Selective Dissolution of Clay Minerals in Tight Sandstone by Organic Acids
-
摘要:
提升致密背景下相对优质储层预测的能力,是当今油气勘探开发理论亟待破解的瓶颈和难题。致密油气储层的非均质性强,黏土矿物含量高且是吸附油接触最多的矿物之一。有机酸对黏土矿物的溶蚀影响,是实现致密油高效开采的关键。本文选择鄂尔多斯盆地三叠系延长组为研究对象,通过有机酸与砂岩的溶蚀模拟实验,对实验产物进行pH值、阳离子检测、孔隙度和渗透率测试以及扫描电镜观察。探讨了时间、温度和不同有机酸类型对黏土矿物的溶蚀影响。实验结果显示:①随时间的增长(1~9d),孔隙度增幅呈先增长后降低的趋势,渗透率的增幅呈持续增长趋势;温度升高(80~95℃)对有机酸溶蚀致密砂岩中的黏土矿物具有促进作用;②不同类型的有机酸对黏土矿物具有选择性溶蚀作用。酒石酸溶蚀大量黏土矿物、碎屑长石以及少量方解石胶结物;乙酸则相反,主要溶蚀方解石;甲酸、乙酸和丙酸配比的合酸以及甲酸、乙酸、丙酸和酒石酸配比的合酸溶液,均优先溶蚀绿泥石化、泥化的长石和方解石,直至方解石完全溶解;③不同类型的有机酸对储层物性的改造能力不同,甲酸对孔隙度的改善不明显,乙酸和丙酸对孔隙度改善明显,合酸对孔隙度的影响是单一酸改善的综合反映。综合分析,有机酸流体与致密砂岩的溶蚀反应机理主要为两种:①有机酸流体提供氢离子,溶蚀致密砂岩中的易溶矿物;②有机酸直接与致密砂岩矿物发生络合反应,影响络合物稳定性的因素主要是有机酸种类和pH值。乙酸、甲酸、丙酸和酒石酸等不同类型的有机酸对致密砂岩中黏土矿物的选择性溶蚀,对储层物性影响程度不一致。
Abstract:BACKGROUNDImproving the prediction ability of relatively high-quality reservoirs under tight backgrounds is a bottleneck and a challenge in current oil and gas exploration and development theories. For tight reservoirs, exploring the dissolution mechanism of organic acid fluids on the reservoir is particularly important. Previous researchers have conducted a large number of water rock reaction simulation experiments on the dissolution of organic acids leading to the formation of secondary pores. It is proposed that the dissolution effect of acidic fluids is the main factor for increasing porosity in tight reservoirs, and it is also a key way to find “sweet spots” in tight reservoirs[3]. Based on previous research on dissolution pores in sandstone, scholars have focused on studying the chemical mechanism of organic acids in the dissolution of carbonate and feldspar minerals. Some studies have shown that the dissolution of calcite requires a lower pH[19] and the acidity of binary acid is very strong, which can greatly improve the solubility of aluminosilicate minerals[20-22]. However, the heterogeneity of tight sandstone reservoirs is strong, and its complex mineral components and pore structure characteristics differ greatly; it has a higher content of clay minerals, and during the diagenesis process, clay minerals often precipitate on the rigid particle surface of the pore inner wall as authigenic minerals. The main mineral in contact with crude oil is of clay composition in dense sandstone reservoirs[23-25]. Chlorite, kaolinite, illite and other minerals are common and important clay mineral types. As important factors affecting reservoir exploration and development, their organic acid dissolution effects on clay minerals need to be further studied.
OBJECTIVES(1) In order to explore the main influencing factors of organic acids on the dissolution of clay minerals in tight sandstone, by analyzing the influence of time, temperature and different types of organic acids on the dissolution of clay minerals. (2) To reveal the dissolution reaction mechanism between organic acid fluids and tight sandstone, providing a theoretical basis for improving the prediction ability of relatively high-quality reservoirs under tight backgrounds.
METHODS(1) The Triassic Yanchang Formation in the Ordos Basin was selected as the research object, and the ratio of reaction fluid to sandstone dissolution simulation experiment was conducted according to the type and content of organic acid in the thermal evolution fluid of Source rock. (2) After the reaction, the column rock sample was rinsed multiple times with distilled water, placed in a drying oven, dried for 24h, and then taken out for testing. The porosity and permeability of the column rock sample after the reaction were tested on the PoroPDP-200 overlying pressure pore permeability meter before and after the experiment, and the intensity of dissolution was quantitatively calibrated. (3) Small samples of 5-8cm for argon ion polishing were selected, and observed under the Quanta450FEG field emission environment scanning electron microscope (Lanzhou Oil and Gas Resources Research Center, Chinese Academy of Sciences). Then, through thin section identification and scanning electron microscope observation of the petrology characteristics of the samples, the cement and pore characteristics of the samples before and after the experiment were compared. (4) Using Optima 8000 inductively coupled plasma-optical emission spectrometer (PerkinElmer Company, USA) to detect cations, the practical range of the measured standard curve was 0.1-20mg/L, and samples that were not within the test range were diluted. The standard curve solution contains a total of 8 ions: K, Ca, Na, Mg, Al, Si, P and Mn.
