Chemical Forms and Distribution Characteristics of Phosphorus in the Sediments of the Anning Phosphate Mining Area, Yunan Province
-
摘要:
磷污染是水污染的重要组成部分,因其可造成水体富营养化、水质下降,从而引起人们的广泛关注。研究沉积物中不同磷赋存形态及其分布特征有助于了解沉积物中磷的行为特征及迁移能力,从而为水体富营养化防治提供支撑。磷矿的开采、冶炼对矿区内水资源环境可能产生严重影响,本文以安宁磷矿区内河流、水库为研究区域,分析了不同水系沉积物磷元素赋存形态及分布特征,并对其生态风险进行评估。采用X射线荧光光谱法测定研究区水系沉积物总磷(TP)含量,并基于顺序提取及Hupfer改进的磷形态分析方法,将研究区各水系沉积物中磷分为弱吸附态磷(NH4Cl-P)、可还原态磷(BD-P)、金属氧化物结合态磷(NaOH-P)、钙结合态磷(Ca-P)、残渣态磷(Res-P)等5种形态,采用单因子污染指数法对其进行生态风险评估。结果表明:研究区水系沉积物样品中TP含量范围为567.6~48115.5mg/kg,NH4Cl-P含量范围为0.07~115.2mg/kg,BD-P含量范围为8.84~802.5mg/kg,NaOH-P含量范围为21.3~3129.5mg/kg, Ca-P含量范围为12~45098mg/kg,Res-P含量范围为28.5~515.4mg/kg。研究区各水系沉积物样品磷形态具有相似的分布特征,即磷主要以Ca-P和NaOH-P形态存在,其他磷形态的相对含量大小顺序为NH4Cl-P<BD-P<Res-P。单因子污染指数评价结果表明,各水系沉积物中磷以重度污染为主。生物有效磷(BAP)污染评价结果表明,各水系沉积物中磷污染程度有所降低,但河流沉积物中磷仍以重度污染为主,磷释放风险较大,建议加强对磷矿区河流磷污染的监测与评估。
要点(1)研究区水系沉积物中TP含量均超过引起生态毒性效应的最低级别,且有56.7%的样品TP含量超过2000mg/kg,达到引起生态毒性效应的严重级别。
(2)研究区水库沉积物BAP相对含量较高,生物有效性高,河流沉积物磷主要以Ca-P形态存在,生物有效性较低。
(3)单因子污染评价及生物有效磷污染评价表明研究区河流沉积物磷以重度污染为主,应重点关注。
HIGHLIGHTS(1) The content of total phosphorus (TP) in the sediments all exceeded the lowest level of ecotoxic effects in the study area. The TP content of 56.7% samples exceeded 2000mg/kg, reaching the serious level of ecotoxic effects.
(2) On the basis of five chemical extractable forms of phosphorus, the reservoir sediments in the study area had relatively high bioavailable phosphorus (BAP) content and high bioavailability. Phosphorus mainly existed in the form of Ca-P in the river sediments and had low bioavailability.
(3) The single factor pollution index method and bioavailable phosphorus pollution assessment method showed that phosphorus in the river sediments was heavily polluted in the study area, which should be of concern.
Abstract:The chemical forms and content of phosphorus in sediments are the important basis for exploring bioavailability, migration, and transformation of phosphorus in sediments accurately. To assess and evaluate phosphorous pollution from a phosphate mine, the phosphorus chemical forms in the sediment were determined by a suggested combined method and studied by the phosphorus classification method. The results show that the total phosphorus content all reached the lowest level of ecotoxic effect, and 56.7% of samples reached the serious level of ecotoxic effect. Therefore, it is suggested to strengthen the monitoring and assessment of river pollutants in phosphate mining areas. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202209050164.
-
Keywords:
- phosphorus forms /
- sediments /
- distribution characteristics /
- Anning phosphate mining area /
- X-ray fluorescence spectrometry /
- sequential extraction method
BRIEF REPORTSignificance: Phosphorus pollution is an important part of water pollution and has attracted extensive attention because of its eutrophication and water quality decline. The phosphorus form in lake and marine sediments has been extensively studied in recent years, but there are few studies about phosphorus form in river and reservoir sediments. The migration and transformation ability of different forms of phosphorus in the environment are diverse. The chemical forms and content of phosphorus in the sediments are the important basis for exploring bioavailability, migration and transformation of phosphorus in sediments accurately. It is of great significance to obtain phosphorus content and chemical forms in sediments for evaluating and controlling water pollution. The phosphorus pollution was serious in sediment samples from the Anning phosphate mine area, TP content all reached the lowest level of ecotoxic effect, and 56.7% of samples reached the serious level of ecotoxic effect. The distribution characteristics of phosphorus forms were basically the same. The main phosphorus forms were Ca-P and NaOH-P. The highest content of BAP was in sediment of the Shalong River, accounting for 54.3%. The results of single factor pollution index evaluation showed that phosphorus in sediments exhibited mainly severe pollution. Meanwhile the bioavailable phosphorus pollution assessment method showed that the degree of phosphorus pollution decreased, but phosphorus in the sediments of rivers was mainly severe. The phosphorus in the sediments of reservoirs was mainly light pollution. The phosphorus in the sediments at the intersection of the Mantic River and Dianchi Lake was clean. The ecological risk of phosphorus in sediments using bioavailable phosphorus pollution assessment method is more accurate than single factor pollution index method. The research shows that it is necessary to strengthen the monitoring and assessment of river pollutants in phosphate mining areas.
Methods: The total content of phosphorus in sediments was determined by X-ray fluorescence spectrometry. The phosphorus chemical forms in the sediment were studied by the phosphorus classification method improved by Hupfer. The chemical forms in phosphorus sediment were divided into weakly adsorbed phosphorus (NH4Cl-P), reducible phosphorus (BD-P), metal oxide-bound phosphorus (NaOH-P), calcium-bound phosphorus (Ca-P) and residual phosphorus (Res-P). The content of phosphorus in the extract was determined by molybdenum-antimony anti colorimetric method. The ecological risk of phosphorus pollution in the study area was evaluated by the single factor pollution index method and biological available phosphorus pollution assessment method.
