• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

水环境中药物与个人护理品(PPCPs)的环境水平及降解行为研究进展

张照荷, 陈典, 赵微, 袁国礼, 李俊, 焦杏春

张照荷,陈典,赵微,等. 水环境中药物与个人护理品(PPCPs)的环境水平及降解行为研究进展[J]. 岩矿测试,2023,42(4):649−666. DOI: 10.15898/j.ykcs.202210260207
引用本文: 张照荷,陈典,赵微,等. 水环境中药物与个人护理品(PPCPs)的环境水平及降解行为研究进展[J]. 岩矿测试,2023,42(4):649−666. DOI: 10.15898/j.ykcs.202210260207
ZHANG Zhaohe,CHEN Dian,ZHAO Wei,et al. Environmental Levels and Degradation Behavior of Pharmaceuticals and Personal Care Products (PPCPs) in the Water Environment[J]. Rock and Mineral Analysis,2023,42(4):649−666. DOI: 10.15898/j.ykcs.202210260207
Citation: ZHANG Zhaohe,CHEN Dian,ZHAO Wei,et al. Environmental Levels and Degradation Behavior of Pharmaceuticals and Personal Care Products (PPCPs) in the Water Environment[J]. Rock and Mineral Analysis,2023,42(4):649−666. DOI: 10.15898/j.ykcs.202210260207

水环境中药物与个人护理品(PPCPs)的环境水平及降解行为研究进展

基金项目: 国家自然科学基金项目(41771515); 中国地质科学院基本科研业务费项目(CSJ-2021-08); 中国地质调查局地质调查项目(20211414)
详细信息
    作者简介:

    张照荷,硕士研究生,主要研究方向为环境地球化学。E-mail:1830613564@qq.com

    通讯作者:

    焦杏春,博士,研究员,主要研究方向为环境地球化学。E-mail:jiaoxingchun@mail.cgs.gov.cn

  • 中图分类号: X52

Environmental Levels and Degradation Behavior of Pharmaceuticals and Personal Care Products (PPCPs) in the Water Environment

  • 摘要:

    药物和个人护理品(PPCPs)是一种存在于各种介质中的新污染物,具有生物富集、致癌致畸性,近年来在水环境中被广泛检出,其种类和浓度也有逐渐增多和加重的趋势,加之与人类生活密切相关,可以通过家庭垃圾、医院废水、垃圾填埋场、污水处理厂等方式直接污染地表水,并进一步污染孔隙水、地下水等,致使生态环境和人体健康存在风险。因此,广泛了解PPCPs在各种环境介质中的浓度水平对于防范生态健康风险具有重要意义。近年来,对PPCPs浓度的调查研究取得了较大进展,自1976年美国堪萨斯城首次报道药物以来,各国陆续报道了不同介质中PPCPs的存在,弥补了各研究区污染物及浓度的空白,有利于开展综合治理工作。PPCPs在水环境中常见的降解方式有水解、光解及生物降解,同时在降解过程还会受到pH、温度、共存离子等影响,而且在各种降解过程中生成的产物也有所不同。污水处理厂因为去除工艺的限制,使得地表水中许多PPCPs虽然经过了废水的生物降解环境,但是光降解仍然可能比暴露在阳光下的生物降解更强。其中,抗生素在水环境中主要发生光降解;布洛芬、碘普罗胺、咖啡因等更易发生生物降解;而自然界中PPCPs发生水解的概率较低,酯类和酰胺类是其中最常见的易水解的官能团,除此之外,四环素类等因为吸附到沉积物中,也会发生水解反应。目前,对于PPCPs浓度水平的研究很多集中在单一水体,而海水、雨水等介质缺乏监测和分析,同时对于降解行为的研究大都没有关注到降解过程和降解产物,使得一些降解产物的高毒性被低估。因此,全面了解各种水环境介质中PPCPs浓度可以较为准确、系统地获知各地区PPCPs的污染情况,对于PPCPs治理与削减工作具有重要的现实意义;而探究PPCPs在水环境中的降解行为,有利于了解其在环境中的残留和代谢情况,厘清中间产物和最终产物的性质,以便针对性地对PPCPs的环境生态效应进行评估分析,降低风险。

     

  • 图  1   水环境中PPCPs的来源与迁移归趋

    Figure  1.   Source and migration fate of PPCPs in water environment.

    图  2   青霉素G通过侧链对β-内酰胺羰基的分子内亲核攻击产生的水解过程(据高雪泉,2016 [65]修改)

    Figure  2.   Hydrolysis process resulting from the intramolecular nucleophilic attack of the β-lactam carbonyl group by the side chain of penicillin G. Modified from Gao (2016)[65].

    图  3   阿莫西林通过侧链对β-内酰胺羰基的分子内亲核攻击产生的水解过程(据高雪泉[65],2016修改)

    Figure  3.   Hydrolysis process resulting from the intramolecular nucleophilic attack of the β-lactam carbonyl group by the side chain of amoxicillin. Modified from Gao (2016) [65].

    图  4   阿替洛尔直接吸收光能引起内部键断裂进行的光降解过程(据季跃飞,2014[72]修改)

    Figure  4.   Photodegradation process in which atenolol directly absorbs light energy and causes internal bond breakage. Modified from Ji (2014)[72].