RESULTS(1) With the increase of time (1-9 days), the increase of porosity dissolution increases first and then decreases, reaching its peak at 6 days; the increase of penetration rate shows a continuous growth trend. The increase in temperature can also promote the dissolution of sandstone by organic acids (Fig.3, Fig.4). (2) Different types of organic acids have selective dissolution of clay minerals. Tartaric acid mainly dissolves clay minerals, detrital feldspar and a small amount of calcite cement; on the contrary, acetic acid mainly dissolves calcite. The sequence of propionic acid dissolution is from calcite to feldspar detrital particles, from dissolution cement matrix to argillized feldspar; the mixed acid solution of formic acid, acetic acid and propionic acid and mixed acid solution of formic acid, acetic acid, propionic acid and tartaric acid preferentially dissolve chlorinated and argillized feldspar and calcite until calcite is completely dissolved (Fig.4, Fig.5). (3) The improvement of pores by formic acid is not significant among different types of organic acids. Propionic acid greatly improves porosity. The influence of combined acids on porosity is a comprehensive reflection of the influence of single acids (Fig.6).
CONCLUSIONSFormic acid has little effect on porosity, whereas acetic acid and propionic acid have obvious effect on porosity. The combined effects of formic acid, acetic acid, propionic acid, and tartaric acid on porosity and permeability are a comprehensive reflection of the improvement of a single acid. The selective dissolution of clay minerals in tight sandstone by different types of organic acids has different effects on the physical properties of the reservoir, providing a scientific basis for improving the prediction ability of relatively high-quality reservoirs under tight background.
-
Keywords:
- clay minerals /
- dense sandstone /
- organic acid /
- corrosion simulation experiment
-
数据可视化[1]是关于数据视觉表现形式的科学技术研究,研究如何真实、准确地将相对晦涩的数据通过可视的方式进行展示,从而形象、直观地表达数据蕴含的信息和规律。文献作为重要的信息载体,积累了大量有研究价值的信息,文献资料的可视化研究对知识的传播具有重要意义。
课题组对中国主要科技文献数据库中收录的文献可视化应用研究成果进行搜集整理发现,当前文献资料的可视化分析应用多与文献计量分析方法[2]相结合,运用数学和统计学方法,对文献资料进行定量分析,再采用可视化工具[3],以聚类图谱、时间线图谱、统计图表等多种方式,将文献之间的关系以科学知识图谱[4]的方式可视化地展现[5-6],这一技术方法的应用在挖掘文献数据蕴含的信息和规律上发挥了重要作用,但是在其空间属性挖掘展现上稍显不足,需要采用新的技术方法在这一领域开展深入研究。
GIS技术[7]是对空间数据进行相关处理分析的技术,具有采集、管理、分析、输出展示空间信息的能力,得到广泛的应用。GIS以其强大的空间信息管理与分析能力,在基础地质、矿产地质、环境地质、灾害地质等领域中发挥着重要作用。尤其是近年来“地质云”的建设,更是将GIS技术深入地融合应用到地质数据的汇聚和共享利用中。研究基于GIS技术的文献资料可视化分析方法,可以进一步拓展对文献资料的空间信息挖掘[8]和可视化应用。GIS技术如何在文献资料可视化应用中发挥作用,需要挖掘出文献资料的空间特征,确定GIS技术和文献数据之间的结合点。地质科学研究相关的文献资料记录了该领域的很多有价值成果,此类文献具备非常明显的时空特征,非常适合利用GIS技术进行可视化研究。