Data and Results: The content of total phosphorus (TP) in sediment samples ranged from 567.6 to 48115.5mg/kg, and the average value was 6224.1mg/kg. The TP content in 8 sediment samples collected from the Mingyi River and Bajie River ranged from 567.6 to 15631mg/kg, with an average of 6014.4mg/kg. The TP content in 4 sediment samples collected from the Shalong River ranged from 698.6 to 4191.6mg/kg, with an average of 2128.5mg/kg. The TP content in 10 sediment samples collected from the Mantis River ranged from 2095.8 to 48115.5mg/kg, with an average of 10889.3mg/kg. The TP content in 7 sediment samples collected from the reservoirs ranged from 654.9 to 5239.4mg/kg, with an average of 1740.2mg/kg. Overall, the average TP content in the sediments of the reservoir was the lowest, and the average TP content in the sediment samples of the three rivers was in the order of Mantis River>Mingyi River and Bajie River>Shalong River. The main phosphorus forms were NaOH-P and Ca-P in 30 sediment samples. The content of NH4Cl-P ranged from 0.07 to 115.2mg/kg, BD-P ranged from 8.84 to 802.5mg/kg, NaOH-P ranged from 21.3 to 3129.5mg/kg, Ca-P ranged from 12 to 45098mg/kg and Res-P ranged from 28.5 to 45790.8mg/kg. Pearson’s correlation coefficient was used to investigate the correlation among phosphorus forms, TP and bioavailable phosphorus (BAP) in sediments. The coefficient between TP and Ca-P was the largest, reaching the significance level (p<0.01). The correlation coefficient between TP and NaOH was the smallest. BAP was correlated with NH4Cl-P, BD-P, NaOH-P and Res-P (p<0.01) positively, and the correlation coefficient with BD-P and NaOH-P was greater than 0.8. The phosphorus single factor pollution index of 30 sediment samples ranged from 0.82 to 69.7. The pollution degree was between mild and severe pollution. The phosphorus single factor pollution index of 8 sediment samples collected from the Mingyi River and Bajie River ranged from 1.01 to 6.07, and the pollution degree was between middle and severe pollution. The phosphorus single factor pollution index of 10 sediment samples collected from the Mantis River ranged from 3.04 to 69.7, and the pollution degree was all severe pollution. The phosphorus single factor pollution index of 7 sediment samples collected from the reservoir ranged from 0.95 to 7.59, and the pollution degree was between mild to severe pollution. The bioavailable phosphorus pollution assessment index of 30 sediment samples ranged from 0.26 to 5.87, and the pollution degree was between clean and severe pollution.
-
磷是水环境中水体富营养化的限制性营养元素,当其含量超过一定界限时会引起水体富营养化[1-3],造成水环境问题。富营养化是目前水域生态系统面临的主要环境问题,受到国际社会的共同关注,且磷污染负荷的消减成为富营养治理的关键[4-6]。水体中磷的来源主要有两种,一种是外源输入,另一种是内源释放即水体沉积物中的磷在一定条件下重新进入水体,造成水体的二次污染[7-8]。沉积物是磷等污染物的重要存储库[9-10],不同形态磷对水体富营养化贡献不同,在环境中的迁移转化能力不同。因此,沉积物中磷元素的赋存形态及其含量是准确探究沉积物中磷元素生物有效性、迁移转化能力及其在沉积物-水界面间生物地球化学循环的重要基础[11],获取沉积物中磷含量及赋存形态对准确评价和控制水污染具有重要的意义[12]。
