• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

高效液相色谱-电感耦合等离子体质谱法分析研究西兰花中硒形态

李乾玉, 姚晓慧, 刘丽萍, 陈绍占, 刘洋, 何洪巨

李乾玉, 姚晓慧, 刘丽萍, 陈绍占, 刘洋, 何洪巨. 高效液相色谱-电感耦合等离子体质谱法分析研究西兰花中硒形态[J]. 岩矿测试, 2023, 42(3): 523-535. DOI: 10.15898/j.ykcs.202209190176
引用本文: 李乾玉, 姚晓慧, 刘丽萍, 陈绍占, 刘洋, 何洪巨. 高效液相色谱-电感耦合等离子体质谱法分析研究西兰花中硒形态[J]. 岩矿测试, 2023, 42(3): 523-535. DOI: 10.15898/j.ykcs.202209190176
LI Qianyu, YAO Xiaohui, LIU Liping, CHEN Shaozhan, LIU Yang, HE Hongju. Selenium Speciation in Broccoli by High Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2023, 42(3): 523-535. DOI: 10.15898/j.ykcs.202209190176
Citation: LI Qianyu, YAO Xiaohui, LIU Liping, CHEN Shaozhan, LIU Yang, HE Hongju. Selenium Speciation in Broccoli by High Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2023, 42(3): 523-535. DOI: 10.15898/j.ykcs.202209190176

高效液相色谱-电感耦合等离子体质谱法分析研究西兰花中硒形态

基金项目: 

中国富硒产业研究院富硒专项“236”计划 2019ZKG-4-02

现代农业产业技术体系北京市创新团队建设专项 BAIC01-2022

详细信息
    作者简介:

    李乾玉,硕士研究生,主要研究方向是与营养相关的元素分析。E-mail: liqianyu0429@163.com

    通讯作者:

    刘丽萍,教授,主要从事与健康相关的有害物质及营养成分分析研究。E-mail: llp9312@163.com

  • 中图分类号: P618.76;O657.63

Selenium Speciation in Broccoli by High Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry

  • 摘要:

    硒是一种典型的“双功能”元素,摄入不足或摄入过量均会对人体健康产生不利影响,硒的生物活性不仅取决于硒含量,还与硒的化学形态密切相关,因此对食品中不同硒形态进行分析研究具有重要的意义。本文采用高效液相色谱-电感耦合等离子体质谱(HPLC-ICP/MS)联用技术分析研究了市售西兰花中硒酸根[Se(Ⅵ)]、亚硒酸根[Se(Ⅳ)]、硒代胱氨酸(SeCys2)、甲基硒代半胱氨酸(MeSeCys)、硒代蛋氨酸(SeMet)。以蛋白酶XIV和Tris-HCl缓冲溶液超声提取西兰花中硒形态,采用C18反相色谱柱为分析柱,10mmol/L柠檬酸和5mmol/L己烷磺酸钠(pH=4.0,含1%甲醇)为流动相,等度洗脱,8min内可实现硒形态的有效分离测定,方法线性范围为0.3~100.0μg/L,线性相关系数(r)均大于0.999,Se(Ⅵ)、Se(Ⅳ)、MeSeCys、SeMet的检出限在1.2~6.0μg/kg(以Se计)范围内。对西兰花样品进行低、中、高三个浓度水平的加标回收试验,加标回收率为81.9%~105.3%,相对标准偏差(RSD)均小于5%。采用本方法分析欧盟有证标准物质——小麦粉(ERM® BC210a)中SeMet的测定值在其标准值范围内。实验结果表明建立的硒形态分析方法适用于西兰花中Se(Ⅵ)、Se(Ⅳ)、MeSeCys、SeMet的测定。检出的11个不同地区市售西兰花样品中硒形态主要为MeSeCys,含量在0.004~0.043mg/kg(以Se计)之间。对方法研究过程中发现的SeCys2稳定性差和不同类型西兰花中Se(Ⅳ)加标回收率差异较大的问题进行分析探讨,通过改变蛋白酶XIV的用量考察了SeCys2的稳定性,结合对西兰花样品基质的分析研究,发现SeCys2稳定性与蛋白酶XIV含量和西兰花基质有关;根据对3种不同类型的西兰花样品中Se(Ⅳ)加标回收试验结果及相关文献报道,推测样品中存在的大量酚类物质会影响Se(Ⅳ)的分析测定。

    要点

    (1) 采用蛋白酶XIV和Tris-HCl缓冲溶液超声提取西兰花中硒形态。

    (2) 采用C18反相色谱柱为分析柱,柠檬酸和己烷磺酸钠为流动相,HPLC-ICP/MS分析西兰花中硒形态。

    (3) 西兰花样品中硒形态主要为甲基硒代半胱氨酸(MeSeCys)。

    (4) SeCys2稳定性与蛋白酶XIV含量和西兰花基质有关。

    HIGHLIGHTS

    (1) Selenium speciation in broccoli was extracted by proteinase XIV and Tris-HCl buffer solution.

