, sources, and risks assessment of antibiotics in groundwater from major urban-rural settings of Pakistan[J]. Science of the Total Environment, 2021, 791: 148298. doi: 10.1016/j.scitotenv.2021.148298

    [9] 王淑婷, 饶竹, 郭峰, 等. 无锡—常州地下水中内分泌干扰物的赋存特征和健康风险评价[J]. 环境科学, 2021, 42(1): 166−174.

    Wang S T, Rao Z, Guo F, et al. Occurrence characteristics and health risk assessment of endocrine disrupting chemicals in groundwater in Wuxi—Changzhou[J]. Environmental Science, 2021, 42(1): 166−174.

    [10] 杜娟, 胡红娟, 杨靖, 等. 徐州地区地下水中内分泌干扰物的监测与风险评估[J]. 环境监测管理与技术, 2016, 28(6): 38−40. doi: 10.3969/j.issn.1006-2009.2016.06.009

    Du J, Hu H J, Yang J, et al. Analysis and risk assessment of endocrine disruptors in groundwater in Xuzhou Region[J]. The Administration and Technique of Environmental Monitoring, 2016, 28(6): 38−40. doi: 10.3969/j.issn.1006-2009.2016.06.009

    [11] 华永有, 卢翠英, 林麒, 等. 闽江流域水体中8种酚类内分泌干扰物污染特征[J]. 环境与健康杂志, 2021, 38(3): 226−228. doi: 10.16241/j.cnki.1001-5914.2021.03.010

    Hua Y Y, Lu C Y, Lin Q, et al. Pollution characteristics of eight phenolic endocrine disruptors in water body in Minjiang River Basin[J]. Journal of Environment and Health, 2021, 38(3): 226−228. doi: 10.16241/j.cnki.1001-5914.2021.03.010

    [12]

    Chiriac F L, Pirvu F, Paun I. Investigation of endocrine disruptor pollutants and their metabolites along the Romanian Black Sea Coast: Occurrence, distribution and risk assessment[J]. Environmental Toxicology and Pharmacology, 2021, 86(86): 103673.

    [13] 陈典, 张照荷, 赵微, 等. 北京市再生水灌区地下水中典型全氟化合物的分布现状及生态风险[J]. 岩矿测试, 2022, 41(3): 499−510.

    Chen D, Zhang Z H, Zhao W, et al. The occurrence, distribution and risk assessment of typical perfluorinated compounds in groundwater from a reclaimed wastewater irrigation area in Beijing[J]. Rock and Mineral Analysis, 2022, 41(3): 499−510.

    [14] 谭冬飞, 张艳伟, 王璐, 等. 海南省部分区域农田地下水中全氟烷基酸类浓度水平和潜在污染源分析[J]. 农业环境科学学报, 2018, 37(2): 350−357. doi: 10.11654/jaes.2017-1212

    Tan D F, Zhang Y W, Wang L, et al. Distribution and potential PFAA pollution sources in farmland groundwater from Hainan Province[J]. Journal of Agro-Environment Science, 2018, 37(2): 350−357. doi: 10.11654/jaes.2017-1212

    [15] 黄家浩, 陶艳茹, 黄天寅, 等. 洪泽湖水体全氟化合物的污染特征、来源及健康风险[J]. 环境科学研究, 2023, 36(4): 694−703.

    Huang J H, Tao Y R, Huang T Y, et al. Occurrence, sources and health risk assessment of per- and polyfluoroalkyl substances in surface water of Hongze Lake[J]. Research of Environmental Sciences, 2023, 36(4): 694−703.

    [16]

    Selvaraj K K, Murugasamy M, Patil N N, et al. Investigation of distribution, sources and flux of perfluorinated compounds in major Southern Indian Rivers and their risk assessment[J]. Chemosphere, 2021, 277(277): 130228.

    [17] 谭韬, 刘应杰, 唐倩, 等. 毛细管电泳对水体中多类抗生素的同时分离检测[J]. 重庆医学, 2018, 47(35): 4530−4533.

    Tan T, Liu Y J, Tang Q, et al. Simultaneous separation and detection of multiple antibiotics in water by capillary electrophoresis[J]. Chongqing Medicine, 2018, 47(35): 4530−4533.

    [18] 李兴华, 苗俊杰, 康凯, 等. 固相萃取-高效毛细管电泳法同时分离测定水体和土壤中13种抗生素[J]. 理化检验(化学分册), 2019, 55(7): 769−777.

    Li X H, Miao J J, Kang K, et al. Simultaneous separation and determination of thirteen antibiotics in soil and water by high performance capillary electrophoresis with pretreatment by solid phase extraction[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2019, 55(7): 769−777.

