Determination of Phenolic Compounds from Lignin Decomposition Products in Marine Sediments by Ultra-High Performance Liquid Chromatography-High Resolution Mass Spectrometry
-
摘要:
木质素分解产物酚类化合物是指示海洋环境中陆源有机碳来源的重要生物标志物,因此,开发检测海洋沉积物中木质素分解产物酚类化合物的简便方法,对研究海洋有机碳的来源及生物地球化学循环过程具有重要意义。本文采用固相萃取(SPE)和超高效液相色谱-飞行时间质谱技术(UHPLC-TOF/MS),建立了一种同步测定海洋沉积物中木质素分解产物酚类化合物(11种)的方法。首先对海洋沉积物样品进行氧化铜氧化碱分解和SPE净化处理,再采用填料粒径为1.8μm的反相C18柱进行分离,电喷雾TOF/MS全扫描模式检测,内标法定量。结果表明:沉积物中木质素的11种主要分解产物酚类化合物在20min内分离良好;方法具有良好的精密度(相对标准偏差RSD均小于9.0%),在线性范围内相关系数(R2)均不小于0.9989,加标回收率在86.8%~93.2%之间。应用该方法对莱州湾表层沉积物中木质素分解产物酚类化合物进行测定,12个表层沉积物样品中11种目标化合物的检出率均为100%;相关诊断比值:肉桂基酚系列单体总量与香草基酚系列单体总量的比值C/V在0.18~0.81之间,均值为0.38;丁香基酚系列单体总量与香草基酚系列单体总量的比值S/V在0.18~0.45之间,均值为0.26;对羟基酚系列单体中酮的量与对羟基酚系列单体总量的比值PON/P在0.01~0.07之间,均值为0.03;P系列单体总量与V和S系列单体总量之和的比值P/(V+S)在0.55~3.77之间,均值为1.44;V系列中酸类单体与醛类单体的比值(Ad/Al)v在0.12~1.07之间,均值为0.49;S系列单体中酸类单体与醛类单体的比值(Ad/Al)s在0.15~1.26之间,均值为1.02。表明莱州湾表层沉积物中的木质素主要来源于被子植物草本组织,并且具有中等或偏高程度的降解,但仍有少量新鲜植物有机质。本研究也表明UHPLC-TOF/MS是测定海洋沉积物中木质素分解产物酚类化合物的高效方法,能对沉积物中木质素含量和有机质来源进行有效指示。
-
关键词:
- 电喷雾飞行时间质谱法 /
- 木质素 /
- 酚类化合物 /
- 有机碳 /
- 莱州湾
Abstract:BACKGROUNDLignin is an important component of marine organic carbon. It is also an important biomarker for extracting information on the evolution of the land and marine environment and tracking the source of organic marine matter. However, the existing analytical techniques are difficult to determine lignin directly. So, the content of phenolic compounds in the decomposition products of lignin in marine sediments were generally determined to indicate the content of lignin and the source of organic matter. The content of phenolic compounds in the decomposition products of lignin in marine sediments is often used to reflect the content of lignin. In addition, by calculating the diagnostic ratio of individual phenolic compounds, it also provides important information about the classification, source, and diagenesis of terrestrial organic matter in marine sediments. However, phenolic compounds in the decomposition products of lignin have the characteristics of strong polarity and low volatility, so they cannot be directly detected by gas chromatography and need to be derivatized first, which makes the sample processing complicated and often results in incomplete derivatization. Therefore, it is of great significance to develop a simple and reliable method for determination of phenolic compounds of the lignin decomposition products in marine sediments to explore the source of organic matter and understand the environmental evolution process.
OBJECTIVESTo establish a simple and reliable method for the determination of phenolic compounds of lignin decomposition products in marine sediments using solid phase extraction (SPE) combined with ultra-high performance liquid chromatography-high resolution mass spectrometry, and to trace the content level and source of lignin in the sediments of Laizhou Bay in China.
METHODSMarine sediment samples were first decomposed with oxidative-alkaline CuO and extracted by solid phase extraction. Briefly, the oxidation was carried out in a polytetrafluoroethylene digestion tank. 1.00g of sediment sample, 500mg of copper oxide, and 100mg of ammonium ferrous sulfate were accurately weighed and placed in the tank. The components were thoroughly mixed with the sample and then the digestion tank was transferred to a glove box filled with nitrogen. 8.0mL of aqueous sodium hydroxide solution with a concentration of 8.0% (bubbled with N2 to remove dissolved oxygen) was added to the tank. The digestion tank was covered tightly and transferred to an oven heating to 150℃ for reaction, which was terminated after 3h. After the digestion tank cooled to room temperature, it was carefully unscrewed, and an internal standard (ethyl vanillin) solution was added. Subsequently, the hydrolysate was transferred to a centrifuge tube, spun at 8000r/min for 10min, and the supernatant and reaction residue was separated. 2.0mL of 1.0% sodium hydroxide solution was added to rinse the residue, and centrifuged at 8000r/min for 10min. Combining the centrifuged supernatant obtained twice, the solution was acidified to pH=1 with hydrochloric acid. After the solution was left to stand for 30 minutes, solid phase extraction was performed. The SPE procedure was as follows: A hydrophilic-lipophilic balance (HLB) SPE cartridge (200mg, 6mL) was conditioned with 5mL of methanol and 5mL of ultrapure water. Sample solution was passed through the cartridge in a flow rate 1.0mL/min, and then the cartridges were rinsed with 10mL water, and dried under vacuum for about 3min. Phenolic compounds were eluted with 10mL ethyl acetate, and were evaporated by a rotary evaporator, reconstituted with sample solvent. Then, ultra-high performance liquid chromatography using ZORBAX Eclipse XDB-C18 column with packing particle size of 1.8μm was used to directly separate all target compounds at 28℃, with gradient elution. The mobile phase was composed of ultrapure water with 0.1% formic acid (V/V) and acetonitrile/methanol (9:1, V/V) , and the flow rate was set to 0.25mL/min. Electrospray ionization (in positive) time of flight mass spectrometry was applied to detect target compounds in full scan mode, and quantification was performed using an internal standard determination.