    (2) HPLC-ICP-MS equipped with ZORBAX SB-Aq C18 reversed-phase column with 10mmol/L citric acid and 5mmol/L sodium hexane-sulfonate as mobile phase was applied to analyze the selenium speciation in broccoli.

    (3) Methylselenocysteine is the main selenium speciation in broccoli.

    (4) The stability of the SeCys2 standard solution is influenced by the proteinase XIV content and the sample matrix.

  • 碲和硒是稀散元素,在高新科技领域具有重要应用,已被中国和欧美国家列为战略性关键矿产资源1-2。一直以来全球碲、硒矿产资源主要采自斑岩-矽卡岩铜金矿床,如中国广东大宝山铜矿和江西城门山铜矿3-4,研究斑岩矿床中碲、硒的产出情况对国家资源战略保障具有重要意义。云南普朗斑岩型铜金矿床位于三江特提斯成矿域义敦岛弧南部,属于超大型斑岩矿床,已探明铜资源储量4.31Mt,金资源量113t5。矿区内出露的地层为中三叠统尼汝组和上三叠统图姆沟组,侵入岩为普朗复式岩体,由石英闪长玢岩(~216Ma)、石英二长斑岩(~215Ma)和花岗闪长斑岩(~206Ma)组成,岩体出露总面积约为11km2图1)。前人对普朗矿床的地质特征、成岩成矿时代、成矿物质来源、成矿流体性质等作了大量工作,但对矿床中碲硒的含量和赋存状态等研究还较为薄弱。本文报道了普朗矿床中产出的碲化物和硒化物,以期为斑岩矿床中碲硒的勘查和综合利用提供资料。

    图  1  普朗斑岩铜金矿床地质简图(据Leng等5修改)
    Figure  1.  Geological map of the Pulang porphyry Cu-Au deposit (Modified from Leng, et al 5 ).

    本次研究对象主要为普朗矿床中的铜精矿和钼精矿样品,测试分析均在东华理工大学核资源与环境国家重点实验室完成。样品的矿相学观察利用ZEISS Axio Scope A1光学显微镜及ZEISS Sigma 300场发射扫描电镜完成,扫描电镜的加速电压为20kV,发射电流为10μA6。矿物成分利用JXA-8530F Plus型电子探针分析完成,实验设定加速电压为15kV,电流为20nA,探针直径为1μm,使用ZAF方法对X射线强度进行校正。分析标样选择砷化镓(As),黄铜矿(Cu),黄铁矿(Fe、S),自然银(Ag),碲铋矿(Te、Bi),辉钼矿(Mo),自然铅(Pb),自然锑(Sb),硒化镉(Se),自然金(Au),自然铂(Pt),自然钯(Pd)。测试主量元素的精确度和准确度均小于2%。

    普朗铜金矿床中的碲和硒含量高,并形成大量碲化物、硒化物和富硒矿物。矿床精矿中的碲和硒含量分别达74.3×10−6和270×10−6。碲在钾化带中的含量为0.3×10−6~0.43×10−6,较绢英岩化带中的高(0.02×10−6~0.12×10−6),由矿体中心向外,碲品位逐渐降低7。硒在钾化带和绢英岩化带的含量无明显差别,分别为1.49×10−6~2.44×10−6和1.04×10−6~3.00×10−6。矿石中的碲与金呈正相关关系,硒与银呈正相关关系。普朗铜矿床中,碲和硒主要以碲化物、硒化物和富硒矿物形式存在,形成辉碲铋矿、碲钯矿、硒银矿和富硒方铅矿等(图2)。辉碲铋矿是普朗含量最多的碲化物,反射光下为白色略带淡蓝色,矿物成分较均一,Bi含量为58.36%~61.24%,Te含量为31.03%~34.50%,S含量为3.76%~4.54%(图2e)。普朗辉碲铋矿中含有较高的Se(0.77%~3.63%)。辉碲铋矿的化学式为Bi2.02~2.08(Te1.74~1.93S0.85~1.01Se0.08~0.332.90~2.98。碲钯矿属于独立铂族元素矿物,在自然界很少见,中国斑岩矿床中仅江西德兴有报道8,在全球其他斑岩矿床中非常少见。普朗碲钯矿粒径为1~5μm,反射光下呈亮白色(图2a)。碲钯矿中Pd和Pt可以类质同象取代,因此含量变化较大,Pd含量为16.26%~25.69%,Pt含量为4.82%~17.66%,Te含量为61.25%~66.76%(图2f)。碲钯矿化学式为(Pd0.64~0.98Pt0.09~0.370.98~1.03Te1.97~1.02。硒银矿是普朗含量最多的硒化物,反射光下为白色带微蓝绿色(图2c)。硒银矿中普遍含S,含量为0.55%~2.65%,Ag含量普遍偏低,为70.22%~72.77%,Se含量为24.09%~27.31%(图2g)。硒银矿化学式为Ag1.89~1.98(Se0.87~1.01S0.05~0.241.02~1.11。富硒方铅矿属于PbS1-xSex矿物,其中x值可在0~1之间连续变化。普朗富硒方铅矿S和Se的含量变化大,分别为4.01%~12.52%和1.85%~19.13%,Pb含量为73.91%~82.52%,大多数样品中含有Ag,最高含量达1.61%。普朗富硒方铅矿形成了较完整的PbS-PbSe固溶体系列(图2h),化学式为Pb0.98~1.01(S0.35~0.97Se0.07~0.670.99~1.02