    [19]

    Yi X Z, Bayen S, Kelly B C, et al. Improved detection of multiple environmental antibiotics through an optimized sample extraction strategy in liquid chromatography-mass spectrometry analysis[J]. Analytical and Bioanalytical Chemistry, 2015, 407: 9071−9083. doi: 10.1007/s00216-015-9074-7

    [20] 曹君, 张雪娇, 赵青, 等. 液相色谱紫外-荧光串联检测器法检测我国污水中常见11种抗生素[J]. 生态学杂志, 2022, 41(1): 190−198.

    Cao J, Zhang X J, Zhao Q, et al. Determination of 11 antibiotics frequently detected in municipal wastewater in China by high-performance liquid chromatography with ultraviolet and fluorescence detector[J]. Chinese Journal of Ecology, 2022, 41(1): 190−198.

    [21]

    Tlili I, Caria G, Ouddane B, et al. Simultaneous detection of antibiotics and other drug residues in the dissolved and particulate phases of water by an off-line SPE combined with on-line SPE-LC-MS/MS: Method development and application[J]. Science of the Total Environment, 2016, 563: 424−433.

    [22]

    Omotola E O, Olatunji O S. Quantification of selected pharmaceutical compounds in water using liquid chromatography-electrospray ionisation mass spectrometry (LC-ESI-MS)[J]. Heliyon, 2020, 6(12): e05787. doi: 10.1016/j.heliyon.2020.e05787

    [23]

    Panditi V R, Batchu S R, Gardinali P R. Online solid-phase extraction–liquid chromatography-electrospray tandem mass spectrometry determination of multiple classes of antibiotics in environmental and treated waters[J]. Analytical and Bioanalytical Chemistry, 2013, 405: 5953−5964. doi: 10.1007/s00216-013-6863-8

    [24] 李明明. SPE-HPLC-MS/MS检测地表水中的萘啶酸、吡哌酸、培氟沙星、氧氟沙星、司帕沙星和加替沙星残留[J]. 中国测试, 2021, 47(4): 67−71.

    Li M M. Determination of nalidixic acid, pipemidic acid, pefloxacin, ofloxacin, sparfloxacin and gatifloxacin residues in surface water by SPE-HPLC-MS/MS[J]. China Measurement & Test, 2021, 47(4): 67−71.

    [25] 史晓, 卜庆伟, 吴东奎, 等. 地表水中10种抗生素SPE-HPLC-MS/MS检测方法的建立[J]. 环境化学, 2020, 39(4): 1075−1083.

    Shi X, Bu Q W, Wu D K, et al. Simultaneous determination of 10 antibiotic residues in surface water by SPE-HPLC-MS/MS[J]. Environmental Chemistry, 2020, 39(4): 1075−1083.

    [26] 甄建辉, 田浩, 艾连峰, 等. 液相色谱-串联质谱法测定水体中8种典型喹诺酮类抗生素[J]. 食品安全质量检测学报, 2022, 13(7): 2230−2235.

    Zhen J H, Tian H, Ai L F, et al. Determination of 8 kinds of typical quinolones antibiotics by liquid chromatography-tandem mass spectrometry in water[J]. Journal of Food Safety and Quality, 2022, 13(7): 2230−2235.

    [27] 营娇龙, 秦晓鹏, 郎杭, 等. 超高效液相色谱-串联质谱法同时测定水体中37种典型抗生素[J]. 岩矿测试, 2022, 41(3): 394−403.

    Ying J L, Qin X P, Lang H, et al. Determination of 37 typical antibiotics by liquid chromatography-triple quadrupole mass spectrometry[J]. Rock and Mineral Analysis, 2022, 41(3): 394−403.

    [28]

    Yuan S F, Liu Z H, Yin H, et al. Trace determination of sulfonamide antibiotics and their acetylated metabolites via SPE-LC-MS/MS in wastewater and insights from their occurrence in a municipal wastewater treatment plant[J]. Science of the Total Environment, 2019, 653: 815−821. doi: 10.1016/j.scitotenv.2018.10.417

    [29] 王建凤, 王嘉琦, 刘喆, 等. 超高效液相色谱串联质谱测定中水中喹诺酮类抗生素[J]. 中国给水排水, 2018, 34(6): 116−119.

    Wang J F, Wang J Q, Liu Z, et al. Determination of quinolones antibiotics in reclaimed water by ultra high performance liquid chromatography tandem mass spectrometer[J]. China Water & Wastewater, 2018, 34(6): 116−119.

    [30]

    Ran Y, Liang C, Rong S, et al. Quantification of ultratrace levels of fluoroquinolones in wastewater by molecularly imprinted solid phase extraction and liquid chromatography triple quadrupole mass[J]. Environmental Technology & Innovation, 2020, 19: 100919.

