Nitrogen Isotope Analysis Method of Organic-enriched Shale
-
摘要:
页岩氮同位素是重建古环境中生物地球化学循环的重要工具,也为判断原油的沉积环境、油源对比等提供地球化学指标,但页岩氮同位素比值分析在研究中面临着含量较低、前处理对分析的影响以及标准物质选用等问题,从而影响了页岩中氮同位素比值的准确分析,制约了该技术在相关研究中的深入和发展。本文以富有机质上扬子龙马溪组页岩样品为对象,采用元素分析仪-同位素质谱(EA-IRMS)进行分析,并结合该类页岩的性状特点以及当前页岩氮同位素分析中测试条件、前处理方法、标准物质的选用等方面的影响进行研究。结果表明:EA-IRMS分析时,适当地增加注氧量提高燃烧效能,采用碳、氮分别测定的方式,以及添加碳吸附剂有助于提高页岩中的氮同位素比值分析的精度和准确性。盐酸-酸洗法处理样品过程中,采用超声方式促进了酸/水和样品的反应,有助于提高水洗效果并减少水洗次数从而降低对δ15N的影响。页岩分析时采用国际标准USGS40、USGS41a以及IAEA-600为分析标准,适用并满足氮以及全碳和有机碳同位素比值分析的需要,国家一级海洋沉积物碳氮稳定同位素标准物质GBW04701、GBW04702、GBW04703适用于页岩中碳氮同位素比值分析以及酸处理过程的监控。尽管本次实验采用的盐酸-酸洗法对氮同位素比值的影响较小,但是在对样品分析中仍观察到明显含氮成分的损失和δ15N的变化,因而为了氮含量和δ15N分析的准确,分析该类样品全岩氮同位素比值建议采用直接分析的方法。本研究有助于提高富有机质页岩中氮同位素比值分析的精度和准确性,从而促进氮同位素在页岩分析和研究中获得更广泛的应用。
-
关键词:
- 页岩 /
- 氮同位素比值 /
- 元素分析仪-同位素质谱 /
- 前处理方法 /
- 标准物质
Abstract:BACKGROUNDShale, as an important component of sedimentary rocks, is also a valuable source rock and “reservoir” of shale gas. The study of nitrogen isotope distribution characteristics can provide geochemical indexes for judging the sedimentary environment and oil-source correlation of crude oil. It is helpful to understand the organic matter enrichment mechanism of black shale, shale oil, and gas exploration[14-17]. Nitrogen isotope ratio analysis in sedimentary rocks is faced with problems such as low content, and the influence of pretreatment on analysis and the reference materials, which affect the accurate analysis of nitrogen isotope ratio in shale and restrict the development of this technology in related studies. First, the low content in rocks will affect the analysis results by elemental analyzer-isotope ratio mass spectrometry (EA-IRMS)[16,18,20]. Second, the method of direct sample analysis is often used to analyze nitrogen isotope ratio of whole rock, to improve the relative content of nitrogen and remove carbonate to meet the requirement of organic carbon isotope analysis; samples treated with acid can also be used for analysis. There are differences in treatment methods in different laboratories, which can also increase the variation in content and isotope ratios, as well as the difficulty of data comparison[9-13,21,25]. Finally, there are relatively few international standard materials based on rocks and minerals for nitrogen isotope and there are still some problems and limitations in these standards[7,21,24,30]. Therefore, the accurate analysis of nitrogen isotope ratio in shale is affected, thus restricting the development of this technology in related studies.
OBJECTIVESTo improve the precision and accuracy of nitrogen isotope analysis in shales.
METHODS(1) The analysis was carried out by EA-IRMS, with the use of MAT253 Plus gas stable isotope mass spectrometer, Flash 2000 HT element analyzer and ConFlo Ⅳ interface. The furnace tube was filled with the recommended scheme of the instrument, and the water removal trap was adjusted according to the measured object, that is, only magnesium perchlorate was used or carbon adsorbent was added on this basis (the main component was sodium hydroxide), which accounted for 50% each. Carbon and nitrogen isotope ratios were measured separately. (2) Carbon and nitrogen isotope standard materials included: USGS40, USGS41a, IAEA-600, Urea, GBW04701, GBW04702, GBW04703, GBW07424 and GBW07107 as calibration, monitoring and experimental study (Table 1). Typical shale samples of the upper Yangtze Longmaxi Formation were selected as the research object. Both samples are rich in organic carbon. Combined with hand samples and XRD analysis, their mineral composition is mainly as follows: Quartz, potassium feldspar, illite and pyrite in SAMPLE-1, SAMPLE-2 are similar in mineral composition in general, but there is obvious dolomite in SAMPLE-2. (3) The experiment consisted of three parts. First, the impact of increasing oxygen injection time and using double tin cup encapsulation on nitrogen isotope ratio analysis was studied. Urea was applied to determine δ15N under the same conditions but with different oxygen injection time (3s or 5s) and the differences were compared. Urea and GBW07424 were used to encapsulate the sample with double tin cup (two layers of tin cup for the same sample) and conventional single tin cup for comparison under the same conditions. The composition of total nitrogen and total carbon isotope ratios in GBW04701, GBW04702 and GBW04703 was determined by single-tin cup encapsulation. Second, the influence of acid rinse method on the analysis was conducted. Standards were weighed and gradually added with an excess of 6mol/L HCl to remove carbonate minerals. During the reaction, the centrifuge tube was placed in an ultrasonic cleaner for ultrasonic treatment for 3 to 5 times, 10min each time. Centrifuge was used, acid was discarded and deionized water was added. After ultrasonic treatment in ultrasonic cleaner, centrifuge treatment was continued. This process was repeated until it reached neutral. The samples were then compared and analyzed with unprocessed samples and recommended values. Finally, the shale samples SAMPLE-1 and SAMPLE-2 from Longmaxi Formation were analyzed. The isotopic ratios of total nitrogen and total carbon were determined respectively. The samples were treated with the above acid rinse method to analyze the ratio of organic carbon and nitrogen isotopes, and the mineral composition before and after treatment was analyzed by XRD. Nitrogen isotope difference and total carbon and organic carbon isotope ratio were analyzed before and after treatment.
RESULTSThe results of single/double tin cup method showed that the accuracy of δ15N value determined by double tin cup method were obviously worse than that by single tin cup method at the same oxygen injection time (Table 2). GBW07424 analysis showed that nitrogen amounts had more obvious influence on the analysis. The results of total nitrogen analysis in GBW04701, GBW04702 and GBW04703 measured under the condition of oxygen injection time 5s were consistent with the recommended values (Table 3), and the standard deviation of the samples was improved (SD≈0.1‰). After acid rinse, the nitrogen values of GBW04701 and GBW04702 were consistent with the recommended values (Table 3), and the relative deviation was better (SD<0.1‰). The overall carbon isotope ratio analysis values were consistent with the recommended values (Table 4). The difference of δ13CVPDB between total carbon and organic carbon determined by GBW07107 was small and consistent with its carbon composition. The δ15N values of shale samples before and after acid treatment were basically the same in SAMPLE-1, while the δ15N values of shale samples after acid treatment were obviously changed in SAMPLE-2, which was related to the composition loss in the wash acid process of SAMPLE-2.