本研究搜集整理了2015—2020年以来公开发表的140多篇Re-Os同位素定年[9]文献资料,探索了如何运用GIS技术,挖掘此类文献的空间特征信息并进行可视化应用,开发了Re-Os同位素数据可视化服务系统,实现了对近年来发表的Re-Os同位素定年文献数据成果的空间可视化应用展现。
1. 文献数据空间可视化研究方法
文献数据的可视化研究主要有两个方面的研究内容。第一,在数据资源层面研究文献资料的共性内容特征和空间特征,其目标是汇聚一定体量的、具备空间特征信息的可结构化的文献数据,为可视化研究奠定数据基础。第二,开展可视化技术研究,从数据资源层面和GIS可视化技术两个维度进行融合探索,找到两者之间在可视化应用中的结合点,将GIS的空间可视化能力充分服务于目标信息的可视化应用需求。设计的文献资料空间可视化总体架构见图 1。
总体架构设计为包含支撑层、数据层、服务层、应用层、用户层在内的五层架构体系。其中,支撑层包含GIS数据处理分析软件、数据库软件、GIS开发组件、空间数据服务器、Web应用中间件等;数据层主要是对文献资料进行特征信息提取、规范化、空间化处理后建设的文献数据库;服务层包含空间可视化应用需要调用的空间底图数据服务和文献数据服务;应用层是面向用户提供可视化功能的文献资料可视化共享服务平台;用户层主要分为行业用户和社会公众这两大类。该架构的特点是以服务层为媒介,可以实现数据层和应用层之间的松耦合关系,保证数据库的稳定性,同时增强应用层的可灵活扩展性。
2. 文献信息挖掘
以CNKI文献资料库为数据源,以“Re”、“Os”作为关键词进行主题检索,对检索出的2015—2020年公开发表的140多篇Re-Os同位素定年文献进行收集整理并建立数据库,挖掘文献的共性特征信息和空间特征信息这两部分的内容[10-11]。通过对文献内容的分析,提出文献信息、矿产地信息、测试信息是此类文献的共性特征信息组成部分,这一发现为后续的结构化处理提供了可行性,数据内容特征信息的提取也主要以这三类信息为主,提取内容见图 2。
对此类文献的空间特征信息进行分析发现,全部140多篇文献都可以通过研究区矿产地的经纬度来进行空间定位,基于文献本身对空间位置的记载详细程度和方式,具体的定位方法包括以下三种:①直接以文献记载的经纬度进行定位;②通过文献记载的地质简图进行定位;③通过搜集研究区矿产地位置信息进行定位。
文献数据库可采用地理数据库模型Geodatabase完成数据存储,采用UML(Unified Modeling Language)建模语言[12]完成数据模型设计工作。数据库模型设计以论文、矿产地、样品为实体,结合文献资料记载的内容特征信息,每类实体延伸各自的属性内容,并在此基础上研究各类实体之间的联系,形成数据库E-R图[13],见图 3。数据库建设方法详见文献[14]。
3. 文献数据可视化技术实现
按照前述设计的文献数据可视化五层架构体系,以Re-Os同位素定年文献数据作为数据基础,选取空间数据服务器完成文献数据服务的制作和发布,运用GIS技术开发配套的空间可视化共享服务平台,实现对文献资料的空间可视化展现。
文献数据空间可视化的核心需求是将已实现空间定位的文献数据以地图的形式进行可视化展现。为了达到更优的可视化效果和交互体验,研究重点聚焦空间数据服务展示、图例展示、空间查询等功能实现,平台实现的核心功能见表 1。
表 1 文献数据空间可视化共享服务平台核心功能Table 1. Basic function of literature data visualized share and service system.平台核心功能点 功能描述 文献数据展示 文献数据空间可视化展示 地理底图服务展示 地理底图服务空间可视化展示 图例展示 当前加载空间数据服务所对应图例的可视化展示 空间查询 对当前加载空间数据服务的点查询、多边形查询、矩形查询 3.1 技术架构
技术选型方面,采用GIS数据处理分析软件ArcGIS Desktop完成数据加工处理,采用地理数据模型Geodatabase完成空间数据存储,采用空间数据服务器ArcGIS Server完成空间数据服务的发布,发布的地图服务遵循OGC空间数据服务标准[15],GIS开发组件采用ArcGIS API for JS开发组件,前端开发采用HTML+JavaScript+CSS技术。系统技术路线见图 4。
3.2 数据可视化
数据可视化是系统的核心功能,包含文献数据可视化、地理底图可视化、图例可视化等方面内容。
(1) 文献数据可视化
文献数据可视化采用的技术路线为: 首先将数据库中的空间数据进行渲染[16-17]并保存为MXD工程文件,然后采用ArcGIS Server[18-19]服务器将工程文件发布为MapService地图服务,最后在应用端采用JavaScript语言编程实现展示页面对地图服务的加载。通过ArcGIS API for JS开发组件提供的esri/layers/MapImageLayer接口实现对地图服务的定义和调取;通过esri/Map接口的add方法来实现对定义好的地图服务的页面加载。
(2) 地理底图可视化
系统提供对符合OGC空间数据服务标准的不同的地理底图服务的加载展示。通过esri/layers/TileLayer接口实现对地图服务的定义;通过esri/Basemap的baseLayers属性定义底图图层;通过esri/Map接口的basemap属性的定义实现对地理底图服务的页面加载。
(3) 图例可视化
系统提供对当前展示地图服务相应图例的加载和展示。通过esri/widgets/Legend接口实现对图例的定义,通过esri/views/MapView接口实现对图例的页面加载。
3.3 空间查询
系统提供对空间数据的点查询、多边形查询、矩形查询等功能。这三种方式的空间查询功能[20]主要通过对三个核心接口的调用和关键属性赋值来实现。各类查询方式实现的功能和调用的核心接口见表 2。
