Determination of Silver in Regional Geochemical Samples by Inductively Coupled Plasma-Mass Spectrometry with Mixed Acids Digestion
-
摘要:
建立了应用电感耦合等离子体质谱法(ICP-MS)分析地球化学样品中痕量银的方法,探究在动能歧视模式(KED)下,分别通入不同流速碰撞/反应气体(He)的干扰消除效果。Ag的两个稳定同位素因受到锆、铌氧化物(90Zr16O1H、91Zr16O、92Zr16O1H、93Nb16O)等的质谱干扰,对于干扰元素锆、铌含量较高而银含量低的样品,即使采用干扰系数校正也存在较大误差。结果表明:在KED模式下,通过加大氦气流速至7.0mL/min,基体元素如锆、铌氧化物产率降低,基本上消除了锆、铌氧化物对痕量Ag的多原子离子干扰。本文采用混合酸(硝酸-氢氟酸-高氯酸)敞开酸溶消解样品,残渣用王水复溶提取,结合KED模式选出干扰较小的同位素109Ag作为测定同位素,以103Rh作为内标校正基体干扰和仪器信号漂移。经国家一级标准物质验证,分析结果在标准值的允许误差范围内,方法的检出限(3SD)为0.005µg/g,测定结果的相对标准偏差(RSD,n=12)为1.43%~11.22%,满足地质矿产实验室测试质量管理规范(DZ/T 0130.4—2006)对精密度的要求。本方法适用于土壤、水系沉积物、岩石等区域地球化学样品中痕量银的分析。
-
关键词:
- 酸溶 /
- 电感耦合等离子体质谱法 /
- 区域地球化学样品 /
- 痕量银 /
- KED模式
Abstract:There exists much error during determination of trace silver in geochemical samples by traditional inductively coupled plasma-mass spectrometry (ICP-MS) due to the interference of zirconium (Zr) and niobium (Nb) oxides. To eliminate the disturbance, a simple and accurate method combining mixed acid digestion and ICP-MS was built, in which the effect of He flow rate under kinetic energy discrimination (KED) mode was also investigated. Specifically, the samples were firstly digested by mixed nitric-hydrofluoric-perchloric acids. Then, the internal standard 103Rh was added into the test sample after nitrohydrochloric acid extraction to correct matrix interference and instrument signal drift. To further eliminate the interference of Zr and Nb oxides on Ag, the He flow of the collision pool was increased to 7.0mL/min, thus significantly reducing the mass spectrum interference of silver without deterioration of the signal-background ratio. Verified by national first grade reference materials, the analysis results were within the allowable range of the standard value. The detection limit (3SD) of the method was 0.005g/g with the relative standard deviation of 1.43%−11.22% (n=12). This method is suitable for the analysis of silver in regional geochemical samples such as soil, stream sediments and rocks.
-
磷灰石是各种地质环境中广泛存在的副矿物[1],通常含有一定数量的铀(几μg/g到数百μg/g以上)[2-3],因此磷灰石U-Pb定年常用于限定成岩成矿和化石形成等重要地质作用时代[4-8]。激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)因其样品制备简单、分析效率高、可提供微区原位信息等优点[9-11],是开展副矿物U-Pb年龄微区分析的重要手段之一[4,12-14]。对于LA-ICP-MS磷灰石U-Pb定年测定,Chew等[12]于2011年采用激光线扫描剥蚀法联合溶液校正建立LA-ICP-MS磷灰石U-Pb定年方法,此后该技术在磷灰石U-Pb年龄微区分析中应用广泛[15-19]。