    [31] 项萍, 汤江江. 气质联用法(GC-MS)检测环境水体中8种内分泌干扰物[J]. 河南理工大学学报(自然科学版), 2019, 38(1): 76−82. doi: 10.16186/j.cnki.1673-9787.2019.1.11

    Xiang P, Tang J J. Determination of eight endocrine disrupting chemicals in environmental water samples by gas chromatography-mass spectrometry (GC-MS)[J]. Journal of Henan Polytechnic University (Natural Science), 2019, 38(1): 76−82. doi: 10.16186/j.cnki.1673-9787.2019.1.11

    [32] 孙怡琳, 亢洋, 郑龙芳, 等. 衍生化-磁固相萃取高效液相色谱荧光检测内分泌干扰物[J]. 分析化学, 2019, 47(1): 86−92.

    Sun Y L, Kang Y, Zheng L F, et al. Determination of endocrine disruptors by high performance liquid chromatography-fluorescence detection using magnetic dispersive solid phase extraction[J]. Chinese Journal of Analytical Chemistry, 2019, 47(1): 86−92.

    [33]

    Zhang G, Yang Y, Lu Y, et al. Effect of heavy metal ions on steroid estrogen removal and transport in SAT using DLLME as a detection method of steroid estrogen[J]. Water, 2020, 12(2): 589. doi: 10.3390/w12020589

    [34] 纪晓娜, 薛路遥, 任志敏, 等. 高效液相色谱法检测城市污水中的邻苯二甲酸二丁(辛)酯[J]. 化学试剂, 2021, 43(10): 1376−1380.

    Ji X N, Xue L Y, Ren Z M, et al. Detecting dibutyl (di- n-octyl) phthalate in municipal sewage water with high performance liquid chromatography[J]. Chemical Reagents, 2021, 43(10): 1376−1380.

    [35]

    Nur’Hafiz R M, Bahruddin S, Noorfatimah Y, et al. Determination of three endocrine disruptors in water samples by ultrasound-assisted salt-induced liquid-liquid microextraction (UA-SI-LLME) and high-performance liquid chromatography-diode array detection (HPLC-DAD)[J]. Analytical Letters, 2022, 55(1): 132−145. doi: 10.1080/00032719.2021.1919691

    [36]

    Li Y, Taggart M A, McKenzie C, et al. A SPE-HPLC-MS/MS method for the simultaneous determination of prioritised pharmaceuticals and EDCs with high environmental risk potential in freshwater[J]. Journal of Environmental Sciences, 2021, 100: 18−27. doi: 10.1016/j.jes.2020.07.013

    [37]

    Zhang K, Fent K. Determination of two progestin metabolites (17 α-hydroxypregnanolone and pregnanediol) and different classes of steroids (androgens, estrogens, corticosteroids, progestins) in rivers and wastewaters by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS)[J]. Science of the Total Environment, 2018, 610-611: 1164−1172. doi: 10.1016/j.scitotenv.2017.08.114

    [38] 罗洲飞, 徐梦薇, 陆静, 等. 高效液相色谱-三重四极杆串联质谱测定环境水样中20种环境内分泌干扰物[J]. 环境化学, 2020, 39(7): 1923−1933. doi: 10.7524/j.issn.0254-6108.2019050706

    Luo Z F, Xu M W, Lu J, et al. Determination of 20 endocrine-disrupting compounds in environmental water samples by high performance liquid chromatography-tandem mass spectrometry[J]. Environmental Chemistry, 2020, 39(7): 1923−1933. doi: 10.7524/j.issn.0254-6108.2019050706

    [39]

    Li Y J, Yang L Y, Zhen H J, et al. Determination of estrogens and estrogen mimics by solid-phase extraction with liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography B, 2021: 1168.

    [40] 李建平, 郝思文, 张毅, 等. 饮用水中11种雌激素类内分泌干扰物的固相萃取-超高效液相色谱-串联质谱测定法[J]. 环境与健康杂志, 2020, 37(8): 722−725. doi: 10.16241/j.cnki.1001-5914.2020.08.016

    Li J P, Hao S W, Zhang Y, et al. Determination of 11 kinds of estrogens EDCs in drinking water by solid-phase extraction-ultra performance liquid chromatography-tandem mass spectrometry[J]. Journal of Environment and Health, 2020, 37(8): 722−725. doi: 10.16241/j.cnki.1001-5914.2020.08.016

    [41] 邹小南, 罗丹, 李贵洪, 等. 超高效液相色谱-串联质谱法同时分析地下水中24种内分泌干扰物[J]. 中国环境监测, 2022, 38(4): 31−40.

    Zou X N, Luo D, Li G H, et al. Simultaneous analysis of 24 endocrine disruptors in groundwater by ultra-high performance liquid chromatography tandem mass spectrometry[J]. Environmental Monitoring in China, 2022, 38(4): 31−40.