表 2 查询功能及核心接口说明Table 2. Specification of search function and basic API.查询功能 功能说明 核心接口 核心接口使用说明 点查询 在地图上选择要查询的点要素,以表格的形式展示当前所选要素的属性信息 esri/layers/MapImageLayer 对该接口的popupTemplate属性的定义来完成对点查询结果弹窗的内容赋值 多边形查询 在地图上绘制多边形查询范围,以表格的形式展示查询范围内所有要素的属性信息 esri/widgets/Sketch 通过该接口的layer属性定义图形绘制图层;通过view属性定义绘制的地图窗口。通过该接口的create方法激活绘图工具,绘制多边形。 esri/tasks/support/Query 通过该接口的outFields属性来获取图层的字段信息 矩形查询 在地图上绘制矩形查询范围,以表格的形式展示查询范围内所有要素的属性信息 esri/widgets/Sketch 通过该接口的layer属性定义图形绘制图层;通过view属性定义绘制的地图窗口。通过该接口的create方法激活绘图工具,绘制矩形。 esri/tasks/support/Query 通过该接口的outFields属性获取图层的字段信息 4. 文献可视化分析
按照上述可视化方法,对140多篇Re-Os同位素定年文献进行了数据挖掘和可视化分析,研究区覆盖中国东中西部地区的140多个矿产地,主要矿种包括铜、钼、钨、金等共19种,实现了对Re-Os同位素定年文献的空间可视化展现,以及对属性信息的点、矩形、多边形综合查询。
4.1 论文发表信息
系统展示了Re-Os同位素定年文献发表时间、发表刊物的分布情况,可视化结果详见图 5。通过可视化的数据分析,Re-Os同位素定年研究数量在2015—2016年尤为突出,相关论文主要发表于38种刊物。
4.2 矿产地信息
矿产地信息主要展示了Re-Os同位素定年文献记载的研究区矿产地分布情况,可视化结果详见图 6。可以看出,在搜集的文献范围内,近年来开展的Re-Os同位素定年研究在地理上中国东中西部地区都有分布,尤其在东南区域分布较集中。研究区主要矿种共19种,以铜[21-24](29.0%)、钼[25-27](28.3%)、钨[28-30](12.4%)、金[31-33](11.0%)为主。
4.3 分析测试信息
分析测试信息主要展示了Re-Os同位素定年文献记载的检测单位、检测设备、检测对象、检测年龄等信息的分布情况,可视化结果详见图 7、图 8。
图 7 (a) 样品检测数量按检测单位统计(2015—2020);(b)样品检测数量按检测设备统计(2015—2020);(c)样品检测数量按检测对象统计(2015—2020)Figure 7. (a) Numbers of tested samples according to the laboratories (2015—2020); (b) Numbers of tested samples according to the analytical instruments (2015—2020); (c) Numbers of tested samples according to the detected objects (2015—2020).在搜集的文献范围内,Re-Os同位素定年样品测试工作主要在11家单位进行,较为集中在国家地质实验测试中心,测试样品地理分布上遍布东中西矿产地,占比达79.9%。Re-Os同位素定年测试仪器多采用电感耦合等离子体质谱仪(ICP-MS)[34],占比达86.0%,少量采用热电离质谱仪(TIMS)[35-36]。质谱仪型号多为TJA X-series ICP-MS,占比70.8%。检测对象共计12种,包括辉钼矿、黄铁矿、黄铜矿、磁黄铁矿、灰岩、油砂岩、碳质泥岩、石墨、钼矿、黑色页岩、固体沥青、毒砂。其中,以辉钼矿作为检测对象的研究在数量上明显突出,占比达80.7%,表明辉钼矿仍是Re-Os同位素定年法的首选研究对象,这与辉钼矿的高Re/Os值特性密不可分。
考虑到分布的均衡性,检测年龄划分为五个区间:0~100Ma、100~200Ma、200~300Ma、300~600Ma、600~1522Ma。其中,落在0~200Ma较新年龄区间的矿产地多分布在中国东北和东南区域,该年龄区间矿产地占比达62.1%,表明东部地区的Re-Os同位素年龄集中分布在中生代,这与中国东部地区存在中生代大规模成矿事件[37]是相一致的;落在200Ma以上较老年龄区间的矿产地多分布在中国中部和西部区域,该年龄区间矿产地占比达37.9%,表明中西部地区的Re-Os同位素年龄集中分布在中生代以前,且具有多期次成矿的特点。
5. 结论
本研究探索了基于GIS技术对文献资料进行可视化的技术方法,形成了对文献数据进行信息挖掘和空间可视化的策略和技术路线。并以Re-Os同位素定年文献数据为例,对该技术方法进行了应用验证,建设了具有GIS空间特征的铼锇同位素定年数据库和空间可视化共享服务平台。研究表明GIS技术在文献资料的可视化应用中可发挥特殊作用,该可视化方法具备可视化对象的空间性、可视化过程的交互性、可视化方式的融合性、可视化展示的直观性等特点。
本研究提出的技术方法,可挖掘出文献资料的空间特性,拓展文献资料在空间可视化领域的应用性,解决文献资料如何进行共性信息分析提取、空间特征信息定位、空间可视化技术实现等问题。在后续研究中,建议从数据资源和可视化方法方面进行深入研究,在数据资源层面,从广度和深度丰富数据内容,挖掘数据价值;在可视化方法方面,研究多种可视化技术的综合运用,增强文献资料信息的可利用价值。
-
图 5 两组实验不同有机酸类型溶蚀砂岩析出金属离子含量分析(a和c是两组实验的所有金属离子含量分析。由于Ca离子析出量过多,b和d是对应剔除Ca离子的其他离子含量分析)
Figure 5. Analysis of metal cations precipitated from corroded sandstone with different organic acids in two groups of experiments. a and c are all metal ion content analysis for the two sets of experiments. Due to the excessive precipitation of Ca ions, b and d are the analysis of other ions content excluding Ca ion.