    图  5   阿昔洛韦通过加入催化剂获得能量形成电子跃迁产生间接光降解的过程(据Elliott等,2017[13];安继斌,2011[73]修改)

    Figure  5.   The process of indirect photodegradation of acyclovir by obtaining energy through the addition of catalysts to form electronic transition. Modified from Elliott, et al (2017)[13] and An (2011)[73].

    图  6   酮基布洛芬在好氧条件下矿化的生物降解过程(据Quintana等,2015[80]修改)

    Figure  6.   Biodegradation of ketoibuprofen mineralized under aerobic conditions. Modified from Quintana, et al (2015)[80].

    图  7   咖啡因通过脱甲基过程的生物降解过程(据杨雪莹等,2019[81]修改)

    Figure  7.   Biodegradation of caffeine through the demethylation process. Modified from Yang, et al (2019) [81].

    表  1   抗生素、激素、消炎止痛药、降压药类等常见PPCPs的物理化学特征

    Table  1   Physical and chemical characteristics of common PPCPs such as antibiotics, hormones, anti-inflammatory painkillers and antihypertensive drugs.

    PPCPs
    的常见类别
    中文名称英文名称缩写分子式医学应用CAS号
    抗生素磺胺甲噁唑SulfamethoxazoleSMXC10H11N3O3S抗菌723-46-6
    诺氟沙星NorfloxacinNORC16H18FN3O3治疗肠炎痢疾70458-96-7
    四环素TetracyclineTCC22H24N2O8杀菌60-54-8
    土霉素OxytetracyclineOTCC22H28N2O11治疗犬、猫的呼吸道、尿道感染79-57-2
    红霉素ErythromycinERYC37H67NO13治疗呼吸道感染114-07-8
    激素地塞米松DexamethasoneDEXC22H29FO5抗炎、免疫抑制50-02-2
    雌酮EstroneE1C18H22O2维持雌性个体的第二生理特征53-16-7
    乙烯雌酚DiethylstilbestrolDESC18H20O2治疗雌激素低下症及激素平衡失调引起的功能性出血56-53-1
    消炎止痛药萘普生NaproxenNAPC14H14O3止痛解热22204-53-1
    双氯芬酸Diclofenac AcidDICCHClNO治疗风湿性关节炎等15307-86-5
    布洛芬IbuprofenIBUC13H18O2镇痛、抗炎15687-27-1
    降压药科素亚Losartan-C22H22ClKN6O降血压124750-99-8
    缬沙坦ValsartanARBC24H29N5O3降血压137862-53-4
    降血脂药吉非罗齐GemfibrozilGEMC15H22O3调血脂25812-30-0
    苯扎贝特BezafibrateBZFCHClNO调血脂41859-67-0
    β-受体阻断药阿替洛尔Atenolol-C14H22N2O3降压、调整心率29122-68-7
    美托洛尔MetoprololMPLC15H25NO3降压、调整心率51384-51-1
    抗精神病药卡马西平CarbamazepineCBZCHN2O治疗癫痫、神经性疾病298-46-4
    可铁宁Cotinine-C10H12N2O促进神经系统兴奋486-56-6
    驱虫剂避蚊胺DiethyltoluamideDEETC12H17NO防止蚊虫叮咬134-62-3
    合成麝香佳乐麝香GalaxolideHHCBC18H26O用于化妆品、调制香料1222-05-5
    吐纳麝香TonalideAHTNC18H26O用于化妆品、调制香料1506-02-1
    消毒杀菌剂三氯生TriclosanTCSC12H7Cl3O2抗菌除臭3380-34-5
    三氯卡班TriclocarbanTCCC13H9Cl3N2O杀菌除臭101-20-2
    除草剂阿特拉津AtrazineATZC8H14ClN5除草1912-24-9
    下载: 导出CSV

    表  2   水环境中抗生素类PPCPs在地表水、地下水、沉积物、孔隙水、海水、雨水中的检出情况

    Table  2   Detection of antibiotic PPCPs in surface water, groundwater, sediment, pore water, seawater and rainwater.

    水环境
    介质
    PPCPs化合物PPCPs检出含量
    (ng/L)
    水环境数据来源
    地表水磺胺甲恶唑ND~57.76中国上海市青浦区[44]
    28.34中国上海黄浦江[45]
    <MDL~934斯里兰卡[46]
    0.7~16意大利米兰[47]
    77.7(最大浓度)密西西比河国家河和娱乐河[13]
    氧氟沙星114中国黄河[42]
    0中国黄浦江[45]
    诺氟沙星152中国黄河[42]
    0中国黄浦江[45]
    红霉素34中国黄河[42]
    0~722.04中国天津[48]
    罗红霉素53中国黄河[42]
    3.63中国黄浦江[45]
    四环素113.89中国黄浦江[45]
    0~9.74天津[48]
    地下水醋磺胺甲恶唑ND~91中国北运河[49]
    磺胺二甲基嘧啶ND~969.7中国北运河[49]
    磺胺甲恶唑ND~14.2中国北运河[49]
    1110美国[50]
    23.40西班牙[51]
    磺胺嘧啶11.62西班牙[51]
    29.9哈尔滨[52]
    环丙沙星4~9.68中国江汉平原[53]
    0.82哈尔滨[52]
    四环素2.26~9.51中国江汉平原[53]
    罗红霉素1.47~13.8中国江汉平原[53]
    诺氟沙星4.74~52.6中国江汉平原[53]
    土霉素1.1~7.24中国江汉平原[53]
    林可霉素0.32美国[50]
    沉积物磺胺甲恶唑1. 27~688.59中国上海市青浦区[44]
    0~11.3中国太湖[54]
    磺胺嘧啶0~0.41中国太湖[54]
    土霉素0~8.73中国太湖[54]
    环丙沙星0~15.33中国太湖[54]
    氧氟沙星0.9~18.27中国太湖[54]
    罗红霉素0.15~3.96中国太湖[54]
    孔隙水红霉素29.9中国白洋淀[55]
    林可霉素20.2中国白洋淀[55]
    土霉素47.8中国太湖[56]
    氧氟沙星33.6中国太湖[56]
    雨水环丙沙星10.3美国明尼苏达州[38]
    恩诺沙星2.97美国明尼苏达州[38]
    海水磺胺甲恶唑42波罗的海[57]
    11希腊爱琴海[57]
    7.2意大利威尼斯[57]
    克拉霉素14波罗的海[57]
    16希腊爱琴海[57]
    8.5意大利威尼斯[57]
    下载: 导出CSV