RESULTSFirstly, chromatographic conditions and solid phase extraction conditions were systematically optimized. Ultra-high performance liquid chromatography was used for the chromatographic separation of phenolic compounds from lignin decomposition products in marine sediments. The separation effects of three mobile phase systems, namely, water-acetonitrile, water- methanol, and water-methanol-acetonitrile, were compared. When using a water-methanol -acetonitrile ternary mobile phase system, the resolution of various phenolic compounds was superior to the commonly used water-acetonitrile or water-methanol binary mobile phase systems in the literature. In addition, the effects of mobile phase acidity (trifluoroacetic acid, formic acid, and acetic acid were added into the mobile phase) on the separation of various phenolic compounds were investigated. The results showed that adding a certain concentration of all three acids to the mobile phase provided better separation results. Considering the compatibility with mass spectrometry, it was finally determined that adding 0.1% formic acid into the mobile phase achieved good peak patterns and resolution. In order to determine the ionization mode suitable for the analysis of phenolic compounds from lignin decomposition products in marine sediment, electrospray ionization (ESI) mass spectrometry was performed on each target phenolic compound in ESI+ and ESI− mode, respectively. Under ESI+ mode, various target phenolic compounds were less affected by interfering substances in the sample matrix, and the MS response value for most of the phenolic compounds was higher than that found in ESI− mode. Hence, ESI-TOF/MS in positive mode was selected to determine phenolic compounds of lignin decomposition products in marine sediment. Subsequently, the fragmentation voltage was optimized to obtain the highest sensitivity for all target phenolic compounds, which was the main mass spectrometric condition that affected the quantification accuracy and sensitivity. The effect of fragmentation voltage on the MS response signal of each target phenolic compound was investigated in the range of 80V to 200V. Overall, considering the detection sensitivity of the [M+H]+ ion peak of each target compound, 130V was selected as the optimal fragmentation voltage to determine phenolic compounds of lignin decomposition products in marine sediment. The effect of pH (1.0-2.5) of the loading solution for solid phase extraction on the extraction efficiency of various target phenolic compounds was systematically investigated, to ensure that the phenolic compounds of lignin decomposition products in marine sediments have a good recovery rate during the SPE process. When the pH of the loading solution was 1.0 and 1.5, the recovery rate of various phenolic compounds by using HLB solid phase extraction column was significantly higher than that of the loading solution adjusted pH to 2.0 and 2.5. When the pH of the sample solution was 1.0 and 1.5, although the recoveries of syringaldehyde and acetovanillone were relatively similar, the recoveries of other phenolic compounds were the highest at a pH of 1.0. Considering the recovery rate of all the target phenolic compounds and applicability of the method, the pH of the sample solution was confirmed to adjust to 1.0. In this study, HLB SPE column with 200mg of packing material was used to enrich phenolic compounds in sample extraction solution. Generally, 5-10mL of eluting solvent can ensure the full elution of all target phenolic compounds adsorbed on the SPE column. Therefore, based on the results of literature research, ethyl acetate was finally selected as the eluting solvent, with a dosage of 10mL. Under the optimum experimental conditions, the 11 main decomposition phenol compounds of lignin in marine sediments were well separated within 20 minutes. The proposed method had good precision (RSD was less than 9.0%), the correlation coefficient (R2) was not less than 0.9989 in the linear range, and the recovery rate of all spiked phenol compounds in blank marine sediment was in the range of 86.8%-93.2%, thereby indicating that the developed method would be suitable to determine the target decomposition