由于磷灰石中铀含量通常较低[3],采用激光微束分析时进样量少,其Pb/U分析精度是首要考虑的问题。Thomson等[20]采用激光剥蚀联用MC-ICP-MS分析,分别用法拉第杯接收238U、232Th、208Pb、207Pb和206Pb,在激光剥蚀束斑65μm时获得的磷灰石标准样品MAD的206Pb/238U单点分析精度为4%~40%(2SD)。Chew等[21]采用四极杆电感耦合等离子体质谱开展磷灰石U-Pb年龄分析,在剥蚀束斑50μm时获得的Durango磷灰石206Pb/238U单点分析精度为8%~10% (2SD),而在束斑130μm时才达到满足激光分析要求的精度(约2%)。因此,开展激光微区磷灰石U-Pb定年分析时,评估仪器灵敏度对分析精度的影响是获得准确精密分析结果的基础。另一方面,磷灰石在结晶过程中矿物晶格中可能混入Pb元素,此类Pb不由U、Th等放射性衰变产生,即初始铅或普通铅[4]。不同成因的磷灰石普遍含有普通铅,已报道的用于磷灰石U-Pb定年微区分析的标准样品也均含有不同程度的普通铅[20-21]。U-Pb定年分析标样需具有均匀的206Pb/238U和207Pb/206Pb比值,当磷灰石标样中有不同含量的普通铅时,标样实测的206Pb/238U和207Pb/206Pb比值是其放射性成因比值和不同含量普通铅的混合信息,若直接用于Pb/U分馏和仪器漂移校正,则会对磷灰石样品的定年结果和初始铅组成造成影响。前人开展磷灰石U-Pb定年分析时均采用基体匹配的磷灰石MAD[20]作外标校正分析未知样品年龄,研究者多采用207Pb法先对MAD进行普通铅校正[16]。由于MAD标样普通铅含量低(约1%的年龄不谐和)[20],采用207Pb法可获得准确的分析结果,但该方法不适用于普通铅含量较高的标样分析。随着磷灰石原位U-Pb定年技术的发展和微区分析实验室数量的增加,低普通铅磷灰石MAD逐渐缺乏。为获得准确的激光微区U-Pb定年结果,因此需要对磷灰石标样中普通铅校正方法进行系统研究和开发非基体匹配分析方法。对当前特定副矿物U-Pb年龄微区分析高质量标样极度匮乏的问题,部分学者尝试开发了非基体匹配分析方法[4]。如以储量丰富、不含普通铅的锆石标样校正分析榍石[22]和金红石[23]等。Luo等采用水蒸气辅助激光剥蚀方法实现以锆石或NIST玻璃作为外标分析榍石[13]、独居石[13]、磷钇矿[13]、氟碳铈矿[24]以及黑钨矿[25]等副矿物的U-Th-Pb年龄。采用非基体匹配分析方法,不仅可以有效地解决基体匹配标样缺乏的问题,也可一定程度地避免标样中普通铅组成对分析结果造成的偏差。
因此,针对当前激光微区磷灰石U-Pb定年分析时标样中普通铅影响分析结果准确度和精密度等问题,本文将定量评估分析灵敏度对磷灰石U-Pb定年分析精度的影响,对比研究磷灰石标样中普通铅组成对分析结果造成的偏差;尝试建立磷灰石非基体匹配分析方法以消除普通铅对分析结果的影响,建立了准确的高精度激光微区磷灰石U-Pb定年新方法。
1. 实验部分
1.1 实验仪器
本实验在中国地质大学(武汉)地质过程与矿产资源国家重点实验室进行,采用Agilent 7900四极杆等离子体质谱仪(Agilent Technology,Tokyo,Japan)联合相干公司的193nm准分子纳秒激光(GeoLas HD,MicroLas Göttingen,Germany)。详细的实验参数列于表1。
表 1 LA-ICP-MS磷灰石U-Pb定年实验仪器参数Table 1. Instrumental parameters for LA-ICP-MS U-Pb dating of apatite.LA参数 GeoLas HD 193nm准分子激光 波长 193nm 激光能量密度 10J/cm2 剥蚀频率 5Hz 剥蚀时间 50s 背景时间 20s He流速 650mL/min 束斑直径 60~90μm ICP-MS参数 Agilent 7900型 等离子体功率 1400W 样品气 0.86L/min 检测元素 29Si, 42Ca,49Ti,51V,89Y, 93Nb, 139La,140Ce,
141Pr,146Nd,147Sm,151Eu,157Gd,159Tb,163Dy,
165Ho,166Er,169Tm,173Yb,175Lu,179Hf,181Ta,
201Hg,204Pb,206Pb,207Pb,208Pb,232Th,238U1.2 实验样品和分析方法
MAD磷灰石来自于马达加斯加的“1st Mine Discovery”。ID-TIMS年龄测试出两个年龄486±0.85Ma和474.25±0.41Ma,Th/U值约为15~30。MAD磷灰石是目前激光微区磷灰石U-Pb年龄分析常用的外标[2,26],本研究中基体匹配分析实验也采用MAD作为年龄校正标样。Durango磷灰石产于墨西哥杜兰戈市的露天铁矿中,磷灰石的形成与长英质侵入体有关,产出于火山口的两个熔结凝灰岩之间[27],同时结晶的四个单晶透长-歪长石的40Ar-39Ar年龄为31.44±0.18Ma (2SD) [27]。Durango磷灰石由于年轻且U含量较低,Pb同位素难以准确测定,在测试中需要采用大束斑测量,并固定初始铅组成,或分析较大范围区域从而获得更为广泛的Pb/U组成分布[21]。Otter Lake磷灰石产于加拿大魁北克省,该地区的岩石经历了多期构造活动,产自该地区的磷灰石样品通常呈深绿色-棕色长六角棱柱体,对同一磷灰石晶体使用溶液法测试其铅同位素,在207Pb/204Pb-206Pb/204Pb图解中获得的等时线年龄为913±7Ma (2SD,MSWD=0.24),该年龄作为Otter Lake磷灰石推荐年龄被广泛采用[21,28]。为解决基体匹配标样缺乏的问题,研究者们常采用美国国家标准与技术研究所(NIST)的合成玻璃NIST610、NIST612或NIST614[29]作为U-Pb年龄分析时的外标校正仪器分馏和信号漂移[13,30-32],本研究选用U含量与磷灰石较为相当的NIST612玻璃作为非基体匹配分析时的外部校正标样。数据处理采用Iolite软件[33]和Excel程序,U-Pb谐和图由Isoplot R软件绘制[34]。
2. 结果与讨论
2.1 信号强度对分析精度的影响
U-Pb定年的测试精度取决于U和Pb的信号强度,而信号强度与样品中U、Pb的含量及进样量有关。由于含普通铅矿物的U-Pb年龄需要对其进行普通铅校正,因此对于磷灰石U-Pb定年来说,除了关注Pb/U的分析不确定度外,还需注意Pb/Pb的分析不确定度。而U-Pb体系中的比值精度主要取决于低含量元素的信号强度。图1展示了在不同激光条件下同时测试磷灰石参考物质MAD和Durango获得U-Pb年龄的内部不确定度与Pb信号强度的关系。对于206Pb/238U,当206Pb计数达到6000cps时,其不确定度可以缩小到2%;当206Pb计数超过6000cps时,其不确定度下降变缓,超过20000cps时可以达到~1%的不确定度。对于207Pb/206Pb,其不确定度主要取决于含量更低的207Pb的信号强度,因此其不确定度较206Pb/238U相比偏高。当207Pb计数为~600cps时,其不确定度可以达到~5%,随后缓慢降低,直到~2400cps时达到~2%的水平。从图1还可以看到,对于年轻的样品Durango,由于其Pb含量过低,U-Pb年龄的内部精度始终较低。