图 6 酒石酸溶蚀过后,仍存在很多方解石(a、b),溶出的多为绿泥石组分(c);形成孔喉;钠长石溶蚀现象明显(d)。乙酸溶蚀过后,长石溶蚀现象明显(e、f、g、h);溶蚀后形成粒间孔(g)。合酸溶蚀后局部可见少量未溶方解石(i);见钾长石表面的黏土矿物溶蚀(j);长石溶蚀附近可见新生矿物颗粒附着(k、l)
Figure 6. After tartaric acid dissolution, the dissolution of calcite is not obvious, and there are still many calcites (a, b); most of the dissolution is chlorite component (c), forming pore throat; Na feldspar dissolution is obvious (d). No calcite was found in the samples after acetic acid dissolution, feldspar dissolution was obvious (e, f, g, h), and intergranular pore formed after dissolution (A small amount of undissolved calcite (i) can be seen locally in the samples after acid dissolution, clay mineral dissolution on the surface of K feldspar (j), and new mineral particles attachment (k, l) can be seen near feldspar dissolution.
表 1 主要有机酸类型占总有机酸的比例
Table 1 Data comparison of major organic acids.
样品 流体压力
(MPa)实验温度
(℃)主要有机酸类型占总有机酸的比例 实验系统 乙酸(%) 丙酸(%) 甲酸(%) 柠檬酸(%) 酒石酸(%) 富马酸(%) 1 16.9 250 84.81 9.92 1.55 0.00 0.00 0.00 封闭[27] 2 22.1 300 54.09 9.43 1.14 2.32 29.56 0.39 3 32.5 350 45.09 7.54 1.16 4.30 38.89 0.15 4 37.7 370 32.77 5.15 0.68 0.83 57.51 0.00 5 42.9 400 87.09 10.29 0 0.00 0.00 0.00 6 52.2 450 34.12 2.71 0.90 60.47 0.00 0.00 1 15 150 1.04 0 0 0.00 97.67 0.00 半封闭[28] 2 20 200 1.31 0 0 0.72 96.26 1.13 3 25 250 4.11 0 0 1.44 86.63 1.38 4 30 300 4.91 2.96 0.46 4.13 72.00 11.06 表 2 样品实验条件及实验后的pH值、孔隙度和总面孔率统计数据
Table 2 Sample experimental conditions and statistical data of pH value, porosity, and total porosity after the experiment.
实验样品编号 岩性 溶液配比 温度点(℃) 恒温时间(d) 实验后pH值 实验后孔隙度(%) 总面孔率(%) C7-1-1 砂岩 甲乙丙酒 96 3d 3.74 8.034 2 C7-1-2 砂岩 甲乙丙酒 96 6d 4.26 8.575 5 C7-1-3 砂岩 甲乙丙酒 96 9d 4.21 8.509 5 C6-1-1 砂岩 甲乙丙酒 96 3d 3.51 11.745 15 C6-1-2 砂岩 甲乙丙酒 96 6d 3.97 13.343 16 C6-1-3 砂岩 甲乙丙酒 96 9d 3.7 12.805 10 注:甲乙丙酒为甲酸、乙酸、丙酸、酒石酸的体 积比为 1∶47∶7.4∶84。 表 3 不同时间的溶蚀实验前后样品的pH值、总面孔率和物性变化
Table 3 Changes in pH value, total porosity, and physical properties of samples before and after experiments at different time.
实验样品编号 实验时间 实验后pH 原孔隙度(%) 实验后孔隙度(%) 原渗透率(md) 实验后渗透率(md) 总面孔率(%) C6-2-1 1d 3.01 8.233 8.465 0.0138 0.0141 5 C6-2-2 2d 3.4 7.296 7.487 0.0101 0.0181 7 C6-2-3 3d 3.52 7.488 7.756 0.0111 0.0266 9 C6-2-4 4d 3.52 7.905 8.42 0.0101 0.0268 5 C6-2-5 5d 3.67 6.974 7.361 0.0103 0.0283 10 C6-2-6 6d 3.72 8.032 8.43 0.0125 0.0396 14 C6-2-7 7d 3.8 7.407 7.741 0.0119 0.0384 13 表 4 不同类型有机酸溶蚀实验后样品的pH值、孔隙度和总面孔率统计数据
Table 4 Statistical data on pH value, porosity, and total porosity of samples in different types of organic acid dissolution experiments.