phenol compounds of lignin in marine sediment. Subsequently, the method was used to determine the phenolic compounds of lignin decomposition products in the surface sediments of Laizhou Bay. The detection rate of 11 target phenolic compounds in 12 surface sediment samples was 100%, and the concentration of Σ8 in 12 surface sediment samples ranged from 0.001mg/10gds to 0.019mg/10gds. The value of C/V was between 0.18 and 0.81, with an average of 0.38; the value of S/V was between 0.18 and 0.45, with an average of 0.26; PON/P value was between 0.01 and 0.07, with an average of 0.03; P/(V+S) value was between 0.55 and 3.77, with an average of 1.44; (Ad/Al)v value was between 0.12 and 1.07, with an average of 0.48; the value of (Ad/Al)s was between 0.15 and 1.26, with an average of 1.02.
CONCLUSIONSThe above diagnostic ratios indicate that the lignin in the surface sediments of Laizhou Bay originate mainly from the herbaceous tissue of angiosperms, while the proportion of organic matter in vascular plants is relatively low. The degradation degree of terrestrial organic matter in most sampling stations is medium or high, but there is still a small amount of fresh plant debris. The proposed method has the advantages of high efficiency, simple for sample pretreatment, and is a powerful technique for the determination of main decomposition product phenolic compounds of lignin in marine sediments.
-
金(Au)是中国重要的战略性资源,但金矿的金品位普遍较低,需借助半自磨机或搅拌磨降低颗粒粒度并促进金相颗粒解离[1-2]。为获得较高的金精矿品位,提高金元素富集比,通常需利用复杂的多次粗选扫选和精选配合的浮选工艺,而在长流程浮选体系中,以镍、铜、镉、铅等为代表的有害元素选择性富集或随机分散在各工艺产品中[3-4],影响了各金矿浮选产品的质量,但当前针对金矿浮选过程中有害元素定量的研究较少,有必要建立金矿浮选样品中有害元素的检测方法。
金矿中有害元素含量与金品位相当,但相对于金矿主量伴生元素则存在巨大的浓度差异;而高基体背景下准确定量有害元素的关键是如何有效地控制或消除基体差异带来的非质谱干扰[5-6]。虽然目前分析检测手段已逐步应用于选矿领域,但较多的是针对原矿的工艺矿物学分析,即在分析含金组分的赋存形态、嵌布特征基础上为金矿磨浮工艺优化提供支撑[7-9]。一些痕量元素定量的检测方法包括电感耦合等离子体发射光谱或质谱法(ICP-OES/MS)[10-13]、辉光放电质谱法[14-16]、X射线衍射法(XRD)[17-18]等,在分析复杂基体样品时通常会使用基体纯净的标准溶液或物质,难以高质量校正待测元素标准溶液与样品消解液之间的基体差异。上述检测手段配合基体匹配方法的检测领域,多为基体唯一的合金钢中杂质元素定量,譬如张馨元等[19]分别利用无基体匹配和2000μg/mL镍基体的铜、锌、钡元素标准溶液来定量镍基高温合金标准物质中痕量铜锌钡,前者测试结果较认定值存在15%~20%偏差,而后者检测结果均在标准物质中痕量元素认定浓度范围内。沈健等[20]利用基体匹配ICP-MS测定煤中钽铀镱含量时,采用标准煤样消解液为基体,配制待测元素标准溶液,但未关注标准煤样消解液中无机组分的基体影响,欠缺标准煤样所含微量钽铀镱元素对标准曲线线性和方法检测下限的讨论。因此,当前针对复杂基体自然矿产中有害元素的准确定量方法,仍需进一步优化研究。
本文以金矿浮选过程样品为研究对象,采用基体匹配ICP-MS测试方法,在明确各样品基体元素种类后,开展高浓度基体溶液添加痕量有害元素的测定实验,分析基体种类和浓度对有害元素定量结果相对偏差的影响。在此基础上,利用高浓度基体有害元素标准溶液对金矿各浮选样品进行定量实验,与纯试剂有害元素标准溶液定量结果和测试过程内标回收率比对,并通过消解加标、测试加标以及平行实验分析基体匹配ICP-MS方法的准确度和精密度,评估方法的测试质量。
1. 实验部分
1.1 样品信息
研究对象为金矿浮选矿浆产品,采自紫金矿业集团股份有限公司某金矿选厂,采集物料包括浮选入料、各浮选段精矿和尾矿产品。取样前准备足够数量的料筒并做好标记,样品采集工具为取样勺。浮选入料由溜槽给入浮选设备,取样时使用取样勺对整个料流截面均匀取样;浮选精矿泡沫取样则是用取样勺截取全部溢流面;浮选尾矿取样是用取样勺对准矿浆流取样。每个样品采集点的取样时间均为10min。
1.2 样品前处理
采用实验室小型过滤机处理某金矿浮选流程的22个矿浆产品(样品编号为样品1~样品22),获得各样品滤饼及滤液。滤饼置于烘箱中105℃干燥3h后冷却,缩分后用于样品消解与元素组成分析。为确保有害元素全部从固体矿物转移至溶液,减少有害元素定量的制样误差,样品消解以溶液澄清、无固体颗粒残留为目标。消解实验采用耗酸少、速度快的微波消解,经探索确定了如下消解方案。
(1) 样品称取0.1g,置于可溶性聚四氟乙烯消解罐中;
(2) 向消解罐中加入3.75mL盐酸、1.25mL硝酸和2mL氢氟酸;
(3) 将消解罐置于微波消解仪中,升温到150℃,保持20min;再升温至220℃,保持40min,取下冷却后在通风橱内缓慢泄压后打开消解罐;
(4) 将消解罐置于石墨赶酸仪中,180℃开盖赶酸,待样品蒸干后取下冷却,加入1mL浓硝酸复溶后加超纯水定容至100mL。
经测试,微波消解过程空白中镍、铜、镉和铅元素含量分别为0.2741μg/L、0.3435μg/L、0.0019μg/L和0.0263μg/L。消解过程空白溶液中的有害元素含量较低,对样品中的有害元素定量结果影响较小。
1.3 标准物质和主要试剂
镍、铜、镉、铅单元素标准储备液(1×106μg/L,美国Agilent公司);Re内标储备溶液(100μg/mL,美国Agilent公司),使用时稀释至0.5μg/mL。
硫标准溶液(2×104μg/mL,购自钢研纳克有限公司);铁和铝则分别选用分析纯标准物质三氧化铁和三氧化铝,用硝酸溶解,获得质量浓度为10mg/mL的单元素溶液。
UPS级纯硝酸、盐酸和氢氟酸(晶锐电子材料股份有限公司)。
超纯水(ELGA Option Q15 纯水机纯化,电阻率≥18MΩ·cm)。
1.4 实验仪器
浮选样品元素组成分析采用S8 Tiger型X射线荧光光谱仪(德国Bruker有限公司),并通过元素校正曲线定量。
样品中痕量有害元素定量采用Aglient 7900电感耦合等离子体质谱仪(美国Aglient公司),仪器测试参数列于表1。
表 1 电感耦合等离子体质谱仪测试条件Table 1. Measurement parameters of ICP-MS instrument工作参数 设定值 工作参数 设定值 射频功率 1550W 截取锥直径 0.45mm 取样深度 8mm 扫描方式 跳峰方式 等离子气体(Ar)流速 15L/min 每峰点数 1 辅助气体(Ar)流速 0.80L/min 扫描次数 100 载气(Ar)流速 1.05L/min Cd元素积分时间 1s 镍采样锥直径 1mm Ni、Cu、Pb等
元素积分时间0.30s 本文使用的Agilent 7900型电感耦合等离子体质谱仪,配备了碰撞反应池,可有效地降低有害元素含量测试的质谱干扰;此外,定量测试中还针对性地选择了质量数干扰最低的同位素,即60Ni、65Cu、111Cd和208Pb。金矿浮选样品消解液中的主量基体元素在测试过程会产生非质谱干扰,对有害元素离子流形成抑制。为削弱该影响,本文采用高浓度的代表性基体元素标准溶液稀释有害元素储备溶液后,形成复杂基体有害元素标准溶液。与纯试剂有害元素标准溶液相比,复杂基体有害元素标准溶液与金矿浮选样品消解液具有同一数量级的基体背景[21],再配合内标元素铼(Re,浓度0.50μg/mL)后,可有效地抑制非质谱干扰。
基体匹配ICP-MS方法研究中(技术路线如图1所示),首先使用XRF确定主量基体元素,然后利用基体元素标准溶液配制具有浓度梯度的有害元素标准溶液;利用ICP-MS测试具有浓度梯度的有害元素标准溶液后,获得各有害元素标准曲线;在读取有害元素测试背景值后,调整配制复杂基体有害元素标准溶液所需的基体元素标准溶液与有害元素储备液体积,进而获得有害元素浓度准确的复杂基体有害元素标准溶液,提升基体匹配ICP-MS方法测试结果的准确性。