    [42]

    AlAmmari A M, Khan M R, Aqel A. Trace identification of endocrine-disrupting bisphenol a in drinking water by solid-phase extraction and ultra-performance liquid chromatography-tandem mass Spectrometry[J]. Journal of King Saud University-Science, 2020, 32(2): 1634−1640. doi: 10.1016/j.jksus.2019.12.022

    [43]

    Shen X Y, Chang H, Sun D Z, et al. Trace analysis of 61 natural and synthetic progestins in river water and sewage effluents by ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Water Research, 2018, 133: 142−152. doi: 10.1016/j.watres.2018.01.030

    [44] 刘蔚, 陈芳梅, 李伟, 等. 分散液液微萃取-超高效液相色谱-串联质谱法快速测定市售饮用水样中7种双酚-二环氧甘油醚[J]. 环境化学, 2018, 37(11): 2462−2472. doi: 10.7524/j.issn.0254-6108.2017122204

    Liu W, Chen F M, Li W, et al. Rapid determination of seven bisphenol diglycidyl ethers in drinking water samples by dispersive liquid microextraction-ultra high performance liquid chromatography-tandem mass spectrometry[J]. Environmental Chemistry, 2018, 37(11): 2462−2472. doi: 10.7524/j.issn.0254-6108.2017122204

    [45] 刘丹丹. 紫外光和自然光降解全氟辛酸及机理研究[D]. 北京:中国地质大学(北京), 2013.

    Liu D D. PFOA degradation under UV and solar light[D].Beijing: China University of Geoscience (Beijing), 2013.

    [46]

    Ayala-Cabrera J F, Contreras-Llin A, Moyano E, et al. A novel methodology for the determination of neutral perfluoroalkyl and polyfluoroalkyl substances in water by gas chromatography-atmospheric pressure photoionisation-high resolution mass spectrometry[J]. Analytica Chimica Acta, 2020, 1100: 97−106. doi: 10.1016/j.aca.2019.12.004

    [47] 王晓研, 沈伟健, 王红, 等. 气相色谱-负化学源-质谱法检测水中10种全氟羧酸化合物[J]. 色谱, 2019, 37(1): 32−39. doi: 10.3724/SP.J.1123.2018.07019

    Wang X Y, Shen W J, Wang H, et al. Determination of 10 perfluorinated carboxylic acid compounds in water by gas chromatography-mass spectrometry coupled with negative chemical ionization[J]. Chinese Journal of Chromatography, 2019, 37(1): 32−39. doi: 10.3724/SP.J.1123.2018.07019

    [48]

    Zhong M M, Wang T L, Qi C D, et al. Automated online solid-phase extraction liquid chromatography tandem mass spectrometry investigation for simultaneous quantification of per- and polyfluoroalkyl substances, pharmaceuticals and personal care products, and organophosphorus flame retardants in environmental waters[J]. Journal of Chromatography A, 2019, 1602: 350−358. doi: 10.1016/j.chroma.2019.06.012

    [49]

    Borrull J, Colom A, Fabregas J, et al. A liquid chromatography tandem mass spectrometry method for determining 18 per- and polyfluoroalkyl substances in source and treated drinking water[J]. Journal of Chromatography A, 2020, 1629: 461485. doi: 10.1016/j.chroma.2020.461485

    [50]

    Liang M, Xian Y P, Wang B, et al. High throughput analysis of 21 perfluorinated compounds in drinking water, tap water, river water and plant effluent from Southern China by supramolecular solvents-based microextraction coupled with HPLC-orbitrap HRMS[J]. Environmental Pollution, 2020, 263: 114389. doi: 10.1016/j.envpol.2020.114389

    [51] 杨愿愿, 李偲琳, 赵建亮, 等. 超高效液相色谱-串联质谱法同时测定水、沉积物和生物样品中57种全/多氟化合物[J]. 分析化学, 2022, 50(8): 1243−1251,139-144.

    Yang Y Y, Li C L, Zhao J L, et al. Determination of 57 kinds of per- and polyfluoroalkyl substances in waters, sediments and biological samples by ultra high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2022, 50(8): 1243−1251,139-144.

    [52]

    Liu S Q, Junaid M, Zhong W, et al. A sensitive method for simultaneous determination of 12 classes of per- and polyfluoroalkyl substances (PFASs) in groundwater by ultrahigh performance liquid chromatography coupled with quadrupole orbitrap high resolution mass spectrometry[J]. Chemosphere, 2020, 251: 126327. doi: 10.1016/j.chemosphere.2020.126327

    [53] 钱佳浩, 朱清禾, 万江, 等. 超高效液相色谱-串联质谱法测定土壤中18种全氟和多氟烷基化合物[J]. 分析测试学报, 2022, 41(3): 319−326.