DISCUSSION(1) The optimized measurement conditions of EA-IRMS. Attempts were made to improve combustion efficiency by using double tin cup wrapping and increasing oxygen injection time. The relative deviation of double tin cup method was greater than 0.2‰ and obviously higher than that of single tin cup method, indicating that this method is not suitable. The reason may be related to the difference in combustion efficiency caused by the gap between double tin cups and the introduction of air when the sample is wrapped[19]. Appropriate increase of oxygen injection time in the analysis of GBW04701, GBW04702 and GBW04703 obtained satisfactory results, indicating that this method can effectively improve the accuracy of the technique, while this method did not significantly improve the standard deviation of δ15N value of Urea, which may be related to the matrix of the sample[20]. It may be the abundant carbon in shale. Therefore, it is necessary for nitrogen isotope ratio analysis in shale to be determined by carbon and nitrogen separately and adding carbon adsorbent. (2) The acid rinse method. The acid rinse method adopted has no significant effect on GBW04701 and GBW04702 on δ15N analysis and can effectively remove carbonate components. Ultrasonic was used to promote the reaction between acid/water and sample in the process of acid reaction and acid washing in the experiment, and the centrifugation time was appropriately increased in the centrifugation stage, which was conducive to the preservation of fine particle components. Compared with static reaction, the addition of ultrasonic reaction could improve the washing effect. The less washing times were thus contributing to the accuracy of δ15N analysis[47]. (3) The shale sample analysis. Although the acid treatment method adopted in the experiment has no obvious effect on the δ15N analysis of standards, significant composition loss and δ15N change were still observed in the analysis of shale samples. Moreover, the nitrogen content of shale samples of Longmaxi Formation was relatively high. Therefore, in order to accurately analyze the nitrogen content and δ15N analysis, direct analysis of samples is recommended for the whole-rock nitrogen isotope analysis of such samples. (4) The standard and reference materials. Carbon and nitrogen isotope reference materials with different characters and compositions were selected as calibration, monitoring and experimental study. USGS40, USGS41a and IAEA-600 standard samples were used for calibration and quality monitoring, and no obvious influence of matrix difference was found. Although they are Marine sediments, GBW04701, GBW04702, GBW04703 provide isotopic compositions of total carbon, organic carbon, total nitrogen and organic nitrogen. They are suitable for the analysis of carbon and nitrogen isotope ratios and the monitoring of acid treatment processes, especially the analysis of EA-IRMS technology[50]. In shale analysis, GBW04701, GBW04702 and GBW04703 were selected as monitoring to meet the requirements of nitrogen and total carbon and organic carbon isotope ratio analysis.
-
Keywords:
- shale /
- nitrogen isotope ratio /
- EA-IRMS /
- pretreatment method /
- standard
-
氮作为一种重要的生命元素,广泛分布于自然界中,同时参与了几乎所有的生命活动和演化过程,氮稳定同位素记录了氮循环的原始信息,作为一种有效的指标被用于重建古海洋环境,探讨地史时期环境与生物演化关系,以及指示气候变化等地质和环境研究[1-5]。沉积岩中氮同位素和丰度已成为重建古环境中生物地球化学循环的重要工具[6-13],页岩作为沉积岩中的重要组成,也是有着重要价值的烃源岩和页岩气的“储集层”,其氮同位素分布特征研究,能够为判断原油的沉积环境、油源对比等提供地球化学指标,从而有助于了解黑色页岩有机质富集机理和页岩油气勘探研究[14-17]。
沉积岩中氮同位素比值分析在研究中面临着含量较低、前处理对分析的影响以及标准物质选用等问题,从而影响了页岩中氮同位素比值的准确分析,制约了该技术在相关研究中的深入和发展。首先,氮在岩石中的含量较低,这会对氮同位素比值的准确测定造成影响。相对于密封管燃烧法,元素分析-同位素质谱(EA-IRMS)具有高效、便捷、前处理相对简单等优点,是目前测定氮同位素比值最常用的方法,而该方法分析时需要氮元素质量>20μg,分析结果的标准偏差才能达到0.2‰,而分析样品量过多则会造成燃烧不完全,使氮含量测试结果偏低并产生同位素分馏[16,18],同时较低样品信号受到分析空白的影响程度更为严重[19]。目前EA-IRMS对氮同位素分析精度一般在约0.2‰~0.3‰[20],以往研究通过改善分析设备和优化实验条件从而提高该法的准确性和适用性[18,21],例如减少EA-IRMS分析时样品氮气的稀释,从而降低了固体样品分析的检出限[18]。在实验条件的优化方面,主要通过样品的高效燃烧、有效的氮气生成和杂质气体去除等提高氮同位素分析的精密度和准确度。反应温度对燃烧效能和测定精度影响显著[22-23]。徐丽等[23]研究表明当反应温度设定为950℃,测试精度才能达到±0.3‰。Han等[24]研究表明氮含量和同位素比值由于氧的注入量不同,测量结果可能会有所不同,特别是对富含有机质样品。Wang等[20]研究表明对于低有机质的土壤或海洋沉积物等天然样品,分析时注入足量氧气能够改善样品的燃烧。这些研究提高了EA-IRMS对固体样品中氮同位素分析的精准性,有助于不同方向和类型样品的研究,而由于样品类型不同和仪器的差异,上述改进在使用上也存在一定的局限性。