2.2 磷灰石U-Pb年龄基体匹配分析
副矿物U-Pb定年测试一般采用标样、样品间插分析以校正元素分馏和仪器漂移。而当外部校正标样中含一定程度普通铅时,需要先对标样进行普通铅扣除,使用经过校正后的Pb/U比值对未知样品进行校正。本研究对比了磷灰石MAD作外标时直接校正和选用不同方法进行普通铅校正后对待测样品分析结果的影响。
2.2.1 磷灰石MAD直接校正结果
如图2展示在不对标样MAD进行普通铅校正情况下,直接用其校正监控样品的结果。对于Otter Lake,在不固定普通铅组成得到的Tera-Wasserburg谐和图交点年龄与推荐值的偏差在1%内,但是初始铅组成与推荐值产生了较大偏差,偏低36%;固定Tera-Wasserburg谐和图普通铅组成(207Pb/206Pb=0.9,由地球铅同位素演化模型[35]确定),交点年龄偏差为2.5%。对于Durango磷灰石,在不固定初始铅组成(207Pb/206Pb=0.84)得到的Tera-Wasserburg谐和图交点年龄偏差达到了30%,初始铅组成与推荐值产生了较大偏差,偏低60%;固定Tera-Wasserburg谐和图普通铅组成,交点年龄偏差为6%。研究结果表明使用含普通铅的磷灰石标样作为外标时,若不对其进行普通铅校正,最终获得的被测样品年龄和初始铅组成均会产生较大的系统偏差。
图 2 使用磷灰石MAD作为外标直接校正获得的磷灰石样品U-Pb年龄(a) 磷灰石Otter Lake,不固定初始铅同位素;(b) 磷灰石Otter Lake,固定初始铅同位素;(c) 磷灰石Durango,不固定初始铅同位素;(d) 磷灰石Durango,固定初始铅同位素。Figure 2. U-Pb ages results obtained by calibrating with apatite MAD as the external standard: (a) Apatite Otter Lake, without anchored initial Pb isotopic composition; (b) Apatite Otter Lake, with anchored initial Pb isotopic composition; (c) Apatite Durango, without anchored initial Pb isotopic composition; (d) Apatite Durango, with anchored initial Pb isotopic composition.2.2.2 207Pb法普通铅校正结果
对含普通铅的标准样品,常需对标样进行普通铅校正,再采用经过校正后的各标样对未知样品进行元素分馏和仪器漂移校正[4]。本研究选用207Pb法先对磷灰石标样MAD进行校正[4],其校正原理和操作步骤简述如下。用于分馏校正的磷灰石标样中含普通铅时,需先对标样中普通铅进行校正。
若采用207Pb法校正:(a)先对每个标样测试点的U、Pb信号扣除背景;(b)对每个标样测试点进行普通铅校正,计算公式如下所示。
$$ ^{206}\mathrm{P}\mathrm{b}_{\mathrm{r}}=^{206}\mathrm{P}\mathrm{b}_{\mathrm{m}}\times(1-\mathrm{\mathit{f}}_{206}) $$ (1) $$ ^{207}\mathrm{P}\mathrm{b}_{\mathrm{r}}=^{207}\mathrm{P}\mathrm{b}_{\mathrm{m}}-^{206}\mathrm{P}\mathrm{b}_{\mathrm{m}}\times\left(^{207}\mathrm{P}\mathrm{b}/^{206}\mathrm{P}\mathrm{b}\right)_{\mathrm{c}}\times f_{206} $$ (2) $$ \mathit{\mathrm{\mathit{f}}}_{206}=\frac{\left(^{207}\mathrm{Pb}/^{206}\mathrm{Pb}\right)_{\mathrm{m}}-\left(^{207}\mathrm{Pb}^*/^{206}\mathrm{Pb}^*\right)}{\left(^{207}\mathrm{Pb}/^{206}\mathrm{Pb}\right)_{\mathrm{c}}-\left(^{207}\mathrm{Pb}^*/^{206}\mathrm{Pb}^*\right)} $$ (3) 式中:206Pbr为普通铅校正后的瞬时206Pb信号;206Pbm为测试的瞬时206Pb信号;207Pbr为普通铅校正后的瞬时207Pb信号;207Pbm为测试的瞬时207Pb信号;(207Pb/206Pb)m为测试的207Pb/206Pb比值( 207Pb/206Pb)c为初始的207Pb/206Pb比值。
(c)经过普通铅校正后的各标样点再用于Pb/U分馏校正。具体校正步骤可在Iolite软件[33]中的VizualAge UComPbine功能实现。
图3展示了MAD经过普通铅校正后分析磷灰石Otter Lake和Durango的结果。对于Otter Lake,在不固定普通铅组成得到的Tera-Wasserburg谐和图交点年龄偏差为−1.5%,普通铅组成与推荐值的偏差为−10%;固定Tera-Wasserburg谐和图普通铅组成,交点年龄偏小于1%。对于Durango磷灰石,在不固定普通铅组成得到的Tera-Wasserburg谐和图交点年龄偏差为−31.4%,普通铅组成与推荐值偏差为−45.4%;固定Tera-Wasserburg谐和图普通铅组成,交点年龄偏差为−1.7%。磷灰石标样MAD先经过普通铅校正,后校正获得的磷灰石Otter Lake和Durango年龄与其推荐值相比偏差均在±2%以内,达到了目前国际上激光剥蚀微区分析磷灰石U-Pb定年的普遍水平[16,21,36-37]。