1.5 数据质量控制
方法准确性:在样品消解和测试环节,采用标准加入方式评价金矿浮选样品中痕量有害元素定量方法的准确性。称取0.10g的14号样品两份,其中一份加入有害元素镍、铜、镉和铅各10μg,消解后定容至100mL测试。分别称取0.10g的6号和13号样品,消解定容至100mL后取两份平行样,一份直接测试,一份加入浓度100μg/L等体积的复杂基体有害元素标准溶液后混匀后测试。
方法精密度:分别称取6份5号和12号样品,每份质量0.10g,按照1.2节样品前处理方法消解获得平行消解溶液后测试各样品中有害元素含量,并计算各有害元素定量结果的相对标准偏差(RSD)。
2. 结果与讨论
2.1 浮选样品的主量基体元素组成
22个金矿浮选样品的主量元素及含量分析结果列于表2。受浮选过程的各组分分离和富集作用影响,样品中主量基体元素种类及含量有所差异。依据元素组成,将样品分为铝基体(样品编号:1、7、14和22),铁硫基体(样品编号:2、3、8、10、12和13),铁铝基体(样品编号:4~6、9、11和15~21)共计三类(Si元素在消解中与氟结合形成四氟化硅SiF4挥发[22-23],因而未将Si列为基体元素)。4种铝基体样品中铝含量接近(1号样品主量元素仅为Si,为简化样品种类将其归类为铝基体样品);6种铁硫基体各样品中铁和硫元素含量差异在10%附近(8号样品主量元素仅为Fe,为简化样品种类将其归类为铁硫基体样品);12种铁铝基体样品的Si、Fe、Al元素含量均较为接近。
表 2 金矿浮选样品的主量基体元素种类及含量Table 2. Major matrix elements in flotation samples of gold ore样品编号 基体类型 主要元素及含量 样品编号 基体类型 主要元素及含量 1 铝基体 Si (29.75%) 5 铁铝基体 Si (27.66%); Fe (10.60%); Al (10.27%) 7 Si (29.84%); Al (9.78%) 6 Si (28.66%); Fe (8.27%); Al (10.58%) 14 Si (31.27%); Al (10.43%) 9 Si (27.93%); Fe (9.35%); Al (11.02%) 22 Si (30.47%); Al (9.63%) 11 Si (24.76%); Fe (15.85%); Al (10.99%) 2 铁硫基体 Si (14.92%); Fe (22.87%); S (12.76%) 15 Si (26.64%); Fe (10.74%); Al (10.23%) 3 Si (19.06%); Fe (22.36%); S (13.52%) 16 Si (28.45%); Fe (10.33%); Al (10.95%) 8 Si (13.16%); Fe (23.50%) 17 Si (27.75%); Fe (10.97%); Al (10.60%) 10 Si (14.08%); Fe (20.57%); S (17.27%) 18 Si (25.64%); Fe (10.92%); Al (10.17%) 12 Si (13.59%); Fe (26.39%); S (22.35%) 19 Si (28.27%); Fe (11.21%); Al (10.71%) 13 Fe (30.48%); S (24.16%) 20 Si (26.96%); Fe (9.39%); Al (10.38%) 4 铁铝基体 Si (25.89%); Fe (14.46%); Al (10.37%) 21 Si (27.43%); Fe (10.62%); Al (10.84%) 2.2 高浓度基体对镍铜镉铅元素测试准确性的影响
为探究高浓度基体加入对Ni、Cu、Cd和Pb元素含量测试准确性的影响,分别利用基体元素浓度为500μg/mL和1000μg/mL的一种和两种基体元素溶液稀释500μg/L纯试剂有害元素标准溶液,获得理论浓度为10μg/L的复杂基体有害元素标准溶液。随后,利用纯试剂有害元素标准溶液测试(内标选用185Re)并扣除基体溶液中有害元素含量(譬如1000μg/mL铝基体中,Cu元素浓度为11μg/L),计算测试结果的相对偏差,结果列于表3。整体上,高浓度基体元素溶液对痕量有害元素在ICP-MS测试过程的影响较小。与理论值(10μg/L)相比,不同浓度和基体元素种类溶液中各有害元素定量结果的相对偏差在±10%以内。因此,利用复杂基体有害元素标准溶液进行金矿浮选样品中有害元素的定量测试,是可行的。
表 3 不同浓度/种类基体元素溶液中痕量有害元素定量的相对偏差Table 3. Relative deviation of each hazardous element after adding different concentrations/types of matrix elements基体元素及浓度
(μg/mL)各有害元素测定值与理论值的相对偏差(%) Ni Cu Cd Pb 铝(500) −0.85 7.96 −0.74 3.00 铁(500) −4.62 6.74 −2.31 −0.79 硫(500) −5.22 3.46 −3.85 6.29 铁硫(500) 0.97 9.72 −9.32 2.03 铁硫(1000) −1.97 8.31 −7.07 1.22 铁铝(1000) 5.74 −5.42 −2.70 −2.48 2.3 基体元素对金矿浮选样品中有害元素定量影响
选择金矿浮选8号样品(铁硫基体)、9号样品(铁铝基体)、13号样品(铁硫基体)和17号样品(铝基体)共4种代表性样品,在分别配制1000μg/mL铝元素、铁元素、硫元素、铁硫、铁铝元素基体溶液后,将有害元素标准储备液逐级稀释至10、20、50、100、200和500μg/L(因铝基体溶液中含一定量Cu,配制铝和铁铝基体的有害元素标准溶液时,依据Cu含量再次计算所用有害元素标准储备液、铝溶液、铁溶液和稀硝酸的用量),测试样品中Ni、Cu、Cd、Pb含量。此外,同步开展纯试剂(2%硝酸)有害元素标准溶液对代表性样品中有害元素定量测试。依据公式(1)将液体样品中的有害元素含量(单位μg/L)转换为固体中的有害元素含量[24](单位μg/g)。
$$ c=\frac{\left(c_1-c_0\right) \times V \times d}{m} \times 10^{-3} $$ (1) 式中:c为样品中有害元素含量(μg/g);c1和c0分别为消解稀释液和消解过程空白中有害元素浓度(μg/L);V为消解液体积,此处为100mL;d为稀释倍数,根据样品浓度与方法定量上限确定;m为样品质量,此处为0.10g。
不同基体有害元素标准溶液对部分金矿浮选样品中有害元素的定量结果列于表4。譬如,铁硫基体样品分别用铁基体、硫基体、铁硫基体和纯试剂有害元素标准溶液测试,其他样品测试安排以此类推。表4数据显示在1000μg/mL基体浓度前提下,复杂基体有害元素标准溶液中基体元素种类和数量,对金矿浮选样品中有害元素测试结果并未产生明显影响。复杂基体与纯试剂有害元素标准溶液,对4个代表性金矿样品中有害元素定量结果的相对标准偏差小于7.73%(大部分小于5%)。因此,可利用有害元素标准溶液开展不同基体类型的所有金矿浮选样品中有害元素的定量分析。
表 4 不同基体有害元素标准溶液对部分金矿浮选样品中有害元素定量分析结果Table 4. Quantification results of harmful elements in some gold ore flotation products using standard solutions of harmful elements in various matrixes样品编号 有害元素标准溶液
基体元素Ni测定值
(μg/g)Cu测定值
(μg/g)Cd测定值
(μg/g)Pb测定值
(μg/g)8号样品
(铁硫基体)铁硫 363.38 596.78 24.61 1540.22 铁 344.59 547.18 23.88 1569.77 硫 372.52 564.39 24.15 1611.48 纯试剂 356.31 574.64 23.50 1625.51 RSD(%) 3.28 3.63 1.94 2.46 9号样品
(铁铝基体)铁铝 112.66 186.65 2.32 263.37 铁 113.77 196.41 2.52 292.44 铝 117.31 210.64 2.57 294.22 纯试剂 115.64 194.62 2.32 264.84 RSD(%) 1.79 5.07 5.41 6.06 13号样品
(铁硫基体)铁硫 336.18 311.63 17.54 1135.47 铁 294.45 315.54 19.18 1199.29 硫 301.20 321.80 19.05 1145.17 纯试剂 317.10 366.45 18.89 1322.70 RSD(%) 5.95 7.73 4.07 7.17 17号样品
(铝基体)铝 124.75 303.10 2.23 275.80 2%硝酸 118.06 288.17 2.20 257.33 RSD(%) 3.90 3.57 0.96 4.90 本文首先使用不同基体元素的复杂基体有害元素标准溶液测试对应基体类型样品中有害元素含量,然后利用铁硫基体有害元素标准溶液开展铝基体和铁铝基体样品中有害元素测试。不同基体的有害元素标准溶液对金矿浮选样品中有害元素定量结果列于表5。利用不同基体元素的有害元素标准溶液对各金矿浮选样品中有害元素的定量结果接近,各有害元素的回收率在80%~120%范围内。因此,在1000μg/mL基体浓度前提下,有害元素标准溶液的基体元素差异并未对测试过程产生影响,基体匹配方法中使用铁硫基体有害元素标准溶液,能够获得准确的测试结果。