目前,不少学者开展了有关沉积物磷形态特征及环境意义的研究工作,相关研究多集中于湖泊、海湾、水库中的沉积物[13-18]。研究结果表明,磷赋存状态及分布特征除了受当地地质背景影响外,也会受周边环境及人为的影响。叶华香等[14]研究表明江苏省南通市南山湖表层沉积物中的磷主要以有机磷(OP)和钙结合态磷(Ca-P)形态存在,总磷(TP)及各形态磷含量均存在明显的空间差异。沈园等[15]研究表明广东大亚湾沉积物中生物有效磷占TP比例为45.63%,沉积物磷释放潜力较大。秦丽欢等[18]对北京市密云水库沉积物磷形态分布特征进行了研究,结果表明密云水库沉积物磷主要以Ca-P和可还原态磷(BD-P)形态存在,且TP含量在空间分布上呈现出随水深而增加的趋势。沉积物中磷的潜在危害性不仅与TP含量有关,还与沉积物磷的赋存形态有关,沉积物中磷的赋存形态直接影响水体中磷的浓度。因此,对沉积物中磷赋存形态及分布特征进行研究有助于揭示人类活动对河流、水库等环境所产生的影响,并对水体富营养化控制和治理起到指导作用。在预测河、湖等水环境沉积物中磷生态风险时,生物可利用磷具有重要指示意义,而目前有关沉积物中磷污染的分布和风险评价多基于磷元素总量,无法准确地评价磷元素的生物有效性及其对水环境的影响[19-20]。因此,建立基于磷元素形态的评价方法十分必要。
云南省安宁市位于滇中高原的东部边缘和滇池断陷盆地西部,矿产资源丰富,其中安宁磷矿位于“康滇地轴”东侧,已探明其磷矿的工业储量属于特大型矿床,大部分可以露天开采。安宁磷矿的露天开采、冶炼等活动可能对矿区内河流、水库等水环境造成一定影响。因此,需要对矿区内河流、水库沉积物中磷含量及赋存形态进行监控。本文采用X射线荧光光谱法测定研究区水系沉积物TP含量,在顺序提取方法基础上采用Hupfer改进的磷形态分析方法,对安宁磷矿区周边河流、水库沉积物中的弱吸附态磷(NH4Cl-P)、可还原态磷(BD-P)、金属氧化物结合态磷(NaOH-P)、钙结合态磷(Ca-P)、残渣态磷(Res-P)等5种磷赋存形态及分布特征进行分析研究,并在此基础上采用单因子污染指数法和生物有效磷污染评价法开展安宁磷矿区磷污染风险评价,为磷污染来源的解析以及磷矿区内河流、水库等管理和保护提供依据。
1. 实验部分
1.1 研究区域概况
安宁市地处金沙江水系和红河水系分界处,其中长江流域金沙江水系为主要河流。安宁境内除红河流域的九渡河外,所有属长江流域的河流水量最后均汇入螳螂川,螳螂川为滇池唯一出口[21]。磷矿区内磷矿资源的开采及周边众多磷化工企业的废水排放均是安宁市内水系外源磷的输入途径,造成安宁市内水系磷污染。
1.2 样品采集与分析
2019年4月项目组在安宁地区采集水系沉积物样品。使用铁铲或抓斗式取样器采集水底0~20cm的沉积物样品共计30件,其中包括鸣矣河及其南段八街河、沙龙河、螳螂川不同采样点22件,水库采样点7件,螳螂川与滇池交汇处采样点1件,具体沉积物采样分布图如图1所示。将所采集的沉积物样品装入密封袋中,4℃保存,运回实验室后除去水草、石块等杂质,放在阴凉通风处阴干,研磨过200目尼龙筛备用。
1.3 样品分析测试
沉积物TP含量依据《硅酸盐岩石化学分析方法 第28部分:16个主次成分量测定》(GB/T 14506.28—2010)采用X射线荧光光谱法由国家地质实验测试中心完成,P2O5含量测定范围为0.01%~0.95%。水系沉积物中磷赋存形态采用Hupfer等[22]改进的磷分级方法分布提取磷形态,主要包括NH4Cl-P、BD-P、NaOH-P、Ca-P、Res-P。各步骤提取液中的磷含量采用《土壤 总磷的测定 碱熔-钼锑抗分光光度法》(HJ 632—2011)中的钼锑抗分光光度法测定,磷检出限为10mg/kg。
所有样品检测均按照规范要求进行全过程质量控制,包括分析过程插入国家一级有证标准物质、空白试验、平行样等。磷分布提取试验由于缺少水系沉积物磷形态标准物质,因此,选取水系沉积物标准物质GSB07303监测沉积物磷形态的测定结果,保证分步提取各磷形态之和与标准物质总磷含量在70%~130%之间。
数据整理和分析采用Microsoft Excel、SPSS完成,沉积物采样点分布图采用Arcgis软件绘制。
1.4 生态风险评价方法
1.4.1 单因子污染指数法
目前,国内外有关河流沉积物磷的生态风险评价方法暂无统一标准,相关研究多采用单因子污染指数法[23-24],其关系式表达为:
$$ P_{\mathrm{i}}=C_{\mathrm{i}} / C_{\mathrm{s}}$$ (1) 式中:Pi为单项评价指数,Ci为评价因子i的实测值;Cs为评价因子i的评价标准值。
本文采用中国沉积层磷元素丰度:TP浓度值为690mg/kg[25]。污染程度等级标准为:PTP<0.5,清洁;0.5≤PTP<1.0,轻度污染;1.0≤PTP<1.5,中度污染;1.5≤PTP,重度污染[26]。
1.4.2 生物有效磷污染评价法
目前元素污染评价多建立在元素总量的基础上,并未考虑元素的形态及其生物有效性的影响,因此无法准确地评价该元素的迁移、转化和生物有效性。本工作在叶宏萌等[27]提出的生物有效指数评价法基础上,采用生物有效磷(BAP)含量来代替总磷含量进行单因子污染指数评价,公式如下:
$$ P K_{\mathrm{i}}=C_{\mathrm{BAP}} / C_{\mathrm{s}} $$ (2) 式中:PKi为生物有效磷污染评价指数,CBAP为评价因子i的生物有效磷浓度,Cs为评价因子i的评价标准值。PKi的风险等级划分标准与单因子污染指数评价法相同。
2. 结果与讨论
2.1 沉积物样品磷含量与形态分布特征
安宁磷矿研究区水系沉积物样品TP及其赋存形态特征见表1。沉积物样品中TP含量范围为567.6~48115.5mg/kg,平均值为6224.1mg/kg。其中鸣矣河及其南段八街河所采集的8件沉积物样品TP含量范围为567.6~15631mg/kg,平均值为6014.4mg/kg;沙龙河4件沉积物样品TP含量范围为698.6~4191.6mg/kg,平均值为2128.5mg/kg;螳螂川10件沉积物样品TP含量范围为2095.8~48115.5mg/kg,平均值为10889.3mg/kg;水库7件沉积物样品TP含量范围为654.9~5239.4mg/kg,平均值为1740.2mg/kg;螳螂川与滇池交汇处沉积物TP含量为3536.6mg/kg。总体来看,水库沉积物中的TP含量平均值最低,三条河流沉积物样品TP含量平均值大小顺序为:螳螂川>鸣矣河及其南段八街河>沙龙河。孟凡丽等[28]研究表明磷污染严重的百花湖沉积物TP最高含量为1218.7mg/kg,平均值为875.9mg/kg,均远低于安宁磷矿区水系沉积物TP含量。与中国其他河流、湖泊[29-31]相比,本研究区内水系沉积物TP含量也处于较高水平。