图 3 使用207Pb法校正MAD普通铅后获得的磷灰石样品的U-Pb年龄(a) 磷灰石Otter Lake,不固定初始铅同位素;(b) 磷灰石Otter Lake,固定初始铅同位素;(c) 磷灰石Durango,不固定初始铅同位素;(d) 磷灰石Durango,固定初始铅同位素。Figure 3. U-Pb age results obtained after prior correction for common Pb in MAD with 207Pb method: (a) Apatite Otter Lake, without anchored initial Pb isotopic composition; (b) Apatite Otter Lake, with anchored initial Pb isotopic composition; (c) Apatite Durango, without anchored initial Pb isotopic composition; (d) Apatite Durango, with anchored initial Pb isotopic composition.2.2.3 Tera-Wasserburg图解法普通铅校正结果
207Pb法假定样品的206Pb/238U和207Pb/235U年龄谐和,其数学校正原理可在Tera-Wasserburg图解上清晰呈现[4]。因此有学者采用标样测试点构筑的不一致线在Tera-Wasserburg图解下交点与其推荐值之比进行未知样品的分馏校正[4,32]。其操作步骤为:①分别计算出由所有测试点构筑的不一致线与X轴的交点;②计算经过标样推荐年龄的不一致线与X轴的交点,两交点比值即为Pb/U分馏校正系数;③将该系数乘以待测样品的Pb/U比值便得到待测样品经过校正后的Pb/U比值,而未知样品的207Pb/206Pb比值则由Pb同位素组成均匀的标样(如NIST玻璃)直接校正获得。
图4展示了使用Tera-Wasserburg图下交点法校正得到的结果。将未经普通铅校正的磷灰石MAD测试点固定上交点于0.87(由地球铅同位素演化模型[35]确定),其不一致线与X轴的交点为18.33,将MAD推荐年龄(475Ma)[20]也投入图中,得到经过推荐年龄的不一致线与X轴的交点为14.14 (图4a),将两者的比值(0.79)校正到磷灰石Otter Lake和Durango各测试点(图4中b,c),最终得到的Tera-Wasserburg谐和图交点年龄分别为929.0±7.1Ma (2σ,MSWD=1.2)和29.3±0.5Ma(2σ,MSWD=1.0),与其各自推荐值偏差分别为1.7%和6.6%。磷灰石Durango的结果呈现较大偏差,可能是由于其普通铅含量较高,分析获得的Pb/U比值不够分散,因此其下交点年龄出现较大偏差。这也说明为获得准确的分析结果,采用Tera-Wasserburg图解校正法时,分析样品需有较大范围的Pb/U比值。
2.3 磷灰石U-Pb年龄非基体匹配分析
水蒸气辅助激光剥蚀法现已广泛应用于榍石、独居石、磷钇矿和氟碳铈矿等副矿物U-Th-Pb年龄的非基体匹配分析[4,13]。为避免标样中普通铅对分析结果造成的影响,本研究也采用水蒸气辅助激光剥蚀方法,以NIST612玻璃作为外标,校正磷灰石MAD、Otter Lake和Durango的U-Pb年龄。水蒸气引入方法在本团队以往研究中已有详细介绍[4,13,24],本研究通过在剥蚀池前引入4.0mg/min水蒸气,选用NIST612玻璃作为外标直接校正磷灰石标样,分析结果如图5所示。磷灰石MAD、Otter Lake和Durango在Tera-Wasserburg图解下交点年龄分别为474.7±2.7Ma (2σ,MSWD=1.6)、934.8±2.1Ma(2σ,MSWD=2.1)和31.2±1.2Ma (2σ,MSWD=1.6),与其推荐值均在误差范围内一致。
2.4 不同分析方法结果对比
本研究为获得准确的磷灰石U-Pb年龄,分别采用磷灰石MAD和NIST612玻璃作为外标校正分析,并对比了207Pb法和Tera-Wasserburg图解法对MAD标样中普通铅的校正结果(表2)。由于测试所得磷灰石Otter Lake和Durango的Pb/U比值较为集中,且含较高程度普通铅,此处仅列出固定普通铅时计算的年龄结果。磷灰石MAD作为外标直接校正时,固定初始铅组成,获得的Otter Lake下交点年龄与推荐值的偏差为2.5%;Durango磷灰石的下交点年龄与推荐值的偏差为6%。使用207Pb法先对磷灰石标样MAD进行普通铅校正,获得的Otter Lake和Durango的交点年龄与其推荐值的偏差分别为0.03%和1.7%。采用Tera-Wasserburg图解法校正MAD中普通铅后获得的Otter Lake和Durango的交点年龄与其推荐值的偏差分别为1.7%和6.6%,其中Durango的结果呈现较大偏差,可能因为分析点的Pb/U比值不够分散,获得的Tera-Wasserburg图解下交点有较大偏离导致。以NIST612玻璃作为外标,测试的磷灰石MAD、Otter Lake和Durango在Tera-Wasserburg图解下交点年龄分别为474.7±2.7Ma(2σ,MSWD=1.6)、934.8±2.1Ma(2σ,MSWD=2.1)和31.2±1.2Ma(2σ,MSWD=1.6),与其推荐值的偏差分别为0.1%、2.3%和0.8%。虽然本研究中采用207Pb法和Tera-Wasserburg图解法都可以获得磷灰石Otter Lake和Durango准确的U-Pb年龄,但在标样普通铅含量较高时,采用207Pb法可能会存在过校正或校正不足的情况,造成样品年龄偏差,因此207Pb法适用于普通铅含量较低的标样校正;而Tera-Wasserburg图解法需要测试标样的Pb/U比值分散程度较大,构筑不一致线以获得准确的下交点,因此Tera-Wasserburg图解法适用于标样Pb/U比值分散程度较大的情况,应用范围广,但操作较为复杂。采用水蒸气辅助激光剥蚀非基体匹配分析,可避免标样中普通铅对分析结果的影响,同时有效地克服磷灰石标样匮乏的瓶颈。
表 2 不同测量条件下获得的磷灰石Tera-Wasserburg谐和图下交点年龄与推荐值的偏差Table 2. Deviations of Tera-Wasserburg values and recommended values for apatite U-Pb age obtained under different measurement conditions.激光条件 外标 普通铅校正方法 分析样品 Tera-Wasserburg谐和图下交点年龄与