    表  3   水环境中PPCPs常见化合物的降解类型、影响和因素及降解产物

    Table  3   Types, effects, factors, and degradation products of common PPCPs in the water environment.

    PPCPs常见化合物降解类型水环境中降解行为
    影响因素
    降解产物参考文献
    青霉素水降解金属离子[87]
    四环素水降解pH[69]
    头孢拉定水降解pH[88]
    卡马西平光降解pH,共存离子[89]
    萘普生光降解pH,温度[71, 90]
    双氯芬酸光降解pH=8[90]
    氧氟沙星生物降解pH=4.5,25℃[91]
    卡马西平生物降解pH,温度[92]
    碘普罗胺生物降解pH=4.5,25℃[91]
    双氯芬酸生物降解菌株种类[93]
    下载: 导出CSV
  • [1]

    Evgenidou E N, Konstantinou I K, Lambropoulou D A, et al. Occurrence and removal of transformation products of PPCPs and illicit drugs in wastewaters: A review[J]. Science of the Total Environment, 2015, 505: 905−926. doi: 10.1016/j.scitotenv.2014.10.021

    [2]

    Xu M X, Xu Y R, Xu N, et al. Pharmaceuticals and personal care products (PPCPs) in water, sediment and freshwater mollusks of the Dongting Lake downstream the Three Gorges Dam[J]. Chemosphere, 2022, 301: 134721. doi: 10.1016/j.chemosphere.2022.134721

    [3]

    Xie H W, Hao H S, Xu N, et al. Pharmaceuticals and personal care products in water, sediments, aquatic organisms, and fish feeds in the Pearl River Delta: Occurrence, distribution, potential sources, and health risk assessment[J]. Science of the Total Environment, 2019, 659(1): 230−239.

    [4]

    Xie J Y, Liu Y F, Wu Y F, et al. Occurrence, distribution and risk of pharmaceutical and personal care products in the Haihe River sediments, China[J]. Chemosphere, 2022, 302: 134874. doi: 10.1016/j.chemosphere.2022.134874

    [5]

    José A R J, Cristina P, Rosa M, et al. Study of pharmaceuticals in surface and wastewater from Cuernavaca, Morelos, Mexico: Occurrence and environmental risk assessment[J]. The Science of the Total Environment, 2018, 613-614(1): 1263−1274.

    [6]

    Anekwe J E, Mohamed A A, Stuart H. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment[J]. Emerging Contaminants, 2017, 3(1): 1−16. doi: 10.1016/j.emcon.2016.12.004

    [7] 郭子宁, 王旭升, 向师正, 等. 再生水入渗区典型抗生素分布特征与地下水微生物群落影响因素研究[J]. 岩矿测试, 2022, 41(3): 451−462.

    Guo Z N, Wang X S, Xiang S Z, et al. Distribution characteristics of typical antibiotics in reclaimed water infiltration area and influencing factors of groundwater microbial community[J]. Rock and Mineral Analysis, 2022, 41(3): 451−462.

    [8] 王珍. 阿昔洛韦在水环境中的光降解行为及机理的研究[D]. 广州: 广东工业大学, 2017: 1-62.

    Wang Z. Study on photolytic degradation and mechanisms of acyclovir in aqueous environment[D]. Guangzhou: Guangdong University of Technology, 2017: 1-62.

    [9]

    Madikizela L M, Tavengwa N T, Chimuka L. Status of pharmaceuticals in African water bodies: Occurrence, removal and analytical methods[J]. Journal of Environmental Management, 2017, 193: 211−220.

    [10] 朴海涛. 京杭运河及沿岸区域地表水中药物及个人护理品污染地理分布特征及来源辨析[D]. 北京: 中国地质科学院, 2017: 1-175.

    Piao H T. Distribution and source analysis of pharmaceutical and personal care products in the grand canal and related areas[D]. Beijing: Chinese Academy of Geochemistry, 2017: 1-175.

    [11] 营娇龙, 秦晓鹏, 郎杭, 等. 超高效液相色谱-串联质谱法同时测定水体中37种典型抗生素[J]. 岩矿测试, 2022, 41(3): 394−403.

    Ying J L, Qin X P, Lang H, et al. Determination of 37 typical antibiotics by liquid chromatography-triple quadrupole mass spectrometry[J]. Rock and Mineral Analysis, 2022, 41(3): 394−403.