表 1 研究区水系沉积物总磷及各形态磷的含量特征Table 1. Characteristics of content of the total phosphorus and different chemical forms of phosphorus in the study area采样点 采样点位编号 TP(mg/kg) NH4Cl-P(mg/kg) BD-P(mg/kg) NaOH-P(mg/kg) Ca-P(mg/kg) Res-P(mg/kg) 鸣矣河及其南段八街河 16 8994.4 80.2 303.8 894.5 8158.5 364.8 20 11788.7 28.1 413.9 1093.5 9996 420.9 22 8470.4 9.29 172.5 679.5 6896 480.6 23 15631.0 16.2 79.8 599.0 14962 459.0 26 873.2 0.27 31.5 309.5 255.2 140.5 27 1047.9 4.30 91.2 288.4 348.2 94.1 28 742.3 7.43 50.3 230.4 245.3 65.2 29 567.6 7.37 68.0 103.8 131.5 28.5 沙龙河 2 698.6 5.26 32.5 212.3 170.7 80.8 6 4191.6 14.9 600.0 1479.4 1889.5 294.0 7 1790.1 6.93 275.9 776.0 516.8 126.8 13 1833.8 14.4 408.0 719.3 573.9 166.8 螳螂川 1 6505.6 73.1 131.8 395.5 5588 180.6 4 7247.9 63.3 252.9 1103.5 5778 306.1 5 2095.8 23.0 171.9 1338.8 141.5 255.9 9 4802.8 31.6 389.4 1093 2678 326.6 10 10216.9 115.2 802.5 3129.5 5650.5 485.3 11 8077.5 46.1 220.5 497.5 7011.3 227.3 14 11308.5 17.5 192.9 1145.5 9104.5 515.4 15 2663.4 6.89 258.4 1370.6 80.3 504.6 17 7859.2 18.6 189.5 21.3 6183.5 480.2 18 48115.5 26.3 152.1 103.0 45098 411.5 水库 3 2488.7 4.57 230.2 744.1 773.9 204.2 8 654.9 0.07 16.7 369.4 56.3 76.8 12 1222.5 1.92 34.4 571.7 204.1 320.8 19 5239.4 14.4 162.3 977.5 3891.5 266.0 21 698.6 0.13 13.3 274.8 12.0 95.5 24 1135.2 3.75 8.84 386.1 133.7 455.0 25 742.3 1.51 16.0 523.8 22.7 69.2 螳螂川与滇池交汇处 30 3536.6 9.22 111.9 123.2 3020.7 141.5 由表1可看出,采集的30件沉积物样品的磷主要以NaOH-P或Ca-P形态存在,其中NH4Cl-P含量范围为0.07~115.2mg/kg,BD-P含量范围为8.84~802.5mg/kg,NaOH-P含量范围为21.3~3129.5mg/kg,Ca-P含量范围为12~45098mg/kg,Res-P含量范围为28.5~515.4mg/kg。NH4Cl-P主要指被土壤矿物颗粒吸附的磷酸盐,易于溶解被植物吸收;BD-P主要包括与铁氢氧化物和锰化合物结合的可还原性磷酸盐,这种形态的磷具有潜在活性,在沉积物-水界面的厌氧环境下也易释放至水中[32];NaOH-P主要指铝和铁金属氧化物结合的磷,是潜在的活性磷,易于被生物利用;Ca-P和Res-P是土壤中惰性较大的磷组分,被认为是生物难利用的磷形态,不易变化或在特定条件下才会发生改变,这种形态的磷被认为是无机磷中最稳定的。通过不同物理化学或生物过程释放出来的NH4Cl-P、BD-P、NaOH-P的总和通常被用来表征生物有效磷[33-34]。
不同赋存形态磷的相对含量如图2所示。总体上看,各河流沉积物样品磷形态的相对含量大小分布基本一致,即河流各采样点的沉积物中的磷主要以Ca-P形态存在,各磷形态相对含量大小顺序为:NH4Cl-P<BD-P<Res-P<NaOH-P<Ca-P。水库采样点沉积物中的磷主要以NaOH-P形态存在,各磷形态相对含量大小顺序为:NH4Cl-P<BD-P<Res-P<Ca-P< NaOH-P。沙龙河采样点沉积物中磷形态的相对含量大小顺序为:NH4Cl-P<Res-P<BD-P<Ca-P<NaOH-P,其沉积物磷形态主要以Ca-P与NaOH-P形态存在,相对占比分别为39.1%和39.5%,BAP相对占比为54.3%。鸣矣河及其南段八街河与螳螂川沉积物中磷主要以Ca-P形态存在,相对占比为84.3%,BAP相对占比为11.4%。水库沉积物中BAP相对占比为39.8%,与沙龙河结果相当。螳螂川与滇池交汇处沉积物磷形态分布状况与螳螂川其他沉积物样品磷形态分布状况一致,即主要以Ca-P形态存在,BAP相对占比为7.17%,为所分析样品中BAP相对占比最低的形态。
沉积物中不同的磷形态具有不同的环境指示特点。NH4Cl-P是最活跃的磷形态,温度、pH、生物扰动都可以导致该形态的磷向上覆水扩散,从而进一步影响水体[35],若沉积物中磷污染严重,则其含量会显著上升,通常小于总磷含量的10%[36]。本研究中所采集的河流、水库沉积物中NH4Cl-P含量相对占比最低,平均含量相对占比均小于1%,对水质影响较小。BD-P是可还原态磷,易解吸,对氧化还原条件非常敏感[31],当外部环境的改变如沉积物上覆水的氧化还原条件的改变、好氧细菌的生长,均会影响到BD-P的释放。安宁研究区水库、河流沉积物中,BD-P的占比不高,对水环境影响不大。NaOH-P是与人类干扰相关的磷的储存形态,在一定程度上具有明确的指示意义[37],其主要来源是工业和市政污水,少部分来自农业面源污染[38]。鸣矣河及其南段八街河、螳螂川沉积物中NaOH-P含量较低,说明其上游磷化工等污染工业和生活污染控制较好。水库及沙龙河沉积物中NaOH-P较高,需要对沙龙河上游及水库周边污染多加防控。Ca-P是沉积物中较为稳定的磷形态,主要有磷灰石磷与碳酸盐结合的磷和少量可酸解的有机态磷,其主要来源于各种磷酸钙矿物,较难被生物利用。一般而言Ca-P在弱碱性环境中比较稳定,在酸性环境中可以释放出来[39]。Ca-P在安宁水库、河流沉积物TP中所占比例较高,尤其鸣矣河及其南段八街河、螳螂川中Ca-P占比可达80%以上,因此说明沉积物中的生物可利用磷含量很低。
2.2 沉积物中不同赋存形态磷之间的相关性
采用皮尔逊(Person)相关系数考察了沉积物中磷各形态之间及与TP和BAP之间的相关性,结果如表2所示。可以看出,TP与Ca-P的相关系数最大,达到显著性水平(p<0.01);与NaOH-P相关系数最小,说明Ca-P是TP的主要组成部分。BAP与NH4Cl-P、BD-P、NaOH-P、Res-P均呈显著正相关(p<0.01),且与BD-P、NaOH-P相关系数大于0.8。BD-P与NaOH-P被认为是磷的暂时储存库,在外部条件发生改变及人为活动影响下会发生磷的释放,成为生物可利用磷,说明研究区水系沉积物中BD-P与NaOH-P是BAP的主要组成部分。