其次,样品前处理对分析会产生影响。全岩氮同位素比值分析常采用样品直接分析的方法[3,5,14],为了提高氮的相对含量以及去除碳酸盐满足有机碳同位素分析,有的研究也采用酸处理后的样品进行分析,目前酸处理没有统一的方法,不同实验室处理方法存在差异[9-13,21,25]。以往研究中发现有机碳和氮的含量和同位素比值会受到酸处理方式、酸浓度以及反应时间等因素影响,同时影响程度也与其基体类型有关,相对于其他类型,页岩氮含量和同位素比值受到的影响相对较小[26-31]。尽管如此,前处理仍会增加实验工序和时间,同时不同实验室采用的酸处理方式、酸纯度和浓度以及洗脱酸方法存在差异,而这些不同也会增加氮含量和同位素比值的变化,以及数据比较的难度。最后是标准物质的影响。标准物质是同位素分析的基准物质,也是保证数据比较的重要依据[32],氮同位素的标准物质数量和种类都较多,但以岩石矿物为基体的国际标准物质仍然相对缺乏,以往研究已表明EA-IRMS测定时采用与样品化学性质相近的标准,有助于氮同位素比值结果的准确[33-34],因而研究者采用元素分析的地质标准物质作为氮同位素比值分析的参考物质[7,21,24,30,35-36]。页岩基体的SDO-1(俄亥俄州泥盆纪页岩)和SGR-1(始新世绿色河流页岩)之前已经被推荐作为有机碳和氮同位素的国际标准物质[30]。Stüeken等[21]研究后认为SCo-1、SGR-1、SDO-1、ShBOQ-1、ShWFD-1、SBC-1,这六个USGS页岩标准覆盖了沉积岩中主要的氮同位素比值变化,氮含量也存在变化,因而这些页岩标准物质具有很好的适用性。但这些标准物质仍存在一些问题:一方面以往研究已表明这些标准物质存在不均匀性问题[7,21,24,30],另一方面这些标准物质普遍使用存在一定的局限性,包括:①有些标准物质已经逐步淘汰或还未推广[21]。②这些标准物质氮含量和同位素的测定数据相对有限,也影响了其使用和对比研究。③这些标准多为国际标准物质,价格相对昂贵,不利于中国实验室的推广。综上所述,由于存在上述的问题,影响了页岩中氮同位素比值的准确分析,从而制约了该技术在相关研究中的深入和发展。
为了系统地把握和了解页岩全岩氮同位素分析现状,特别是测试条件、前处理方法、标准物质等方面的影响,促进氮同位素在沉积岩研究中的应用,本文以上扬子龙马溪组富有机质页岩样品为对象,采用常用的EA-IRMS测定氮同位素比值,同时结合该类型样品的性状特点以及当前页岩氮同位素分析中测试条件、前处理方法、标准物质选用等方面的影响进行研究和探讨。页岩中有机碳同位素比值也是油气、古气候、古环境等研究中的重要指标,因而本次研究在前处理方法研究的同时,探讨了酸化前处理方式对有机碳同位素分析的影响。本次研究有助于提高页岩中氮同位素分析的精度和准确性,从而促进页岩中氮同位素在分析和研究中获得更广泛的应用。
1. 实验部分
1.1 仪器装置
本次EA-IRMS分析系统主要由MAT 253Plus气体稳定同位素质谱仪、Flash 2000 HT元素分析仪以及ConFlo IV接口组成,均为美国ThermoFisher公司生产。其中元素分析仪采用氧化炉和还原炉一体化设计,实验采用仪器推荐方案装填:从上至下分别填充Cr2O3、还原性Cu、Ag2Co3O4, 在顶部、底部以及物料间填充石英棉。除水阱根据测定对象进行填充调整,即只采用高氯酸镁或在此基础上加入碳吸附剂(主要成分为氢氧化钠)两者各占50%。实验包裹样品的锡杯规格为:9mm×5mm;使用的载气He、助燃气O2、参考气N2的纯度都>99.999%。电恒温鼓风干燥箱为:DGG-9240B(上海森信实验仪器有限公司),低速台式大容量离心机为: TDL-5(金怡),超声波清洗器为:8510(美国Branson公司)。
1.2 测定条件
实验条件为:反应温度980℃;色谱柱温度50℃;载气流速100mL/min;参考气流速200mL/min;氧气流速175mL/min;注氧时间:碳分析时为3s,氮分析时为3s或5s。碳氮同位素比值采用分别测定的方式,测试时参考气峰3次,软件为ISODAT 3.0,每次分析均插入3~5件USGS40、USGS41a、IAEA-600、Urea标样进行校正和质量监控,含量计算采用USGS40为标准,测定前在天平上称取标准和样品的质量。
1.3 实验样品、标准及试剂
本次研究选用的上扬子龙马溪组页岩具有分布广、有机质含量丰富、演化程度高、生烃量大等特点,作为重要的页岩气储藏层位,一直是油气研究的重点关注对象[16,37-39]。以往研究[16-17,40-41]表明上扬子龙马溪组页岩氮同位素分布特征研究对该时期环境和气候演化过程具有重要的指示意义,有助于认识该时期碳、氮同位素异常的产生机制,从而为相关时期的古环境和古气候提供新的依据。实验选取上扬子龙马溪组典型页岩样品SAMPLE-1和SAMPLE-2作为研究对象:SAMPLE-1采自贵州遵义正安县洛龙剖面,时代为下志留统龙马溪组;SAMPLE-2采自四川雅安汉源剖面,时代为下志留统龙马溪组。样品详细采样地点和描述分别见文献[37]和[38]。两个样品都富含有机碳,结合手标本和X射线衍射(XRD)分析其矿物组成主要为:SAMPLE-1中石英、钾长石、伊利石、黄铁矿等;SAMPLE-2中矿物石英、长石、黄铁矿、白云石,总体上这两个样品的矿物组成相近,但SAMPLE-2中有明显的白云石。
本次实验选用不同性状和同位素比值的碳、氮同位素标准物质Urea、USGS41a、USGS40、IAEA-600、GBW04701、GBW04702、GBW04703、GBW07424、GBW07107(表1)作为校正、监控及实验研究。USGS40、USGS41a、IAEA-600、Urea是有机碳和氮同位素分析最常用的标准,实验中用于校正和质量监控;GBW04701、GBW04702、GBW04703系列提供了全碳、有机碳、全氮和有机氮的同位素组成,实验中用于碳氮同位素比值分析以及酸处理过程的监控。GBW07424和GBW07107提供了有氮含量推荐值,且氮含量相对较低,实验中分别用于实验条件优化和前处理方法的评估。
表 1 本次实验用于碳、氮质量和同位素比值分析的标准和参考物质Table 1. Standard and reference materials for carbon and nitrogen content and isotope ratio analysis in this experiment.标准物质
编号来源 性质 δ13CVPDB(‰) δ15NAIR-N2(‰) 碳氮含量和同位素
比值说明Urea Element Microanalysis Ltd 尿素 −37.02±0.06 −2.91±0.2 − USGS41a USGS 谷氨酸 36.55±0.08 47.55±0.15 − USGS40 USGS 谷氨酸 −26.39±0.04 −4.52±0.06 C: 40.8%; N: 9.52% IAEA-600 IAEA 咖啡因 −27.77±0.04 1.0±0.2 − GBW04701 国家标准物质 海洋沉积物 −8.22±0.17 3.99±0.22 总碳和总氮的同位素比值 −20.79±0.14 3.8±0.24 有机碳和有机氮的同位素比值 GBW04702 国家标准物质 海洋沉积物 −18.68±0.15 6.25±0.23 总碳和总氮的同位素比值 −23.63±0.11 6.48±0.28 有机碳和有机氮的同位素比值 GBW04703 国家标准物质 海洋沉积物 −10.64±0.15 4.68±0.23 总碳和总氮的同位素比值 −22.57±0.14 4.78±0.29 有机碳和有机氮的同位素比值 GBW07424 国家标准物质 土壤 − − 土壤成分标准,N: 0.126%±0.011% GBW07107 国家标准物质 页岩 − − 岩石成分标准,N: 540±60µg/g 盐酸为优级纯(成都市科隆化学品有限公司),采用去离子水配制成6mol/L浓度。
1.4 实验方法
本次实验首先研究增加注氧时间和采用双锡杯包裹的方式对氮同位素比值分析的影响,实验采用Urea和GBW07424为测试条件的研究对象。实验包括:①采用Urea在相同条件但不同注氧时间(3s或5s)测定δ15N并比较差异。②采用Urea和GBW07424分别用双锡杯包裹样品的方式(同一样品包裹两层锡杯)和常规的单锡杯包裹在相同条件下测定作比较,Urea称样量相近,而GBW07424分为三种不同称样量,分别为:<7mg;15~20mg;≥20mg左右,小于7mg分别采用单锡杯和双锡杯包裹,以研究双锡杯对低含量样品的影响,其他的都采用单锡杯包裹,分析时同时测定了GBW07424中的氮含量。③采用单锡杯包裹方式测定了GBW04701、GBW04702、GBW04703中的全氮和全碳同位素比值组成。