实验样品编号 实验条件 原始pH值 实验后的pH值 实验后孔隙度(%) 总面孔率(%) C6-1-0 去离子水,25℃,9d - - 9.794 6 C6-1-5 酒石酸,95℃,9d 2.5 3.26 10.448 6 C6-1-6 乙酸,95℃,9d 2.5 3.6 10.29 20 C6-1-7 甲乙丙酸a,95℃,9d 2.5 3.81 12.0623 20 C6-1-8 甲乙丙酒酸b,95℃,9d 2.5 3.7 12.8085 10 注:a为甲酸、乙酸、丙酸的体积比为1∶47∶7.4; b为甲酸、乙酸、丙酸、酒石酸的体积比为1∶47∶7.4∶84。下同。 表 5 不同类型有机酸溶蚀实验前后样品的pH值、总面孔率和物性变化
Table 5 Changes in pH value, total porosity, and physical properties of samples before and after different types of organic acid dissolution experiments.
实验样品编号 溶液配比 实验前pH值 实验后pH值 原始孔隙度(%) 实验后孔隙度(%) 原始渗透率(md) 实验后渗透率(md) 总面孔率(%) C6-2-0 去离子水 - 7.94 7.401 7.472 0.0141 0.0184 5 C6-2-8 酒石酸 2.5 3.47 7.348 7.541 0.0133 0.0261 8 C6-2-9 乙酸 2.5 3.58 7.425 7.921 0.013 0.0372 8 C6-2-10 甲酸 2.5 3.55 7.872 8.363 0.0126 0.0285 6 C6-2-11 丙酸 2.5 3.65 7.764 8.751 0.0131 0.0301 10 C6-2-12 甲乙丙酸 2.5 3.67 8.252 9.164 0.0122 0.0311 8 C6-2-13 甲乙丙酒酸 2.5 3.72 8.032 8.43 0.0125 0.0396 14 -
[1] 王艳忠,操应长,葸克来,等. 碎屑岩储层地质历史时期孔隙度演化恢复方法——以济阳坳陷东营凹陷沙河街组四段上亚段为例[J]. 石油学报,2013,34(6):12. Wang Y Z,Cao Y C,Xian K L,et al. The method of porosity evolution and restoration in clastic rock reservoir during geological history—Taking the upper sub member of the fourth member of Shahejie Formation in Dongying Depression of Jiyang Depression as an example[J]. Journal of Petroleum, 2013, 34(6):12.
[2] Guo Q L,Wang S J,Chen X M. Assessment on tight oil resources in major basins in China[J]. Journal of Asian Earth Sciences, 2019, 178:52−63.
[3] 钟大康,朱筱敏,周新源,等. 次生孔隙形成期次与溶蚀机理——以塔中地区志留系沥青砂岩为例[J]. 天然气工业,2006,26(9):21−24. Zhong D K,Zhu X M,Zhou X Y,et al. Formation stages and dissolution mechanism of secondary pores:Taking Silurian bituminous sandstone in Tazhong area as an example[J]. Natural Gas Industry, 2006, 26(9):21−24.
[4] Ronald S, Laura J, Crossey E, et al. Organic-inorganic interactions and sandstone diagenesis[J]. AAPG Bulletin 1989, 73(1): 1–23.
[5] Meshri I D. On the reactivity of carbonic and organic acids and generation of secondary porosity[J]. SEPM, 1986, 38:123−128.
[6] Paul D,Robert E,Sweeney G,et al. Soil gas methane at petroleum contaminated sites:Forensic determination of origin and source[J]. Environmental Forensics, 2000, 1(1):3−10. doi: 10.1006/enfo.1998.0002
[7] 杨俊杰,黄思静. 乙酸对长石砂岩溶蚀作用的实验模拟[J]. 石油勘探与开发,1995,22(4):10. Yang J J,Huang S J. Experimental simulation of dissolution of feldspar sandstone by acetic acid[J]. Petroleum Exploration and Development, 1995, 22(4):10.
[8] Macgowan D B,Fisher K J,Surdam R C. Alumino-silicate dissolution in the subsurface:Experimental simulation of a specific geologic environment[J]. AAPG Bulletin, 1986, 70:10−48.
[9] 于川淇,宋晓蛟,李景景,等. 长石溶蚀作用对储层物性的影响——以渤海湾盆地东营凹陷为例[J]. 石油与天然气地质,2013,34(6):765−770. Yu C Q,Song X J,Li J J,et al. The influence of feldspar dissolution on reservoir physical properties—Taking Dongying Depression in Bohai Bay Basin as an example[J]. Petroleum and Natural Gas Geology, 2013, 34(6):765−770.