    图  2  碲硒矿物显微照片及矿物元素含量三元图
    a—碲钯矿反射光镜下照片; b—碲钯矿BSE照片; c—硒银矿反射光镜下照片; d—硒银矿BSE照片; e— Bi-Te-S体系三元图; f— Te-Pd-Pt体系三元图; g—Ag-Se-S体系三元图; h—Pb-Se-S体系三元图。Mol—辉钼矿; Mrk—碲钯矿; Nau—硒银矿; Py—黄铁矿。
    Figure  2.  Photomicrographs of tellurium and selenium minerals and ternary plots of element contents. a—Reflected light photomicrograph of merenskyite; b—BSE image of merenskyite; c—Reflected light photomicrograph of naumannite; d—BSE image of naumannite; e—Ternary plot of Bi-Te-S system; f—Ternary plot of Te-Pd-Pt system; g—Ternary plot of Ag-Se-S system; h—Ternary plot of Pb-Se-S system. Mol=Molybdenite, Mrk=Merenskyite, Nau=Naumannite, Py=Pyrite.

    矿床中的碲和硒可以指示物质来源和成矿过程。碲和硒具有亲硫特点,碲会部分进入硫化物晶格,但更易形成碲的独立矿物;硒属于强亲硫元素,在较高温的条件下易于进入硫化物晶格,在中低温条件下,硫含量较低时,可形成硒的独立矿物。洋壳中的铁锰结壳、页岩及浮游沉积物等是自然界中碲和硒的重要储库9,因此在洋陆俯冲过程中,大陆岩石圈地幔和洋壳的部分熔融会形成富碲、硒的岩浆10-11。碲和硒在硫化物熔体中的相容性很高(D硫化物/硅酸盐>600),碲倾向于存在液相硫化物(SL)中,而硒则更易进入单硫化物固熔体(MSS)(DTe SL/硅酸盐/DSe SL/硅酸盐为5~9,DTe MSS/硅酸盐/DSe MSS/硅酸盐为0.5~0.8)12。当富碲、硒的岩浆到达下地壳,会结晶分异形成富Co、Ni的硅酸盐矿物,碲、硒存在硫化物熔体中继续向上运移;当岩浆到达中地壳,温度低于900℃时,硫化物熔体与Te-Se熔体发生相分离;当岩浆到达上地壳,侵位形成班岩体及Cu矿床,Ag-Pt-Pd则高度集中在富Te-Se熔体中,并最终形成贵金属矿物13。普朗铜金矿床中的碲和硒可能与区内晚三叠世的俯冲造山密切相关,富碲和硒的岩浆也促进了铂族元素的富集成矿。

    普朗斑岩铜金矿床中碲化物和硒化物的发现,对资源的综合利用及矿床成因研究具有重要意义。矿床中碲和硒的资源量规模大,大部分以独立矿物形式存在,且常与Au-Ag-PGE共生,具有较好的经济回收利用价值。碲化物和硒化物的产出也为成矿物质来源及岩浆演化过程提供了新的研究方向。

  • 图  1   五种形态硒混合标液在不同色谱柱下的色谱图(10μg/L)

    (a)Hamilton PRP-X100色谱柱;(b)ZORBAX SB-Aq C18色谱柱。

    Figure  1.   Chromatograms of 5 forms of selenium mixed standard solution under different columns (10μg/L).

    (a) Hamilton PRP-X100 column; (b) ZORBAX SB-Aq C18 column.

    图  2   不同浓度的蛋白酶XIV对西兰花样品中5种硒形态的提取效果

    Figure  2.   Effect of different concentrations of proteinase XIV on the extraction of five selenium speciation from broccoli samples. As can be seen from the graph, the content of the five selenium speciation increases and then decreases with the increase of concentration of proteinase XIV. The best extraction efficiency was reached when the concentration of proteinase XIV was 6mg/mL.

    图  3   不同体积的缓冲溶液对西兰花样品中5种硒形态提取效果的影响

    Figure  3.   Effects of different volumes of buffer solution on the extraction of five selenium speciation from broccoli samples. The graph shows that the best extraction results were obtained when the buffer solution was added at 12mL.