    Qian J H, Zhu Q H, Wang J, et al. Determination of 18 perfluorinated and polyfluoroalkyl compounds in soil by ultra performance liquid chromatography-tandem mass spectrometry[J]. Journal of Instrumental Analysis, 2022, 41(3): 319−326.

    [54]

    Deng H L, Wang H B, Liang M H, et al. A novel approach based on supramolecular solvent microextraction and UPLC-Q-Orbitrap HRMS for simultaneous analysis of perfluorinated compounds and fluorine-containing pesticides in drinking and environmental water[J]. Microchemical Journal, 2019, 151: 104250. doi: 10.1016/j.microc.2019.104250

    [55] 刘明睿, 汪伶俐, 陈亮. 超高效液相色谱串联质谱法快速测定地下水和含水层介质中16种全氟烷基酸[J]. 地学前缘, 2019, 26(4): 307−314. doi: 10.13745/j.esf.sf.2019.5.32

    Liu M R, Wang L L, Chen L. Quick analysis of sixteen PFAAS in groundwater and aquifer by ultra-performance liquid chromatography-triple quadrupole mass spectrometry[J]. Earth Science Frontiers, 2019, 26(4): 307−314. doi: 10.13745/j.esf.sf.2019.5.32

    [56]

    Olomukoro A A, Emmons R V, Godage N H, et al. Ion exchange solid phase microextraction coupled to liquid chromatography/laminar flow tandem mass spectrometry for the determination of perfluoroalkyl substances in water samples[J]. Journal of Chromatography A, 2021, 1651: 462335. doi: 10.1016/j.chroma.2021.462335

    [57] 姚晶晶, 吴东海, 陆光华, 等. 水环境中PPCPs检测技术及风险评价研究进展[J]. 水资源保护, 2018, 34(1): 76−82. doi: 10.3880/j.issn.1004-6933.2018.01.13

    Yao J J, Wu D H, Lu G H, et al. Research progress of aquatic PPCPs detection technology and risk assessment[J]. Water Resources Protection, 2018, 34(1): 76−82. doi: 10.3880/j.issn.1004-6933.2018.01.13

    [58] 李征, 方芳, 郑君杰, 等. 荧光定量技术快速检测生乳中磺胺类药物残留[J]. 食品安全质量检测学报, 2021, 12(11): 4352−4357. doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.11.007

    Li Z, Fang F, Zheng J J, et al. Rapid detection of sulfonamides residues in raw milk by fluorescence quantitative technique[J]. Journal of Food Safety and Quality, 2021, 12(11): 4352−4357. doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.11.007

    [59] 郭润泽. 传感器的工作原理及发展趋势[J]. 中国战略新兴产业, 2017(36): 100. doi: 10.19474/j.cnki.10-1156/f.002149

    Guo R Z. Working principle and development trend of sensor[J]. China Strategic Emerging Industry, 2017(36): 100. doi: 10.19474/j.cnki.10-1156/f.002149

    [60] 黄翠萍, 黎杉珊, 陆杜鹃, 等. 用于抗生素检测的纳米材料基电化学传感器研究进展[J]. 化学通报, 2021, 84(2): 139−148. doi: 10.14159/j.cnki.0441-3776.2021.02.005

    Haung C P, Li S S, Lu D J, et al. Progress in nanomaterial-based electrochemical sensors for antibiotic detection[J]. Chemistry, 2021, 84(2): 139−148. doi: 10.14159/j.cnki.0441-3776.2021.02.005

    [61] 黄鹏程, 孙健, 靳伟, 等. TiO2/聚乙烯醇纳米复合材料电化学检测雨水径流中微量抗生素[J]. 安全与环境学报, 2022, 22(5): 2872−2878.

    Huang P C, Sun J, Jin W, et al. TiO2/PVA nano-composite electrochemical detection of trace antibiotics in rainwater runoff[J]. Journal of Safety and Environment, 2022, 22(5): 2872−2878.

    [62] 王群. 电化学传感器检测水中氯霉素和氧氟沙星的研究[D]. 北京: 中国地质大学(北京), 2021.

    Wang Q. Study on the detection of chloramphenicol and ofloxacin in water by electrochemical sensor[D]. Beijing: China University of Geosciences (Beijing), 2021.

    [63] 孙心悦. 基于氧化石墨烯的电化学传感器对酚类内分泌干扰物的检测研究[D]. 上海: 上海师范大学, 2022.

    Sun X Y. Study on the detection of phenolic endocrine disruptors by electrochemical sensor based on graphene oxide[D]. Shanghai: Shanghai Normal University, 2022.

