Determination of Phenolic Compounds from Lignin Decomposition Products in Marine Sediments by Ultra-High Performance Liquid Chromatography-High Resolution Mass Spectrometry
-
摘要:
木质素分解产物酚类化合物是指示海洋环境中陆源有机碳来源的重要生物标志物,因此,开发检测海洋沉积物中木质素分解产物酚类化合物的简便方法,对研究海洋有机碳的来源及生物地球化学循环过程具有重要意义。本文采用固相萃取(SPE)和超高效液相色谱-飞行时间质谱技术(UHPLC-TOF/MS),建立了一种同步测定海洋沉积物中木质素分解产物酚类化合物(11种)的方法。首先对海洋沉积物样品进行氧化铜氧化碱分解和SPE净化处理,再采用填料粒径为1.8μm的反相C18柱进行分离,电喷雾TOF/MS全扫描模式检测,内标法定量。结果表明:沉积物中木质素的11种主要分解产物酚类化合物在20min内分离良好;方法具有良好的精密度(相对标准偏差RSD均小于9.0%),在线性范围内相关系数(R2)均不小于0.9989,加标回收率在86.8%~93.2%之间。应用该方法对莱州湾表层沉积物中木质素分解产物酚类化合物进行测定,12个表层沉积物样品中11种目标化合物的检出率均为100%;相关诊断比值:肉桂基酚系列单体总量与香草基酚系列单体总量的比值C/V在0.18~0.81之间,均值为0.38;丁香基酚系列单体总量与香草基酚系列单体总量的比值S/V在0.18~0.45之间,均值为0.26;对羟基酚系列单体中酮的量与对羟基酚系列单体总量的比值PON/P在0.01~0.07之间,均值为0.03;P系列单体总量与V和S系列单体总量之和的比值P/(V+S)在0.55~3.77之间,均值为1.44;V系列中酸类单体与醛类单体的比值(Ad/Al)v在0.12~1.07之间,均值为0.49;S系列单体中酸类单体与醛类单体的比值(Ad/Al)s在0.15~1.26之间,均值为1.02。表明莱州湾表层沉积物中的木质素主要来源于被子植物草本组织,并且具有中等或偏高程度的降解,但仍有少量新鲜植物有机质。本研究也表明UHPLC-TOF/MS是测定海洋沉积物中木质素分解产物酚类化合物的高效方法,能对沉积物中木质素含量和有机质来源进行有效指示。
-
关键词:
- 电喷雾飞行时间质谱法 /
- 木质素 /
- 酚类化合物 /
- 有机碳 /
- 莱州湾
Abstract:BACKGROUNDLignin is an important component of marine organic carbon. It is also an important biomarker for extracting information on the evolution of the land and marine environment and tracking the source of organic marine matter. However, the existing analytical techniques are difficult to determine lignin directly. So, the content of phenolic compounds in the decomposition products of lignin in marine sediments were generally determined to indicate the content of lignin and the source of organic matter. The content of phenolic compounds in the decomposition products of lignin in marine sediments is often used to reflect the content of lignin. In addition, by calculating the diagnostic ratio of individual phenolic compounds, it also provides important information about the classification, source, and diagenesis of terrestrial organic matter in marine sediments. However, phenolic compounds in the decomposition products of lignin have the characteristics of strong polarity and low volatility, so they cannot be directly detected by gas chromatography and need to be derivatized first, which makes the sample processing complicated and often results in incomplete derivatization. Therefore, it is of great significance to develop a simple and reliable method for determination of phenolic compounds of the lignin decomposition products in marine sediments to explore the source of organic matter and understand the environmental evolution process.
OBJECTIVESTo establish a simple and reliable method for the determination of phenolic compounds of lignin decomposition products in marine sediments using solid phase extraction (SPE) combined with ultra-high performance liquid chromatography-high resolution mass spectrometry, and to trace the content level and source of lignin in the sediments of Laizhou Bay in China.
METHODSMarine sediment samples were first decomposed with oxidative-alkaline CuO and extracted by solid phase extraction. Briefly, the oxidation was carried out in a polytetrafluoroethylene digestion tank. 1.00g of sediment sample, 500mg of copper oxide, and 100mg of ammonium ferrous sulfate were accurately weighed and placed in the tank. The components were thoroughly mixed with the sample and then the digestion tank was transferred to a glove box filled with nitrogen. 8.0mL of aqueous sodium hydroxide solution with a concentration of 8.0% (bubbled with N2 to remove dissolved oxygen) was added to the tank. The digestion tank was covered tightly and transferred to an oven heating to 150℃ for reaction, which was terminated after 3h. After the digestion tank cooled to room temperature, it was carefully unscrewed, and an internal standard (ethyl vanillin) solution was added. Subsequently, the hydrolysate was transferred to a centrifuge tube, spun at 8000r/min for 10min, and the supernatant and reaction residue was separated. 2.0mL of 1.0% sodium hydroxide solution was added to rinse the residue, and centrifuged at 8000r/min for 10min. Combining the centrifuged supernatant obtained twice, the solution was acidified to pH=1 with hydrochloric acid. After the solution was left to stand for 30 minutes, solid phase extraction was performed. The SPE procedure was as follows: A hydrophilic-lipophilic balance (HLB) SPE cartridge (200mg, 6mL) was conditioned with 5mL of methanol and 5mL of ultrapure water. Sample solution was passed through the cartridge in a flow rate 1.0mL/min, and then the cartridges were rinsed with 10mL water, and dried under vacuum for about 3min. Phenolic compounds were eluted with 10mL ethyl acetate, and were evaporated by a rotary evaporator, reconstituted with sample solvent. Then, ultra-high performance liquid chromatography using ZORBAX Eclipse XDB-C18 column with packing particle size of 1.8μm was used to directly separate all target compounds at 28℃, with gradient elution. The mobile phase was composed of ultrapure water with 0.1% formic acid (V/V) and acetonitrile/methanol (9:1, V/V) , and the flow rate was set to 0.25mL/min. Electrospray ionization (in positive) time of flight mass spectrometry was applied to detect target compounds in full scan mode, and quantification was performed using an internal standard determination.