    图  4   不同浓度蛋白酶XIV对SeCys2标准溶液稳定性的影响

    (a) 蛋白酶XIV浓度为1mg/mL;(b)蛋白酶XIV浓度为2mg/mL;(c)蛋白酶XIV浓度为4mg/mL;(d)蛋白酶XIV浓度为6mg/mL。

    Figure  4.   Effect of different concentrations of proteinase XIV on stability of SeCys2 standard solutions. The concentration of proteinase XIV is: (a) 1mg/mL; (b) 2mg/mL; (c) 4mg/mL; (d) 6mg/mL.

    图  5   样品色谱图

    Figure  5.   Chromatograms of samples. The chromatogram shows that the predominant speciation of selenium in the sample is methylselenocysteine.

    表  1   不同提取剂对西兰花样品中硒形态提取效果的影响

    Table  1   Extraction results of selenium speciation in broccoli sample using different extractants. As shown in the table, proteinase XIV is the best to use for extracting.

    提取剂 Se(Ⅵ)含量(mg/kg) Se(Ⅳ)含量(mg/kg) SeCys2含量(mg/kg) MeSeCys含量(mg/kg) SeMet含量(mg/kg) 5种硒形态含量之和(mg/kg)
    超纯水 0.029 0.020 0.019 0.136 0.051 0.255
    100mmol/L Tris-HCl缓冲液0.025 0.021 0.017 0.124 0.012 0.199
    蛋白酶XIV 0.026 0.018 0.042 0.140 0.300 0.526
    复合蛋白酶 0.028 0.015 0.000 0.108 0.244 0.395
    下载: 导出CSV

    表  2   方法线性方程、相关系数和检出限

    Table  2   Linear equations, correlation coefficients, and detection limit of the method.

    硒形态 线性范围(μg/L) 线性方程 相关系数(r) 定量限(μg/kg) 方法检出限(μg/kg)
    Se(Ⅵ) 0.9~100.0 y=2243.1x-650.8 0.9999 10.8 3.6
    Se(Ⅳ) 0.6~100.0 y=2165.7x-412.7 0.9999 7.2 2.4
    SeCys2* 1.0~100.0 y=2183.6x-765.0 1.0000 - -
    MeSeCys 0.3~100.0 y=2385.0x-1544.4 0.9999 3.6 1.2
    SeMet 1.5~100.0 y=2169.5x-607.9 1.0000 18.0 6.0
    注:“*”表示因SeCys2的加标回收率低于80%无法准确定量,故未计算方法检出限。
    Note: “*” indicates that the detection limit of the method was not calculated because the spiked recovery of SeCys2 was less than 80% and could not be accurately quantified.
    下载: 导出CSV

    表  3   西兰花精密度及加标回收率测定结果(n=6)

    Table  3   Determination results of precision and recovery rate of broccoli (n=6).

    硒形态 本底值(mg/kg) 加标量(mg/kg) 6次测定值(mg/kg) 加标回收率(%) RSD(%)
    0.12 0.123 0.126 0.123 0.125 0.126 0.124 102.2~105.3 1.0
    Se(Ⅵ) ND 0.36 0.366 0.367 0.360 0.366 0.369 0.366 100.0~102.1 1.6
    0.60 0.609 0.620 0.594 0.608 0.614 0.604 99.0~103.3 1.3
    0.12 0.099 0.100 0.099 0.100 0.100 0.100 82.7~85.2 1.0
    Se(Ⅳ) ND 0.36 0.305 0.295 0.296 0.295 0.296 0.301 81.9~85.6 1.7
    0.60 0.501 0.505 0.502 0.500 0.505 0.497 82.8~84.1 0.7
    0.12 0.009 0.010 0.010 0.010 0.011 0.010 7.91~8.77 4.4
    SeCys2 ND 0.36 0.036 0.034 0.034 0.034 0.034 0.036 9.47~9.97 2.0
    0.60 0.060 0.061 0.058 0.063 0.063 0.062 9.74~10.5 2.5
    0.12 0.107 0.106 0.107 0.108 0.108 0.106 88.1~89.7 0.7
    MeSeCys ND 0.36 0.323 0.311 0.313 0.315 0.317 0.317 86.4~89.6 1.4
    0.60 0.544 0.542 0.544 0.554 0.553 0.554 90.4~92.4 1.3
    0.12 0.126 0.124 0.125 0.125 0.127 0.127 98.4~102.9 0.7
    SeMet ND 0.36 0.350 0.354 0.349 0.350 0.353 0.353 97.0~98.2 0.8
    0.60 0.591 0.595 0.595 0.599 0.617 0.605 98.4~102.9 1.9
    下载: 导出CSV

    表  4   三个不同的西兰花中Se(Ⅳ)加标回收实验结果(n=3)

    Table  4   Analytical results of spiked recovery test of Se(Ⅳ) for three broccoli samples (n=3).