    [64]

    Verma D, Yadav A K, Mukherjee M D, et al. Fabrication of a sensitive electrochemical sensor platform using reduced graphene oxide-molybdenum trioxide nanocomposite for BPA detection: An endocrine disruptor[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105504. doi: 10.1016/j.jece.2021.105504

    [65] 孙俊永, 张利军, 司瑞茹, 等. 双模板分子印迹电化学传感器的构建及同时检测磺胺类抗生素[J]. 信阳师范学院学报(自然科学版), 2022, 35(2): 274−279.

    Sun J Y, Zhang L J, Si R R, et al. Fabrication of double template molecularly imprinted electrochemical sensor and simultaneous determination of sulfonamide antibiotics[J]. Journal of Xinyang Normal University (Natural Science Edition), 2022, 35(2): 274−279.

    [66] 王孟龙. 基于分子印迹电化学传感检测水体痕量环境激素的研究[D]. 湖南: 中南林业科技大学, 2020.

    Wang M L. Detection of trace environmental hormones in water based on molecularly imprinted electrochemical sensing[D]. Hunan: Central South University of Forestry and Technology, 2020.

    [67] 雷小玲. 基于导电金属有机框架的电化学传感器及其用于环境激素的检测研究[D]. 常州: 常州大学, 2021.

    Lei X L. Research on electrochemical sensor based on conductive metal-organic framework and its application in environmental hormone detection[D]. Changzhou: Changzhou University, 2021.

    [68]

    Cheng Y H, Dushyant B, Soltis J A, et al. Metal-organic framework-based microfluidic impedance sensor platform for ultrasensitive detection of perfluorooctanesulfonate[J]. Applied Materials & Interfaces, 2020, 12(9): 10503−10514.

    [69] 马海宽, 张旭, 钟石磊, 等. 基于静电富集-表面增强拉曼光谱联用技术的抗生素检测[J]. 中国激光, 2018, 45(2): 306−313.

    Ma H K, Zhang X, Zhong S L, et al. Detection of antibiotics based on hyphenated technique of electrostatic-preconcentration and surface-enhanced-Raman-spectroscopy[J]. Chinese Journal of Lasers, 2018, 45(2): 306−313.

    [70]

    Gao M, Yao J C, Li J, et al. A novel strategy for improving SERS activity by cerium ion f→d transitions for rapid detection of endocrine disruptor[J]. Chemical Engineering Journal, 2022, 430: 131467. doi: 10.1016/j.cej.2021.131467

    [71] 李晶, 刘璐, 郭会琴, 等. 基于氟-氟相互作用的上转换荧光法快速测定水中的全氟辛烷磺酸[J]. 分析化学, 2019, 47(3): 380−387. doi: 10.19756/j.issn.0253-3820.181639

    Li J, Liu L, Guo H Q, et al. An upconversion fluorescent method for rapid detection of perfluorooctane sulfonate in water samples based on fluorine-fluorine interaction[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3): 380−387. doi: 10.19756/j.issn.0253-3820.181639

    [72]

    Sullivan M V, Henderson A, Hand R A, et al. A molecularly imprinted polymer nanoparticle-based surface plasmon resonance sensor platform for antibiotic detection in river water and milk[J]. Analytical and Bioanalytical Chemistry, 2022, 414: 3687−3696. doi: 10.1007/s00216-022-04012-8

    [73]

    Hu S J, Wei Y Q, Wang J, et al. A photo-renewable ZIF-8 photo-electrochemical sensor for the sensitive detection of sulfamethoxazole antibiotic[J]. Analytica Chimica Acta, 2021: 1178.

    [74] 王涛, 刘厦, 刘宝林, 等. 基于适配体和抗体的生物传感器在雌二醇检测中的应用[J]. 应用化学, 2022, 39(3): 374−390. doi: 10.19894/j.issn.1000-0518.210108

    Wang T, Liu X, Liu B L, et al. Application of biosensors based on aptamers and antibodies in the detection of estradiol[J]. Chinese Journal of Applied Chemistry, 2022, 39(3): 374−390. doi: 10.19894/j.issn.1000-0518.210108

    [75] 卓雨欣, 徐文娟, 程源, 等. 倏逝波光纤传感器快速检测诺氟沙星[J]. 中国环境科学, 2022, 42(5): 2283−2288. doi: 10.3969/j.issn.1000-6923.2022.05.034

    Zhuo Y X, Xu W J, Cheng Y, et al. Rapid detection of norfloxacin in water by evanescent wave fiber optic biosensor[J]. China Environmental Science, 2022, 42(5): 2283−2288. doi: 10.3969/j.issn.1000-6923.2022.05.034

    [76]