RESULTSFirstly, chromatographic conditions and solid phase extraction conditions were systematically optimized. Ultra-high performance liquid chromatography was used for the chromatographic separation of phenolic compounds from lignin decomposition products in marine sediments. The separation effects of three mobile phase systems, namely, water-acetonitrile, water- methanol, and water-methanol-acetonitrile, were compared. When using a water-methanol -acetonitrile ternary mobile phase system, the resolution of various phenolic compounds was superior to the commonly used water-acetonitrile or water-methanol binary mobile phase systems in the literature. In addition, the effects of mobile phase acidity (trifluoroacetic acid, formic acid, and acetic acid were added into the mobile phase) on the separation of various phenolic compounds were investigated. The results showed that adding a certain concentration of all three acids to the mobile phase provided better separation results. Considering the compatibility with mass spectrometry, it was finally determined that adding 0.1% formic acid into the mobile phase achieved good peak patterns and resolution. In order to determine the ionization mode suitable for the analysis of phenolic compounds from lignin decomposition products in marine sediment, electrospray ionization (ESI) mass spectrometry was performed on each target phenolic compound in ESI+ and ESI− mode, respectively. Under ESI+ mode, various target phenolic compounds were less affected by interfering substances in the sample matrix, and the MS response value for most of the phenolic compounds was higher than that found in ESI− mode. Hence, ESI-TOF/MS in positive mode was selected to determine phenolic compounds of lignin decomposition products in marine sediment. Subsequently, the fragmentation voltage was optimized to obtain the highest sensitivity for all target phenolic compounds, which was the main mass spectrometric condition that affected the quantification accuracy and sensitivity. The effect of fragmentation voltage on the MS response signal of each target phenolic compound was investigated in the range of 80V to 200V. Overall, considering the detection sensitivity of the [M+H]+ ion peak of each target compound, 130V was selected as the optimal fragmentation voltage to determine phenolic compounds of lignin decomposition products in marine sediment. The effect of pH (1.0-2.5) of the loading solution for solid phase extraction on the extraction efficiency of various target phenolic compounds was systematically investigated, to ensure that the phenolic compounds of lignin decomposition products in marine sediments have a good recovery rate during the SPE process. When the pH of the loading solution was 1.0 and 1.5, the recovery rate of various phenolic compounds by using HLB solid phase extraction column was significantly higher than that of the loading solution adjusted pH to 2.0 and 2.5. When the pH of the sample solution was 1.0 and 1.5, although the recoveries of syringaldehyde and acetovanillone were relatively similar, the recoveries of other phenolic compounds were the highest at a pH of 1.0. Considering the recovery rate of all the target phenolic compounds and applicability of the method, the pH of the sample solution was confirmed to adjust to 1.0. In this study, HLB SPE column with 200mg of packing material was used to enrich phenolic compounds in sample extraction solution. Generally, 5-10mL of eluting solvent can ensure the full elution of all target phenolic compounds adsorbed on the SPE column. Therefore, based on the results of literature research, ethyl acetate was finally selected as the eluting solvent, with a dosage of 10mL. Under the optimum experimental conditions, the 11 main decomposition phenol compounds of lignin in marine sediments were