表 2 研究区沉积物各磷形态间及其与总磷和生物可利用磷之间的相关系数Table 2. Correlation coefficients between different phosphorus forms and total phosphorus/bioavailable phosphorus of sediments in the study area磷形态 NH4Cl-P BD-P NaOH-P Ca-P Res-P TP BAP NH4Cl-P 1 0.627** 0.606** 0.248 0.358 0.282 0.650** BD-P 1 0.833** 0.091 0.435* 0.155 0.899** NaOH-P 1 −0.059 0.484** 0.011 0.989** Ca-P 1 0.433* 0.995** −0.021 Res-P 1 0.465** 0.478** TP 1 0.052 BAP 1 注:“ *”表示在0.05水平上(双尾)显著相关,“ **”表示在0.01水平上(双尾)显著相关。 2.3 沉积物磷单因子污染指数评价
安宁磷矿区所采集的30件沉积物样品中,磷单因子污染指数(表3)介于0.82~69.7,污染程度处于轻度污染-重度污染之间,分别占样品总数的6.67%、16.7%、76.7%。其中鸣矣河及其南段八街河8个沉积物采样点的磷单因子污染指数介于0.82~22.7,污染程度处于轻度污染-重度污染之间,分别占样品总数的12.5%、25%、62.5%。沙龙河4个沉积物采样点的磷单因子污染指数介于1.01~6.07,污染程度为中度污染和重度污染,分别占样品总数的25%、75%。螳螂川10个沉积物采样点的磷单因子污染指数介于3.04~69.7,污染程度均为重度污染。水库7个沉积物采样点的磷单因子污染指数介于0.95~7.59,污染程度处于轻度污染-重度污染之间,分别占样品总数的14.3%、28.6%、57.1%。螳螂川与滇池交汇处沉积物的磷单因子污染指数为5.13,属于重度污染。由此可以看出,安宁磷矿区河流、水库中磷污染程度较高,且河流磷污染程度高于水库,尤以螳螂川磷污染程度最高,所采集的沉积物样品磷均为重度污染。相比沙溪流域沉积物的磷单因子指数(介于0.42~1.20)与百花湖沉积物的磷单因子指数(介于0.23~2.04)的生态风险等级[24,28]评价结果,安宁磷矿区内水系沉积物磷污染空间变化更大,且污染程度更高。根据加拿大安大略省环境和能源部(1992)制定的环境质量评价标准[40],沉积物TP含量超过600mg/kg是引起生态毒性效应的最低级别,TP含量达到2000mg/kg是引起生态毒性效应的严重级别。从表1结果可以看出,研究区水系沉积物中TP含量均超过引起生态毒性效应的最低级别,且有56.7%的样品TP含量超过2000mg/kg,达到引起生态毒性效应的严重级别,说明安宁磷矿区水系沉积物磷污染严重,具有较高的生态环境风险。
表 3 研究区沉积物单因子污染指数(Pi)风险等级分类Table 3. Classification of risk level by the single factor pollution index (Pi) of sediments in the study area采样点 采样点位编号 Pi 风险等级 鸣矣河及其
南段八街河16 13.0 重度污染 20 17.1 重度污染 22 12.3 重度污染 23 22.7 重度污染 26 1.27 中度污染 27 1.52 重度污染 28 1.08 中度污染 29 0.82 轻度污染 沙龙河 2 1.01 中度污染 6 6.07 重度污染 7 2.59 重度污染 13 2.66 重度污染 螳螂川 1 9.43 重度污染 4 10.5 重度污染 5 3.04 重度污染 9 6.96 重度污染 10 14.8 重度污染 11 11.7 重度污染 14 16.4 重度污染 15 3.86 重度污染 17 11.4 重度污染 18 69.7 重度污染 水库 3 3.61 重度污染 8 0.95 轻度污染 12 1.77 重度污染 19 7.59 重度污染 21 1.01 中度污染 24 1.65 重度污染 25 1.08 中度污染 螳螂川与滇池交汇处 30 5.13 重度污染 2.4 生物有效磷污染评价
安宁磷矿区所采集的30件沉积物样品的生物有效磷污染评价指数介于0.26~5.87,污染程度处于清洁-重度污染之间,分别占样品总数的26.7%、20%、13.3%、40%。其中鸣矣河及其南段八街河8件沉积物采样点的生物有效磷污染评价指数介于0.26~2.23,污染程度处于清洁-重度污染之间,分别占样品总数的37.5%、12.5%、25%、25%。沙龙河4件沉积物采样点的生物有效磷污染评价指数介于0.36~3.04,污染程度为清洁和重度污染,分别占样品总数的25%、75%。螳螂川10件沉积物采样点的生物有效磷污染评价指数介于0.33~5.87,污染程度处于清洁-重度污染之间,分别占样品总数的20%、10%、10%、60%。水库7件沉积物采样点的生物有效磷污染评价指数介于0.42~1.67,污染程度处于清洁-重度污染之间,分别占样品总数的14.3%、57.1%、14.3%、14.3%。螳螂川与滇池交汇处沉积物的生物有效磷污染指数为0.35,属于清洁。
从实验结果可看出,基于生物有效磷的污染评价中,磷的污染等级较单因子污染指数法有所下降,整体风险由高级别向低级别变化。相比沙溪流域沉积物的磷生物有效指数(介于0.26~1.39)评价 [24],安宁磷矿区内水系沉积物磷污染空间变化仍然较大。少量点位样品降为清洁,但重度污染仍占主要部分,且安宁磷矿区河流磷污染程度仍高于水库,水库以轻度污染为主,考虑其可能与安宁磷矿区高磷地质背景有关,同时磷矿露天开采、冶炼等人为活动也影响了矿区水系沉积物磷含量状况。生物有效磷污染评价结合了磷总量和赋存形态的有效性组分含量,更好地体现了研究区沉积物磷的综合生态风险。鉴于生物有效磷污染评价结果,安宁磷矿区河流磷污染状况仍不容忽视,值得关注。
3. 结论
采用X射线荧光光谱法和Hupfer改进的磷形态分级法,运用数理统计分析方法,结合调查数据统计、单因子污染指数评价和生物有效磷污染评价,对安宁磷矿区水系沉积物中的磷赋存形态、分布特征及生态风险进行了分析研究。结果表明安宁磷矿区各水系沉积物样品中磷污染严重,TP含量均达到引起生态毒性效应的最低级别,56.7%的样品TP含量达到了引起生态毒性效应的严重级别。研究区的磷赋存形态分布特征基本一致,即主要以Ca-P和NaOH-P形态存在。以沙龙河沉积物中BAP相对含量最高,占比为54.3%。相关性分析表明BD-P与NaOH-P是BAP的主要组成部分,Ca-P是TP的主要组成部分。污染质量评价结果显示,基于生物有效磷污染评价较单因子污染指数评价的磷污染程度有所降低,但河流沉积物中磷仍以重度污染为主,因此需要对磷矿区内河流磷污染状况引起足够重视,同时进行密切监测与防范。