表 5 不同基体有害元素标准溶液对铝基体和铁铝基体金矿浮选样品中有害元素测试结果Table 5. Quantification results of harmful elements in gold ore flotation samples with Al- and Fe-Al matrix using standard solutions of harmful elements in various matrixes.样品编号 有害元素标准溶液基体元素 Ni
(μg/g)Cu
(μg/g)Cd
(μg/g)Pb
(μg/g)有害元素标准溶液基体元素 Ni
(μg/g)Cu
(μg/g)Cd
(μg/g)Pb
(μg/g)1 铝 58.62 67.33 1.60 102.58 铁硫 57.22 63.85 1.61 90.96 7 44.56 102.80 0.71 96.42 42.56 98.20 0.63 96.06 14 59.10 125.33 1.00 108.18 59.10 116.57 0.82 119.4 22 34.18 63.03 0.32 70.24 36.13 65.14 0.34 66.88 4 铁铝 160.93 282.57 5.40 497.02 160.93 267.77 5.41 513.4 5 94.30 249.38 5.21 436.7 116.83 206.86 5.89 377.65 6 82.92 159.46 2.45 265.68 92.34 140.05 2.24 254.67 9 112.66 186.65 2.32 263.37 120.39 161.81 2.05 225.93 11 197.97 340.82 6.22 697.57 197.97 290.04 6.31 663.41 15 105.21 428.65 2.25 303.61 111.45 365.18 1.86 303.45 16 107.84 338.23 1.87 186.06 96.84 297.13 1.55 183.48 17 124.75 303.10 2.23 275.8 115.88 297.02 2.10 264.64 18 149.36 422.74 2.51 266.65 136.23 441.74 2.15 268.78 19 68.25 384.89 1.85 256.20 56.95 341.4 1.74 263.90 20 86.69 250.90 1.99 152.05 95.12 253.08 1.83 173.13 21 94.00 349.36 2.40 282.20 92.33 358.58 2.30 276.88 为进一步比较复杂基体与纯试剂有害元素标准溶液对金矿浮选样品有害元素测试过程的影响,对比两类有害元素标准溶液测试22个金矿样品内标回收率,如图2所示(图中样品编号1~7为标准溶液,编号8~29代指金矿浮选的1~22号样品)。基体匹配方法测试各样品内标回收率较纯试剂测试稳定,前者的回收率分布在90%~110%之间,后者则在85%~100%之间。基体匹配测试各样品内标回收率与100%差值绝对值的平均差为1.64%,而后者则为2.16%(平均差,即各差值绝对值与其平均数的离差绝对值的算术平均数),基体匹配法内标回收率平均差较无基体匹配测试低24.07%。纯试剂有害元素标准溶液与消解样品之间有较大的基体差异,在一定程度上对元素离子化产生抑制作用。采用基体匹配方法可降低非质谱干扰,削弱测试过程的信号波动。
2.4 基体匹配ICP-MS法的测试质量评估
2.4.1 方法准确度
在样品消解和测试环节,采用标准加入方式评价金矿选冶样品中有害元素定量方法的准确性。消解和测试加标实验参照1.6节所述,各元素加标回收率列于表6。根据表中数据计算,消解加标实验中各有害元素加标回收率在92.08%~105.36%之间,表明微波消解过程中各有害元素基本无损失;而测试加标实验中各有害元素加标回收率在95.68%~106.05%之间,显示不同基体类型样品的消解溶液对加标有害元素回收率影响较小,与2.2节实验结果相呼应。较好的加标回收率指标表明此测试方法准确性高。
表 6 消解和测试加标回收实验结果Table 6. Results of spiked recovery experiment for the dissolution and measurement样品名称 Ni测定值
(μg/g)Cu测定值
(μg/g)Cd测定值
(μg/g)Pb测定值
(μg/g)14号样品 59.10 116.57 0.82 119.40 14号样品+10μg各元素(消解) 161.72 221.93 97.55 211.48 加标回收率(%) 102.62 105.36 96.73 92.08 6号样品 92.34 140.05 2.24 254.67 6号样品+等体积标液(测试) 97.08 122.16 50.22 177.92 加标回收率(%) 101.82 104.27 98.20 101.17 13号样品 336.18 311.63 17.54 1135.47 13号样品+等体积标液(测试) 215.93 208.84 57.71 619.26 加标回收率(%) 95.68 106.05 97.88 103.05 2.4.2 方法精密度
两组样品的6个平行消解实验样品中有害元素的测定结果列于表7。整体上,平行实验中元素含量较低的Cd元素的RSD值相对较高,但高浓度元素的RSD值则较低。各元素的RSD在1.21%~4.69%之间。精密度实验的指标较高,数据波动小,重现性高。
表 7 加标回收实验结果Table 7. Results of spiked recovery experiments样品编号 元素 6次平行实验检测值(μg/g) 平均值
(μg/g)RSD
(%)5号样品 Ni 116.83 119.04 114.52 121.75 118.08 111.61 116.97 3.04 Cu 206.86 208.96 212.57 204.88 210.73 209.09 208.85 1.31 Cd 5.89 5.98 5.66 5.42 6.07 6.15 5.86 4.69 Pb 377.65 360.19 384.57 366.42 379.76 359.97 371.43 2.86 12号样品 Ni 330.05 344.47 327.59 335.04 338.73 349.62 337.58 2.50 Cu 356.31 347.87 342.46 360.93 354.52 361.42 353.92 2.11 Cd 20.18 18.25 18.57 19.62 19.74 20.09 19.41 4.16 Pb 1227.43 1268.87 1239.15 1241.06 1251.53 1231.50 1243.26 1.21 3. 结论
提出采用基体匹配ICP-MS法定量金矿浮选样品中的痕量有害元素。首先采用XRF确认各浮选样品的主量基体元素后,将其分为铝基体、铁铝基体和铁硫基体三类。在500μg/mL和1000μg/mL基体溶液中,基体元素种类和数量对痕量有害元素定量结果差异较小,其相对偏差在±10%以内。表明采用高浓度的基体元素溶液配制有害元素标准溶液,不会对有害元素定量结果产生影响,且复杂基体有害元素标准溶液在定量金矿浮选样品中有害元素时还可起到削弱基体差异的作用。在有害元素标准溶液基体浓度相同(1000μg/mL)的前提下,金矿浮选样品中有害元素定量结果不受基体元素种类和数量影响,且与纯试剂有害元素标准溶液定量结果的相对标准偏差小于7.73%,而内标回收率与100%理想值差值绝对值的平均差较纯试剂有害元素标准溶液测试低24.07%。因此,采用了铁硫基体有害元素标准溶液测试不同基体类型的金矿浮选样品,该方法消解和测试的加标元素回收率在92.08%~105.36%之间,测试环节加标回收率为95.68%~106.05%,精密度(RSD)为1.21%~4.69%,具有准确度高的特点。
本文方法虽仅针对金矿浮选样品中部分有害元素的定量测试,但对于其他复杂金属矿产或合金类等样品中的痕量有害元素测试仍具有借鉴意义和实践参考,在地质矿产样品检测领域具有一定实用性。
-
图 2 UHPLC-TOF/MS 全扫描分析提取离子色谱图
(A) 11种目标化合物和内标物的混合标准溶液; (B)海洋沉积物样品提取溶液。按照保留时间从前到后依次排序:对羟基苯甲酸、香草酸、对羟基苯甲醛、丁香酸、对羟基苯乙酮、香草醛、对羟基肉桂酸、丁香醛、香草乙酮、阿魏酸、乙酰丁香酮、乙基香兰素(内标)。
Figure 2. UHPLC-TOF/MS full-scan analysis extraction ion chromatogram (EIC).
(A) Mixed standard solution of 11 target compounds and internal standard; (B) Extraction solution of marine sediment sample. Sort by retention time from front to back: p-hydroxybenzoic acid, vanillic acid, p-hydroxybenzaldehyde, syringic acid, p-hydroxyacetophenone, vanillin, p-hydroxy-cinnamic acid, syringaldehyde, acetovanillone, ferulic acid, acetosyringone and ethyl vanillin (internal standard).