well separated within 20 minutes. The proposed method had good precision (RSD was less than 9.0%), the correlation coefficient (R2) was not less than 0.9989 in the linear range, and the recovery rate of all spiked phenol compounds in blank marine sediment was in the range of 86.8%-93.2%, thereby indicating that the developed method would be suitable to determine the target decomposition phenol compounds of lignin in marine sediment. Subsequently, the method was used to determine the phenolic compounds of lignin decomposition products in the surface sediments of Laizhou Bay. The detection rate of 11 target phenolic compounds in 12 surface sediment samples was 100%, and the concentration of Σ8 in 12 surface sediment samples ranged from 0.001mg/10gds to 0.019mg/10gds. The value of C/V was between 0.18 and 0.81, with an average of 0.38; the value of S/V was between 0.18 and 0.45, with an average of 0.26; PON/P value was between 0.01 and 0.07, with an average of 0.03; P/(V+S) value was between 0.55 and 3.77, with an average of 1.44; (Ad/Al)v value was between 0.12 and 1.07, with an average of 0.48; the value of (Ad/Al)s was between 0.15 and 1.26, with an average of 1.02.
CONCLUSIONSThe above diagnostic ratios indicate that the lignin in the surface sediments of Laizhou Bay originate mainly from the herbaceous tissue of angiosperms, while the proportion of organic matter in vascular plants is relatively low. The degradation degree of terrestrial organic matter in most sampling stations is medium or high, but there is still a small amount of fresh plant debris. The proposed method has the advantages of high efficiency, simple for sample pretreatment, and is a powerful technique for the determination of main decomposition product phenolic compounds of lignin in marine sediments.
-
世界各地还在普遍使用泥盆瓦罐之时,中国人已经使用上瓷器,尤以国粹唐宋古瓷闻名。中国古代结晶釉因烧制过程中析晶不同而形态各异,却又浑然天成,备受推崇。茶叶末瓷是中国最早期的结晶釉,起源于唐代[1],釉面古朴典雅,耐人寻味。现代关于古陶瓷的科学研究内容包括多个方面,如:釉面的矿物晶体特征[2]、呈色机理[3-4]、古代烧制工艺及原料[5]、古陶瓷的仿造复原[6]等。对诸如茶叶末等古陶瓷,使用现代前沿的分析仪器进行深入且细致的研究,可加深在古陶瓷制作工艺、呈色机理、分层结构等各方面的认识,为古陶瓷的仿制还原、甄别鉴定、保护修复等方面提供方法原理、研究数据等支撑,弘扬并传承优秀的古瓷文化并促进相关非遗工艺进步。
到目前为止,经过系统研究的古窑口茶叶末瓷釉样本,囊括唐代黄堡窑、浑源窑、观台窑以及辽金时期龙泉务窑,共计12件。唐代茶叶末釉烧成温度控制在1250~1280℃,以还原气氛为主,冷却速度应缓慢,若烧成气氛偏向氧化,颜色会偏褐色[7];矿物学上黄堡窑和浑源窑茶叶末釉析出的主晶相普通辉石,次晶相为斜长石类(Plagioclase)中的培长石(Bytownite)[8],而观台窑茶叶末釉主晶相是深绿辉石。辽金时期北京龙泉务窑发现的茶叶末釉中主晶相为普通辉石和钙长石[9]。不同时期、不同窑口茶叶末釉面中矿物有所区别,源于其原料成分及烧制工艺等多方面的影响,这对分析技术的精确度、适用性等方面都提出更高的要求。如今有多种分析技术已经应用于古陶瓷研究,包括中子活化分析(NAA)、能量色散X射线荧光光谱(EDXRF)、扫描电镜(SEM)、电子探针(EPMA)、飞行时间二次离子质谱(ToF-SIMS)、热电离质谱(TIMS)、激光诱导击穿光谱(LIBS)、激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)、溶液雾化-电感耦合等离子体质谱(SN-ICP-MS)、溶液雾化-电感耦合等离子体发射光谱(SN-ICP-OES)。其中,NAA、TIMS、SN-ICP-MS和SN-ICP-OES等技术在仪器分析之前的样品制备过程中,需要消耗50mg至5g的样品粉末[10],因此在考古研究中使用受限;虽然EDXRF和EPMA是无损分析技术,但它们的高检测限导致痕量元素测量不够准确[10]。LA-ICP-MS具备原位、快速、准确、多元素同时检测的分析优势,以及较高灵敏度和空间分辨率成为重要的微区原位元素及同位素测试手段,为地质[11-12]、冶金[13]、生物[14]、材料[15]、考古[16]等诸多领域的创新研究提供了重要支撑。ToF-SIMS分析技术具有极高分辨率,可以提供表面、薄膜、界面以至于三维样品的元素、分子等结构信息,具有分析区域小、分析深度浅和不破坏样品的特点[17]。ToF-SIMS不仅在芯片研发[18]、宇宙与天体化学[19]、地球科学[20-21]、环境科学[22-23]、材料科学[24]、生物医学[25]等领域广泛应用,还逐渐在考古[26]、艺术品[27]、古陶瓷[28-29]等领域兴起,如徐子琪等[30]利用ToF-SIMS分析宋代黑釉茶盏油滴,从矿物学角度解释了华北油滴的银色与反光现象。
茶叶末釉古瓷样本数据稀少,需对更多不同窑口、不同历史时期的茶叶末釉样本进行系统物理化学分析,以建立更为全面的茶叶末釉特征数据库。基于前人研究多来源于二十世纪末,本文在借鉴前人对茶叶末古瓷原料、釉面晶体等研究成果的基础上,以北宋定窑茶叶末瓷片为研究对象,利用LA-ICP-MS、ToF-SIMS、SEM-EDS、激光共聚焦拉曼光谱(LRS)等多种谱学仪器和显微观察设备对样本的微观结构、成分和形成机理等进行深入探讨,确定了茶叶末釉微区中矿物的形态、结构、分布及其元素组成。
1. 实验部分
1.1 样品与制样
样品是北宋定窑一罐体的腰部残片,其外施茶叶末釉(图1a),内未施釉(图1b);约5mm厚度的胎体呈洁白色泽(图1c),但明显可见铁锈等杂色斑点(图1e),符合定窑采用风化煤矸石(白矸土)亦即“当地出露煤系地层高岭岩风化所成的天然‘高岭泥’”为原料直接制胎的基本特征[31]。约1mm厚度的釉层截面呈酱-黑色的釉基质(图1e),此色泽与定窑紫金釉以及华北油滴盏的釉基质一致[30]。
切割样品残片制取1.5cm×1.5cm矩形块并减薄至厚度0.5cm而保留原来釉面作为测试样品A(图1d);制取1.5cm×1.5cm矩形块并按与釉面法线约60°夹角斜切以使可测釉基体“延展”并打磨-抛光,以此作为测试样品B(图1e);另制取3cm×0.5cm矩形块磨平胎底并将截面制备为光学薄片(图1f)。
1.2 样品测试方法
1.2.1 LA-ICP-MS分析