    样品名称 本底浓度(mg/kg) 加标量(mg/kg) 3次测定加标回收率(%) 平均加标回收率(%) H P
    西兰花(a) ND 0.11 81.3 81.0 81.1 81.1
    西兰花粉末(b) ND 0.40 68.1 68.4 72.1 69.5 7.20 0.027*
    西兰花粉末(c) 0.008 0.40 1.55 1.53 1.53 1.53
    注:ND表示低于检出限;“*”:P值小于0.05为差异具有统计学意义。
    Note: ND indicates below detection limit; “*” indicates that p-value of less than 0.05 is considered a statistically significant difference.
    下载: 导出CSV
  • [1] 李洁, 祝振洲, 程水源, 等. 硒形态检测方法在富硒食品标准中的应用与进展[J]. 食品科技, 2021, 46(12): 8-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SSPJ202112002.htm

    Li J, Zhu Z Z, Cheng S Y, et al. Recent insights on application of selenium forms detection in selenium enriched food standards[J]. Food Science and Technology, 2021, 46(12): 8-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SSPJ202112002.htm

    [2] 余侃, 肖秋水, 黄思思, 等. 生物有机硒对不同水稻品种主要性状、重金属含量及硒吸收的影响[J]. 南方农业学报, 2021, 52(5): 1206-1214. https://www.cnki.com.cn/Article/CJFDTOTAL-GXNY202105010.htm

    Yu K, Xiao Q S, Huang S S, et al. Effects of bioorganic selenium on main characters, heavy metal content and selenium absorption of different rice varieties[J]. Journal of Southern Agriculture, 2021, 52(5): 1206-1214. https://www.cnki.com.cn/Article/CJFDTOTAL-GXNY202105010.htm

    [3]

    Hadrup N, Ravn-Haren G. Acute human toxicity and mortality after selenium ingestion: A review[J]. Journal of Trace Elements in Medicine and Biology, 2020, 58(C): 126435.

    [4] 朱帅, 沈亚婷, 贾静, 等. 液相色谱-高分辨质谱法在中国东北地区农作物有机硒形态分析中的应用[J]. 岩矿测试, 2021, 40(2): 262-272. doi: 10.15898/j.cnki.11-2131/td.202005130070

    Zhu S, Shen Y T, Jia J, et al. Determination of organic selenium compounds in crops by liquid chromatography-quadrupole/electrostatic field orbitrap high-resolution mass spectrometry[J]. Rock and Mineral Analysis, 2021, 40(2): 262-272. doi: 10.15898/j.cnki.11-2131/td.202005130070

    [5] 何涛, 董依博, 王长平, 等. 有机硒与无机硒对蛋鸡生产性能及蛋硒含量的Meta分析[J]. 动物营养学报, 2022, 34(4): 2654-2666. doi: 10.3969/j.issn.1006-267x.2022.04.059

    He T, Dong Y B, Wang C P, et al. Meta-analysis of organic selenium and inorganic selenium on performance of laying hens and selenium content in eggs[J]. Chinese Journal of Animal Nutrition, 2022, 34(4): 2654-2666. doi: 10.3969/j.issn.1006-267x.2022.04.059

    [6] 赵谋明, 郑泽洋, 刘小玲. 食品中硒的总量及化学形态分析研究进展[J]. 南方农业学报, 2019, 50(12): 2787-2796. https://www.cnki.com.cn/Article/CJFDTOTAL-GXNY201912023.htm

    Zhao M M, Zheng Z Y, Liu X L. Total content determination and chemical speciation analysis of selenium in food: A review[J]. Journal of Southern Agriculture, 2019, 50(12): 2787-2796. https://www.cnki.com.cn/Article/CJFDTOTAL-GXNY201912023.htm

    [7] 朱玲玲, 胡花丽, 罗淑芬, 等. 褪黑素调控呼吸代谢及抗氧化活性延缓采后青花菜衰老[J]. 农业工程学报, 2018, 34(3): 300-308. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201803040.htm

    Zhu L L, Hu H L, Luo S F, et al. Melatonin delaying senescence of postharvest broccoli by regulating respiratory metabolism and antioxidant activity[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(3): 300-308. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201803040.htm

    [8]

    Radünz M, Hackbart H C D, Bona N P, et al. Glucosino-lates and phenolic compounds rich broccoli extract: Encapsulation by electrospraying and antitumor activity against glial tumor cells[J]. Colloids and Surfaces B: Biointerfaces, 2020, 192: 111020. doi: 10.1016/j.colsurfb.2020.111020

    [9] 刘文营, 李享, 成晓瑜. 添加西兰花种子水提物改善腊肉色泽和风味提高抗氧化性[J]. 农业工程学报, 2018, 34(21): 288-294. doi: 10.11975/j.issn.1002-6819.2018.21.036

    Liu W Y, Li X, Cheng X Y. Addition of Brassica oleracea L. seed water extract improving colour, flavour and anti-oxidation of cantonese cured meat[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(21): 288-294. doi: 10.11975/j.issn.1002-6819.2018.21.036

    [10] 房艳, 王贝, 高俊海, 等. 高效液相色谱-氢化物发生原子荧光光谱法测定食品中多形态硒含量[J]. 食品科学技术学报, 2020, 38(6): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-BQGB202006009.htm