本文对磷矿区内的河流、水库等水系沉积物的磷赋存形态及分布特征进行研究,为研究磷矿开采对矿区内水环境磷污染状况的影响提供参考,为磷污染防治与治理提供数据支撑。目前元素污染评价多建立在元素总量的基础上,基于磷赋存形态的生物有效磷污染评价可更好地表征沉积物中磷的生态风险,值得进一步深入探究,以期建立精准、有效的污染评价体系和防治措施。
-
表 1 研究区水系沉积物总磷及各形态磷的含量特征
Table 1 Characteristics of content of the total phosphorus and different chemical forms of phosphorus in the study area
采样点 采样点位编号 TP(mg/kg) NH4Cl-P(mg/kg) BD-P(mg/kg) NaOH-P(mg/kg) Ca-P(mg/kg) Res-P(mg/kg) 鸣矣河及其南段八街河 16 8994.4 80.2 303.8 894.5 8158.5 364.8 20 11788.7 28.1 413.9 1093.5 9996 420.9 22 8470.4 9.29 172.5 679.5 6896 480.6 23 15631.0 16.2 79.8 599.0 14962 459.0 26 873.2 0.27 31.5 309.5 255.2 140.5 27 1047.9 4.30 91.2 288.4 348.2 94.1 28 742.3 7.43 50.3 230.4 245.3 65.2 29 567.6 7.37 68.0 103.8 131.5 28.5 沙龙河 2 698.6 5.26 32.5 212.3 170.7 80.8 6 4191.6 14.9 600.0 1479.4 1889.5 294.0 7 1790.1 6.93 275.9 776.0 516.8 126.8 13 1833.8 14.4 408.0 719.3 573.9 166.8 螳螂川 1 6505.6 73.1 131.8 395.5 5588 180.6 4 7247.9 63.3 252.9 1103.5 5778 306.1 5 2095.8 23.0 171.9 1338.8 141.5 255.9 9 4802.8 31.6 389.4 1093 2678 326.6 10 10216.9 115.2 802.5 3129.5 5650.5 485.3 11 8077.5 46.1 220.5 497.5 7011.3 227.3 14 11308.5 17.5 192.9 1145.5 9104.5 515.4 15 2663.4 6.89 258.4 1370.6 80.3 504.6 17 7859.2 18.6 189.5 21.3 6183.5 480.2 18 48115.5 26.3 152.1 103.0 45098 411.5 水库 3 2488.7 4.57 230.2 744.1 773.9 204.2 8 654.9 0.07 16.7 369.4 56.3 76.8 12 1222.5 1.92 34.4 571.7 204.1 320.8 19 5239.4 14.4 162.3 977.5 3891.5 266.0 21 698.6 0.13 13.3 274.8 12.0 95.5 24 1135.2 3.75 8.84 386.1 133.7 455.0 25 742.3 1.51 16.0 523.8 22.7 69.2 螳螂川与滇池交汇处 30 3536.6 9.22 111.9 123.2 3020.7 141.5 表 2 研究区沉积物各磷形态间及其与总磷和生物可利用磷之间的相关系数
Table 2 Correlation coefficients between different phosphorus forms and total phosphorus/bioavailable phosphorus of sediments in the study area
磷形态 NH4Cl-P BD-P NaOH-P Ca-P Res-P TP BAP NH4Cl-P 1 0.627** 0.606** 0.248 0.358 0.282 0.650** BD-P 1 0.833** 0.091 0.435* 0.155 0.899** NaOH-P 1 −0.059 0.484** 0.011 0.989** Ca-P 1 0.433* 0.995** −0.021 Res-P 1 0.465** 0.478** TP 1 0.052 BAP 1 注:“ *”表示在0.05水平上(双尾)显著相关,“ **”表示在0.01水平上(双尾)显著相关。 表 3 研究区沉积物单因子污染指数(Pi)风险等级分类
Table 3 Classification of risk level by the single factor pollution index (Pi) of sediments in the study area
采样点 采样点位编号 Pi 风险等级 鸣矣河及其
南段八街河16 13.0 重度污染 20 17.1 重度污染 22 12.3 重度污染 23 22.7 重度污染 26 1.27 中度污染 27 1.52 重度污染 28 1.08 中度污染 29 0.82 轻度污染 沙龙河 2 1.01 中度污染 6 6.07 重度污染 7 2.59 重度污染 13 2.66 重度污染 螳螂川 1 9.43 重度污染 4 10.5 重度污染 5 3.04 重度污染 9 6.96 重度污染 10 14.8 重度污染 11 11.7 重度污染 14 16.4 重度污染 15 3.86 重度污染 17 11.4 重度污染 18 69.7 重度污染 水库 3 3.61 重度污染 8 0.95 轻度污染 12 1.77 重度污染 19 7.59 重度污染 21 1.01 中度污染 24 1.65 重度污染 25 1.08 中度污染 螳螂川与滇池交汇处 30 5.13 重度污染 -
[1] Memet V. Spatio-temporal changes in surface water quality and sediment phosphorus content of a large reservoir in Turkey[J]. Environmental Pollution, 2020, 259: 113860. doi: 10.1016/j.envpol.2019.113860
[2] Ren Z,Niu D C,Ma P P,et al. Cascading influences of grassland degradation on nutrient limitation in a high mountain lake and its inflow streams[J]. Ecology, 2019, 100(8): e02755.