    [12]

    Dai G H, Wang B, Huang J, et al. Occurrence and source apportionment of pharmaceuticals and personal care products in the Beiyun River of Beijing, China[J]. Chemosphere, 2015, 119: 1033−1039. doi: 10.1016/j.chemosphere.2014.08.056

    [13]

    Elliott S M, Vandermeulen D D. A regional assessment of chemicals of concern in surface waters of four Midwestern United States national parks[J]. Science of the Total Environment, 2017, 579: 1726−1735. doi: 10.1016/j.scitotenv.2016.11.114

    [14]

    Baena-Nogueras R M, González-Mazo E, Lara-Martín P A. et al. Degradation kinetics of pharmaceuticals and personal care products in surface waters: Photolysis vs biodegradation[J]. Science of the Total Environment, 2017, 590-591: 643−654. doi: 10.1016/j.scitotenv.2017.03.015

    [15] 张立娜, 宫晓双, 安婧, 等. 三氯生的环境残留、降解代谢及其潜在生态风险[J]. 应用生态学报, 2018, 29(9): 3139−3146.

    Zhang L N, Gong X S, An J, et al. Occurrence, degradation and potential ecological risks of triclosan in environment[J]. Chinese Journal of Applied Ecology, 2018, 29(9): 3139−3146.

    [16]

    Ali A M, Alarif W M, Al-Lihaibi S S, et al. Detection of PPCPs in marine organisms from contaminated coastal waters of the Saudi Red Sea[J]. Science of the Total Environment, 2018, 621: 654−662. doi: 10.1016/j.scitotenv.2017.11.298

    [17] 王晓燕, 双陈冬, 张宝军, 等. PPCPs在水环境中的污染现状及去除技术研究进展[J]. 水处理技术, 2019, 45(9): 11−16,23.

    Wang X Y, Shuang C D, Zhang B J, et al. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in aqueous environments: A review[J]. Technology of Water Treatment, 2019, 45(9): 11−16,23.

    [18] 郭法光. 养鸡生产中磺胺类药物的危害与防控[J]. 养殖与饲料, 2020, 19(12): 89−90.

    Guo F G. Hazards and control of sulfonamide in chicken production[J]. Animals Breeding and Feed, 2020, 19(12): 89−90.

    [19]

    Zhang X L, Jing Y, Ma L, et al. Occurrence and transport of synthetic musks in paired maternal blood, umbilical cord blood, and breast milk[J]. International Journal of Hygiene and Environmental Health, 2015, 218(1): 99−106. doi: 10.1016/j.ijheh.2014.08.005

    [20] 何林. 典型PPCPs污染物在水体中氧化降解的实验与理论研究[D]. 济南: 山东大学, 2017: 1-103.

    He L. Experimental and theoretical study on the oxidative degradation of typical PPCPs contaminants in aqueous environments[D]. Jinan: Shandong University, 2017: 1-103.

    [21] 李菊, 谢建军, 黄雪琳, 等. 人造麝香的危害性及其残留检测方法研究进展[J]. 理化检验 (化学分册), 2015, 51(2): 272−276.

    Li J, Xie J J, Huang X L, et al. Recent advances of researches on the harmfulness of artificial musk and methods of determination of its residual amount[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2015, 51(2): 272−276.

    [22]

    Xu M J, Huang H T, Li N, et al. Occurrence and ecological risk of pharmaceuticals and personal care products (PPCPs) and pesticides in typical surface watersheds, China[J]. Ecotoxicology and Environmental Safety, 2019, 175: 289−298. doi: 10.1016/j.ecoenv.2019.01.131

    [23] 李雯雯, 李高清, 范黎明, 等. 长江口及其毗邻区域中PPCPs研究进展[J]. 环境保护, 2022, 50(20): 44−50.

    Li W W, Li G Q, Fan L M, et al. Research progress of PPCPs in the Yangtze Estuary and its adjacent areas[J]. Environmental Protection, 2022, 50(20): 44−50.

    [24]

    Tiwari B, Sellamuthu B, Ouarda Y, et al. Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach[J]. Bioresource Technology, 2017, 224: 1−12. doi: 10.1016/j.biortech.2016.11.042

    [25]

    Kosma C I, Lambropoulou D A, Albanis T A. Occurrence and removal of PPCPs in municipal and hospital wastewaters in Greece[J]. Journal of Hazardous Materials, 2010, 179: 804−817. doi: 10.1016/j.jhazmat.2010.03.075

    [26]

    Azuma T, Otomo K, Kunitou M, et al. Environmental fate of pharmaceutical compounds and antimicrobial-resistant bacteria in hospital effluents, and contributions to pollutant loads in the surface waters in Japan[J]. Science of the Total Environment, 2019, 657(1): 476−484.

    [27]

    Kosma C I, Lambropoulou D A, Albanis T A. Investigation of PPCPs in wastewater treatment plants in Greece: Occurrence, removal and environmental risk assessment[J]. Science of the Total Environment, 2014, 466-467: 421−438. doi: 10.1016/j.scitotenv.2013.07.044

    [28]

    Yu X, Sui Q, Lyu S, et al. Do high levels of PPCPs in landfill leachates influence the water environment in the vicinity of landfills? A case study of the largest landfill in China[J]. Environment International, 2020, 135: 105404. doi: 10.1016/j.envint.2019.105404

    [29]

    Akio Y, Hiroaki S, Masataka N, et al. Determination of organic components in leachates from hazardous waste disposal sites in Japan by gas chromatography-mass spectrometry[J]. Journal of Chromatography A, 1997, 774(1): 321−332.