其次是研究盐酸-酸洗法处理对分析的影响。实验选取的研究对象包括:GBW04701、GBW04702,GBW07107。实验中称取一定量的上述样品加入50mL聚丙烯离心管中,逐步加入过量6mol/L盐酸以去除碳酸盐矿物,室温反应24h,期间将离心管置于超声波清洗器中超声处理3~5次,每次10min。采用离心机在4000r/min条件下离心20min,弃去酸液后加入去离子水,在超声波清洗器中超声处理10min后,继续离心处理,此过程反复3次,期间检测上清液是否达到中性,再将含沉淀物的离心管在60℃烘箱中干燥至恒重后捣碎、研匀,最后采用单锡杯包裹分别测定上述样品的有机碳和氮同位素比值,并与之前未处理样品和推荐值进行比较分析。
最后是龙马溪组页岩样品SAMPLE-1和SAMPLE-2的同位素比值分析:①实验分别测定了样品的全氮和全碳同位素比值。②采用上述盐酸-酸洗法对样品进行处理,分析其有机碳和氮同位素比值,以及采用XRD分析了处理前后的矿物组成并比较差异。③分析处理前后样品氮同位素差异及全碳和有机碳同位素比值。
2. 结果
2.1 不同测试条件下的分析结果
本次实验采用不同注氧时间和单/双锡杯方式的分析结果见表2,Urea的δ15N值在注氧时间3s或5s测定并没有明显的差异,且标准偏差相对较小(SD小于0.15‰),而相同注氧时间,采用双锡杯方式测定δ15N值的精确度和准确度都明显要差于单锡杯方式。GBW07424分析中,无论单/双锡杯小于7mg的δ15N测定值与其他存在明显差异,而随着称样量的增加,δ15N值趋于一致,同时测定的氮含量更接近推荐值,表明进样氮质量对分析的影响更为明显,尽管双锡杯的δ15N测定值相对更接近高称量的值(大于15mg),但是相比单锡杯的标准偏差更大,这与对Urea分析的现象一致。实验采用单锡杯在注氧时间5s条件下测定的GBW04701、GBW04702、GBW04703中全氮见表3,其未采用盐酸-酸洗法处理,表3中分析结果与推荐值吻合,同时样品的标准偏差较好(SD都在0.1‰左右)。
表 2 不同注氧时间和单/双锡杯方式下氮含量和同位素分析结果Table 2. The results of nitrogen content and isotope ratio under different oxygen injection time and single/double tin cup condition.标准物质
编号测定条件 称样量
(mg)N含量(%) δ15NAIR-N2(‰) 推荐值 测定值(n≥5) 推荐值 测定值(n≥5) Urea O: 3s+单锡杯 − − − −2.91±0.2 −2.93 ±0.13 O: 5s+单锡杯 − − − −3.03 ±0.13 O: 5s+双锡杯 − − − −3.16 ±0.29 GBW07424
O: 5s+单锡杯 <7 0.126±0.011 0.106±0.009 − 5.47±0.16 O: 5s+双锡杯 <7 0.100±0.010 6.09±0.27 O: 5s+单锡杯 15~20 0.119±0.004 6.80±0.16 O: 5s+单锡杯 ≥20 − 6.85±0.12 注:“-”表示该项无参考值或未作分析。 表 3 不同标准和样品的氮同位素分析结果Table 3. The results of nitrogen isotopes for reference materials and samples.标准物质和
样品编号样品前处理 δ15NAIR-N2 (‰) 样品前处理 δ15NAIR-N2 (‰) 推荐值 测定值(n≥5) 推荐值 测定值(n≥5) GBW04701 未前处理 3.99±0.22 3.82±0.08 6mol/L HCl 3.8±0.24 3.73±0.07 GBW04702 未前处理 6.25±0.23 6.30±0.07 6mol/L HCl 6.48±0.28 6.29±0.09 GBW04703 未前处理 4.68±0.23 4.65±0.1 − 4.78±0.29 − SAMPLE-1 未前处理 − −1.40±0.17 6mol/L HCl − −1.34±0.17 SAMPLE-2 未前处理 − −1.69±0.13 6mol/L HCl − 0.62±0.12 注:“-”表示该项无参考值或未作分析。 2.2 盐酸-酸洗法处理的测定结果
实验测定经过盐酸-酸洗法处理GBW04701、GBW04702的δ15N见表3,其表中前处理为:6mol/L盐酸,GBW04701、GBW04702、GBW07107全碳和经过盐酸-酸洗法处理后有机碳的同位素组成见表4,其在表中前处理分别为:未前处理和6mol/L盐酸。GBW04701、GBW04702有机氮的测定值与推荐值一致,同时相对偏差较好(SD小于0.1‰),这两个标准全氮和有机氮δ15N定值的差异基本在推荐值不确定度范围内,而本次实验测定结果也符合该特点。碳同位素比值分析的总体测定值与推荐值一致,除了GBW04701有机碳与推荐值略有差异,其原因还待进一步探究。GBW07107中全碳含量和有机碳含量的推荐值分别为:0.19%和0.16%,这表明其碳组成基本为有机碳,实验测定的GBW07107中全碳和有机碳的δ13CVPDB差异较小,这与其碳组成一致。
表 4 不同标准和样品的碳同位素分析结果Table 4. The results of carbon isotopes of reference materials and samples.标准物质和
样品编号样品前处理 δ13CVPDB (‰) 样品前处理 δ13CVPDB (‰) 推荐值 测定值(n≥5) 推荐值 测定值(n≥5) GBW04701 未前处理 −8.22±0.17 −8.39±0.02 6mol/L HCl −20.79±0.14 −21.03±0.05 GBW04702 未前处理 −18.68±0.15 −18.71±0.1 6mol/L HCl −23.63±0.11 −23.65±0.12 GBW07107 未前处理 − −30.47±0.12 6mol/L HCl − −30.34±0.07 SAMPLE-1 未前处理 − −28.68±0.15 6mol/L HCl − −29.53±0.11 SAMPLE-2 未前处理 − −30.69±0.02 6mol/L HCl − −30.75±0.11 2.3 页岩样品的测定结果
本次实验测定SAMPLE-1和SAMPLE-2的氮和碳同位素组成分别见表3和表4,采用酸处理前后的SAMPLE-1的δ15N基本一致,而SAMPLE-2则出现了明显的变化,从−1.69‰变化到0.62‰,这与SAMPLE-2酸洗过程有关。本次实验SAMPLE-2在最后一次水洗时,离心时无法分离出澄清的上清液,而这种情况在相同条件(水洗次数、离心参数和时间)处理其他标准和样品时都没有出现,即使尝试进一步的增加离心时间(30 min)依然无法获得澄清的上清液,随后将该液体置于烘箱干燥后,小心收集残留物并分析其δ13C和δ15N值分别为:−30.89‰和−0.88‰,该δ13C值与酸处理前后的样品差异相对较小,但δ15N值与两者有着明显的不同,且位于两者之间,这表明SAMPLE-2中δ15N值的变化与水洗过程中成分丢失有关,而其原因还有待进一步研究。SAMPLE-2在矿物分析中发现有明显的白云石,实验采用连续流磷酸法测定了其碳氧同位素组成(实验方法详见文献[42]),结果证明其含有少量的碳酸盐,其无机碳δ13C值约为−3.76‰,而SAMPLE-2的δ13C值在酸化前后变化较小,可能与碳酸盐含量相对较低有关。SAMPLE-1中有机碳含量更高,在矿物分析中没有发现明显的碳酸盐矿物,在对其碳酸盐碳氧同位素分析中也得到了印证,而其酸处理后δ13C值有微小但明显的变化(0.85‰),这可能与其含有可溶性有机质损失有关。同时实验采用XRD分析了SAMPLE-1和SAMPLE-2酸处理前后的矿物组分,没有发现明显的差异。
3. 讨论
3.1 EA-IRMS测试条件对氮同位素比值分析的影响
为了提高燃烧效能,EA-IRMS通常分析时添加V2O5,但V2O5在不同样品中燃烧效果存在差异[16-17,24,34],Han等[24]实验表明添加V2O5对分析页岩标准SGR-1没有明显的作用,同时有研究发现氮同位素可能会受到V2O5试剂的污染,从而引起同位素值变化[21],由于其具有毒性,实验操作要求较高,因而有研究[43]建议增加包裹锡量,而更多研究采用优化燃烧时的氧气注入条件[20,24]。由于仪器差异,不同研究采用[20,24]采用的注氧量和条件存在不同,同时过多的注氧量会加速还原铜的失效以及可能的氮空白。本研究通过采用双锡杯包裹和适当增加注氧时间的方式,以尝试提高燃烧效能。本次实验采用双锡杯方式测定结果的相对偏差都大于0.2‰且明显高于单锡杯方式,表明该方式并不合适。Langel等[19]研究了EA-IRMS分析中氮空白的来源,发现其与进样装置、反应管、胶囊包裹、氧气中的杂质以及样品残留有关,而不同来源的空白同位素组成变化很大,该研究建议分析固体样品中微量氮同位素比值时,降低氮空白是最有效的策略。本次分析的不加入锡杯、不含样品单锡杯、不含样品双锡杯在同等条件下测得的m/z 44分别为:小于 50mV;大于 50但小于300mV;在420~520mV之间。这表明锡杯中含有一定的碳,碳同位素测定时需要做空白校正,但是m/z 28都小于50mV,这表明实验中来至自仪器装置、气体杂质对氮的影响可以忽略。本次实验双锡杯方式相对偏差较大原因推测可能与包裹样品时,由于双层锡杯间隙导致的燃烧效能差异以及引入空气有关。适当增加注氧时间分析GBW04701、GBW04702、GBW04703取得了比较满意的结果,表明该方式能够有效地提高该技术的准确性和精度,而该方式对Urea的δ15N值的标准偏差没有明显的提高,这可能与样品性质有关。