    Fang Y, Wang B, Gao J H, et al. Determination of content of polymorphic selenium in foods by HPLC-HG-AFS[J]. Journal of Food Science and Technology, 2020, 38(6): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-BQGB202006009.htm

    [11]

    Theunis M, Naessens T, Peeters L, et al. Optimization and validation of analytical RP-HPLC methods for the quantification of glucosinolates and isothiocyanates in Nasturtium officinale R. Br and Brassica oleracea[J]. LWT-Food Science and Technology, 2022, 165: 113668. doi: 10.1016/j.lwt.2022.113668

    [12] 陆晓奇, 王健, 朱元元, 等. 典型富硒植物中硒形态和生物可给性研究[J]. 土壤, 2018, 50(6): 1229-1234. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201806028.htm

    Lu X Q, Wang J, Zhu Y Y, et al. Study on Se speciation and bioaccessibility of typical Se-enriched plants[J]. Soils, 2018, 50(6): 1229-1234. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201806028.htm

    [13] 刘为, 尹金晶, 吴慕慈, 等. 富硒农产品中硒代氨基酸形态及其在不同蛋白组分中的分布[J]. 食品与机械, 2022, 38(6): 45-51, 190. https://www.cnki.com.cn/Article/CJFDTOTAL-SPJX202206008.htm

    Liu W, Yin J J, Wu M C, et al. Selenium amino acids speciation in selenium-enriched agricultural products and their distribution in different protein components[J]. Food & Machinery, 2022, 38(6): 45-51, 190. https://www.cnki.com.cn/Article/CJFDTOTAL-SPJX202206008.htm

    [14] 陈清清, 张泽洲, 袁林喜, 等. 富硒西兰花中硒的赋存形态及其抗氧化性[J]. 宜春学院学报, 2020, 42(12): 90-95. https://www.cnki.com.cn/Article/CJFDTOTAL-YCSB202012021.htm

    Chen Q Q, Zhang Z Z, Yuan L X, et al. Study on the distribution and combined speciation of selenium in Se-enriched broccoli and their antioxidant activity[J]. Journal of Yichun University, 2020, 42(12): 90-95. https://www.cnki.com.cn/Article/CJFDTOTAL-YCSB202012021.htm

    [15]

    Karas K, ZiołaFrankowska A, Frankowski M. New me-thod for simultaneous arsenic and selenium speciation analysis in seafood and onion samples[J]. Molecules, 2021, 26(20): 6233. doi: 10.3390/molecules26206233

    [16]

    Sele V, Ornsrud R, Sloth J J, et al. Selenium and sele-nium species in feeds and muscle tissue of Atlantic salmon[J]. Journal of Trace Elements in Medicine and Biology, 2018, 47: 124-133.

    [17] 张浩, 莫海珍, 周全霞, 等. 气相色谱串联质谱法测定加工工艺对毛豆硒蛋氨酸含量的影响[J]. 食品科学, 2010, 31(14): 216-220. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201014051.htm

    Zhang H, Mo H Z, Zhou Q X, et al. Effects of processing and storage conditions on selenomethionine content in edamame determined by gas chromatography-mass spectrometry[J]. Food Science, 2010, 31(14): 216-220. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201014051.htm

    [18] 冯金素, 曹玉嫔, 莫桂春, 等. g-C3N4富集结合毛细管电泳与电感耦合等离子体质谱联用分析西瓜中硒形态[J]. 色谱, 2020, 38(10): 1224-1231. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ202010013.htm

    Feng J S, Cao Y P, Mo G C, et al. Selenium speciation in watermelon by g-C3N4 enrichment combined with capillary electrophoresis-inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Chromatography, 2020, 38(10): 1224-1231. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZZ202010013.htm

    [19] 刘崴, 胡俊栋, 杨红霞, 等. 电感耦合等离子体质谱联用技术在元素形态分析中的应用进展[J]. 岩矿测试, 2021, 40(3): 327-339. doi: 10.15898/j.cnki.11-2131/td.202006110089

    Liu W, Hu J D, Yang H X, et al. Research progress on elemental speciation analysis by inductively coupled plasma-mass spectrometry hyphenated techniques[J]. Rock and Mineral Analysis, 2021, 40(3): 327-339. doi: 10.15898/j.cnki.11-2131/td.202006110089

    [20] 秦玉燕, 时鹏涛, 王运儒, 等. 高效液相色谱-氢化物发生-原子荧光光谱法测定富硒食品中5种形态硒的含量[J]. 理化检验(化学分册), 2018, 54(5): 566-572. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201805021.htm

    Qin Y Y, Shi P T, Wang Y R, et al. HPLC-HG-AFS determination of 5 species of selenium in foodstuffs rich in selenium[J]. Physical Testing and Chemical Analysis Part B (Chemical Analysis), 2018, 54(5): 566-572. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201805021.htm

    [21]

    Pedrero Z, Madrid Y, Camara C. Selenium species bioacce-ssibility in enriched radish (Raphanus sativus): A potential dietary source of selenium[J]. Journal of Agricultural and Food Chemistry, 2006, 54(6): 2412-2417.