    [30]

    Andrews W J, Masoner J R, Cozzarelli I M. Emerging contaminants at a closed and an operating landfill in Oklahoma[J]. Groundwater Monitoring & Remediation, 2012, 32(1): 120−130.

    [31]

    Schwarzbauer J, Heim S, Brinker S, et al. Occurrence and alteration of organic contaminants in seepage and leakage water from a waste deposit landfill[J]. Water Research, 2002, 36(9): 2275−2287. doi: 10.1016/S0043-1354(01)00452-3

    [32]

    Peng X, Ou W, Wang C, et al. Occurrence and ecological potential of pharmaceuticals and personal care products in groundwater and reservoirs in the vicinity of municipal landfills in China[J]. Science of the Total Environment, 2014, 490: 889−898. doi: 10.1016/j.scitotenv.2014.05.068

    [33]

    Wu D, Huang Z, Yang K, et al. Relationships between antibiotics and antibiotic resistance gene levels in municipal solid waste leachates in Shanghai, China[J]. Environmental Science & Technology, 2015, 49(7): 4122−4128.

    [34] 曹徐齐, 隋倩, 吕树光, 等. 垃圾填埋场渗滤液中药物和个人护理品的存在与去除[J]. 中国环境科学, 2016, 36(7): 2027−2034.

    Cao X Q, Sui Q, Lyu S G, et al. Occurrence and removal of pharmaceuticals and personal care products in leachates from a landfill site of municipal solid waste[J]. China Environmental Science, 2016, 36(7): 2027−2034.

    [35]

    Stuart M, Lapworth D, Crane E, et al. Review of risk from potential emerging contaminants in UK groundwater[J]. Science of the Total Environment, 2012, 416: 1−21. doi: 10.1016/j.scitotenv.2011.11.072

    [36]

    Cheng D L, Ngo H H, Guo W S, et al. Bioprocessing for elimination antibiotics and hormones from swine wastewater[J]. Science of the Total Environment, 2018, 621: 166.

    [37]

    Zhao X, Zheng Y, Hu S Y, et al. Improving urban drainage systems to mitigate PPCPs pollution in surface water: A watershed perspective[J]. Journal of Hazardous Materials, 2021, 411: 125047. doi: 10.1016/j.jhazmat.2021.125047

    [38]

    Ferrey M L, Coreen Hamilton M, Backe Will J, et al. Pharmaceuticals and other anthropogenic chemicals in atmospheric particulates and precipitation[J]. Science of the Total Environment, 2018, 612(1): 1488−1497.

    [39]

    Wang L, Ying G G, Zhao J L, et al. Occurrence and risk assessment of acidic pharmaceuticals in the Yellow River, Hai River and Liao River of North China[J]. Science of the Total Environment, 2010, 408(16): 3139−3147. doi: 10.1016/j.scitotenv.2010.04.047

    [40]

    Xu W H, Zhang G, Zou S C, et al. A preliminary investigation on the occurrence and distribution of antibiotics in the Yellow River and its tributaries, China[J]. Water Environment Research, 2009, 81(3): 248−254. doi: 10.2175/106143008X325719

    [41]

    Yang Y, Fu J, Peng H, et al. Occurrence and phase distribution of selected pharmaceuticals in the Yangtze Estuary and its coastal zone[J]. Journal of Hazardous Materials, 2011, 190(1-3): 588−596. doi: 10.1016/j.jhazmat.2011.03.092

    [42]

    Zhou X F, Dai C M, Zhang Y L, et al. A preliminary study on the occurrence and behavior of carbamazepine (CBZ) in aquatic environment of Yangtze River Delta, China[J]. Environmental Monitoring & Assessment, 2011, 173(1-4): 45−53.

    [43] 王丹, 隋倩, 赵文涛, 等. 中国地表水环境中药物和个人护理品的研究进展[J]. 科学通报, 2014, 59(9): 743−751. doi: 10.1360/972013-370

    Wang D, Sui Q, Zhao W T, et al. Pharmaceutical and personal care products in the surface water of China: A review[J]. Chinese Science Bulletin, 2014, 59(9): 743−751. doi: 10.1360/972013-370

    [44] 张智博, 段艳平, 沈嘉豪, 等. 长三角一体化示范区青浦区水环境中22种PPCPs的多介质分布特征及风险评估[J]. 环境科学, 2022, 43(1): 349−362.

    Zhang Z B, Duan Y P, Shen J H, et al. Multimedia distribution characteristics and risk assessment of 22 PPCPs in the water environment of Qingpu District, Yangtze River Delta demonstration area[J]. Environmental Science, 2022, 43(1): 349−362.