推荐值的偏差(%)60μm,5Hz MAD 无普通铅校正 Otter Lake 2.5 Durango 6.0 60μm,5Hz MAD 207Pb Otter Lake 0.03 Durango 1.7 60μm,5Hz MAD Tera-Wasserburg图解法 Otter Lake 1.7 Durango 6.6 60μm,5Hz NIST612 无普通铅校正 MAD 0.1 Otter Lake 2.3 Durango 0.8 3. 结论
系统评价了磷灰石标样中不可避免的普通铅组成对U-Pb定年分析结果的影响。采用磷灰石MAD作外标直接开展U-Pb年龄分析,获得的被测样品年龄和初始铅组成均会产生显著的系统偏差(6%)。分别采用207Pb法或Tera-Wasserburg图解法校正标样中普通铅,再使用校正后结果进行元素分馏和仪器漂移校正,最终获得准确的磷灰石U-Pb年龄,测试值与推荐值的相对偏差在2%误差范围内。此外,为完全消除标样中普通铅的影响,本文通过在剥蚀池前引入4.0mg/min水蒸气,实现了以NIST612玻璃作为外标校正磷灰石MAD、Otter Lake和Durango的U-Pb年龄。该方法简单有效,可以缓解激光微区磷灰石U-Pb定年分析高质量标样匮乏的难题。
本文通过建立基体匹配和非基体匹配分析方法,有效地解决了磷灰石U-Pb定年分析时标样中普通铅对分析结果的影响,成功实现磷灰石U-Pb定年准确分析。未来研究仍需加强低普通铅磷灰石U-Pb定年标准样品研制,促进非基体匹配磷灰石U-Pb定年方法的推广,为磷灰石U-Pb年代学在地球科学研究中的应用提供支撑。
致谢:感谢审稿人对本文提出的宝贵修改建议。
-
表 1 混合酸消解结合ICP-MS法分析标准物质中银含量的精密度测试结果
Table 1 The precision test results for Ag analysis in standard samples using mixed acids digestion-ICP-MS
标准物质编号 银含量(µg/g) RSD
(%)12次分次测定值 平均值 GBW07105
(岩石)0.038 0.045 0.039 0.045 0.041 11.22 0.035 0.034 0.041 0.046 0.034 0.042 0.046 0.041 GBW07402
(土壤)0.052 0.051 0.053 0.049 0.052 6.32 0.055 0.051 0.050 0.048 0.047 0.053 0.058 0.057 GBW07307a
(水系沉积物)1.212 1.221 1.195 1.187 1.202 1.43 1.182 1.175 1.222 1.221 1.218 1.210 1.195 1.186 表 2 混合酸消解结合ICP-MS法分析标准物质中银含量的准确度测试结果
Table 2 The accuracy test results for Ag analysis in standard samples using mixed acids digestion-ICP-MS method
标准物质类型 标准物质编号 银含量(µg/g) ∆logC 标准值 测定平均值 土壤 GBW07401 0.35±0.05 0.370 0.024 GBW07402 0.054±0.007 0.049 −0.042 GBW07403 0.091±0.007 0.086 −0.025 GBW07404 0.070±0.011 0.065 −0.032 GBW07405 4.4±0.4 4.334 −0.007 GBW07406 0.20±0.02 0.216 0.033 水系沉积物 GBW07307a 1.20±0.08 1.212 0.004 GBW07308a 0.12±0.02 0.118 −0.007 GBW07358 0.14±0.01 0.141 0.003 GBW07360 0.74±0.14 0.747 0.004 GBW07362 0.092±0.005 0.091 −0.005 GBW07363 0.082±0.008 0.081 −0.005 岩石 GBW07105 0.040±0.008 0.0447 0.048 GBW07107 0.047±0.009 0.052 0.044 表 3 驻留时间对测试精密度的影响
Table 3 Influence of dwell time on the precision of measurement
驻留时间
(s)银含量(µg/g) RSD
(%)8次分次测定值 平均值 0.01 0.123 0.126 0.119 0.120 0.124 3.14 0.125 0.131 0.121 0.125 0.03 0.125 0.127 0.127 0.13 0.127 2.24 0.129 0.121 0.125 0.128 0.05 0.126 0.123 0.125 0.119 0.124 1.93 0.126 0.126 0.124 0.123 0.10 0.130 0.128 0.130 0.128 0.128 1.76 0.125 0.128 0.126 0.132 0.20 0.122 0.126 0.119 0.120 0.120 2.59 0.119 0.121 0.121 0.115 表 4 稀释体积对含离线内标的样品溶液测定精密度的影响
Table 4 Influence of dilution volume on the precision determination for the sample solution containing off-line internal standard material
含内标的样品
溶液稀酸的
加入量
(mL)稀释后
体积
(mL)内标
回收率
(%)银含量
测定值
(μg/g)RSD
(%)2.21µg/g测定液
(1.0mL)9.0 10.0 96.0 2.216 1.26 9.2 10.2 95.2 2.181 9.8 10.8 87.0 2.213 10.1 11.1 84.8 2.222 10.7 11.7 80.8 2.245 11.0 12.0 75.7 2.262 0.54µg/g测定液