    Cennamo N, Zeni L, Tortora P, et al. A high sensitivity biosensor to detect the presence of perfluorinated compounds in environment[J]. Talanta, 2018, 178: 955−961. doi: 10.1016/j.talanta.2017.10.034

    [77]

    Zhang N, Liu B S, Cui X L, et al. Recent advances in aptasensors for mycotoxin detection: On the surface and in the colloid[J]. Talanta, 2021, 223: 121729. doi: 10.1016/j.talanta.2020.121729

    [78] 王紫璇, 孙洁芳, 邵兵. 核酸适配体生物传感器用于内分泌干扰物快速检测研究进展[J]. 食品安全质量检测学报, 2022, 13(18): 5939−5945. doi: 10.3969/j.issn.2095-0381.2022.18.spaqzljcjs202218021

    Wang Z X, Sun J F, Shao B, et al. Advanced in the rapid detection of endocrine disrupting chemicals by the aptamer-based biosensor[J]. Journal of Food Safety & Quality, 2022, 13(18): 5939−5945. doi: 10.3969/j.issn.2095-0381.2022.18.spaqzljcjs202218021

    [79] 刘晓, 朱成龙, 庞月红, 等. 基于黑磷纳米片的荧光适配体传感器检测雌激素17 β-雌二醇[J]. 食品工业科技, 2021, 42(11): 248−254. doi: 10.13386/j.issn1002-0306.2020090046

    Liu X, Zhu C L, Pang Y H, et al. Fluorescence aptasensor for 17 β-estradiol determination based on blackphosphorus nanosheets[J]. Science and Technology of Food Industry, 2021, 42(11): 248−254. doi: 10.13386/j.issn1002-0306.2020090046

    [80]

    Yang R, Liu J Y, Song D, et al. Reusable chemiluminescent fiber optic aptasensor for the determination of 17 β-estradiol in water samples[J]. Microchimica Acta, 2019, 186: 726. doi: 10.1007/s00604-019-3813-y

    [81] 马建国. 水中抗生素高通量免疫检测技术研究及应用[D]. 济南: 山东大学, 2019.

    Ma J G. Research and application of high-throughput immunoassay technology for antibiotics in water[D]. Jinan: Shandong University, 2019.

    [82] 张玉超, 刘旭东. 基于单克隆抗体的双酚A间接竞争酶联免疫分析法的建立[J]. 食品研究与开发, 2020, 41(17): 172−177. doi: 10.12161/j.issn.1005-6521.2020.17.028

    Zhang Y C, Liu X D. Establishment of indirect competitive immunoassay for bisphenol A based on monoclonal antibody[J]. Food Research and Development, 2020, 41(17): 172−177. doi: 10.12161/j.issn.1005-6521.2020.17.028

    [83] 贾文哲, 李奕君, 张天牧, 等. 基于免疫分析技术的雌二醇与壬基酚同时检测方法[J]. 环境化学, 2021, 40(4): 1020−1028. doi: 10.7524/j.issn.0254-6108.2019111102

    Jia W Z, Li Y J, Zhang T M, et al. Simultaneous detection of estradiol and nonylphenol based on immunosorbent assay[J]. Environmental Chemistry, 2021, 40(4): 1020−1028. doi: 10.7524/j.issn.0254-6108.2019111102

    [84] 朱江, 杨道丽, 李炳智, 等. 全氟辛烷磺酸酶联免疫检测方法的研究[J]. 上海交通大学学报(农业科学版), 2014, 32(2): 74−78.

    Zhu J, Yang D L, Li B Z, et al. Development of an indirect competitive ELISA for the detection of the perfluorooctane sulphonate[J]. Journal of Shanghai Jiaotong University (Agricultural Science), 2014, 32(2): 74−78.

    [85]

    Wang Y, Zhao X D, Zhang M, et al. Immunosorbent assay based on upconversion nanoparticles controllable assembly for simultaneous detection of three antibiotics[J]. Journal of Hazardous Materials, 2021, 406: 124703. doi: 10.1016/j.jhazmat.2020.124703

    [86] 常青. 四环素荧光免疫层析检测方法研究[D]. 天津: 天津科技大学, 2019.

    Chang Q. Development of fluorescence immunochromatographic assay for detection of tetracycline[D]. Tianjin: Tianjin University of Science and Technology, 2019.

    [87] 杜志辉, 李森林, 高志贤, 等. 壬基酚免疫层析快速检测试纸条的研制[J]. 解放军预防医学杂志, 2007(4): 238−241. doi: 10.3969/j.issn.1001-5248.2007.04.002

    Du Z H, Li S L, Gao Z X, et al. Preparation of immunochromatographic test strip for rapid detection of nonylphenol[J]. Journal of Preventive Medicine of Chinese People’s Liberation Army, 2007(4): 238−241. doi: 10.3969/j.issn.1001-5248.2007.04.002

    [88]

    Pu H B, Huang Z B, Sun D W, et al. Development of a highly sensitive colorimetric method for detecting 17β-estradiol based on combination of gold nanoparticles and shortening DNA aptamers[J]. Water, Air, & Soil Pollution, 2019, 230(6): 124.

