Abstract:
BACKGROUND The high-efficient utilization of mineral resources is the leading research aspect of global mining development. Traditional optical and scanning electron microscopy have limitations in identifying the occurrence of elements in many low-grade ores and usually cannot provide quantitative mineralogy information, hindering the improvement of mineral processing of these ores. In recent years, automated mineral quantitative analysis systems based on scanning electron microscope and X-ray energy spectrometer have been increasingly applied to study complex ore formation and process mineralogy.
OBJECTIVES To enrich and expand the application of an automated quantitative mineral analysis system in process mineralogy.
METHODS The low-grade copper slag from a copper mine in China is analyzed using the TESCAN Integrated Mineral Analyzier (TIMA).
RESULTS The results show that the content of the copper element (0.08%) in the copper slag is very low, and it is mainly distributed in chalcopyrite, which accounts for 0.21%. Gangue minerals include quartz (47.6%), muscovite (10.10%), and calcite (9.88%). Chalcopyrite usually occurs in irregular granular form and shows complex associations with the above gangue minerals. The particle size is small and variable, and the particles of 10-76μm occupy a large proportion. The mass of chalcopyrite with a liberation degree below 30% accounts for 85% of the total mass, and the overall liberation degree is low, so further grinding is needed to improve chalcopyrite recovery.
CONCLUSIONS Research shows that for the ore samples with low content of useful minerals, small particle size, and complex mineralogical associations, the automated mineral analysis system, including TIMA, can provide rapid, quantitative, comprehensive, and accurate process mineralogy parameter information, which is conducive to optimizing the ore extraction and smelting process, and has an extensive application prospect in improving the comprehensive utilization of mineral resources.