EA-IRMS能够同时测定样品中的C、N含量和同位素组成,但以往研究已表明对于高C/N或低N含量的样品,N同位素建议单独测定[4,18,20],而为了防止CO2在GC柱分离中对N2造成影响,以及在离子源中形成干扰,化学阱中除了加入高氯酸镁吸收燃烧产生的水,氮同位素比值分析时往往还加入碳吸附剂(如:氢氧化钠)除去CO2[4]。本次实验C和N同位素组成采用分别测定的方式,实验中没有加入碳吸附剂对于标准物质中的氮同位素比值分析没有明显的影响,但是对于页岩样品影响明显,这可能与标准物质的N含量相对较高且C/N比值相对较低,而页岩中碳含量丰富有关,因而碳吸附剂的加入对于页岩中的氮同位素比值分析十分必要。本次实验研究在测定条件方面如:反应温度、气体流速、反应管装填等,尽量参照常用的碳氮同位素比值分析参数和条件设置,从而减少由于样品类型不同引起的参数设置和反应管装填的改变,具有相对更好的适用性和普遍性。Wang等[20]通过调整反应管中还原铜装填的长度和位置,能够提升还原铜反应的均匀性和使用寿命,但该方式会影响其他的填充物,结合本次研究的页岩样品性质,其含有一定量的硫(SAMPLE-1:硫含量0.11%;SAMPLE-2:硫含量4.4%),因而不适宜缩减Ag2Co3O4的装填量。
综上所述,EA-IRMS在氮同位素比值分析时,在常用碳氮同位素比值的分析条件下,适当增加注氧量有助于分析精准性的提高,同时采用碳氮同位素比值分别测定的方式,并添加碳吸附剂对于页岩中的氮同位素比值分析十分必要。
3.2 盐酸-酸洗法的影响因素
对于页岩中氮同位素比值分析,采用样品直接分析还是采用酸处理后的样品与研究目的和样品情况有关。富有机质页岩样品可以采用直接分析,而其他类型样品,如富含碳酸盐则可以采用酸化前处理以富集样品中氮含量。酸化前处理方式中,盐酸-酸洗法和酸蒸法是两种常用方法,而盐酸-酸洗法在研究中更为普遍,本次研究采用盐酸-酸洗法进行无机碳的去除,以往研究发现该法可能会造成碳氮含量的丢失以及同位素比值的改变,而这与该方法过程中实验器皿、样品的粒度、酸浓度和纯度、反应温度和时间、脱酸方法及烘干温度等因素有关[26,44-49]。陈立雷等[47]研究发现使用聚丙烯和玻璃离心管进行酸处理所得样品的碳和氮同位素组成基本无差别,聚丙烯离心管在使用过程中相对更加方便和高效。本次采用50mL离心管能够更好地适用于相对较大的样品量以及离心机的高效使用。碳酸盐的去除程度与沉积岩样品的颗粒大小有关[44,49],从而会影响有机碳的分析。GB/T 19145—2003沉积岩中TOC分析标准中推荐的粒径为80目以上,但有研究表明当样品粉碎至 200目时会因为颗粒微小导致丢失[44],因而建议采用80~100目样品较为合适。不同实验室采用的盐酸浓度存在差异[26,45-46],较多采用2mol/L或6mol/L盐酸,酸浓度对沉积岩有机碳同位素影响有限,可能与其主要以干酪根形式存在有关。2mol/L盐酸能够有效地去除方解石,但是对于菱铁矿等不易酸溶的碳酸盐矿物,采用6mol/L盐酸更为有效[26],而高浓度酸也会增加洗酸工作量,为了更有效去除碳酸盐矿物,本研究选用6mol/L盐酸,并在常温下进行反应,从而减少温度对反应的影响、盐酸的挥发及含量的损失[44,49]。以往研究[46,47]表明洗酸过程中上清液分离是造成碳氮含量丢失以及同位素比值改变的重要影响。Brodie等[46]研究后建议分离时采用离心能够有效地减少细微颗粒组分的丢失,但是仍不可完全避免损失。相对于真空冷冻干燥,加热烘干相对便利,但过高的温度容易造成有机质的挥发,结合前人研究[44,47-49],本实验烘干温度设置为60℃。
本次实验采用的盐酸-酸洗法与文献[50]分析GBW04701、GBW04702碳氮同位素采用的处理方法略有不同,特别是盐酸浓度和水洗后的烘干方式,实验结果表明这种差异对δ15N分析没有明显影响,同时能够有效地处理碳酸盐成分。相比其他研究,实验在酸反应和洗酸过程中都采用了超声促进酸/水和样品的反应,并在离心阶段适当增加了离心的时间(20min)。离心时间的增加有助于细微颗粒组分的保存,而实验发现相比静止反应,加入了超声波反应,样品pH达到中性所需水洗次数有所减少。陈立雷等[47]在对海洋沉积物有机碳和稳定氮同位素分析的前处理影响研究中发现,水洗可能会造成δ15N值向正偏移,因而尽量减少水洗次数将有助于δ15N分析的准确。综合上述讨论和实验结果,本次研究采用的盐酸-酸洗法对氮同位素比值的影响较小,同时适用于有机碳同位素比值测定的需要。
3.3 样品性质及对氮同位素比值分析的影响
岩石中氮同位素会受到成岩过程和变质作用的影响,缺氧和好氧沉积环境的氮同位素差异显著,变质作用则会进一步改变其组成,沉积岩中不同形式的氮同位素在成岩过程和变质作用中存在变化差异,且影响程度与变质程度有关[15,21,51]。沉积岩中氮主要以两种不同形式存在:一是结合在干酪根中,二是存在于含钾硅酸盐矿物(如:长石和云母)[25,52]。干酪根是沉积岩中主要的有机质,具有不溶于有机溶剂和不溶于含水碱性溶剂的性质,也是主要的生油气母质,成分和结构复杂,组成主要是C、H、O,也含有少量S、N[53-54]。不同的沉积环境和不同来源的原始有机质,会形成不同类型的干酪根。Wang等[55]研究了不同油页岩干酪根中的有机氮组成,结果表明干酪根中含有5种形式的有机氮。硅酸盐中NH4+替代K+和Na+存在于晶格中,以往研究已发现其氮产率和同位素组成受燃烧时温度和时间的影响较大[35,52],并且不同硅酸盐氮完全释放的最佳温度和时间不同[56],EA-IRMS采用高温闪燃技术,以往研究中发现该方法分析硅酸盐中δ15N时,氮会释放不完全,从而会导致氮同位素比值变化[35,52,56],尽管通过优化实验条件能够提高燃烧效能,但也并不能保证硅酸盐晶格中氮的完全释放[52]。本次研究的龙马溪组页岩样品中相对微少的含钾硅酸盐矿物对实验造成的影响有限。
结合前文酸前处理的研究和页岩样品的分析,尽管实验采用的盐酸-酸洗法对标样δ15N值分析没有明显影响,但仍在样品的分析中观察到明显成分的损失和δ15N值的变化,并且龙马溪组页岩样品中氮含量相对较高,因而为了氮含量和δ15N值分析的准确,该类样品全岩氮同位素分析建议采用样品直接分析的方法。
3.4 页岩分析中氮同位素标准物质运用探讨
本次实验选用不同性状和组成的碳、氮同位素标准物质作为校正、监控及实验研究。其中采用USGS40、USGS41a、IAEA-600、Urea标样进行校正和质量监控, USGS40、USGS41a、IAEA-600是有机碳和氮同位素分析最常用的标准,尽管在成分上与岩石矿物和土壤存在差异,但是在以往研究中发现也同样适用,本次实验以此为标准对GBW04701、GBW04702、GBW04703的测定中也未发现明显的基体差异影响。当前以页岩为基体的氮同位素国际标准,存在前文讨论的局限性,以页岩为基体的国家标准物质,除了GBW07107外(该标准氮含量低),其他标准物质都没有提供氮含量信息,更是缺乏氮同位素信息,因而目前都无法应用于页岩氮同位素比值的分析和研究。GBW04701、GBW04702、GBW04703尽管是海洋沉积物,但是该系列标准提供了全碳、有机碳、全氮和有机氮的同位素组成,适用于碳氮同位素比值分析以及酸处理过程的监控,特别是EA-IRMS 在线技术的分析[50]。综上所述,页岩分析时采用USGS40、USGS41a以及IAEA-600作为分析标准,选用GBW04701、GBW04702、GBW04703作为监控,适用并满足氮以及全碳和有机碳同位素比值分析的需要。
4. 结论
本次研究以富有机质的上扬子龙马溪组页岩样品为对象,采用元素分析仪-同位素质谱(EA-IRMS)进行分析,并结合该页岩的性状特点以及当前页岩氮同位素分析中的影响因素进行了研究。研究表明EA-IRMS氮同位素分析时,适当增加注氧量有助于分析精准性的提高,同时采用碳氮分别测定的方式,并添加碳吸附剂对于页岩中的氮同位素比值分析十分必要。盐酸-酸洗法处理过程中采用了超声方式促进酸/水和样品的反应,能够有助于提高水洗效果并减少水洗次数,尽管本次实验采用的盐酸-酸洗法对氮同位素比值的影响较小,但是对于该类样品全岩氮同位素分析建议采用样品直接分析的方法。本研究表明GBW04701、GBW04702、GBW04703标准物质适用于页岩中碳氮同位素比值分析以及酸处理过程的监控。
本研究有助于对富有机质页岩中氮同位素比值EA-IRMS分析精度和准确性的提高,从而促进氮同位素在页岩分析和研究中获得更广泛的应用。本次研究只测定了GBW07107中碳同位素比值,而没有开展氮同位素比值以及其他以页岩为基体的国家标准物质中氮同位素比值的研究,下一步将开展对现有以页岩为基体的国家标准物质的氮含量和同位素比值的研究,在丰富页岩氮同位素标准物质(参考物质)的同时,特别是建立适用于页岩氮同位素比值分析的不同含量和同位素梯度的国家标准物质,将有助于中国实验室页岩中氮同位素比值的分析和研究。
致谢:感谢中国地质调查局青岛海洋地质研究所贺行良研究员提供了GBW04701~GBW04703系列标准物质和实验指导,以及审稿老师对本文提出宝贵意见,在此一并表示感谢。
-
表 1 本次实验用于碳、氮质量和同位素比值分析的标准和参考物质
Table 1 Standard and reference materials for carbon and nitrogen content and isotope ratio analysis in this experiment.