[10] 罗静兰,Ketzer J M,李文厚,等. 延长油田侏罗系—上三叠统层序地层与生储盖组合[J]. 石油与天然气地质,2001,22(4):337−401. doi: 10.3321/j.issn:0253-9985.2001.04.011 Luo J L,Ketzer J M,Li W H,et al. Jurassic upper Triassic sequence stratigraphy and source reservoir cap rock assemblage of Yanchang oilfield[J]. Oil and Gas Geology, 2001, 22(4):337−401. doi: 10.3321/j.issn:0253-9985.2001.04.011
[11] 罗静兰,罗晓容,白玉彬,等. 差异性成岩演化过程对储层致密化时序与孔隙演化的影响[J]. 地球科学与环境学报,2016,38(1):79−92. Luo J L,Luo X R,Bai Y B,et al. Influence of differential diagenetic evolution process on reservoir densification timing and pore evolution[J]. Journal of Earth Science and Environment, 2016, 38(1):79−92.
[12] 季汉成,徐珍. 深部碎屑岩储层溶蚀作用实验模拟研究[J]. 地质学报,2007,2(2):212−219. doi: 10.3321/j.issn:0001-5717.2007.02.010 Ji H C,Xu Z. Experimental simulation study on dissolution of deep clastic rock reservoir[J]. Acta Geologica Sinica, 2007, 2(2):212−219. doi: 10.3321/j.issn:0001-5717.2007.02.010
[13] 向廷生,蔡春芳,付华娥. 不同温度、羧酸溶液中长石溶解模拟实验[J]. 沉积学报,2004(4):597−602. doi: 10.3969/j.issn.1000-0550.2004.04.007 Xiang T S,Cai C F,Fu H E. Simulation experiment of feldspar dissolution in carboxylic acid solution at different temperatures[J]. Acta Sedimentologica Sinica, 2004(4):597−602. doi: 10.3969/j.issn.1000-0550.2004.04.007
[14] 范明,黄继文,陈正辅. 塔里木盆地库车坳陷烃源岩热模拟实验及油气源对比[J]. 石油实验地质,2009,31(5):518−521. doi: 10.11781/sysydz200905518 Fan M,Huang J W,Chen Z F. Thermal simulation experiment of hydrocarbon source rocks and correlation of oil and gas sources in Kuqa Depression,Tarim Basin[J]. Petroleum Geology & Experiment, 2009, 31(5):518−521. doi: 10.11781/sysydz200905518
[15] 曹平,宁果果,范祥,等. 不同温度的水岩作用对岩石节理表面形貌特征的影响[J]. 中南大学学报(自然科学版),2013,44(4):1510−1516. Cao P,Ning G G,Fan X,et al. The influence of water rock interaction at different temperatures on the surface morphology of rock joints[J]. Journal of Central South University (Natural Science Edition), 2013, 44(4):1510−1516.
[16] 刘锐娥,吴浩,魏新善,等. 酸溶蚀模拟实验与致密砂岩次生孔隙成因机理探讨:以鄂尔多斯盆地盒8段为例[J]. 高校地质学报,2015,21(4):758−766. Liu R E,Wu H,Wei X S,et al. Acid dissolution simulation experiment and discussion on the formation mechanism of secondary pores in tight sandstone:Taking the 8 Member of Ordos Basin as an example[J]. Journal of University Geology, 2015, 21(4):758−766.
[17] 王琪,许勇,李树同,等. 鄂尔多斯盆地姬塬地区长8致密储层溶蚀作用模拟及其影响因素[J]. 地球科学与环境学报,2017,39(2):225−237. Wang Q,Xu Y,Li S T,et al. Corrosion simulation of Chang 8 tight reservoir in Jiyuan area of Ordos Basin and its influencing factors[J]. Journal of Earth Science and Environment, 2017, 39(2):225−237.
[18] 吴泓辰,张晓丽,何金先,等. 致密砂岩长石溶蚀机制及其影响因素[J]. 石油化工高等学校学报,2017,30(5):42−49. Wu H C,Zhang X L,He J X,et al. The dissolution mechanism of feldspar in tight sandstone and its influencing factors[J]. Journal of Petrochemical University, 2017, 30(5):42−49.
[19] Yuan G H,Cao Y C. Coupled mineral alteration and oil degradation in thermal oil-water-feldspar systems and implications for organic-inorganic interactions in hydrocarbon reservoirs[J]. Geochimica et Cosmochimica Acta, 2019, 248:61−87. doi: 10.1016/j.gca.2019.01.001
[20] Crundwel F K. The mechanism of dissolution of the feldspars:Part Ⅰ. Dissolution at conditions far from equilibrium[J]. Hydrometallurgy, 2015, 151:151−162. doi: 10.1016/j.hydromet.2014.10.006
[21] Crundwel F K. The mechanism of dissolution of minerals in acidic and alkaline solutions:Part Ⅴ. Surface charge and zeta potential[J]. Hydrometallurgy, 2016, 161:174−184. doi: 10.1016/j.hydromet.2016.01.031
[22] 孙小龙,张宪国,林承焰,等. 基于核磁共振标定的高压压汞孔喉分布定量评价方法[J]. 岩矿测试,2017,36(6):601−607. Sun X L,Zhang X G,Lin C Y,et al. Quantitative evaluation method for high-pressure mercury injection pore throat distribution based on nuclear magnetic resonance calibration[J]. Rock and Mineral Analysis, 2017, 36(6):601−607.