本研究中LA-ICP-MS实验在南京宏创地质勘察技术服务有限公司完成。使用的LA-ICP-MS由193nm深紫外激光剥蚀系统(Resolution SE型,美国Applied Spectra公司)以及电感耦合等离子体质谱仪(Agilent 7900型,美国Agilent公司)组成,配备了S155型双体积样品池。激光参数设置为:束斑直径50μm,剥蚀频率10Hz,能量密度3.5J/cm2,扫描速度3μm/s,通过剥蚀NIST 612标准样品并调节气流,实现了238U的高信号强度(约6×105cps)和低氧化物产率(ThO/Th<0.2%)。同时,使用100μm束斑对NIST610进行线扫,以对待测元素进行P/A调谐。分析的质量数涵盖了从23Na到238U的广泛元素,总扫描时间约为0.31s。在样品制备过程中,光片固定于样品支架上,并使用分析纯级别的乙醇擦拭样品表面,去除样品表面可能存在的污染物。对剥蚀区域使用激光脉冲进行预剥蚀(深度约1μm)从而避免污染。最后,在50μm束斑直径、5Hz剥蚀频率、4.5J/cm2能量密度的条件下对陶瓷样品进行分析。详细的设备调谐参数可参考Thompson等[32]的工作。
1.2.2 ToF-SIMS分析
元素成像在清华大学分析中心的飞行时间二次离子质谱仪(TOF SIMS 5-100型,德国ION-TOF GmbH公司)上完成。使用导电胶将样本固定在ToF-SIMS样品台上,在超高真空下用溅射枪对样品表面进行溅射去除表面污染,然后在高质量分辨模式(Spe)和高空间分辨模式(Fast)下采集釉面及胎釉交界处典型区域正、负离子谱。循环时间设置为100μs(0~1000amu),质量分辨(m/Δm)达到8000,使用电子枪(±20keV)对样品表面的荷电效应进行中和处理,以避免对分析结果的干扰。Spe模式参数:一次离子束Bi1+,能量30keV,束流(脉冲化)0.8pA;Fast模式参数:一次离子束Bi1+,能量30keV,束流(脉冲化)1.0pA;溅射参数:溅射枪选择Arn+团簇离子避免溅射束造成表面氧化,能量10keV,束流约9nA。
1.2.3 SEM-EDS分析
SEM-EDS(Phenom ProX)对样品进行显微观察。使用前将样品釉面使用分析级乙醇擦拭清洁后,进行喷铂处理,利用导电胶将样本固定在样品杯上,送入舱中,施加加速电压为15kV,电子束电流为0.6nA。选择合适区域,直接监测观察表面SEM特征,并进行点和面扫分析。
1.2.4 激光共聚焦拉曼光谱(LRS)分析
矿物物相鉴定使用LRS(HORIBA XploRA Plus)完成,在高放大倍数物镜(×100)下选定测试点,使用激光波长为638nm,激光功率25mW,光斑直径1μm,扫描范围100~1800cm−1,曝光时间10~100s,每个位置扫描2次。
1.3 数据质量控制与数据处理
LA-ICP-MS实验以NIST 610、NIST 612、BCR-2G和BHVO-2G作为标准样品,每10个样品点分析后插入一个标准样品,数据通过使用Iolite软件的“3D Trace Element”方法进行无内标法校正,铁的价态为二价。数据处理包括采集20s的气体空白和35~40s的信号区间。
ToF-SIMS实验数据采用SurfaceLab 7.2软件进行校正、处理和分析,确保获取精确可靠的测试结果。
2. 结果与讨论
在光学镜下观察釉面整体分布特征,釉面的主体部分由大面积聚集的黄褐色矿物晶体以及酱-黑色硅铝酸盐基质玻璃组成,少量锈红色斑点散乱分布在釉面,在玻璃基质区域隐约可见大小不一的釉泡聚集,半径约10~50μm(图2a)。在高倍(200X)镜下可见釉面主晶相呈板片状、针状,单偏光下半自形板片状晶体大小约为15~35μm,表面有彩虹色斑纹,主要均匀分布在晶体聚集区域中心位置(图2中b,c);除主晶相外,也有部分铁由于过饱和而在釉中析出,作为晶体相存在,在单偏光下(500X)常见银白色片状金属矿物晶体,单晶约为5~15μm,覆于釉面最表层(图2b)。
斜截面镜下可知胎釉交界有厚约20~60μm的墨绿色反应层,由胎体至釉层颜色逐渐加深,釉层布满大小不一的釉泡空洞,半径约20~150μm,在釉和胎中可见未完全熔融的石英矿物颗粒和碱性长石,可在薄片下观察到胎中长石的卡式双晶表面纯净未风化,有轻微裂纹,正交偏光下暗红色颗粒为赤铁矿(图2中d,e),反应层中可以看到存在微米级针状晶体聚集(图2f)。
2.1 元素含量
在茶叶末釉上通过测定釉面斑点和基质的元素组成,以研究其表面颜色差异的原因。在样品A釉面上分别选择黄褐色斑点与酱黑色基质各10个点,使用LA-ICP-MS分析茶叶末釉化学组成,分别取平均值(表1)。釉面以SiO2-Al2O3系统为基釉,SiO2和Al2O3含量分别为56.43%和13.22%;CaO含量>10%,为高钙釉。以釉中主要溶剂氧化物种类作为划分釉类型的基准,可将茶叶末结晶釉归类于铁系釉,表现为黑色釉基质富铁(Fe2O3含量均值9.73%)和矿物结晶富铁(Fe2O3含量均值11.33%)。
表 1 茶叶末釉表面不同颜色斑点元素分析结果Table 1. Analytical results of elements in different color spots of the tea-dust glaze不同颜色斑点 元素含量(%) Na2O MgO Al2O3 SiO2 K2O CaO TiO2 Fe2O3 P2O5 MnO 黄褐色斑点 0.93 1.74 13.99 53.94 3.25 12.09 1.65 11.33 0.88 0.20 酱-黑色基质 0.96 1.58 12.44 58.96 4.03 10.32 1.28 9.73 0.53 0.17 整体 0.94 1.66 13.22 56.43 3.64 11.21 1.47 10.54 0.71 0.18 为研究宋代定窑茶叶末瓷样本釉层中元素变化,在茶叶末瓷斜截面样品B上釉层部分选择4列,每列从釉顶至釉底相隔相同距离分别选取5个点位,使用LA-ICP-MS分析茶叶末釉中化学组成,得到5行4列数据并将每行数据分别取平均值整理为表2。
表 2 茶叶末瓷釉层中元素分析结果Table 2. Analytical results of elements in glaze layer of tea-dust porcelain釉面至釉底
行号元素含量(%) Na2O MgO Al2O3 SiO2 K2O CaO TiO2 Fe2O3 P2O5 MnO 第1行 0.87 1.28 18.36 57.44 3.62 10.29 0.94 6.92 0.16 0.11 第2行 0.84 1.68 13.36 59.79 3.84 9.94 1.16 9.05 0.19 0.16 第3行 0.87 1.55 13.13 61.50 4.37 9.34 0.92 8.03 0.12 0.15 第4行 0.84 1.65 12.59 61.53 4.42 9.18 0.88 8.60 0.14 0.16 第5行 0.86 1.65 13.51 60.63 3.88 9.66 0.93 8.60 0.12 0.16 2.2 釉面矿物
茶叶末釉颜色多变,矿物组成复杂,借鉴火成岩的矿物结晶形成过程、风化过程及以往矿物相关的研究成果,将釉中矿物晶体按其成因系统划分为熔后重结晶矿物、未熔融矿物、风化成因矿物三大类。
2.2.1 熔后重结晶矿物
熔后重结晶矿物是釉料在烧制的过程中熔融后再冷却重结晶形成,最明显的特征为晶面的发育程度好,多为自形晶。根据烧制气氛的控制、饱和度高低和冷却速度快慢,所形成矿物晶体的种类、大小和形态亦不同,本文详细报道重结晶矿物有莫来石、钙长石、赤铁矿、ε-Fe2O3、金红石、辉石等矿物[33-35]。
使用SEM对样本釉面矿物进行表征(图3),并对图3中标记点位使用EDS显示元素组成(表3)。
表 3 EDS下矿物晶体元素组成Table 3. Elemental composition of mineral crystals under EDSEDS所取点位 元素原子占比(at%) Si Al Ca Fe Mg K Na Cr Ti Mn 1 63.67 13.8 8.14 3.97 3.61 4.85 1.96 / / / 2 60.59 21.39 7.99 2.08 2.48 1.07 4.22 / / 0.18 3 51.53 25.74 13.82 3.83 1.6 1.13 2.35 / / / 4 5.61 2.18 1.26 89.71 / 0.98 / / / / 5 41.2 34.14 3.26 4.79 4.37 2.78 3.03 / 5.87 / 6 1.85 / 0.43 65.59 29.93 0.23 / 1.96 / / 7 11.78 6.5 / 77.79 / / / / 3.92 / 注:元素原子占比低于0.10at%以“/”表示。 釉面针状晶体相对板片状晶体分布更广,除聚集区域中心处与板片状晶体交杂,还分布于聚集体边缘处,呈杂乱无规则状,晶体在中心处长约10~40μm,边缘处约30~120μm。BSE模式下图像显示,釉玻璃基质上方铺陈针状晶体,板片状晶体则覆盖在针状晶体上方,整体上此区域基质显露约10%,针状占40%,板片状约占60%(图3中a,b)。点1为玻璃基质;点2、3分别为针状、板片状矿物,由元素占比可知为长石和普通辉石,与金元时期旬邑茶叶末瓷、主晶系相同[9,36]。