标准物质
编号来源 性质 δ13CVPDB(‰) δ15NAIR-N2(‰) 碳氮含量和同位素
比值说明Urea Element Microanalysis Ltd 尿素 −37.02±0.06 −2.91±0.2 − USGS41a USGS 谷氨酸 36.55±0.08 47.55±0.15 − USGS40 USGS 谷氨酸 −26.39±0.04 −4.52±0.06 C: 40.8%; N: 9.52% IAEA-600 IAEA 咖啡因 −27.77±0.04 1.0±0.2 − GBW04701 国家标准物质 海洋沉积物 −8.22±0.17 3.99±0.22 总碳和总氮的同位素比值 −20.79±0.14 3.8±0.24 有机碳和有机氮的同位素比值 GBW04702 国家标准物质 海洋沉积物 −18.68±0.15 6.25±0.23 总碳和总氮的同位素比值 −23.63±0.11 6.48±0.28 有机碳和有机氮的同位素比值 GBW04703 国家标准物质 海洋沉积物 −10.64±0.15 4.68±0.23 总碳和总氮的同位素比值 −22.57±0.14 4.78±0.29 有机碳和有机氮的同位素比值 GBW07424 国家标准物质 土壤 − − 土壤成分标准,N: 0.126%±0.011% GBW07107 国家标准物质 页岩 − − 岩石成分标准,N: 540±60µg/g 表 2 不同注氧时间和单/双锡杯方式下氮含量和同位素分析结果
Table 2 The results of nitrogen content and isotope ratio under different oxygen injection time and single/double tin cup condition.
标准物质
编号测定条件 称样量
(mg)N含量(%) δ15NAIR-N2(‰) 推荐值 测定值(n≥5) 推荐值 测定值(n≥5) Urea O: 3s+单锡杯 − − − −2.91±0.2 −2.93 ±0.13 O: 5s+单锡杯 − − − −3.03 ±0.13 O: 5s+双锡杯 − − − −3.16 ±0.29 GBW07424
O: 5s+单锡杯 <7 0.126±0.011 0.106±0.009 − 5.47±0.16 O: 5s+双锡杯 <7 0.100±0.010 6.09±0.27 O: 5s+单锡杯 15~20 0.119±0.004 6.80±0.16 O: 5s+单锡杯 ≥20 − 6.85±0.12 注:“-”表示该项无参考值或未作分析。 表 3 不同标准和样品的氮同位素分析结果
Table 3 The results of nitrogen isotopes for reference materials and samples.
标准物质和
样品编号样品前处理 δ15NAIR-N2 (‰) 样品前处理 δ15NAIR-N2 (‰) 推荐值 测定值(n≥5) 推荐值 测定值(n≥5) GBW04701 未前处理 3.99±0.22 3.82±0.08 6mol/L HCl 3.8±0.24 3.73±0.07 GBW04702 未前处理 6.25±0.23 6.30±0.07 6mol/L HCl 6.48±0.28 6.29±0.09 GBW04703 未前处理 4.68±0.23 4.65±0.1 − 4.78±0.29 − SAMPLE-1 未前处理 − −1.40±0.17 6mol/L HCl − −1.34±0.17 SAMPLE-2 未前处理 − −1.69±0.13 6mol/L HCl − 0.62±0.12 注:“-”表示该项无参考值或未作分析。 表 4 不同标准和样品的碳同位素分析结果
Table 4 The results of carbon isotopes of reference materials and samples.
标准物质和
样品编号样品前处理 δ13CVPDB (‰) 样品前处理 δ13CVPDB (‰) 推荐值 测定值(n≥5) 推荐值 测定值(n≥5) GBW04701 未前处理 −8.22±0.17 −8.39±0.02 6mol/L HCl −20.79±0.14 −21.03±0.05 GBW04702 未前处理 −18.68±0.15 −18.71±0.1 6mol/L HCl −23.63±0.11 −23.65±0.12 GBW07107 未前处理 − −30.47±0.12 6mol/L HCl − −30.34±0.07 SAMPLE-1 未前处理 − −28.68±0.15 6mol/L HCl − −29.53±0.11 SAMPLE-2 未前处理 − −30.69±0.02 6mol/L HCl − −30.75±0.11 -
[1] Stüeken E E, Buick R, Guy B M, et al. Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2Gyr[J]. Nature, 2015, 520: 666−669. doi: 10.1038/nature14180
[2] Stüeken E E, Kipp M A, Koehler M C, et al. The evolution of Earth’s biogeochemical nitrogen cycle[J]. Earth-Science Reviews, 2016, 160: 220−239. doi: 10.1016/j.earscirev.2016.07.007
[3] Kipp M A, Stüeken E E, Yun M, et al. Pervasive aerobic nitrogen cycling in the surface ocean across the Paleoproterozoic Era[J]. Earth and Planetary Science Letters, 2018, 500: 117−126. doi: 10.1016/j.jpgl.2018.08.007
[4] 曹亚澄, 张金波, 温腾, 等. 稳定同位素示踪技术与质谱分析——在土壤、生态、环境研究中的应用[M]. 北京: 科学出版社, 2018: 113-174. Cao Y C, Zhang J B, Wen T, et al. Stable isotope tracing and mass spectrometry—Applications in soil, ecology, and environmental studies[M]. Beijing: Science Press, 2018: 113-174.
[5] Zerkle A L, Poulton S W, Newton R J, et al. Onset of the aerobic nitrogen cycle during the Great Oxidation Event[J]. Nature, 2017, 542: 465−467. doi: 10.1038/nature20826
[6] Bingham N L, Slessarev E W, Homyak P M, et al. Rock-sourced nitrogen in semi-arid, shale-derived California soils[J]. Frontiers in Forests and Global Change, 2021, 4: 672522.