    [45]

    Jiang L, Hu X L, Yin D Q, et al. Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China[J]. Chemosphere, 2011, 82(6): 822−828. doi: 10.1016/j.chemosphere.2010.11.028

    [46]

    Guruge K S, Goswami P, Tanoue R, et al. First nationwide investigation and environmental risk assessment of 72 pharmaceuticals and personal care products from Sri Lankan surface waterways[J]. Science of the Total Environment, 2019, 690: 683−695. doi: 10.1016/j.scitotenv.2019.07.042

    [47]

    Castiglioni S, Davoli E, Riva F, et al. Mass balance of emerging contaminants in the water cycle of a highly urbanized and industrialized area of Italy[J]. Water Research, 2018, 131: 287−298. doi: 10.1016/j.watres.2017.12.047

    [48] 尹承南, 谢培, 焦萌, 等. 天津市地表水体54种PPCPs分布特征[J]. 环境化学, 2021, 40(9): 2820−2831.

    Yi C N, Xie P, Jiao M, et al. Distribution characteristics of 54 kinds of PPCPs in surface water in Tianjin[J]. Environmental Chemistry, 2021, 40(9): 2820−2831.

    [49] 王博欣, 李炳华, 张大胜, 等. 北运河河水和地下水PPCPs污染特征及风险评价[J]. 南水北调与水利科技(中英文), 2020, 18(6): 138−147.

    Wang B X, Li B H, Zhang D S, et al. Pollution characteristics and ecological risk assessment of pharmaceuticals and personal care products (PPCPs) in Beiyun River and groundwater of North Canal[J]. South-to-North Water Transfers and Water Science and Technology, 2020, 18(6): 138−147.

    [50]

    Barnes K K, Kolpin D W, Furlong E T, et al. A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States—(Ⅰ) Groundwater[J]. Science of the Total Environment, 2010, 402: 192−200.

    [51]

    García-Galán J, Garrido T, Fraile J, et al. Simultaneous occurrence of nitrates and sulfonamide antibiotics in two ground water bodies of Catalonia (Spain)[J]. Journal of Hydrology, 2010, 383: 93−101. doi: 10.1016/j.jhydrol.2009.06.042

    [52] 马健生, 王卓, 张泽宇, 等. 哈尔滨市地下水中29种抗生素分布特征研究[J]. 岩矿测试, 2021, 40(6): 944−953.

    Ma J S, Wang Z, Zhang Z Y, et al. Distribution characteristics of 29 antibiotics in groundwater in Harbin[J]. Rock and Mineral Analysis, 2021, 40(6): 944−953.

    [53]

    Yao L L, Wang Y X, Tong L, et al. Occurrence and risk assessment of antibiotics in surface water and groundwater from different depths of aquifers: A case study at Jianghan Plain, central China[J]. Ecotoxicology and Environmental Safety, 2017, 135(1): 236−242.

    [54]

    Li L, Zhao X L, Liu D, et al. Occurrence and ecological risk assessment of PPCPs in typical inflow rivers of Taihu Lake, China[J]. Journal of Environmental Management, 2021, 285: 112176. doi: 10.1016/j.jenvman.2021.112176

    [55] 张盼伟. 海河流域典型水体中PPCPs的环境行为及潜在风险研究[D]. 北京: 中国水利水电科学研究院, 2018: 1-122.

    Zhang P W. Environmental behavior and pollution characteristics of pharmaceuticals and personal care products, and their associated environmental risks in typical water-body from Haihe River Basin, China[D]. Beijing: China Institute of Water Resources and Hydropower Hydropower Research (IWHR), 2018: 1-122.

    [56]

    Xu J, Zhang Y, Zhou C B, et al. Distribution, sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China[J]. Science of the Total Environment, 2014, 497-498: 267−273. doi: 10.1016/j.scitotenv.2014.07.114

    [57]

    Nödler K, Voutsa D, Licha T. Polar organic micropollutants in the coastal environment of different marine systems[J]. Marine Pollution Bulletin, 2014, 85(1): 50−59. doi: 10.1016/j.marpolbul.2014.06.024

    [58] 田永静, 武宇圣, 黄天寅, 等. 我国地表水和沉积物PPCPs 赋存与交互迁移影响因素[J]. 环境工程技术学报, 2023, 13(2): 585−596.

    Tian Y J, Wu Y S, Huang T Y, et al. Occurrence of PPCPs in surface water and sediment in China and influencing factors of interactive migration[J]. Journal of Environmental Engineering Technology, 2023, 13(2): 585−596.

    [59] 罗玉. 药品与个人护理用品(PPCPs)分析方法和优先控制筛选体系的建立及其应用研究[D]. 昆明: 昆明理工大学, 2014: 1-75.

    Luo Y. Studies on establishment and application of the analysis method and the filtering system of the priority control for pharmaceuticals and personal care products[D]. Kunming: Kunming University of Science and Technology, 2014: 1-75.

    [60]

    Coupe R H, Manning M A, Foreman W T, et al. Occurrence of pesticides in rain and air in urban and agricultural areas of Mississippi, April-September 1995[J]. Science of the Total Environment, 2000, 248: 227−240. doi: 10.1016/S0048-9697(99)00545-8

    [61] 徐聪. 典型河口水库痕量有机污染物赋存特征及其迁移转化模拟研究[D]. 上海: 上海交通大学, 2018: 1-125.

    Xu C. Occurrence characteristics and transport modeling of trace organic contaminants in typical estuary reservoirs[D]. Shanghai: Shanghai Jiao Tong University, 2018: 1-125.