釉面银白色片状金属矿物(图3c)主要元素组成为Fe,拉曼光谱测试谱图示于图4,图中228、350、601、672、1328cm−1为主要位移峰,与赤铁矿(α-Fe2O3)晶体在拉曼标准谱库中谱图一致。这些特征峰也出现在宋代黑釉油滴盏、华北山西临汾窑等α-Fe2O3晶体的拉曼谱图中[30,37],同为铁元素饱和析出的重结晶矿物,宋代油滴形态上为近百余枚银色六方柱晶体自组织分散排列构成,而临汾窑的铁锈斑则为许多深红色多边形晶体组成。
2.2.2 未熔融矿物
釉中部分矿物因高熔点,烧制过程中部分未熔融或未完全融熔,这些矿物来自釉料,依然保持烧制前的特性,常见的有石英、磁铁矿、长石和黏土矿物[9]。
扫描电镜下样本釉面发现未完全融熔黏土矿物颗粒,黏土矿物颗粒圆滑呈球状,同时可见层状堆叠结构,且仅一小部分发生熔融(图3d),使用EDS测定化学成分主要元素为Si、Al,且其Si/Al的原子比介于1.1~1.3,判断未完全熔融黏土矿物为釉料携带的高岭石。
釉面观察到一种未融熔矿物异于其他矿物,部分晶体颗粒在外界条件作用下已脱落,留下凹坑,部分晶体破碎,半自形状,磨圆度一般,大小为1~5μm(图3e)。此矿物颗粒直接嵌入玻璃基质中而非铺陈其上,显然不是熔融后冷却结晶形成,而是残留相,EDS显示该矿物主要元素组成为Fe和Mg。此晶体的拉曼谱图谱峰显示主位移峰为212、327、481、625、703、1375cm−1,与Renishaw矿物和无机材料数据库(RMIM No.503)、RRuFF数据库(RRuFF ID: R070127)中合成氧化镁铁素体的标准拉曼光谱进行比较,为镁铁矿(MgFe2O4)特征峰,又称为镁铁尖晶石(图4)。该矿物在宋代耀州窑酱黑釉中首次被证实存在,酱黑釉中镁铁矿除富铁、富镁外,还富钙[38];在宋金时期浑源窑黑釉剔花瓷片也发现了大量镁铁矿晶体,为棕黄色树枝状[39]。
2.2.3 风化成因矿物
瓷器烧制完成后,釉面矿物长时间暴露在空气中或埋藏于地下,在风化作用下发生氧化还原、破坏和分解,从而会形成一些衍生矿物,主要存在于釉面表层及裂隙、机械损伤处,常见的衍生矿物为碳酸钙、高岭石、赤铁矿等,严重风化情况下表现为釉面腐蚀[35]。
图3f中不规则粒状、鳞片状晶体,单晶约为1~5μm,EDS显示矿物主要元素组成为Fe,晶体中少量Ti取代Fe,根据元素组成和单晶形态,为含钛磁铁矿,三方晶系,晶体边缘为白色环状。
未被交代的粒状磁铁矿在扫描电镜背散射测试下表面几乎不存在孔隙,而被交代的磁铁矿和交代形成的假象赤铁矿表面的孔隙会明显增多,且粒状假象赤铁矿表面孔隙多于板状赤铁矿[40]。釉面长期与空气接触,磁铁矿在风化作用下,边缘或破碎处易被氧化,生成赤铁矿,进一步判断该晶体为未完全被赤铁矿交代的含钛磁铁矿。
2.3 胎釉反应层
斜截面胎釉交界处反应层的ToF-SIMS 500μm×500μm正离子图像如图5所示。其中Si+离子图像中,胎中石英颗粒明显高于釉中,大小约为1~20μm;茶叶末釉属于钙质釉或钙碱釉,因此Ca+离子图像可以明显区别出釉、胎以及反应层,胎釉交界处针状晶体层丛生,晶体主要元素为Ca+、Al+、Si+离子,含有少部分Na+离子,为斜长石亚类中钙长石,而非碱性长石,这是由于釉中碱土金属氧化物(CaO+MgO)含量远高于碱金属氧化物(Na2O+K2O)。Ca+、Fe+离子图像显示,针状晶体不仅存在于胎釉交界处,还大量赋存于釉中,与气泡附近Fe+含量较高区域互衬。Na+成像中的黄亮色光点同时位于K+、Si+、Al+成像范围上,为胎釉中未完全熔融的碱性长石。
2.4 茶叶末釉的呈色机理与烧制工艺要点
茶叶末釉的黄褐色斑点和酱-黑色玻璃基质共同表现出釉面颜色以及釉面相对的粗糙度。黄褐色斑点中Ca、Fe含量较高,釉中CaO的存在能够改善釉面的光泽度且析出的钙长石有助于提高乳浊效果,同时Fe是茶叶末釉中的最主要着色元素,在Fe和Ca元素的共同作用下,富集Fe、Ca的硅铝酸盐晶体堆积在一起宏观上表现为釉表面细小的黄褐色似茶沫颗粒。酱-黑色玻璃基质中Si、K含量较高,这是由于富K原料主要为天然碱性长石,常为固溶体,熔点较单一成分的长石熔点低,具有良好的助熔作用,Al2O3-SiO2体系中加入长石,则可在985±20℃即开始出现液相,且长石含量越高,初熔温度越低[41],故K+一般分布于釉基质中,其二次离子图像可以表现出釉基质的分布特征。釉层元素分布表现出明显差异性,Fe在釉面最低,在釉中最高,结合Fe+的二次离子图像,这可能是烧制过程中气泡携带Fe向上悬浮,由于釉浆流动性较差加上快速冷却,大量气泡悬停在釉中区域,导致Fe在此最高,在釉面最低。
高岭石作为烧制瓷器的主要黏土矿物,在1200℃左右会形成莫来石晶体,在釉料中助溶剂的作用下,熔融温度则会进一步降低,未熔融矿物类的残余高岭石矿物球粒反演出本研究样本的烧成温度很可能低于1200℃,区别于目前关于耀州窑等唐宋茶叶末釉属于高温釉的看法。同为未熔融矿物类中的铁镁尖晶石(MgFe23+O4)熔点为1713℃,首次见于茶叶末釉,作为原始釉料携带物,可在后续研究中通过其携带的稀土元素和同位素等信息进行有效的地球化学示踪,并能够对岩石矿物的成因、演化和来源分析提供帮助[42]。
3. 结论
利用LA-ICP-MS、ToF-SIMS、SEM-EDS等技术方法,确定了北宋定窑茶叶末釉微区中矿物的形态、结构、分布及其元素组成。属高钙釉、铁系结晶釉,表现为酱-黑色釉基质富铁(Fe2O3含量均值9.73%)和黄褐色矿物结晶富铁(Fe2O3含量均值11.33%),同时Fe在釉层中分布不均,在釉面最低,釉中最高。釉面矿物簇群据各自元素组成和形貌特征区分为三类,熔后重结晶形成的钙长石和辉石作为主晶相矿物,与辽金龙泉务窑一致;茶叶末釉的颜色在很大程度上归因于其析出的辉石类晶体(镁铁类矿物),充足的MgO是烧制茶叶末釉的关键因素,镁铁矿指示出当时制釉原料中已有镁的引入;烧制温度作为另一关键因素,前人研究认为唐宋茶叶末釉应处于1250~1280℃,然而原始釉料中残余的高岭石球粒矿物则反映出该茶叶末瓷烧成温度可能低于1200℃。
在古陶瓷研究过程中,为有效地避免珍贵样品被破碎[16],目前已有使用LA-ICP-MS测定大尺寸陶瓷主微量元素组成方法的案例。同属于非破坏性分析,ToF-SIMS在样本尺寸选择上虽仍有一定局限,但作为前沿实用的表面分析技术之一,在古瓷的微区原位研究方面有着明显的优势,形貌结构与元素分布表现优秀,能够辨别钙长石、碱性长石等微米级矿物。ToF-SIMS和LA-ICP-MS等测试方法可望运用于国粹唐宋古瓷的研究和甄别,以促进相关非遗工艺进步。
致谢: 感谢南京宏创地质勘察技术服务有限公司武现伟老师在LA-ICP-MS实验上提供的帮助。
-
图 2 UHPLC-TOF/MS 全扫描分析提取离子色谱图
(A) 11种目标化合物和内标物的混合标准溶液; (B)海洋沉积物样品提取溶液。按照保留时间从前到后依次排序:对羟基苯甲酸、香草酸、对羟基苯甲醛、丁香酸、对羟基苯乙酮、香草醛、对羟基肉桂酸、丁香醛、香草乙酮、阿魏酸、乙酰丁香酮、乙基香兰素(内标)。
Figure 2. UHPLC-TOF/MS full-scan analysis extraction ion chromatogram (EIC).
(A) Mixed standard solution of 11 target compounds and internal standard; (B) Extraction solution of marine sediment sample. Sort by retention time from front to back: p-hydroxybenzoic acid, vanillic acid, p-hydroxybenzaldehyde, syringic acid, p-hydroxyacetophenone, vanillin, p-hydroxy-cinnamic acid, syringaldehyde, acetovanillone, ferulic acid, acetosyringone and ethyl vanillin (internal standard).
图 4 方法的专属性考察结果(沉积物加标样品UHPLC-TOF/MS分析EIC图)
1—对羟基苯甲酸;2—香草酸;3—对羟基苯甲醛;4—丁香酸;5—对羟基苯乙酮;6—香草醛;7—对羟基肉桂酸;8—丁香醛;9—香草乙酮;10—阿魏酸;11—乙酰丁香酮;12—乙基香兰素(内标)。
Figure 4. Results for the specificity validation of the method (UHPLC-TOF/MS EIC chromatogram of the spiked sediment sample).