(1.0mL)9.0 10.0 95.9 0.538 1.48 9.2 10.2 91.3 0.537 9.8 10.8 87.7 0.540 10.1 11.1 83.0 0.535 10.7 11.7 77.3 0.557 11.0 12.0 75.0 0.544 表 5 不同实验室利用混合酸消解结合ICP-MS法测试实际样品的分析结果对比
Table 5 Comparison of the analysis results for actual samples using mixed acids digestion-ICP-MS method in different laboratories
样品编号 银含量测定值(µg/g) 相对偏差绝对值
(%)实验室1 实验室2 样品-1 0.137 0.140 2.17 样品-2 0.061 0.066 7.87 样品-3 0.057 0.052 9.17 样品-4 0.067 0.065 3.03 样品-5 0.062 0.066 6.25 样品-6 0.086 0.089 3.43 样品-7 0.082 0.090 9.30 样品-8 0.087 0.088 1.14 样品-9 0.072 0.076 5.41 样品-10 0.114 0.099 14.1 表 6 混合酸消解结合ICP-MS法和发射光谱法测试结果对比
Table 6 Comparison of the determination results between the mixed acids digestion-ICP-MS method and emission spectroscopy method
样品编号 银含量测定值(µg/g) 相对偏差
d(%)双侧检验
t本文方法
测定值发射光谱法
测定值样品1 0.062 0.066 −6.25 1.30 样品2 0.066 0.063 4.65 样品3 0.055 0.052 5.61 样品4 0.057 0.054 5.41 样品5 0.060 0.054 10.5 样品6 0.058 0.061 −5.04 样品7 0.063 0.059 6.56 -
[1] 邹雯雯, 岳春雷, 赵祖亮, 等. 微波消解-火焰原子吸收光谱法测定铜精矿中银[J]. 冶金分析, 2018, 38(9): 59−62. Zhou W W, Yue C L, Zhao Z L, et al. Determination of silver in copper concentrate by microwave digestion-flame atomic absorption spectrometry[J]. Metallurgical Analysis, 2018, 38(9): 59−62.
[2] 李静. 火焰原子吸收光谱法测定铜锍中银[J]. 黄金, 2017, 38(3): 83−85. doi: 10.11792/hj20170320 Li J. Determination of silver in copper matte by flame atomic absorption spectrometry[J]. Gold, 2017, 38(3): 83−85. doi: 10.11792/hj20170320
[3] Chun G Y, Ping L, Yang Y Z. Determination of trace silver in environmental samples by room temperature ionic liquid-based preconcentration and flame atomic absorption spectrometry[J]. Microchim Acta, 2011, 175: 333−339. doi: 10.1007/s00604-011-0677-1
[4] 苏丹, 刘向东, 张凯歌. 石墨炉原子吸收法测定地质样品中痕量银[J]. 黄金, 2015, 36(10): 85−88. doi: 10.11792/hj201510020 Su D, Liu X D, Zhang K G. Determination of trace silver in geological samples by graphite furnace atomic absorption spectrometry[J]. Gold, 2015, 36(10): 85−88. doi: 10.11792/hj201510020
[5] 黎红波, 朱言, 张代云, 等. 石墨炉原子吸收光谱法连续测定土壤中银和镉[J]. 云南地质, 2019, 38(3): 381−386. doi: 10.3969/j.issn.1004-1885.2019.03.023 Li H B, Zhu Y, Zhang D Y, et al. Continuous determination of Ag and cadmium in soil by graphite furnace atomic absorption spectrometry[J]. Yunnan Geology, 2019, 38(3): 381−386. doi: 10.3969/j.issn.1004-1885.2019.03.023
[6] Pei L, Li L P. Determination of silver(Ⅰ) ion in water samples by graphite furnace atomic absorption spectrometry after preconcentration with dispersive liquid-liquid microextraction[J]. Microchim Acta, 2010, 168: 45−50. doi: 10.1007/s00604-009-0253-0
[7] 李小辉, 孙慧莹, 于亚辉, 等. 交流电弧发射光谱法测定地球化学样品中银锡硼[J]. 冶金分析, 2017, 37(4): 16−21. Li X H, Sun H Y, Yu Y H, et al. Determination of silver, tin and boron in geochemical sample by alternating current (AC) arc emission spectrometry[J]. Metallurgical Analysis, 2017, 37(4): 16−21.