[3] Zheng Z Z,Wang X Y,Jin J,et al. Fraction distribution and dynamic cycling of phosphorus in lacustrine sediment at inexpressible island,Antarctica[J]. Environment International, 2022, 164: 107228. doi: 10.1016/j.envint.2022.107228
[4] 崔键,杜易,丁程成,等. 中国湖泊水体磷的赋存形态及污染治理措施进展[J]. 生态环境学报, 2022, 31(3): 621−633. doi: 10.16258/j.cnki.1674-5906.2022.03.021 Cui J,Du Y,Ding C C,et al. Phosphorus fraction and abatement of lakes in China:A review[J]. Ecology and Environmental Sciences, 2022, 31(3): 621−633. doi: 10.16258/j.cnki.1674-5906.2022.03.021
[5] Stutter M I,Graeber D,Evans C D,et al. Balancing macronutrient stoichiometry to alleviate eutrophication[J]. Science of the Total Environment, 2018, 634: 439−447. doi: 10.1016/j.scitotenv.2018.03.298
[6] Liang Z Y,Soranno P A,Wagner T. The role of phosphorus and nitrogen on chlorophyll A:Evidence from hundreds of lakes[J]. Water Research, 2020, 185: 116236. doi: 10.1016/j.watres.2020.116236
[7] 许鑫,肖海丰. 阿什河哈尔滨段沉积物磷形态的时空分布特征研究[J]. 环境科学与管理, 2022, 47(3): 50−55. doi: 10.3969/j.issn.1673-1212.2022.03.012 Xu X,Xiao H F. Study on spatio-temporal distribution characteristics of phosphorus in sediments of Harbin section of Ashi River[J]. Environmental Science and Management, 2022, 47(3): 50−55. doi: 10.3969/j.issn.1673-1212.2022.03.012
[8] 毛雪静,黄廷林,李楠,等. 金盆水库沉积物磷的来源及分布特征[J]. 环境科学, 2019, 40(6): 2738−2744. doi: 10.13227/j.hjkx.201810220 Mao X J,Huang T L,Li N,et al. Sources and distribution of phosphorus in sediments of the Jinpen Reservoir[J]. Environmental Science, 2019, 40(6): 2738−2744. doi: 10.13227/j.hjkx.201810220
[9] 雷沛,张洪,王超,等. 沉积物-水界面污染物迁移扩散的研究进展[J]. 湖泊科学, 2018, 30(6): 1489−1508. doi: 10.18307/2018.0602 Lei P,Zhang H,Wang C,et al. Migration and diffusion for pollutants across the sediment-water interface in lakes:A review[J]. Journal of Lake Sciences, 2018, 30(6): 1489−1508. doi: 10.18307/2018.0602
[10] 李慧,雷沛,李珣,等. 天津市北大港湿地沉积物氮磷分布特征及污染评价[J]. 环境科学学报, 2021, 41(10): 4086−4096. doi: 10.13671/j.hjkxxb.2021.0153 Li H,Lei P,Li X,et al. Distribution characteristics and pollution assessment of nitrogen and phosphorus in sediments from Beidagang Wetland in Tianjin City[J]. Acta Scientiae Circumstantiae, 2021, 41(10): 4086−4096. doi: 10.13671/j.hjkxxb.2021.0153
[11] 王俊,刘辉利,张琴,等. 桂林会仙湿地沉积物磷的赋存形态及其分布特征[J]. 桂林理工大学学报, 2020, 40(1): 201−208. Wang J,Liu H L,Zhang Q,et al. Existing forms and distribution of phosphorus in the sediment of Huixian Wet Land,Guilin[J]. Journal of Guilin University of Technology, 2020, 40(1): 201−208.
[12] 唐金勇,尹月鹏,曹熙,等. 沉积物磷形态空间分布特征及释放风险评估——以沱江流域为例[J]. 中国环境科学, 2022, 42(9): 4264−4273. doi: 10.3969/j.issn.1000-6923.2022.09.034 Tang J Y,Yin Y P,Cao X,et al. Spatial distribution characteristics and release risk assessment of phosphorus forms in sediments:A case study of the Tuojiang[J]. China Environmental Science, 2022, 42(9): 4264−4273. doi: 10.3969/j.issn.1000-6923.2022.09.034
[13] 郑培儒,李春华,叶春,等. 镜泊湖沉积物各形态磷分布特征及释放贡献[J]. 中国环境科学, 2017, 41(2): 883−890. doi: 10.19674/j.cnki.issn1000-6923.2021.0099 Zheng P R,Li C H,Ye C,et al. Distribution characteristics and release contribution of different phosphorus forms in sediments of Jingpo Lake[J]. China Environmental Science, 2017, 41(2): 883−890. doi: 10.19674/j.cnki.issn1000-6923.2021.0099
[14] 叶华香,臧淑英,尉文佳,等. 南山湖沉积物磷形态时空分布特征[J]. 环境工程, 2019, 37(5): 105−111. doi: 10.13205/j.hjgc.201905020 Ye H X,Zang S Y,Wei W J,et al. Temporal-spatial distribution characteristics of phosphorus fractions in sediments of Nanshan Lake[J]. Environmental Engineering, 2019, 37(5): 105−111. doi: 10.13205/j.hjgc.201905020
[15] 沈园,张景平,张霞,等. 大亚湾沉积物磷的形态特征及其潜在可释放性[J]. 海洋环境科学, 2017, 36(5): 641−648. doi: 10.13634/j.cnki.mes.2017.05.001 Shen Y,Zhang J P,Zhang X,et al. Form characteristics of phosphorus and its releasing potential in the sediments of Daya Bay[J]. Marine Environmental Science, 2017, 36(5): 641−648. doi: 10.13634/j.cnki.mes.2017.05.001
[16] 刘佳,雷丹,李琼,等. 黄柏河流域梯级水库沉积物磷形态特征及磷释放通量分析[J]. 环境科学, 2018, 39(4): 1608−1615. doi: 10.13227/j.hjkx.201705112 Liu J,Lei D,Li Q,et al. Characteristics of phosphorus fractions and phosphate diffusion fluxes of sediments in cascade reservoirs of the Huangbai River[J]. Environmental Sceence, 2018, 39(4): 1608−1615. doi: 10.13227/j.hjkx.201705112
[17] Mlynarczyk N,Bartoszek M,Polak J,et al. Forms of phosphorus in sediments from the Goczalkowice Reservoir[J]. Applied Geochemistry, 2013, 37: 87−93. doi: 10.1016/j.apgeochem.2013.07.008