1—p-hydroxybenzoic acid; 2—vanillic acid; 3—p-hydroxybenzaldehyde; 4—syringic acid; 5—p-hydroxyacetophenone; 6—vanillin; 7—p-hydroxy-cinnamic acid; 8—syringaldehyde; 9—acetovanillone; 10—ferulic acid; 11—acetylsyrinone; 12—ethyl vanillin (internal standard).
表 1 超高效液相色谱-飞行时间质谱分析木质素主要分解产物酚类化合物和内标物的分子式、保留时间及精确分子质量
Table 1 Molecular formulas, retention times and exact molecular mass of the main decomposition products of lignin (phenolic compounds) and the internal standard analyzed by ultra-high performance liquid chromatography-time-of-flight mass spectrometry (UHPLC-TOF/MS).
序号 酚类化合物 分子式 保留时间(min) 精确分子量[M+H]+ 精确分子量[M-H]- 1 对羟基苯甲酸 C7H6O3 5.14 139.0395 137.0244 2 香草酸 C8H8O4 7.37 169.0495 167.0272 3 对羟基苯甲醛 C7H6O2 8.08 123.0441 121.0295 4 丁香酸 C9H10O5 9.35 199.0601 197.0455 5 对羟基苯乙酮 C8H8O2 11.46 137.0597 135.0452 6 香草醛 C8H8O3 11.61 153.0546 151.0401 7 对羟基肉桂酸 C9H8O3 12.90 165.0546 163.0401 8 丁香醛 C9H10O4 13.91 183.0652 181.0506 9 香草乙酮 C9H10O4 14.65 167.0703 165.0557 10 阿魏酸 C10H10O4 15.89 195.0652 193.0506 11 乙酰丁香酮 C10H12O4 16.68 197.0808 195.0663 12 乙基香兰素 C9H10O3 19.08 167.0703 165.0557 表 2 最佳实验条件下 11种目标化合物的线性方程相关系数及方法的检出限和定量限
Table 2 Correlation coefficients for linear analysis, detection limits and quantification limits of the method for UHPLC-TOF/MS determination of 11 target compounds under the optimal experimental conditions.
序号 酚类化合物 R2 方法检出限
(ng/g)方法定量限
(ng/g)1 对羟基苯甲酸 0.9989 5.34 17.80 2 香草酸 0.9989 7.27 24.23 3 对羟基苯甲醛 0.9991 0.67 2.13 4 丁香酸 0.9996 1.79 5.98 5 对羟基苯乙酮 0.9991 0.38 1.25 6 香草醛 0.9997 0.49 1.64 7 对羟基肉桂酸 0.9989 4.16 13.95 8 丁香醛 0.9993 0.47 1.58 9 香草乙酮 0.9994 0.23 0.76 10 阿魏酸 0.9994 5.13 17.1 11 乙酰丁香酮 0.9997 0.13 0.42 表 3 三种不同添加浓度水平下11种目标化合物的回收率和回收率的RSD(n=6)
Table 3 The recovery rate and its RSD of 11 target compounds under three different spiked levels (50.0ng/g, 100.0ng/g, 400.0ng/g) in the spiked recovery experiment with blank marine sediment (n=6).
酚类化合物 不同加标浓度水平下目标化合物回收率(%)(n=6) 不同加标浓度水平下目标化合物回收率的RSD(%)(n=6) 加标50.0ng/g 加标100.0ng/g 加标400.0ng/g 加标50.0ng/g 加标100.0ng/g 加标400.0ng/g 对羟基苯甲酸 87.8 90.1 91.9 8.4 7.0 5.8 香草酸 89.3 87.7 87.4 6.4 6.0 6.1 对羟基苯甲醛 86.8 90.0 88.9 7.0 7.2 6.3 丁香酸 88.7 88.1 89.4 8.3 6.3 7.5 对羟基苯乙酮 89.5 91.1 92.3 7.3 6.5 5.5 香草醛 87.4 88.5 87.8 5.2 5.5 4.6 对羟基肉桂酸 88.9 89.3 89.6 6.2 6.5 4.6 丁香醛 89.1 90.7 91.5 8.2 8.5 6.5 香草乙酮 87.5 88.9 89.5 7.4 5.3 5.5 阿魏酸 86.9 89.9 91.0 6.1 8.1 6.2 乙酰丁香酮 90.8 91.2 93.2 8.8 6.2 4.1 表 4 莱州湾表层沉积物中11种木质素主要分解产物酚类化合物的含量
Table 4 Content of 11 main phenolic compounds from lignin decomposition products of the surface sediment samples collected from the Laizhou Bay, China.
站位 酚类化合物含量(ng/g)(ds) 对羟基苯甲酸 香草酸 对羟基苯甲醛 丁香酸 对羟基苯乙酮 香草醛 对羟基肉桂酸 丁香醛 香草乙酮 阿魏酸 乙酰丁香酮 L1 62.33 26.08 136.41 5.98 3.48 20.65 17.75 5.60 2.33 22.17 0.50 L2 324.43 100.31 425.50 108.50 53.58 671.40 243.67 265.19 110.36 113.53 25.96 L3 350.21 507.56 511.59 119.13 39.5 481.33 297.51 233.46 79.82 122.80 26.18 L4 101.58 204.40 254.26 7.73 16.47 195.19 86.06 64.19 31.78 20.14 7.76 L5 176.82 326.83 425.68 46.14 25.88 317.00 74.67 99.34 46.57 50.57 9.33 L6 223.73 408.17 381.33 86.76 39.31 393.35 249.20 176.55 77.37 112.05 29.02 L7 114.31 73.84 297.40 9.86 5.17 69.67 39.80 22.06 7.27 34.99 2.23 L8 214.02 414.12 419.47 62.57 22.06 303.95 135.91 127.37 48.75 34.99 11.52 L9 180.05 195.33 421.15 29.25 14.86 188.62 110.52 70.42 22.43 32.43 6.37 L10 193.59 255.99 401.93 26.20 15.22 256.06 79.62 67.27 37.39 32.44 5.40 L11 156.60 57.41 325.48 5.83 5.39 47.84 33.30 12.90 4.06 28.22 1.42 L12 147.93 101.40 317.60 13.95 5.56 96.48 26.98 25.10 9.89 31.64 2.66 表 5 莱州湾表层沉积物样品中11种木质素的分解产物酚类化合物的各项特征参数
Table 5 Characteristic parameters of 11 phenolic compounds from lignin decomposition products in surface sediment samples of the Laizhou Bay, China.