[23] 葛云锦,任来义,贺永红,等. 鄂尔多斯盆地富县—甘泉地区三叠系延长组7油层组密油富集主控因素[J]. 石油与天然气地质,2018,39(6):1190−1200. doi: 10.11743/ogg20180609 Ge Y J,Ren L Y,He Y H,et al. Main controlling factors of dense oil enrichment in Triassic Yanchang Formation 7 oil-bearing formation in Fuxian Ganquan area of Ordos Basin[J]. Petroleum and Natural Gas Geology, 2018, 39(6):1190−1200. doi: 10.11743/ogg20180609
[24] 曾溅辉,朱志强,吴琼. 烃源岩的有机酸生成及其影响因素的模拟实验研究[J]. 沉积学报,2007,25(6):847−851. Zeng Z H, Zhu Z Q, Wu Q, et al. Simulation experiment study on organic acid generation in Source rock and its influencing factors[J]. Journal of Sedimentation, 2007, 25(6):847−851.
[25] 曾溅辉,杨智峰,冯枭,等. 致密储层油气成藏机理研究现状及其关键科学问题[J]. 地球科学进展,2014,29(6):651−661. Zeng J H,Yang Z F,Feng X,et al. Research status and key scientific issues of tight reservoir oil and gas accumulation mechanism[J]. Progress in Earth Science, 2014, 29(6):651−661.
[26] 朱晴,乔向阳,张磊. 高压压汞在致密气藏孔喉分布表征和早期产能评价中的应用[J]. 岩矿测试,2020,39(3):373−383. doi: 10.15898/j.cnki.11-2131/td.201909230138 Zhu Q,Qiao X Y,Zhang L. Application of high-pressure mercury injection in characterizing pore throat distribution and early productivity evaluation of tight gas reservoirs[J]. Rock and Mineral Analysis, 2020, 39(3):373−383. doi: 10.15898/j.cnki.11-2131/td.201909230138
[27] Yang F,Xue L H,Yang S,et al. Characteristics of organic acids in lacustrine organic-rich shale,Ordos Basin,China[J]. Petroleum Science and Technology, 2019, 37:876−881. doi: 10.1080/10916466.2018.1539753
[28] 栾国强,董春梅,马存飞,等. 基于热模拟实验的富有机质泥页岩成岩作用及演化特征[J]. 沉积学报,2016,34(6):1208−1216. Luan G Q,Dong C M,Ma C F,et al. Diagenesis and evolution characteristics of organic rich shale based on thermal simulation experiment[J]. Journal of Sedimentology, 2016, 34(6):1208−1216.
[29] 黄思静,梁瑞,黄可可,等. 鄂尔多斯盆地上古生界碎屑岩储层中的鞍形白云石胶结物及其对储层的影响[J]. 成都理工大学学报(自然科学版),2010,37(4):366−376. Huang S J,Liang R,Huang K K,et al. Saddle dolomite cement in upper Paleozoic clastic rock reservoirs in Ordos Basin and its impact on reservoirs[J]. Journal of Chengdu University of Technology (Natural Science Edition), 2010, 37(4):366−376.
[30] 汪洋,李树同,牟炜卫,等. 姬塬西部地区长8-1致密储层特征及孔隙度演化分析[J]. 岩性油气藏,2016,28(4):59−66. doi: 10.3969/j.issn.1673-8926.2016.04.008 Wang Y,Li S T,Mou W W,et al. Chang 8,Western Jiyuan 8-1. Analysis of tight reservoir characteristics and porosity evolution[J]. Lithologic Reservoirs, 2016, 28(4):59−66. doi: 10.3969/j.issn.1673-8926.2016.04.008
[31] 杨磊磊. 酸性流体参与的成岩过程中水岩化学作用及对砂岩储层孔隙度的影响[D]. 长春: 吉林大学, 2015. Yang L L. Chemical action of water and rock during diagenesis with acid fluid participation and its impact on sandstone reservoir porosity[D]. Changchun: Jilin University, 2015.
[32] Huang S J,Huang K K,Feng W L,et al. Mass exchanges among feldspar,kaolinite and illite and their influences on secondary porosity formation in clastic diagenesis—A case study on the upper Paleozoic,Ordos Basin and Xujiahe Formation,western Sichuan Depression[J]. Geochimica, 2009, 38:498−506.
[33] Welch S A,Ullman W J. Feldspar dissolution in acidic and organic solutions:Compositional and pH dependence of dissolution rate[J]. Geochimica et Cosmochimica Acta, 1996(16):2939−2948.