[7] Stüeken E E, Buick R, Schauer A J. Nitrogen isotope evidence for alkaline lakes on late Archean continents[J]. Earth and Planetary Science Letters, 2015, 411: 1−10. doi: 10.1016/j.jpgl.2014.11.037
[8] Chen J, Chen J F, Shi S B, et al. The linkage of nitrogen isotopic composition and depositional environment of black mudstones in the Upper Triassic Yanchang Formation, Ordos Basin, Northern China[J]. Journal of Asian Earth Sciences, 2020, 193: 104308. doi: 10.1016/j.jseaes.2020.104308
[9] Hodgskiss M S W, Sansjofre P, Kunzmann M, et al. A high-TOC shale in a low productivity world: The late Mesoproterozoic Arctic Bay Formation, Nunavut[J]. Earth and Planetary Science Letters, 2020, 544: 116384. doi: 10.1016/j.jpgl.2020.116384
[10] Wang X Q, Jiang G Q, Shi X Y, et al. Nitrogen isotope constraints on the early Ediacaran ocean redox structure[J]. Geochimica et Cosmochimica Acta, 2018, 240: 220−235. doi: 10.1016/j.gca.2018.08.034
[11] Yang X R, Yan D T, Chen D Z, et al. Spatiotemporal variations of sedimentary carbon and nitrogen isotopic compositions in the Yangtze Shelf Sea across the Ordovician—Silurian boundary[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 567: 110257. doi: 10.1016/j.palaeo.2021.110257
[12] Wei W, Lu Y C, Ma Y Q, et al. Nitrogen isotopes as paleoenvironmental proxies in marginal-marine shales, Bohai Bay Basin, NE China[J]. Sedimentary Geology, 2021, 421: 105963. doi: 10.1016/j.sedgeo.2021.105963
[13] Zhu G Y, Wang P J, Li T T, et al. Nitrogen geochemistry and abnormal mercury enrichment of shales from the lowermost Cambrian Niutitang Formation in South China: Implications for the marine redox conditions and hydrothermal activity[J]. Global and Planetary Change, 2021, 199: 103449. doi: 10.1016/j.gloplacha.2021.103449
[14] Hossain H M Z, Sampei Y, Hossain Q H, et al. Origin of organic matter and hydrocarbon potential of Permian Gondwana coaly shales intercalated in coals/sands of the Barapukuria Basin, Bangladesh[J]. International Journal of Coal Geology, 2019, 212: 103201. doi: 10.1016/j.coal.2019.05.008
[15] 李婷婷, 朱光有, 赵坤, 等. 氮循环及氮同位素在古老烃源岩形成环境重建与油源对比中的应用[J]. 天然气地球科学, 2020, 31(5): 721−734. Li T T, Zhu G Y, Zhao K, et al. Nitrogen cycle and nitrogen isotope application in paleoenvironment reconstruction of ancient hydrocarbon source rocks and oil-source correlations[J]. Natural Gas Geoscience, 2020, 31(5): 721−734.
[16] 栗敏. 典型沉积环境中沉积有机质氮同位素组成特征及地质意义[D]. 北京: 中国石油大学(北京), 2018: 1-6. Li M. Nitrogen isotope composition characteristics and geological significance of organic matter in typical sedimentary environment[D]. Beijing: China University of Petroleum (Beijing), 2018: 1-6.
[17] 周晶晶. 中上扬子地区五峰—龙马溪组页岩氮同位素分布特征及古环境研究[D]. 北京: 中国矿业大学(北京), 2021: 1-8. Zhou J J. Distribution characteristics of nitrogen isotope and paleoenvironment of shale from Wufeng—Longmaxi Formation in middle and upper Yangtze Region, China[D]. Beijing: China University of Geosciences (Beijing), 2021: 1-8.
[18] 尹希杰, 刘维维, 王永涛, 等. 元素分析-同位素质谱联用测定微量氮元素同位素方法研究[J]. 质谱学报, 2021, 42(3): 346−352. Yin X J, Liu W W, Wang Y T, et al. Determination of δ15N on microgram amounts by modified element analysis-isotope ratio mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(3): 346−352.
[19] Langel R, Dyckmans J. A closer look into the nitrogen blank in elemental analyser/isotope ratio mass spectrometry measurements[J]. Rapid Communications in Mass Spectrometry, 2017, 31(23): 2051−2055. doi: 10.1002/rcm.7999
[20] Wang N, Liu J Y, Zhang Y, et al. Influences of oxidation ability on precision in nitrogen isotope measurements of organic reference materials using elemental analysis-isotope ratio mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2021, 35: e9122.
[21] Stüeken E E, Castro M, Krotz L, et al. Optimized switch‐over between CHNS abundance and CNS isotope ratio analyses by elemental analyzer‐isotope ratio mass spectrometry: Application to six geological reference materials[J]. Rapid Communications in Mass Spectrometry, 2020, 34(18): e8821.
[22] Kubota R. Simultaneous determination of total carbon, nitrogen, hydrogen and sulfur in twenty-seven geological reference materials by elemental analyser[J]. Geostandards and Geoanalytical Research, 2009, 33: 271−283. doi: 10.1111/j.1751-908X.2009.00905.x
[23] 徐丽, 邢蓝田, 王鑫, 等. 元素分析仪-同位素比值质谱测量碳氮同位素比值最佳反应温度和进样量的确定[J]. 岩矿测试, 2018, 37(1): 15−20. Xu L, Xing L T, Wang X, et al. Study on the optimal reaction temperature and sampling weight for measurement of carbon and nitrogen isotope ratio by elemental analysis-isotope ratio mass spectrometer[J]. Rock and Mineral Analysis, 2018, 37(1): 15−20.
[24] Han W N, Feng L J, Li H W, et al. Bulk δ15N measurements of organic-rich rock samples by elemental analyzer/isotope ratio mass spectrometry with enhanced oxidation ability[J]. Rapid Communications in Mass Spectrometry, 2017, 31(1): 16−20. doi: 10.1002/rcm.7754
[25] Stüeken E E, Zaloumis J, Meixnerová J, et al. Differential metamorphic effects on nitrogen isotopes in kerogen extracts and bulk rocks[J]. Geochimica et Cosmochimica Acta, 2017, 217: 80−94. doi: 10.1016/j.gca.2017.08.019
[26] Fujisaki W, Matsui Y, Ueda H, et al. Pre-treatment methods for accurate determination of total nitrogen and organic carbon contents and their stable isotopic compositions: Re-evaluation from geological reference materials[J]. Geostandards and Geoanalytical Research, 2021, 46(1): 5−19.
[27] 彭亚君, 王玉珏, 刘东艳, 等. 酸化过程对海洋沉积物中有机碳同位素分析的影响[J]. 海洋学报, 2015, 37(12): 85−92. Peng Y J, Wang Y J, Liu D Y, et al. Acid treatment effects on the carbon stable isotope values of marine sediments[J]. Haiyang Xuebao, 2015, 37(12): 85−92.
[28] Kim M S, Lee W S, Kumar K S, et al. Effects of HCl pretreatment, drying, and storage on the stable isotope ratios of soil and sediment samples[J]. Rapid Communications in Mass Spectrometry, 2016, 30: 1567−1575. doi: 10.1002/rcm.7600
[29] Pasquier V, Sansjofre P, Lebeau O, et al. Acid digestion on river influenced shelf sediment organic matter: Carbon and nitrogen contents and isotopic ratios[J]. Rapid Communications in Mass Spectrometry, 2018, 32: 86−92.
[30] Dennen K O, Johnson C A, Otter M L, et al. δ15N and non-carbonate δ13C values for two petroleum source rock reference materials and a marine sediment reference material[R]. U. S. Geological Survey Open-File Report, 2006.
[31] Wu Y W, Tian H, Li T F, et al. Enhanced terrestrial organic matter burial in the marine shales of Yangtze Platform during the early Carboniferous interglacial interval[J]. Marine and Petroleum Geology, 2021, 129: 105064. doi: 10.1016/j.marpetgeo.2021.105064
[32] 丁悌平. 稳定同位素测试技术与参考物质研究现状及发展趋势[J]. 岩矿测试, 2002, 21(4): 291−300. doi: 10.3969/j.issn.0254-5357.2002.04.011 Ding T P. Present status and prospect of analytical techniques and reference materials for stable isotopes[J]. Rock and Mineral Analysis, 2002, 21(4): 291−300. doi: 10.3969/j.issn.0254-5357.2002.04.011
[33] Gentile N, Rossi M J, Delémont O, et al. δ15N measurement of organic and inorganic substances by EA-IRMS: A speciation-dependent procedure[J]. Analytical and Bioanalytical Chemistry, 2013, 405(1): 159−176. doi: 10.1007/s00216-012-6471-z
[34] Lott M J, Howa J D, Chesson L A, et al. Improved accuracy and precision in δ15NAIR measurements of explosives, urea, and inorganic nitrates by elemental analyzer/isotope ratio mass spectrometry using thermal decomposition[J]. Rapid Communications in Mass Spectrometry, 2015, 29: 1381−1388. doi: 10.1002/rcm.7229
[35] Feng L J, Li H W, Liu W. Nitrogen mass fraction and isotope determinations in geological reference materials using sealed-tube combustion coupled with continuous flow isotope-ratio mass spectrometry[J]. Geostandards and Geoanalytical Research, 2018, 42(4): 539−548. doi: 10.1111/ggr.12234
[36] Feng L J, Li H W, Yan D T. A refinement of nitrogen isotope analysis of coal using elemental analyzer/isotope ratio mass spectrometry and the carbon and nitrogen isotope compositions of coals imported in China[J]. ACS Omega, 2020, 5: 7636−7640. doi: 10.1021/acsomega.0c00488
[37] Zhao A K, Yu Q, Lei Z H, et al. Geological and microstructural characterization of the Wufeng—Longmaxi shale in the Basin—Orogen Transitional Belt of North Guizhou Province, China[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(9): 6026−6038. doi: 10.1166/jnn.2017.14522
[38] 赵安坤, 时志强, 王学峰, 等. 康滇古陆东侧上奥陶统五峰组—下志留统龙马溪组富有机质白云石特征及其地质意义[J]. 矿物岩石地球化学通报, 2022, 41(2): 307−316. Zhao A K, Shi Z Q, Wang X F, et al. Characteristics of organic-rich dolomites from upper Ordovician Wufeng Formation—lower Silurian Longmaxi Formation in the eastern part of Kangdian ancient land and their geological significances[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022, 41(2): 307−316.