    [89] 曹金博, 王耀, 胡骁飞, 等. 免疫分析技术在四环素类抗生素残留检测中的应用[J]. 饲料工业, 2019, 40(12): 53−59. doi: 10.13302/j.cnki.fi.2019.12.010

    Cao J B, Wang Y, Hu X F, et al. The application of immunoassay technique in the detection of tetracycline antibiotics residue[J]. Feed Industry, 2019, 40(12): 53−59. doi: 10.13302/j.cnki.fi.2019.12.010

    [90] 贾文哲. 水中内分泌干扰物快速检测技术研究及应用[D]. 武汉: 武汉科技大学, 2020.

    Jia W Z. Research and application of rapid detection technology for endocrine disruptors in water[D]. Wuhan: Wuhan University of Science and Technology, 2020.

    [91] 徐玮琦, 张永明, 周小红, 等. 基于平面波导型荧光免疫传感器的双酚A检测适用性研究[J]. 环境科学, 2015, 36(1): 338−342. doi: 10.13227/j.hjkx.2015.01.045

    Xu W Q, Zhang Y M, Zhou X H, et al. Applicability of bisphenol a detection by a planar waveguide fluorescent biosensor[J]. Environmental Science, 2015, 36(1): 338−342. doi: 10.13227/j.hjkx.2015.01.045

    [92] 李树莹, 田艳, 陈蓓, 等. 基于平面波导传感器的恩诺沙星与诺氟沙星同时检测方法[J]. 环境科学学报, 2018, 38(5): 1899−1905. doi: 10.13671/j.hjkxxb.2017.0429

    Li S Y, Tian Y, Chen B, et al. Simultaneous detection of enrofloxacin and norfloxacin by planar waveguide immunosensor[J]. Acta Scientiae Circumstantiae, 2018, 38(5): 1899−1905. doi: 10.13671/j.hjkxxb.2017.0429

    [93] 单迪迪, 文晓刚, 刘兰华, 等. 基于阵列倏逝波荧光传感器的雌二醇免疫检测方法[J]. 光谱学与光谱分析, 2018, 38(10): 3148−3152.

    Shan D D, Wen X G, Liu L H, et al. Immunoassay of estradiol by an array evanescent wave fluorescent biosensor[J]. Spectroscopy and Spectral Analysis, 2018, 38(10): 3148−3152.

    [94] 高燕梅, 陈文, 张之琛. 极谱法检测环境水体中的全氟辛烷磺酸[J]. 分析科学学报, 2022, 38(3): 297−302.

    Gao Y M, Chen W, Zhang Z C. Determination of perfluorooctane sulfonic acid in environmental water by polarography[J]. Journal of Analytical Science, 2022, 38(3): 297−302.

    [95] 王硕, 何欢, 王俊平, 等. 基于分子印迹材料的雌酮快速检测方法研究[J]. 食品工业科技, 2011, 32(3): 393−395. doi: 10.13386/j.issn1002-0306.2011.03.030

    Wang S, He H, Wang J P, et al. Rapid determination estrone method on the basis of molecular imprinted polymer[J]. Science and Technology of Food Industry, 2011, 32(3): 393−395. doi: 10.13386/j.issn1002-0306.2011.03.030

    [96]

    He J C, Qiu P P, Song J Y, et al. A resonance Rayleigh scattering and colorimetric dual-channel sensor for sensitive detection of perfluorooctane sulfonate based on toluidine blue[J]. Analytical and Bioanalytical Chemistry, 2020, 412(22): 5329−5339. doi: 10.1007/s00216-020-02748-9

  • 期刊类型引用(2)

    1. 涂家润,周红英,崔玉荣,李国占,耿建珍,张健. 磷灰石ID-TIMS高精度U-Pb定年方法. 岩矿测试. 2024(04): 533-545 . 本站查看
    2. 宁泽,徐磊,林学辉,张媛媛,张勇. 矿物特征自动分析系统对碎屑矿物定量识别及与传统镜下鉴定的误差分析. 岩矿测试. 2024(05): 713-722 . 本站查看

    其他类型引用(0)

图(2)  /  表(5)
计量
  • 文章访问数:  621
  • HTML全文浏览量:  551
  • PDF下载量:  95
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-02-07
  • 修回日期:  2023-05-09
  • 录用日期:  2023-09-13
  • 网络出版日期:  2023-12-07
  • 刊出日期:  2023-12-30

目录

/

返回文章
返回