    [22] 秦冲, 施畅, 万秋月, 等. 高效液相色谱-电感耦合等离子体质谱联用检测土壤中的无机硒形态[J]. 岩矿测试, 2018, 37(6): 664-670. doi: 10.15898/j.cnki.11-2131/td.201803200024

    Qin C, Shi C, Wan Q Y, et al. Speciation analysis of inorganic selenium in soil by high performance liquid chromatography-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2018, 37(6): 664-670. doi: 10.15898/j.cnki.11-2131/td.201803200024

    [23] 陈绍占, 唐德剑, 李晓玉, 等. 谷类食品中硒形态超声酶提取-高效液相色谱-电感耦合等离子体质谱法测定[J]. 中国公共卫生, 2020, 36(1): 130-136. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGW202001033.htm

    Chen S Z, Tang D J, Li X Y, et al. Determination of selenium species in cereal food with ultrasonic enzyme extraction and high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Chinese Journal of Public Health, 2020, 36(1): 130-136. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGW202001033.htm

    [24] 刘源, 陈绍占, 陈镇, 等. 高效液相色谱-电感耦合等离子体质谱法测定人尿中硒形态[J]. 分析测试学报, 2020, 39(2): 273-277. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST202002018.htm

    Liu Y, Chen S Z, Chen Z, et al. Determination of selenium speciations in human urine by high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Journal of Instrumental Analysis, 2020, 39(2): 273-277. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST202002018.htm

    [25] 陈绍占, 张妮娜, 刘丽萍. 液相色谱-电感耦合等离子体质谱联用技术分析水中5种硒形态[J]. 中国卫生检验杂志, 2021, 31(9): 1048-1051. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWJZ202109007.htm

    Chen S Z, Zhang N N, Liu L P. Analysis of 5 selenium forms in water by liquid chromatography-inductively coupled plasma mass spectrometry[J]. Chinese Journal of Health Laboratory Technology, 2021, 31(9): 1048-1051. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWJZ202109007.htm

    [26] 张珂, 张钦龙, 张蜀, 等. 高效液相色谱-电感耦合等离子体串联质谱法测定富硒大蒜中硒形态[J]. 中国食品卫生杂志, 2021, 33(5): 577-582. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSPZ202105013.htm

    Zhang K, Zhang Q L, Zhang S, et al. Determination of selenium species in Se-enriched garlic with high performance liquid chromatography-inductively coupled plasma tandem mass spectrometry[J]. Chinese Journal of Food Hygiene, 2021, 33(5): 577-582. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSPZ202105013.htm

    [27] 姚晓慧, 陈绍占, 刘丽萍, 等. 高效液相色谱-电感耦合等离子体质谱法分析人血清中的硒形态[J]. 质谱学报, 2022, 43(3): 381-388. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB202203012.htm

    Yao X H, Chen S Z, Liu L P, et al. Analysis of selenium species in human serum by high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2022, 43(3): 381-388. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB202203012.htm

    [28] 林樾, 陈尚卫, 虞锐鹏, 等. 高效液相色谱-电感耦合等离子体质谱法测定富硒碎米荠中的硒形态[J]. 分析科学学报, 2021, 37(5): 637-642. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX202105011.htm

    Lin Y, Chen S W, Yu R P, et al. Determination of selenium speciations in selenium-enriched cardamine violifolia by high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Journal of Analytical Science, 2021, 37(5): 637-642. https://www.cnki.com.cn/Article/CJFDTOTAL-FXKX202105011.htm

    [29] 姚真真, 哈雪姣, 马智宏, 等. 高效液相色谱-电感耦合等离子体质谱法检测富硒苹果中5种硒形态[J]. 食品安全质量检测学报, 2018, 9(3): 475-480. https://www.cnki.com.cn/Article/CJFDTOTAL-SPAJ201803004.htm

    Yao Z Z, Ha X J, Ma Z H, et al. Determination of 5 kinds of selenium species in selenium-enriched apples by high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Journal of Food Safety and Quality, 2018, 9(3): 475-480. https://www.cnki.com.cn/Article/CJFDTOTAL-SPAJ201803004.htm

    [30] 邵鹏威, 路国慧, 郑宇, 等. 高效液相色谱-电感耦合等离子体质谱测定大米粉中的硒形态[J]. 环境化学, 2020, 39(5): 1434-1441. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202005031.htm

    Shao P W, Lu G H, Zheng Y, et al. Determination of selenium species in rice flour using high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Environmental Chemistry, 2020, 39(5): 1434-1441. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202005031.htm

    [31] 林樾. 堇叶碎米荠硒形态分析及其富硒多肽对肝癌细胞作用研究[D]. 无锡: 江南大学, 2021.