[8] 黄海波, 沈加林, 陈宇, 等. 全谱发射光谱仪应用于分析地质样品中的银锡硼钼铅[J]. 岩矿测试, 2020, 39(4): 555−565. Huang H B, Shen J L, Chen Y, et al. Simultaneous determination of silver, boron, tin, molybdenum and lead in geological samples by atomic emission spectrometer with full spectrum[J]. Rock and Mineral Analysis, 2020, 39(4): 555−565.
[9] 王顺祥, 龚仓, 吴少青, 等. 固体进样-CCD光电直读发射光谱法测定地球化学样品中微量银、硼和锡[J]. 中国无机分析化学, 2023, 13(8): 863−868. doi: 10.3969/j.issn.2095-1035.2023.08.012 Wang S X, Gong C, Wu S Q, et al. Determination of trace sliver, boron and tin in geochemical samples by CCD optical direct-reading emission spectrometer with solid injection[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(8): 863−868. doi: 10.3969/j.issn.2095-1035.2023.08.012
[10] Hong L, Rui B J, Xiao D X, et al. Single particle ICP-MS combined with filtration membrane for accurate determination of silver nanoparticles in the real aqueous environment[J]. Analytical Sciences, 2023, 39: 1349−1359. doi: 10.1007/s44211-023-00347-z
[11] Stefania G, Chiara G, Maria B, et al. The role of different soil sample digestion methods on trace elements analysis: A comparison of ICP-MS and INAA measurement results[J]. Accreditation and Quality Assurance, 2007, 12: 84−93. doi: 10.1007/s00769-006-0238-1
[12] Zhong X L, Li P Z, Feng T. Influence of sample pre-treatment on the determination of trace silver and cadmium in geological and environmental samples by quadrupole inductively coupled plasma mass spectrometry[J]. Microchim Acta, 2007, 156: 263−269.
[13] 迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007: 140−142. Chi Q H, Yan M C. Handbook of Elemental Abundance for Applied Geochemistry [M]. Beijing: Geological Publishing House, 2007: 140−142.
[14] 张金, 李鹰, 李剑. 碰撞反应池-电感耦合等离子体质谱(ICP-MS)法测定三氧化钨中钠钾铜砷钼锑磷硫[J]. 中国无机分析化学, 2023, 13(10): 1113−1117. doi: 10.3969/j.issn.2095-1035.2023.10.010 Zhang J, Li Y, Li J. Determination of sodium, potassium, copper, arsenic, molybdenum, antimony, phosphorus and sulfur in tungsten trioxide by inductivity coupled plasma mass spectrometry with collision reaction cell[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(10): 1113−1117. doi: 10.3969/j.issn.2095-1035.2023.10.010
[15] 白金峰, 刘彬, 张勤, 等. 碰撞池-电感耦合等离子体质谱法测定地球化学样品中钒和铬[J]. 冶金分析, 2009, 29(6): 17−22. doi: 10.3969/j.issn.1000-7571.2009.06.003 Bai J F, Liu B, Zhang Q, et al. Determination of vanadium and chromium in geochemical samples by inductively coupled plasma mass spectrometry with collision cell technology[J]. Metallurgical Analysis, 2009, 29(6): 17−22. doi: 10.3969/j.issn.1000-7571.2009.06.003
[16] 刘跃, 林冬, 王记鲁, 等. 四种碰撞/反应模式-电感耦合等离子体串联质谱法测定土壤和水系沉积物样品中的银[J]. 岩矿测试, 2022, 41(6): 1017−1028. doi: 10.3969/j.issn.0254-5357.2022.6.ykcs202206013 Liu Y, Lin D, Wang J L, et al. Determination of silver in soil and stream sediments by ICP-MS/MS with four collision/reaction modes[J]. Rock and Mineral Analysis, 2022, 41(6): 1017−1028. doi: 10.3969/j.issn.0254-5357.2022.6.ykcs202206013
[17] 徐进力, 邢夏, 唐瑞玲, 等. 动能歧视模式ICP-MS测定地球化学样品中14种痕量元素[J]. 岩矿测试, 2019, 38(4): 394−402. Xu J L, Xing X, Tang R L, et al. Determination of 14 trace elements in geochemical samples by ICP-MS using kinetic energy discrimination mode[J]. Rock and Mineral Analysis, 2019, 38(4): 394−402.
[18] 王岚, 杨丽芳, 谭西早, 等. 膜去溶-电感耦合等离子体质谱法测定环境地质样品中的镉[J]. 岩矿测试, 2017, 36(6): 574−580. Wang L, Yang L F, Tan X Z, et al. Determination of Cd in environmental geological samples by inductively coupled plasma-mass spectrometry with membrane desolvation[J]. Rock and Mineral Analysis, 2017, 36(6): 574−580.
[19] 王妃, 王德淑, 汤德能. 浅析锡对电感耦合等离子体质谱法测定镉的干扰[J]. 中国无机分析化学, 2015, 5(2): 12−18. doi: 10.3969/j.issn.2095-1035.2015.02.003 Wang F, Wang D S, Tang D N. The interference of tin on the determination of cadmium by inductively coupled plasma mass spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(2): 12−18. doi: 10.3969/j.issn.2095-1035.2015.02.003
[20] 禹莲玲, 郭斌, 柳昭, 等. 电感耦合等离子体质谱法测定高锡地质样品中的痕量镉[J]. 岩矿测试, 2020, 39(1): 77−84. Yu L L, Guo B, Liu Z, et al. Determination of low-content cadmium in Sn-rich geological samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(1): 77−84.