图 4 方法的专属性考察结果(沉积物加标样品UHPLC-TOF/MS分析EIC图)
1—对羟基苯甲酸;2—香草酸;3—对羟基苯甲醛;4—丁香酸;5—对羟基苯乙酮;6—香草醛;7—对羟基肉桂酸;8—丁香醛;9—香草乙酮;10—阿魏酸;11—乙酰丁香酮;12—乙基香兰素(内标)。
Figure 4. Results for the specificity validation of the method (UHPLC-TOF/MS EIC chromatogram of the spiked sediment sample).
1—p-hydroxybenzoic acid; 2—vanillic acid; 3—p-hydroxybenzaldehyde; 4—syringic acid; 5—p-hydroxyacetophenone; 6—vanillin; 7—p-hydroxy-cinnamic acid; 8—syringaldehyde; 9—acetovanillone; 10—ferulic acid; 11—acetylsyrinone; 12—ethyl vanillin (internal standard).
表 1 超高效液相色谱-飞行时间质谱分析木质素主要分解产物酚类化合物和内标物的分子式、保留时间及精确分子质量
Table 1 Molecular formulas, retention times and exact molecular mass of the main decomposition products of lignin (phenolic compounds) and the internal standard analyzed by ultra-high performance liquid chromatography-time-of-flight mass spectrometry (UHPLC-TOF/MS).
序号 酚类化合物 分子式 保留时间(min) 精确分子量[M+H]+ 精确分子量[M-H]- 1 对羟基苯甲酸 C7H6O3 5.14 139.0395 137.0244 2 香草酸 C8H8O4 7.37 169.0495 167.0272 3 对羟基苯甲醛 C7H6O2 8.08 123.0441 121.0295 4 丁香酸 C9H10O5 9.35 199.0601 197.0455 5 对羟基苯乙酮 C8H8O2 11.46 137.0597 135.0452 6 香草醛 C8H8O3 11.61 153.0546 151.0401 7 对羟基肉桂酸 C9H8O3 12.90 165.0546 163.0401 8 丁香醛 C9H10O4 13.91 183.0652 181.0506 9 香草乙酮 C9H10O4 14.65 167.0703 165.0557 10 阿魏酸 C10H10O4 15.89 195.0652 193.0506 11 乙酰丁香酮 C10H12O4 16.68 197.0808 195.0663 12 乙基香兰素 C9H10O3 19.08 167.0703 165.0557 表 2 最佳实验条件下 11种目标化合物的线性方程相关系数及方法的检出限和定量限
Table 2 Correlation coefficients for linear analysis, detection limits and quantification limits of the method for UHPLC-TOF/MS determination of 11 target compounds under the optimal experimental conditions.
序号 酚类化合物 R2 方法检出限
(ng/g)方法定量限
(ng/g)1 对羟基苯甲酸 0.9989 5.34 17.80 2 香草酸 0.9989 7.27 24.23 3 对羟基苯甲醛 0.9991 0.67 2.13 4 丁香酸 0.9996 1.79 5.98 5 对羟基苯乙酮 0.9991 0.38 1.25 6 香草醛 0.9997 0.49 1.64 7 对羟基肉桂酸 0.9989 4.16 13.95 8 丁香醛 0.9993 0.47 1.58 9 香草乙酮 0.9994 0.23 0.76 10 阿魏酸 0.9994 5.13 17.1 11 乙酰丁香酮 0.9997 0.13 0.42 表 3 三种不同添加浓度水平下11种目标化合物的回收率和回收率的RSD(n=6)
Table 3 The recovery rate and its RSD of 11 target compounds under three different spiked levels (50.0ng/g, 100.0ng/g, 400.0ng/g) in the spiked recovery experiment with blank marine sediment (n=6).
酚类化合物 不同加标浓度水平下目标化合物回收率(%)(n=6) 不同加标浓度水平下目标化合物回收率的RSD(%)(n=6) 加标50.0ng/g 加标100.0ng/g 加标400.0ng/g 加标50.0ng/g 加标100.0ng/g 加标400.0ng/g 对羟基苯甲酸 87.8 90.1 91.9 8.4 7.0 5.8 香草酸 89.3 87.7 87.4 6.4 6.0 6.1 对羟基苯甲醛 86.8 90.0 88.9 7.0 7.2 6.3 丁香酸 88.7 88.1 89.4 8.3 6.3 7.5 对羟基苯乙酮 89.5 91.1 92.3 7.3 6.5 5.5 香草醛 87.4 88.5 87.8 5.2 5.5 4.6 对羟基肉桂酸 88.9 89.3 89.6 6.2 6.5 4.6 丁香醛 89.1 90.7 91.5 8.2 8.5 6.5 香草乙酮 87.5 88.9 89.5 7.4 5.3 5.5 阿魏酸 86.9 89.9 91.0 6.1 8.1 6.2 乙酰丁香酮 90.8 91.2 93.2 8.8 6.2 4.1 表 4 莱州湾表层沉积物中11种木质素主要分解产物酚类化合物的含量
Table 4 Content of 11 main phenolic compounds from lignin decomposition products of the surface sediment samples collected from the Laizhou Bay, China.
站位 酚类化合物含量(ng/g)(ds) 对羟基苯甲酸 香草酸 对羟基苯甲醛 丁香酸 对羟基苯乙酮 香草醛 对羟基肉桂酸 丁香醛 香草乙酮 阿魏酸 乙酰丁香酮 L1 62.33 26.08 136.41 5.98 3.48 20.65 17.75 5.60 2.33 22.17 0.50 L2 324.43 100.31 425.50 108.50 53.58 671.40 243.67 265.19 110.36 113.53 25.96 L3 350.21 507.56 511.59 119.13 39.5 481.33 297.51 233.46 79.82 122.80 26.18 L4 101.58 204.40 254.26 7.73 16.47 195.19 86.06 64.19 31.78 20.14 7.76 L5 176.82 326.83 425.68 46.14 25.88 317.00 74.67 99.34 46.57 50.57 9.33 L6 223.73 408.17 381.33 86.76 39.31 393.35 249.20 176.55 77.37 112.05 29.02 L7 114.31 73.84 297.40 9.86 5.17 69.67 39.80 22.06 7.27 34.99 2.23 L8 214.02 414.12 419.47 62.57 22.06 303.95 135.91 127.37 48.75 34.99 11.52 L9 180.05 195.33 421.15 29.25 14.86 188.62 110.52 70.42 22.43 32.43 6.37 L10 193.59 255.99 401.93 26.20 15.22 256.06 79.62 67.27 37.39 32.44 5.40 L11 156.60 57.41 325.48 5.83 5.39 47.84 33.30 12.90 4.06 28.22 1.42 L12 147.93 101.40 317.60 13.95 5.56 96.48 26.98 25.10 9.89 31.64 2.66 表 5 莱州湾表层沉积物样品中11种木质素的分解产物酚类化合物的各项特征参数
Table 5 Characteristic parameters of 11 phenolic compounds from lignin decomposition products in surface sediment samples of the Laizhou Bay, China.