站位 木质素不同分解产物酚类化合物的各项特征参数 C(ng/g) S(ng/g) V(ng/g) P(ng/g) C/V S/V P/(V+S) PON/P (Ad/Al)v (Ad/Al)s Σ8(mg/10g ds) L1 39.92 12.08 49.06 202.23 0.81 0.25 3.31 0.02 1.07 1.26 0.0010 L2 357.19 399.65 882.06 803.50 0.40 0.45 0.63 0.07 0.41 0.15 0.016 L3 420.31 378.76 1068.71 901.30 0.39 0.35 0.62 0.04 0.51 1.05 0.019 L4 106.20 79.68 431.38 372.31 0.25 0.18 0.73 0.04 0.12 1.05 0.0062 L5 125.24 154.82 690.40 628.38 0.18 0.22 0.74 0.04 0.46 1.03 0.0097 L6 361.24 292.34 878.88 644.37 0.41 0.33 0.55 0.06 0.49 1.04 0.015 L7 74.79 34.14 150.78 416.88 0.50 0.23 2.25 0.01 0.45 1.06 0.0026 L8 170.90 201.47 766.82 655.54 0.22 0.26 0.68 0.03 0.49 1.36 0.011 L9 142.95 106.03 406.39 616.06 0.35 0.26 1.20 0.02 0.42 1.04 0.0066 L10 112.06 98.87 549.43 610.75 0.20 0.18 0.94 0.02 0.39 1.00 0.0076 L11 61.51 20.16 109.31 487.46 0.56 0.18 3.77 0.01 0.45 1.20 0.0019 L12 58.61 41.72 207.77 471.09 0.28 0.20 1.89 0.01 0.56 1.05 0.0031 平均值 169.24 151.64 515.92 567.49 0.38 0.26 1.44 0.03 0.49 1.02 0.0083 -
[1] Zhang T,Li X G,Sun S W,et al. Determination of lignin in marine sediment using alkaline cupric oxide oxidation-solid phase extraction-on-column derivatization-gas chromatography[J]. Journal of Ocean University of China, 2013, 12(1):63−69. doi: 10.1007/s11802-011-1936-z
[2] Jex C N,Pate G H,Blyth A J,et al. Lignin biogeochemistry:From modern processes to Quaternary archives[J]. Quaternary Science Reviews, 2014, 87:46−59. doi: 10.1016/j.quascirev.2013.12.028
[3] Sun S,Schefuß E,Mulitza S,et al. Origin and processing of terrestrial organic carbon in the Amazon system:Lignin phenols in river,shelf,and fan sediments[J]. Biogeosciences, 2017, 14:2495−2512. doi: 10.5194/bg-14-2495-2017
[4] 王映辉,许云平. 黄河下游—河口—邻近海域表层沉积物中木质素的特征及其示踪意义[J]. 海洋科学,2016,40(2):55−64. Wang Y H,Xu Y P. Characteristics and environmental implications of lignin in surface sediments from the lower Yellow River—estuary—adjacent sea[J]. Marine Sciences, 2016, 40(2):55−64.
[5] 巩菲,刘月,张大海,等. 黄河济南段柱状沉积物中木质素的分布特征[J]. 海洋湖沼通报,2017,156(3):53−59. Gong F,Liu Y,Zhang D H,et al. Distribution characteristics of lignin from the core in Jinan section of the Yellow River[J]. Transactions of Oceanology and Limnology, 2017, 156(3):53−59.
[6] Yang B,Ljung K,Nielsen A B,et al. Impacts of long-term land use on terrestrial organic matter input to lakes based on lignin phenols in sediment records from a Swedish forest lake[J]. Science of the Total Environment, 2021, 774:145517. doi: 10.1016/j.scitotenv.2021.145517
[7] Gordon E G,Goni M A. Sources and distribution of terrigenous organic matter delivered by the Atchafalaya River to sediments in the northern Gulf of Mexico[J]. Geochimica et Cosmochimica Acta, 2003, 67(13):2359−2375. doi: 10.1016/S0016-7037(02)01412-6
[8] 王心怡,李中乔,金海燕,等. 应用木质素示踪楚科奇海表层沉积物中有机碳的来源和降解程度[J]. 海洋学报,2017,39(10):19−31. Wang X Y,Li Z Q,Jin H Y,et al. Sources and degradation of orgnic carbon in the surface sediments across the Chukchi Sea,insighes from lignin phenols[J]. Haiyang Xuebao, 2017, 39(10):19−31.
[9] Tolu J,Gerber L,Boily J F,et al. High-throughput characterization of sediment organic matter by pyrolysis-gas chromatography/mass spectrometry and multivariate curve resolution:A promising analytical tool in (paleo) limnology[J]. Analytica Chimica Acta, 2015, 880:93−102. doi: 10.1016/j.aca.2015.03.043
[10] 刘月,王敏,张婷,等. 杭州湾外泥质区柱状沉积物中木质素的分布特征及其环境指示意义[J]. 海洋环境科学,2017,36(1):8−14. Liu Y,Wang M,Zhang T,et al. Distribution characteristics of lignin in sediment cores from the mud area off Hangzhou Bay and the implication for regional sedimentary environment[J]. Chinese Journal of Marine Environmental Science, 2017, 36(1):8−14.
[11] 凌媛,王永,王淑贤,等. 生物标志物在海洋和湖泊古生态系统和生产力重建中的应用[J]. 地学前缘,2022,29(2):327−342. Ling Y,Wang Y,Wang S X,et al. Application of biomarkers in reconstructing marine and lacustrine paleoecosystems and paleoproductivity:A review[J]. Earth Science Frontiers, 2022, 29(2):327−342.
[12] Hedges J I,Ertel J R. Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products[J]. Analytical Chemistry, 1982, 54(2):174−178. doi: 10.1021/ac00239a007
[13] 叶君,胡利民,石学法,等. 基于木质素示踪北极东西伯利亚陆架沉积有机碳的来源、输运与埋藏[J]. 第四纪研究,2021,41(3):752−765. Ye J,Hu L M,Shi X F,et al. Sources,transport and burial of terrestrial organic carbon in the surface sediments across the East Siberian Arctic Shelf,insights from lignin[J]. Quaternary Sciences, 2021, 41(3):752−765.
[14] 江智婧,朱均均,李鑫,等. 反相高效液相色谱法定量分析木质素的主要降解产物[J]. 色谱,2011,29(1):59−62. doi: 10.3724/SP.J.1123.2011.00059 Jiang Z J,Zhu J J,Li X,et al. Determination of main degradation products of lignin using reversed phase high performance liquid chromatography[J]. Chinese Journal of Chromatography, 2011, 29(1):59−62. doi: 10.3724/SP.J.1123.2011.00059
[15] Sun L,Spencer R G M,Hernes P J,et al. A comparison of a simplified cupric oxide oxidation HPLC method with the traditional GC-MS method for characterization of lignin phenolics in environmental samples[J]. Limnology and Oceanography:Methods, 2015, 13:1−8.
[16] Owen B C,Haupert L,Jarrell T M,et al. High-performance liquid chromatography/high-resolution multiple stage tandem mass spectrometry using negative-ion-mode hydroxide-doped electrospray ionization for the characterization of lignin degradation products[J]. Analytical Chemistry, 2012, 84:6000−6007. doi: 10.1021/ac300762y
[17] 欧阳新平,陈子龙,邱学青. 超高效液相色谱/高分辨质谱法测定木质素氧化降解产物中单酚类化合物[J]. 分析化学,2014,42(5):723−728. Ouyang X P,Chen Z L,Qiu X Q. Determination of monophenolic compounds from lignin oxidative degradation using ultra performance liquid chromatography/high resolution mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2014, 42(5):723−728.