[21] 邢智, 漆亮. P507萃淋树脂分离-电感耦合等离子体质谱法快速测定化探样品中的银[J]. 岩矿测试, 2013, 32(3): 398−401. doi: 10.3969/j.issn.0254-5357.2013.03.007 Xing Z, Qi L. Separation with P507 levextrel resin for rapid determination of Ag in geochemical exploration samples by ICP-MS[J]. Rock and Mineral Analysis, 2013, 32(3): 398−401. doi: 10.3969/j.issn.0254-5357.2013.03.007
[22] 刘彤彤, 钱银弟, 黄登丽. 磷酸沉淀分离-电感耦合等离子体质谱法测定化探样品中的痕量银[J]. 岩矿测试, 2021, 40(5): 650−658. Liu T T, Qian Y D, Huang D L. Determination of trace silver in geochemical samples by inductively coupled plasma-mass spectrometry with phosphoric acid precipitation separation[J]. Rock and Mineral Analysis, 2021, 40(5): 650−658.
[23] 孙朝阳, 戴雪峰, 代小吕, 等. 氨水分离-电感耦合等离子体质谱法测定化探样品中的银[J]. 岩矿测试, 2015, 34(3): 292−296. Sun C Y, Dai X F, Dai X L, et al. Determination of silver in samples for geochemical exploration by inductively coupled plasma-mass spectrometry after ammonia complexation[J]. Rock and Mineral Analysis, 2015, 34(3): 292−296.
[24] 刘海明, 武明丽, 成景特. 酸溶分解-电感耦合等离子体质谱内标法测定地质样品中的痕量银[J]. 岩矿测试, 2021, 40(3): 444−450. Liu H M, Wu M L, Cheng J T. Determination of trace silver in geological samples by inductively coupled plasma-mass spectrometry with acid decomposition and internal standard calibration[J]. Rock and Mineral Analysis, 2021, 40(3): 444−450.
[25] 李晓云, 王羽, 金婵, 等. 微波消解-高分辨电感耦合等离子体质谱法测定土壤中 8 种金属元素[J]. 岩矿测试, 2022, 41(3): 374−383. doi: 10.3969/j.issn.0254-5357.2022.3.ykcs202203004 Li X Y, Wang Y, Jin C, et al. Determination of 8 metal elements in soil by high-resolution inductively coupled plasma-mass spectrometry with microwave digestion[J]. Rock and Mineral Analysis, 2022, 41(3): 374−383. doi: 10.3969/j.issn.0254-5357.2022.3.ykcs202203004
[26] 龚仓, 丁洋, 陆海川, 等. 五酸溶样-电感耦合等离子体质谱法同时测定地质样品中的稀土等28种金属元素[J]. 岩矿测试, 2021, 40(3): 340−348. Gong C, Ding Y, Lu H C, et al. Simultaneous determination of 28 elements including rare earth elements by ICP-MS with five-acid dissolution[J]. Rock and Mineral Analysis, 2021, 40(3): 340−348.
[27] 张志喜, 黄惠琴. 电感耦合等离子体质谱法测定地球化学样品中的银、砷、锑、铋[J]. 中国无机分析化学, 2014, 4(1): 46−49. doi: 10.3969/j.issn.2095-1035.2014.01.012 Zhang Z X, Huang H Q. Determination of silver, arsenic, antimony and bismuth in geochemical samples using inductively coupled plasma mass spectrometry together with aqua regia decomposition[J]. Chinese Journal of Inorganic Analytical Chemistry, 2014, 4(1): 46−49. doi: 10.3969/j.issn.2095-1035.2014.01.012
[28] 杨艳明. 电感耦合等离子体质谱法测定水系沉积物中银铜砷锑铋镉[J]. 冶金分析, 2019, 39(7): 58−64. Yang Y M. Determination of silver, copper, arsenic, antimony, bismuth and cadmium in stream sediment by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2019, 39(7): 58−64.
[29] 刘彤彤, 黄登丽. 王水溶样-电感耦合等离子体质谱法测定化探样品中的痕量银[J]. 冶金分析, 2017, 41(7): 61−66. Liu T T, Huang D L. Determination of trace silver in geochemical samples by inductively coupled plasma mass spectrometry after sample dissolution with aqua regia[J]. Metallurgical Analysis, 2017, 41(7): 61−66.
[30] 张宇婷, 孙丰月, 李予晋, 等. 王水提取-在线氩气稀释-电感耦合等离子体质谱(ICP-MS)法测定地质样品中的银[J]. 中国无机分析化学, 2023, 13(3): 249−255. doi: 10.3969/j.issn.2095-1035.2023.03.008 Zhang Y T, Sun F Y, Li Y J, et al. Determination of silver in geological samples by online argon gas dilution-inductively coupled plasma-mass spectrometry with aqua regia extraction[J]. Chinese Journal of Inorganic Analytical Chemistry, 2023, 13(3): 249−255. doi: 10.3969/j.issn.2095-1035.2023.03.008
[31] 刘向磊, 孙文军, 文田耀, 等. 三酸分步消解-电感耦合等离子体质谱法测定土壤详查样品中23种金属元素[J]. 岩矿测试, 2020, 39(5): 793−800. Liu X L, Sun W J, Wen T Y, et al. Determination of 23 metal elements in detailed soil survey samples by inductively coupled plasma-mass spectrometry with three acid stepwise digestion[J]. Rock and Mineral Analysis, 2020, 39(5): 793−800.