站位 木质素不同分解产物酚类化合物的各项特征参数 C(ng/g) S(ng/g) V(ng/g) P(ng/g) C/V S/V P/(V+S) PON/P (Ad/Al)v (Ad/Al)s Σ8(mg/10g ds) L1 39.92 12.08 49.06 202.23 0.81 0.25 3.31 0.02 1.07 1.26 0.0010 L2 357.19 399.65 882.06 803.50 0.40 0.45 0.63 0.07 0.41 0.15 0.016 L3 420.31 378.76 1068.71 901.30 0.39 0.35 0.62 0.04 0.51 1.05 0.019 L4 106.20 79.68 431.38 372.31 0.25 0.18 0.73 0.04 0.12 1.05 0.0062 L5 125.24 154.82 690.40 628.38 0.18 0.22 0.74 0.04 0.46 1.03 0.0097 L6 361.24 292.34 878.88 644.37 0.41 0.33 0.55 0.06 0.49 1.04 0.015 L7 74.79 34.14 150.78 416.88 0.50 0.23 2.25 0.01 0.45 1.06 0.0026 L8 170.90 201.47 766.82 655.54 0.22 0.26 0.68 0.03 0.49 1.36 0.011 L9 142.95 106.03 406.39 616.06 0.35 0.26 1.20 0.02 0.42 1.04 0.0066 L10 112.06 98.87 549.43 610.75 0.20 0.18 0.94 0.02 0.39 1.00 0.0076 L11 61.51 20.16 109.31 487.46 0.56 0.18 3.77 0.01 0.45 1.20 0.0019 L12 58.61 41.72 207.77 471.09 0.28 0.20 1.89 0.01 0.56 1.05 0.0031 平均值 169.24 151.64 515.92 567.49 0.38 0.26 1.44 0.03 0.49 1.02 0.0083 -
[1] Zhang T,Li X G,Sun S W,et al. Determination of lignin in marine sediment using alkaline cupric oxide oxidation-solid phase extraction-on-column derivatization-gas chromatography[J]. Journal of Ocean University of China, 2013, 12(1):63−69. doi: 10.1007/s11802-011-1936-z
[2] Jex C N,Pate G H,Blyth A J,et al. Lignin biogeochemistry:From modern processes to Quaternary archives[J]. Quaternary Science Reviews, 2014, 87:46−59. doi: 10.1016/j.quascirev.2013.12.028
[3] Sun S,Schefuß E,Mulitza S,et al. Origin and processing of terrestrial organic carbon in the Amazon system:Lignin phenols in river,shelf,and fan sediments[J]. Biogeosciences, 2017, 14:2495−2512. doi: 10.5194/bg-14-2495-2017
[4] 王映辉,许云平. 黄河下游—河口—邻近海域表层沉积物中木质素的特征及其示踪意义[J]. 海洋科学,2016,40(2):55−64. Wang Y H,Xu Y P. Characteristics and environmental implications of lignin in surface sediments from the lower Yellow River—estuary—adjacent sea[J]. Marine Sciences, 2016, 40(2):55−64.
[5] 巩菲,刘月,张大海,等. 黄河济南段柱状沉积物中木质素的分布特征[J]. 海洋湖沼通报,2017,156(3):53−59. Gong F,Liu Y,Zhang D H,et al. Distribution characteristics of lignin from the core in Jinan section of the Yellow River[J]. Transactions of Oceanology and Limnology, 2017, 156(3):53−59.
[6] Yang B,Ljung K,Nielsen A B,et al. Impacts of long-term land use on terrestrial organic matter input to lakes based on lignin phenols in sediment records from a Swedish forest lake[J]. Science of the Total Environment, 2021, 774:145517. doi: 10.1016/j.scitotenv.2021.145517
[7] Gordon E G,Goni M A. Sources and distribution of terrigenous organic matter delivered by the Atchafalaya River to sediments in the northern Gulf of Mexico[J]. Geochimica et Cosmochimica Acta, 2003, 67(13):2359−2375. doi: 10.1016/S0016-7037(02)01412-6
[8] 王心怡,李中乔,金海燕,等. 应用木质素示踪楚科奇海表层沉积物中有机碳的来源和降解程度[J]. 海洋学报,2017,39(10):19−31. Wang X Y,Li Z Q,Jin H Y,et al. Sources and degradation of orgnic carbon in the surface sediments across the Chukchi Sea,insighes from lignin phenols[J]. Haiyang Xuebao, 2017, 39(10):19−31.
[9] Tolu J,Gerber L,Boily J F,et al. High-throughput characterization of sediment organic matter by pyrolysis-gas chromatography/mass spectrometry and multivariate curve resolution:A promising analytical tool in (paleo) limnology[J]. Analytica Chimica Acta, 2015, 880:93−102. doi: 10.1016/j.aca.2015.03.043
[10] 刘月,王敏,张婷,等. 杭州湾外泥质区柱状沉积物中木质素的分布特征及其环境指示意义[J]. 海洋环境科学,2017,36(1):8−14. Liu Y,Wang M,Zhang T,et al. Distribution characteristics of lignin in sediment cores from the mud area off Hangzhou Bay and the implication for regional sedimentary environment[J]. Chinese Journal of Marine Environmental Science, 2017, 36(1):8−14.
[11] 凌媛,王永,王淑贤,等. 生物标志物在海洋和湖泊古生态系统和生产力重建中的应用[J]. 地学前缘,2022,29(2):327−342. Ling Y,Wang Y,Wang S X,et al. Application of biomarkers in reconstructing marine and lacustrine paleoecosystems and paleoproductivity:A review[J]. Earth Science Frontiers, 2022, 29(2):327−342.
[12] Hedges J I,Ertel J R. Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products[J]. Analytical Chemistry, 1982, 54(2):174−178. doi: 10.1021/ac00239a007
[13] 叶君,胡利民,石学法,等. 基于木质素示踪北极东西伯利亚陆架沉积有机碳的来源、输运与埋藏[J]. 第四纪研究,2021,41(3):752−765. Ye J,Hu L M,Shi X F,et al. Sources,transport and burial of terrestrial organic carbon in the surface sediments across the East Siberian Arctic Shelf,insights from lignin[J]. Quaternary Sciences, 2021, 41(3):752−765.
[14] 江智婧,朱均均,李鑫,等. 反相高效液相色谱法定量分析木质素的主要降解产物[J]. 色谱,2011,29(1):59−62. doi: 10.3724/SP.J.1123.2011.00059 Jiang Z J,Zhu J J,Li X,et al. Determination of main degradation products of lignin using reversed phase high performance liquid chromatography[J]. Chinese Journal of Chromatography, 2011, 29(1):59−62. doi: 10.3724/SP.J.1123.2011.00059
[15] Sun L,Spencer R G M,Hernes P J,et al. A comparison of a simplified cupric oxide oxidation HPLC method with the traditional GC-MS method for characterization of lignin phenolics in environmental samples[J]. Limnology and Oceanography:Methods, 2015, 13:1−8.
[16] Owen B C,Haupert L,Jarrell T M,et al. High-performance liquid chromatography/high-resolution multiple stage tandem mass spectrometry using negative-ion-mode hydroxide-doped electrospray ionization for the characterization of lignin degradation products[J]. Analytical Chemistry, 2012, 84:6000−6007. doi: 10.1021/ac300762y
[17] 欧阳新平,陈子龙,邱学青. 超高效液相色谱/高分辨质谱法测定木质素氧化降解产物中单酚类化合物[J]. 分析化学,2014,42(5):723−728. Ouyang X P,Chen Z L,Qiu X Q. Determination of monophenolic compounds from lignin oxidative degradation using ultra performance liquid chromatography/high resolution mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2014, 42(5):723−728.