    [62]

    Du J, Zhao H X, Liu S S, et al. Antibiotics in the coastal water of the South Yellow Sea in China: Occurrence, distribution and ecological risks[J]. Science of the Total Environment, 2017, 595: 521−527. doi: 10.1016/j.scitotenv.2017.03.281

    [63]

    Patel M, Kumar R, Kishor K, et al. Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods[J]. Chemical Reviews, 2019, 119(6): 3510−3673. doi: 10.1021/acs.chemrev.8b00299

    [64] 张楠. 双氯芬酸在水环境中光解行为的研究[D]. 新乡: 河南师范大学, 2012: 1-111.

    Zhang N. Study on photolytic behavior of diclofenac in aqueous environment[D]. Xinxiang: Henan Normal University, 2012: 1-111.

    [65] 高雪泉. 抗生素等有机物的水解速率常数及产物研究[D]. 大连: 大连理工大学, 2016: 1-60.

    Gao X Q. Study on hydrolysis rate constants and products of antibiotics and other organic compounds[D]. Dalian: Dalian University of Technology, 2016: 1-60.

    [66]

    Volmer D A, Hui J P. Study of erythromycin A decomposition products in aqueous solution by solid-phase microextraction/liquid chromatography/tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry: RCM, 1998, 12(3): 123−129. doi: 10.1002/(SICI)1097-0231(19980214)12:3<123::AID-RCM126>3.0.CO;2-4

    [67] 张国, 董文平, 刘晓晖, 等. 我国水环境中抗生素赋存、归趋及风险评估研究进展[J]. 环境化学, 2018, 37(7): 1491−1500.

    Zhang G, Dong W P, Liu X H, et al. Occurrence, fate and risk assessment of antibiotics in water environment of China[J]. Environmental Chemistry, 2018, 37(7): 1491−1500.

    [68]

    Paeson J, Cypers W, Busson R, et al. Isolation of decomposition products of tylosin using liquid chromatography[J]. Journal of Chromatography A, 1995, 699(1-2): 99−106. doi: 10.1016/0021-9673(94)01269-K

    [69] 李伟明, 鲍艳宇, 周启星. 四环素类抗生素降解途径及其主要降解产物研究进展[J]. 应用生态学报, 2012, 23(8): 2300−2308.

    Li W M, Bao Y Y, Zhou Q X. Degradation pathways and main degradation products of tetracycline antibiotics: Research progress[J]. Chinese Journal of Applied Ecology, 2012, 23(8): 2300−2308.

    [70]

    Białk-Bielińska A, Stolte S, Matzke M, et al. Hydrolysis of sulphonamides in aqueous solutions[J]. Journal of Hazardous Materials, 2012, 221: 264−274.

    [71] 黎展毅. 萘普生在水环境中的光化学行为及光催化降解研究[D]. 广州: 广东工业大学, 2018: 1-130.

    Li Z Y. Study on photochemical behavior and photocatalytic degradation of naproxen in aqueous environment[D]. Guangzhou: Guangdong University of Technology, 2018: 1-130.

    [72] 季跃飞. 光化学及光催化降解水溶液中药物及个人护理品阿替洛尔和2-苯基苯并咪唑-5-磺酸[D]. 南京: 南京大学, 2014: 1-111.

    Ji Y F. Photochemical and photocatalytic degradation of pharmaceutical and personal care products (PPCPs) in aqueous solution: A case study of atenolol and 2-phenylbenzimidazole-5-sulfonic acid[D]. Nanjing: Nanjing University, 2014: 1-111.

    [73] 安继斌. 水体中典型有机污染物的光催化降解动力学及降解机理研究[D]. 兰州: 兰州理工大学, 2011: 1-56.

    An J B. Photocatalytic degradation kinetics and mechanism of model organic pollutants in water environment[D]. Lanzhou: Lanzhou University of Technology, 2011: 1-56.

    [74] 黄建, 田森林, 李英杰. 药物和个人护理品的水环境光化学转化动力学研究[J]. 环境科学导刊, 2017, 36(201): 37−40,51.

    Huang J, Tian S L, Li Y J. Photochemical transformation kinetics of pharmaceuticals and personal care products in aquatic environment[J]. Environmental Science Survey, 2017, 36(201): 37−40,51.

    [75]

    Yuan Q L, Li Z P, Li L C, et al. Pharmaceuticals and personal care products transference-transformation in aquifer system[J]. Journal of Groundwater Science and Engineering, 2020(4): 358−365.

    [76] 廖伟, 安继斌, 聂湘平, 等. 三氯生光降解动力学过程及其光降解产物生物毒性评价[J]. 生态毒理学报, 2016, 11(2): 586−592.

    Liao W, An J B, Nie X P, et al. Photolysis of triclosan in aqueous solution and toxic assessment of its photolytical products to hydrobios[J]. Asian Journal of Ecotoxicology, 2016, 11(2): 586−592.

    [77] 李圆杏. 水中几种常见药物的光降解研究[D]. 上海: 上海海洋大学, 2015: 1-48.

    Li X Y. Photodegradation behavior of some selected pharmaceuticals in aqueous environment[D]. Shanghai: Shanghai Ocean University, 2015: 1-48.

    [78] 崔馨. 土霉素对生菜的植物毒性及其在金属离子溶液中的光解[D]. 大连: 大连理工大学, 2007: 1-61.

    Cui X. Phytotoxicity of oxytetracycline to lettuce and its photolysis in metal ion solutions[D]. Dalian: Dalian University of Technology, 2007: 1-61.