[18] 营娇龙,秦晓鹏,郎杭,等. 超高效液相色谱-串联质谱法同时测定水体中37种典型抗生素[J]. 岩矿测试,2022,41(3):394−403. Ying J L,Qin X P,Lang H,et al. Determination of 37 typical antibiotics by liquid chromatography-triple quadrupole mass spectrometry[J]. Rock and Mineral Analysis, 2022, 41(3):394−403.
[19] 莫力佳,石勇,高建华,等. 辽东半岛东岸泥区有机碳来源及其对流域和海岸环境变化的响应[J]. 地球化学,2021,50(2):199−210. Mo L J,Shi Y,Gao J H,et al. Source and distribution of lignin in mud deposits along the southeastern coast of Liaodong Peninsula and its response to environmental changes of the catchment[J]. Geochimica, 2021, 50(2):199−210.
[20] 朱帅,沈亚婷,贾静,等. 环境介质中典型新型有机污染物分析技术研究进展[J]. 岩矿测试,2018,37(5):586−606. Zhu S,Shen Y T,Jia J,et al. Review on the analytical methods of typical emerging organic pollutants in the environment[J]. Rock and Mineral Analysis, 2018, 37(5):586−606.
[21] Heidke I,Scholz D,Hoffmann T. Quantification of lignin oxidation products as vegetation biomarkers in speleothems and cave drip water[J]. Biogeosciences, 2018, 15:5831−5845. doi: 10.5194/bg-15-5831-2018
[22] 王全成,胡丹阳,杨柳明,等. 固相萃取-高效液相色谱法测定森林土壤中木质素[J]. 实验室科学,2021,24(5):40−44. doi: 10.3969/j.issn.1672-4305.2021.05.010 Wang Q C,Hu D Y,Yang L M,et al. Determination of lignin in forest soil by solid phase extraction/high performance liquid chromatography[J]. Laboratory Science, 2021, 24(5):40−44. doi: 10.3969/j.issn.1672-4305.2021.05.010
[23] 于雅晨,李坤兰,马英冲,等. 反气相色谱法测定有机溶剂型木质素的溶解度参数[J]. 色谱,2013,31(2):143−146. Yu Y C,Li K L,Ma Y C,et al. Determination of the solubility parameter of organosolv lignin by inverse gas chromatography[J]. Chinese Journal of Chromatography, 2013, 31(2):143−146.
[24] 李鹏辉,蒋政伟,李家全,等. 木质素降解产物酚羟基测定方法研究进展[J]. 光谱学与光谱分析,2022,42(9):2666−2671. Li P H,Jiang Z W,Li J Q,et al. Research progress in quantitative determination of phenolic hydroxyl groups in lignin[J]. Spectroscopy and Spectral Analysis, 2022, 42(9):2666−2671.
[25] Heinonen J,Tamper J,Laatikainen M,et al. Chromatographic recovery of monosaccharides and lignin from lignocellulosic hydrolysates[J]. Chemical Engineering & Technology, 2018, 41(12):2402−2410.
[26] Wang Y L,Chen J H,Gao L Y,et al. Determination of eight typical lipophilic algae toxins in particles suspended in seawater by ultra performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2016, 44(3):335−341. doi: 10.1016/S1872-2040(16)60911-8
[27] Tsutsuki K,Esaki I,Kuwatsuka S. CuO-oxidation products of peat as a key to the analysis of the paleo-environmental changes in a wetland[J]. Soil Science and Plant Nutrition, 1994, 40(1):107−116. doi: 10.1080/00380768.1994.10414283
[28] 戴群英,邹立,彭燕. 黄河口潮间带沉积物中木质素的分布以及降解特征[J]. 海洋环境科学,2017,36(2):210−215. Dai Q Y,Zou L,Peng Y. Distribution and degradation of lignin in the sediment of intertidal mudflat of Yellow River Estuary[J]. Marine Environmental Science, 2017, 36(2):210−215.
[29] 冯朝军,潘建明,王红群,等. 微波消解-气相色谱法测定沉积物中的木质素[J]. 岩矿测试,2011,30(1):23−26. Feng C J,Pan J M,Wang H Q,et al. Gas chromatographic determination of lignin in sediment samples assisted with microwave digestion[J]. Rock and Mineral Analysis, 2011, 30(1):23−26.
[30] Kaiser K,Benner R. Characterization of lignin by gas chromatography and mass spectrometry a simplified CuO oxidation method[J]. Analytical Chemistry, 2011, 84:459−464.
[31] Yan G,Kaiser K. A rapid and sensitive method for the analysis of lignin phenols in environmental samples using ultra-high performance liquid chromatography-electrospray ionization-tandem mass spectrometry with multiple reaction monitoring[J]. Analytica Chimica Acta, 2018, 1023:74−80. doi: 10.1016/j.aca.2018.03.054
[32] 谢秀风,郗敏,孔范龙,等. 木质素作为湿地陆源性溶解性有机质(DOM)示踪剂的研究进展[J]. 海洋湖沼通报,2015, 37(3):125−129. Xie X F,Xi M,Kong F L,et al. Proceedings in the application of wetland lignin to tracing terrestrial organic mattes[J]. Transactions of Oceanology and Limnology, 2015, 37(3):125−129.
[33] 李先国,杜培瑞,孙书文,等. 山东半岛东北岸近海表层沉积物中木质素的分布特征及有机物来源[J]. 海洋湖沼通报,2013(2):81−88. Li X G,Du P R,Sun S W,et al. Distribution characteristics of lignin and sources of organic matter in surface sediments offshore of north eastern Shandong Peninsula[J]. Transactions of Oceanology and Limnology, 2013(2):81−88.
[34] 黄佳埼,林昕,汪福顺,等. 乌江流域下游梯级水库沉积物中木质素的特征及有机碳来源辨析[J]. 上海大学学报(自然科学版),2021,27(2):271−279. Huang J Q,Lin X,Wang F S,et al. Characteristics of lignin in sediment cores from cascade reservoirs downstream of the Wujiang River and source analysis of organic carbon[J]. Journal of Shanghai University (Natural Science), 2021, 27(2):271−279.
[35] 李先国,王敏,孙书文,等. 渤海表层沉积物中木质素的分布特征及其对陆源有机物来源的示踪意义[J]. 海洋环境科学,2013,32(3):327−332. Li X G,Wang M,Sun S W,et al. Distribution of lignin in the surface sediments of Bohai Sea and its implication for tracing terrigenous organic matter[J]. Marine Environmental Science, 2013, 32(3):327−332.
[36] 尚文郁, 孙青, 谢曼曼, 等. 中国东北干旱-半干旱地区湖泊沉积物木质素酚类化合物特征及其气候指示意义[J]. 岩矿测试, 2023,42(2): 346-360. Shang W Y, Sun Q, Xie M M, et al. Characteristics and climatic implications of lignin-derived phenolic compounds in Arid Lake, northeastern China[J]. Rock and Mineral Analysis, 2023,42(2): 346-360.