    Lin Y. Speciation analysis of selenium in cardamine violifolia and its selenium enriched peptides activity in hepatoma cells[D]. Wuxi: Southern Yangtze University, 2021.

    [32] 赵秋香, 冯超, 莫书伟, 等. 形态硒的研究过程中硒代胱氨酸的稳定性[J]. 光谱实验室, 2011, 28(4): 2074-2078. https://www.cnki.com.cn/Article/CJFDTOTAL-GPSS201104126.htm

    Zhao Q X, Feng C, Mo S W. Stability of selenocystine during the research on process of selenium species[J]. Chinese Journal of Spectroscopy Laboratory, 2011, 28(4): 2074-2078. https://www.cnki.com.cn/Article/CJFDTOTAL-GPSS201104126.htm

    [33] 赵秋香, 冯超, 陈福强. 形态硒的研究过程中硒代蛋氨酸的稳定性研究[J]. 广州化工, 2011, 39(8): 66-68, 119. https://www.cnki.com.cn/Article/CJFDTOTAL-GZHA201108028.htm

    Zhao Q X, Feng C, Chen F Q. Stability of selenomethionine during the extraction of selenium species[J]. Guanzhou Chemical Industry, 2011, 39(8): 66-68, 119. https://www.cnki.com.cn/Article/CJFDTOTAL-GZHA201108028.htm

    [34]

    Cuderman P, Stibilj V. Stability of Se species in plant extracts rich in phenolic substances[J]. Analytical and Bioanalytical Chemistry, 2010, 396(4): 1433-1439.

    [35]

    Tian M, Xu X Y, Liu Y L, et al. Effect of Se treatment on glucosinolate metabolism and health-promoting compounds in the broccoli sprouts of three cultivars[J]. Food Chemistry, 2016, 190: 372-380.

    [36]

    Gui J Y, Rao S, Guo Y Y, et al. Comparative study of the effects of selenium yeast and sodium selenite on selenium content and nutrient quality in broccoli florets (Brassica oleracea L. var. italica)[J]. Journal of the Science of Food and Agriculture, 2021, 102(4): 1707-1708.

    [37] 饶申, 程华, 刘浩东, 等. 硒对十字花科作物营养品质的影响综述[J]. 食品科技, 2022, 47(3): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SSPJ202203005.htm

    Rao S, Cheng H, Liu H D, et al. Effects of selenium on the nutrient quality in cruciferous crops: A review[J]. Food Science and Technology, 2022, 47(3): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SSPJ202203005.htm

    [38]

    Lima L W, Pilon-Smits E A H, Schiavon M. Mechanisms of selenium hyperaccumulation in plants: A survey of molecular, biochemical and ecological cues[J]. Biochimica et Biophysica Acta, 2018, 1862(11): 2343-2353.

  • 期刊类型引用(8)

    1. 李文辉,张晶晶,倪香艳,魏紫嫣,王乐宜,赵雅妮,孙志文,方芳. HPLC-ICP/MS用于测定鸡蛋中5种硒形态含量研究. 中国家禽. 2025(02): 98-104 . 百度学术
    2. 白旭琴,贾春云,李文栓,李亚敏,刘长风,韩秀云,褚美函,巩宗强,李晓军. 叶面喷施硒肥对紫花苜蓿富硒降镉效果的影响. 草业学报. 2024(01): 50-60 . 百度学术
    3. 杨希,李靖,陈菊,张晓丽,王永鑫. 离子色谱—电感耦合等离子体质谱法用于无机硒的形态分析. 地质论评. 2024(S1): 325-326 . 百度学术
    4. 吕洪亮,张美燕,张永和,刘欣,刘文彬. 富硒食品中元素硒检测技术的应用研究进展. 盐科学与化工. 2024(04): 9-13 . 百度学术
    5. 周刊,周建川,王喜宽,刘俊芳,黄岚,侯进凯. 河南洛阳农田土壤中硒锌的有效态与形态关系及影响因素. 岩矿测试. 2024(02): 315-329 . 本站查看
    6. 冯灏,苏莹,耿雅雯,胡家勇,张涛,林津. HPLC-ICP-MS同时测定富硒食品中砷形态和硒形态. 食品与机械. 2024(07): 43-52 . 百度学术
    7. 耿智. 基于低黏度深共晶溶剂的超声液-液微萃取方法对食品样品中硒分离和检测. 化学与粘合. 2024(06): 631-635 . 百度学术
    8. 祁蒙,宋仕勤,许亚丽,王淇,夏曾润,赵欣. HPLC-ICP-MS在食品硒形态分析中的应用研究. 食品安全导刊. 2024(34): 139-142 . 百度学术

    其他类型引用(0)

图(5)  /  表(4)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  39
  • PDF下载量:  33
  • 被引次数: 8
出版历程
  • 收稿日期:  2022-09-18
  • 修回日期:  2022-11-07
  • 录用日期:  2023-01-17
  • 网络出版日期:  2023-07-16
  • 刊出日期:  2023-05-27

目录

    /

    返回文章
    返回