    [79] 谢正鑫, 陆光华, 孙丽莎, 等. 水环境中药物及个人护理品(PPCPS)的生物降解研究进展[J]. 水资源保护, 2013(4): 5−11.

    Xie Z X, Lu G H, Sun L S, et al. A review of biodegradation of pharmaceuticals and personal care products (PPCPs) in aqueous environment[J]. Water Resources Protection, 2013(4): 5−11.

    [80]

    Quintana J B, Weiss S, Reemtsma T. Pathways and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a membrane bioreactor[J]. Water Research, 2005, 39(12): 2654−2664. doi: 10.1016/j.watres.2005.04.068

    [81] 杨雪莹, 宿承璘, 高子晴. Paraburkholderia caffeinitolerans CF3咖啡因降解特性及降解途径[J]. 大连工业大学学报, 2019, 38(6): 408−411.

    Yang X Y, Su C L, Gao Z Q. The characteristics and pathway of caffeine degradation in paraburkholderia caffeinitolerans CF3[J]. Journal of Dalian Polytechnic University, 2019, 38(6): 408−411.

    [82] 王凯. 上海市地表水中典型PPCPs分布特征及归趋特性研究[D]. 上海: 东华大学, 2015: 1-80.

    Wang K. Study on the occurrence and behavior of pharmaceuticals and personal care products in surface water in Shanghai[D]. Shanghai: Donghua University, 2015: 1-80.

    [83] 张欣阳, 蔡婷静, 许旭萍. 一株高效四环素降解菌的分离鉴定及其降解性能研究[J]. 生物技术通报, 2015, 31(1): 173−180.

    Zhang X Y, Cai T J, Xu X P. Isolation and identification of a tetracycline-degrading bacterium and optimizing condition for tetracycline degradation[J]. Biotechnology Bulletin, 2015, 31(1): 173−180.

    [84]

    Liao X B, Li B X, Zou R S, et al. Antibiotic sulfanilamide biodegradation by acclimated microbial populations[J]. Applied Microbiology and Biotechnology, 2016, 100(5): 2439−2447. doi: 10.1007/s00253-015-7133-9

    [85] 叶桂洪. 强化人工湿地中微生物对典型PPCPs的降解研究[D]. 北京: 北京建筑大学, 2019: 1-83.

    Ye G H. The study on the degradation of typical PPCPs by strengthened microorganisms in constructed wetlands[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2019: 1-83.

    [86]

    del Carmen Molinna M, Goneález-beníten N, Simarro R, et al. Bioremediation techniques for naproxen and carbamazepine elimination. Toxicity evaluation test[J]. Chimica Oggi-Chemistry Today, 2016, 34(2): 52−55.

    [87] 潘祖亭, 颜承农, 王润涛. 金属离子催化β-内酰胺类抗生素水解的荧光光谱研究[J]. 分析试验室, 2001, 20(4): 1−6.

    Pan Z T, Yan C N, Wang R T. Study on catalyzed hydrolysis of β-lactams antibiotics by metal ions with spectrofluorimetry[J]. Chinese Journal of Analysis Laboratory, 2001, 20(4): 1−6.

    [88] 张海勤. 基于量子化学研究头孢拉定水解和直接光解行为[D]. 大连: 大连理工大学, 2015: 1-131.

    Zhang H Q. Quantum chemical investigation on hydrolysis and direct photolysis of cephradine[D]. Dalian: Dalian University of Technology, 2015: 1-131.

    [89]

    Serge C, Claudio M, Davide V. Photodegradation processes of the antiepileptic drug carbamazepine, relevant to estuarine waters[J]. Environmental Science & Technology, 2006, 40(19): 5977−5983.

    [90]

    Boreen A L, Arnold W A, Kristopher M N. Photodegradation of pharmaceuticals in the aquatic environment: A review[J]. Aquatic Sciences, 2003, 65(4): 320−341. doi: 10.1007/s00027-003-0672-7

    [91]

    Gros M, Cruz-Morato C, Marco-Urrea E, et al. Biodegradation of the X-ray contrast agent iopromide and the fluoroquinolone antibiotic ofloxacin by the white rot fungus trametes versicolor in hospital wastewaters and identification of degradation products[J]. Water Research, 2014, 60: 228−241. doi: 10.1016/j.watres.2014.04.042

    [92]

    Buchicchio A, Bianco G, Sofo A, et al. Biodegradation of carbamazepine and clarithromycin by trichoderma harzianum and pleurotus ostreatus investigated by liquid chromatography-high-resolution tandem mass spectrometry (FTICR MS-IRMPD)[J]. Science of the Total Environment, 2016, 557-558: 733−739. doi: 10.1016/j.scitotenv.2016.03.119

    [93]

    Narayanan M, El-sheekh M, Ma Y, et al. Current status of microbes involved in the degradation of pharmaceutical and personal care products (PPCPs) pollutants in the aquatic ecosystem[J]. Environmental Pollution, 2022, 300: 118922. doi: 10.1016/j.envpol.2022.118922

  • 其他相关附件

图(7)  /  表(3)
计量
  • 文章访问数:  389
  • HTML全文浏览量:  140
  • PDF下载量:  162
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-25
  • 修回日期:  2022-12-14
  • 录用日期:  2023-03-28
  • 网络出版日期:  2023-05-29
  • 刊出日期:  2023-08-30

目录

    /

    返回文章
    返回