[18] 营娇龙,秦晓鹏,郎杭,等. 超高效液相色谱-串联质谱法同时测定水体中37种典型抗生素[J]. 岩矿测试,2022,41(3):394−403. Ying J L,Qin X P,Lang H,et al. Determination of 37 typical antibiotics by liquid chromatography-triple quadrupole mass spectrometry[J]. Rock and Mineral Analysis, 2022, 41(3):394−403.
[19] 莫力佳,石勇,高建华,等. 辽东半岛东岸泥区有机碳来源及其对流域和海岸环境变化的响应[J]. 地球化学,2021,50(2):199−210. Mo L J,Shi Y,Gao J H,et al. Source and distribution of lignin in mud deposits along the southeastern coast of Liaodong Peninsula and its response to environmental changes of the catchment[J]. Geochimica, 2021, 50(2):199−210.
[20] 朱帅,沈亚婷,贾静,等. 环境介质中典型新型有机污染物分析技术研究进展[J]. 岩矿测试,2018,37(5):586−606. Zhu S,Shen Y T,Jia J,et al. Review on the analytical methods of typical emerging organic pollutants in the environment[J]. Rock and Mineral Analysis, 2018, 37(5):586−606.
[21] Heidke I,Scholz D,Hoffmann T. Quantification of lignin oxidation products as vegetation biomarkers in speleothems and cave drip water[J]. Biogeosciences, 2018, 15:5831−5845. doi: 10.5194/bg-15-5831-2018
[22] 王全成,胡丹阳,杨柳明,等. 固相萃取-高效液相色谱法测定森林土壤中木质素[J]. 实验室科学,2021,24(5):40−44. doi: 10.3969/j.issn.1672-4305.2021.05.010 Wang Q C,Hu D Y,Yang L M,et al. Determination of lignin in forest soil by solid phase extraction/high performance liquid chromatography[J]. Laboratory Science, 2021, 24(5):40−44. doi: 10.3969/j.issn.1672-4305.2021.05.010
[23] 于雅晨,李坤兰,马英冲,等. 反气相色谱法测定有机溶剂型木质素的溶解度参数[J]. 色谱,2013,31(2):143−146. Yu Y C,Li K L,Ma Y C,et al. Determination of the solubility parameter of organosolv lignin by inverse gas chromatography[J]. Chinese Journal of Chromatography, 2013, 31(2):143−146.
[24] 李鹏辉,蒋政伟,李家全,等. 木质素降解产物酚羟基测定方法研究进展[J]. 光谱学与光谱分析,2022,42(9):2666−2671. Li P H,Jiang Z W,Li J Q,et al. Research progress in quantitative determination of phenolic hydroxyl groups in lignin[J]. Spectroscopy and Spectral Analysis, 2022, 42(9):2666−2671.
[25] Heinonen J,Tamper J,Laatikainen M,et al. Chromatographic recovery of monosaccharides and lignin from lignocellulosic hydrolysates[J]. Chemical Engineering & Technology, 2018, 41(12):2402−2410.
[26] Wang Y L,Chen J H,Gao L Y,et al. Determination of eight typical lipophilic algae toxins in particles suspended in seawater by ultra performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2016, 44(3):335−341. doi: 10.1016/S1872-2040(16)60911-8
[27] Tsutsuki K,Esaki I,Kuwatsuka S. CuO-oxidation products of peat as a key to the analysis of the paleo-environmental changes in a wetland[J]. Soil Science and Plant Nutrition, 1994, 40(1):107−116. doi: 10.1080/00380768.1994.10414283
[28] 戴群英,邹立,彭燕. 黄河口潮间带沉积物中木质素的分布以及降解特征[J]. 海洋环境科学,2017,36(2):210−215. Dai Q Y,Zou L,Peng Y. Distribution and degradation of lignin in the sediment of intertidal mudflat of Yellow River Estuary[J]. Marine Environmental Science, 2017, 36(2):210−215.
[29] 冯朝军,潘建明,王红群,等. 微波消解-气相色谱法测定沉积物中的木质素[J]. 岩矿测试,2011,30(1):23−26. Feng C J,Pan J M,Wang H Q,et al. Gas chromatographic determination of lignin in sediment samples assisted with microwave digestion[J]. Rock and Mineral Analysis, 2011, 30(1):23−26.
[30] Kaiser K,Benner R. Characterization of lignin by gas chromatography and mass spectrometry a simplified CuO oxidation method[J]. Analytical Chemistry, 2011, 84:459−464.
[31] Yan G,Kaiser K. A rapid and sensitive method for the analysis of lignin phenols in environmental samples using ultra-high performance liquid chromatography-electrospray ionization-tandem mass spectrometry with multiple reaction monitoring[J]. Analytica Chimica Acta, 2018, 1023:74−80. doi: 10.1016/j.aca.2018.03.054
[32] 谢秀风,郗敏,孔范龙,等. 木质素作为湿地陆源性溶解性有机质(DOM)示踪剂的研究进展[J]. 海洋湖沼通报,2015, 37(3):125−129. Xie X F,Xi M,Kong F L,et al. Proceedings in the application of wetland lignin to tracing terrestrial organic mattes[J]. Transactions of Oceanology and Limnology, 2015, 37(3):125−129.
[33] 李先国,杜培瑞,孙书文,等. 山东半岛东北岸近海表层沉积物中木质素的分布特征及有机物来源[J]. 海洋湖沼通报,2013(2):81−88. Li X G,Du P R,Sun S W,et al. Distribution characteristics of lignin and sources of organic matter in surface sediments offshore of north eastern Shandong Peninsula[J]. Transactions of Oceanology and Limnology, 2013(2):81−88.
[34] 黄佳埼,林昕,汪福顺,等. 乌江流域下游梯级水库沉积物中木质素的特征及有机碳来源辨析[J]. 上海大学学报(自然科学版),2021,27(2):271−279. Huang J Q,Lin X,Wang F S,et al. Characteristics of lignin in sediment cores from cascade reservoirs downstream of the Wujiang River and source analysis of organic carbon[J]. Journal of Shanghai University (Natural Science), 2021, 27(2):271−279.
[35] 李先国,王敏,孙书文,等. 渤海表层沉积物中木质素的分布特征及其对陆源有机物来源的示踪意义[J]. 海洋环境科学,2013,32(3):327−332. Li X G,Wang M,Sun S W,et al. Distribution of lignin in the surface sediments of Bohai Sea and its implication for tracing terrigenous organic matter[J]. Marine Environmental Science, 2013, 32(3):327−332.
[36] 尚文郁, 孙青, 谢曼曼, 等. 中国东北干旱-半干旱地区湖泊沉积物木质素酚类化合物特征及其气候指示意义[J]. 岩矿测试, 2023,42(2): 346-360. Shang W Y, Sun Q, Xie M M, et al. Characteristics and climatic implications of lignin-derived phenolic compounds in Arid Lake, northeastern China[J]. Rock and Mineral Analysis, 2023,42(2): 346-360.