[39] 杨熙雅, 刘成林, 刘文平, 等. 四川盆地富顺—永川地区龙马溪组页岩有机孔特征及其影响因素[J]. 石油与天然气地质, 2021, 42(6): 1321−1333. Yang X Y, Liu C L, Liu W P, et al. Characteristics of and factors influencing organic pores in the lower Silurian Longmaxi Formation, Fushun—Yongchuan area, Sichuan Basin[J]. Oil and Gas Geology, 2021, 42(6): 1321−1333.
[40] 何龙, 王云鹏, 陈多福. 四川盆地晚奥陶世有机碳、氮同位素异常及其古环境意义[J]. 地球化学, 2021, 50(6): 623−634. He L, Wang Y P, Chen D F, et al. Organic carbon and nitrogen isotope anomalies during the late Ordovician in Sichuan Basin, and their implications for the palaeoenvironment[J]. Geochimica, 2021, 50(6): 623−634.
[41] 黄玮. 早志留世海洋化学条件的变化及其对晚埃隆阶笔石多样性锐减的影响: 来自华南的证据[D]. 合肥: 中国科学技术大学, 2020: 1-2. Huang W. Redox condition changes in early Silurian ocean and their influence on the late Aeronian sedgwickii event: Evidence from South China[D]. Hefei: University of Science and Technology of China, 2020: 1-2.
[42] 胡志中, 晏雄, 王坤阳, 等. 碳酸盐碳氧同位素标准物质性状对分析和保存的影响[J]. 岩矿测试, 2021, 40(4): 476−490. Hu Z Z, Yan X, Wang K Y, et al. Characteristics of carbon and oxygen isotope standard materials of carbonates and their effect on isotope analysis and standard preservation[J]. Rock and Mineral Analysis, 2021, 40(4): 476−490.
[43] 曹亚澄. 气体同位素质谱分析300问[M]. 北京: 科学出版社, 2020: 79-80. Cao Y C. Gas isotope mass spectrometry 300 question[M]. Beijing: Science Press, 2020: 79-80.
[44] 吴夏, 黄俊华, 白晓, 等. 沉积岩总有机质碳同位素分析的前处理影响[J]. 地球学报, 2008, 29(6): 677−683. Wu X, Huang J H, Bai X, et al. Sample-pretreatment effects on analytical results of total organic carbon isotopes in sedimentary rocks[J]. Acta Geoscientica Sinica, 2008, 29(6): 677−683.
[45] Brodie C R, Heaton T H E, Leng M J, et al. Evidence for bias in measured δ15N values of terrestrial and aquatic organic materials due to pre-analysis acid treatment methods[J]. Rapid Communications in Mass Spectrometry, 2011, 25: 1089−1099. doi: 10.1002/rcm.4970
[46] Brodie C R, Leng M J, Casford J S L, et al. Evidence for bias in C and N concentrations and δ13C composition of terrestrial and aquatic organic materials due to pre-analysis acid preparation methods[J]. Chemical Geology, 2011, 282: 67−83. doi: 10.1016/j.chemgeo.2011.01.007
[47] 陈立雷, 张媛媛, 贺行良, 等. 海洋沉积物有机碳和稳定氮同位素分析的前处理影响[J]. 沉积学报, 2014, 32(6): 1046−1051. doi: 10.14027/j.cnki.cjxb.2014.06.006 Chen L L, Zhang Y Y, He X L, et al. The research on sample-pretreatment of organic carbon and stable nitrogen isotopes in marine sediments[J]. Acta Sedimentologica Sinica, 2014, 32(6): 1046−1051. doi: 10.14027/j.cnki.cjxb.2014.06.006
[48] 谭扬, 吴学丽, 侯立杰. 样品处理方法对海洋沉积物有机碳稳定同位素测定的影响[J]. 海洋环境科学, 2018, 37(5): 780−784. Tan Y, Wu X L, Hou L J, et al. The effects of sample treatment methods on marine sediment organic carbon stable isotope[J]. Maine Environmental Science, 2018, 37(5): 780−784.
[49] 周平, 徐国盛, 崔恒远, 等. 沉积岩中总有机碳测定前的预处理方法[J]. 实验室研究与探索, 2019, 38(1): 45−48. Zhou P, Xu G S, Cui H Y, et al. Study on pretreatment method of total organic carbon before determination in sedimentary rock[J]. Research and Exploration in Laboratory, 2019, 38(1): 45−48.
[50] 常文博, 李凤, 张媛媛, 等. 元素分析-同位素比值质谱法测量海洋沉积物中有机碳和氮稳定同位素组成的实验室间比对研究[J]. 岩矿测试, 2020, 39(4): 535−545. Chang W B, Li F, Zhang Y Y, et al. Inter-laboratory comparison of measuring organic carbon and stable nitrogen isotopes in marine sediments by elemental analysis-isotope ratio mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(4): 535−545.
[51] Stüeken E E, Prave A R. Diagenetic nutrient supplies to the Proterozoic biosphere archived in divergent nitrogen isotopic ratios between kerogen and silicate minerals[J]. Geobiology, 2022, 20(5): 623−633. doi: 10.1111/gbi.12507
[52] Boocock T J, Mikhail S, Prytilak J, et al. Nitrogen mass fraction and stable isotope ratios for fourteen geological reference materials: Evaluating the applicability of elemental analyser versus sealed tube combustion methods[J]. Geostandards and Geoanalytical Research, 2020, 44: 537−551. doi: 10.1111/ggr.12345
[53] 帅琴, 黄瑞成, 高强, 等. 页岩气实验测试技术现状与研究进展[J]. 岩矿测试, 2012, 31(6): 931−938. Shuai Q, Huang R C, Gao Q, et al. Research development of analytical techniques for shale gas[J]. Rock and Mineral Analysis, 2012, 31(6): 931−938.
[54] Kang D L, Wang X H, Zheng X J, et al. Predicting the components and types of kerogen in shale by combining machine learning with NMR spectra[J]. Fuel, 2021, 290: 120006. doi: 10.1016/j.fuel.2020.120006
[55] Wang Q, Liu Q, Wang Z C, et al. Characterization of organic nitrogen and sulfur in the oil shale kerogens[J]. Fuel Processing Technology, 2017, 160: 170−177. doi: 10.1016/j.fuproc.2017.02.031
[56] Li L, Li K, Li Y Z, et al. Recommendations on offline combustion-based nitrogen isotopic analysis of silicate minerals and rocks[J]. Rapid Communications in Mass Spectrometry, 2021, 35: e9075.
-
期刊类型引用(1)
1. 杨宗彩,徐学敏,杨佳佳,沈斌,苑坤,张小涛,许智超,翟佳. 沉积岩有机碳同位素组成测定的前处理方法研究. 岩矿测试. 2024(06): 847-857 . 本站查看
其他类型引用(0)
计量
- 文章访问数: 182
- HTML全文浏览量: 62
- PDF下载量: 112
- 被引次数: 1