[18] 秦丽欢,曾庆慧,李徐勇,等. 密云水库沉积物磷形态分布特征[J]. 生态学杂志, 2017, 36(3): 774−781. doi: 10.13292/j.1000-4890.201703.023 Qin L H,Zeng Q H,Li X Y,et al. The distribution characteristics of P forms in Miyun Reservoir sediments[J]. Chinese Journal of Ecology, 2017, 36(3): 774−781. doi: 10.13292/j.1000-4890.201703.023
[19] Yang Y,Gao B,Hao H,et al. Nitrogen and phosphorus in sediments in China:A national-scale assessment and review[J]. Science of the Total Environment, 2017, 576: 840−849. doi: 10.1016/j.scitotenv.2016.10.136
[20] 王书锦,刘云根,张超,等. 洱海流域入湖河口湿地沉积物氮、磷、有机质分布及污染风险评价[J]. 湖泊科学, 2017, 29(1): 69−77. doi: 10.18307/2017.0108 Wang S J,Liu Y G,Zhang C,et al. Distribution and pollution risk assessment of nitrogen,phosphorus and organic matter in inlet rivers of Erhai Basin[J]. Journal of Lake Science, 2017, 29(1): 69−77. doi: 10.18307/2017.0108
[21] 范晨子,刘永兵,赵文博,等. 云南安宁水系沉积污染物分布特征与风险评价[J]. 岩矿测试, 2021, 40(4): 570−572. doi: 10.15898/j.cnki.11-2131/td.202103080035 Fan C Z,Liu Y B,Zhao W B,et al. Pollution distribution characteristics and ecological risk assessment of heavy metals and polycyclic aromatic hydrocarbons in the river sediments in Anning,Yunnan Province[J]. Rock and Mineral Analysis, 2021, 40(4): 570−572. doi: 10.15898/j.cnki.11-2131/td.202103080035
[22] Hupfer M,Gächter R,Giovanoli R. Transformation of phosphorus species in settling section and during early sediment diagenesis[J]. Aquatic Sciences, 1995, 57(4): 305−324. doi: 10.1007/BF00878395
[23] Ye H M,Yang H,Han N,et al. Risk assessment based on nitrogen and phosphorus forms in watershed sediments:A case study of the upper reaches of the Minjiang Watershed[J]. Sustainability, 2019, 11(20): 5565−5585. doi: 10.3390/su11205565
[24] 叶宏萌,袁旭音,李国平,等. 闽北建溪流域表层沉积物营养元素分步特征及生态风险评价[J]. 环境化学, 2018, 37(11): 2481−2488. doi: 10.7524/j.issn.0254-6108.2017121801 Ye H M,Yuan X Y,Li G P,et al. Distribution and ecological risk assessment of nutrient elements in surface sediments of Jianxi Watershed in Northern Fujian[J]. Environmental Chemistry, 2018, 37(11): 2481−2488. doi: 10.7524/j.issn.0254-6108.2017121801
[25] 黎彤. 中国陆壳及其沉积层和上陆壳的化学元素丰度[J]. 地球化学, 1994, 23(2): 140−145. doi: 10.3321/j.issn:0379-1726.1994.02.011 Li T. Element abundances of China’s continental crust and its sedimentary layer and upper continental crust[J]. Geochimica, 1994, 23(2): 140−145. doi: 10.3321/j.issn:0379-1726.1994.02.011
[26] 杨兰琴,胡明,王培京,等. 北京市中坝河底泥污染特征及生态风险评价[J]. 环境科学学报, 2021, 41(1): 181−189. doi: 10.13671/j.hjkxxb.2020.0565 Yang L Q,Hu M,Wang P J,et al. Pollution characteristics and ecological risk assessment of sediment in Zhongba River,Beijing[J]. Acta Scientiae Circumstantie, 2021, 41(1): 181−189. doi: 10.13671/j.hjkxxb.2020.0565
[27] 叶宏萌,杨浩,袁旭音,等. 基于流域沉积物氮磷形态的生态风险评价——以沙溪流域为例[J]. 环境化学, 2020, 39(12): 3471−3479. Ye H M,Yang H,Yuan X Y,et al. Ecological risk assessment based on nitrogen and phosphorus forms in watershed sediments:A case study of the Shaxi Watershed,Fujian[J]. Environmental Chemistry, 2020, 39(12): 3471−3479.
[28] 孟凡丽,李秋华,肖劲松,等. 百花湖沉积物总氮总磷分布特征及污染评价研究[J]. 四川环境, 2018, 37(5): 100−105. doi: 10.3969/j.issn.1001-3644.2018.05.018 Meng F L,Li Q H,Xiao J S,et al. Study on distribution characteristics and pollution assessment of total nitrogen and total phosphorus in sediments of Baihua Lake[J]. Sichuan Environment, 2018, 37(5): 100−105. doi: 10.3969/j.issn.1001-3644.2018.05.018
[29] 黄威,靳郑海,凃成琪,等. 城市河网区河流沉积物磷形态分布特征及释放贡献[J]. 环境科学学报, 2022, 42(12): 171−185. doi: 10.13671/j.hjkxxb.2022.0130 Huang W,Jin Z H,Tu C Q,et al. Distribution characteristics and release risk of phosphorus forms in a urban river network region[J]. Acta Scientiae Circumstantiae, 2022, 42(12): 171−185. doi: 10.13671/j.hjkxxb.2022.0130
[30] Li Q M,Shi W Q. Effects of sediment oxidation on phosphorus transformation in three large shallow eutrophic lakes in China[J]. Environmental Science and Pollution Research, 2020, 27(21): 25925−25932. doi: 10.1007/s11356-019-07510-y
[31] Ren Z Y,He J,Cheng Q L,et al. Climate change prior to human activity reduces the immobility of phosphorus in eutrophic Alpine Lake[J]. Journal of Cleaner Production, 2022, 335: 130364. doi: 10.1016/j.jclepro.2022.130364
[32] 段素明,黄先飞,胡继伟,等. 贵州草海湿地植物根际沉积物磷素形态特征[J]. 环境科学研究, 2013, 26(7): 743−749. doi: 10.13198/j.res.2013.07.52.duansm.012 Duan S M,Huang X F,Hu J W,et al. Study on speciation of phosphorus in rhizosphere sediments from Caohai Wetland[J]. Research of Environmental Sciences, 2013, 26(7): 743−749. doi: 10.13198/j.res.2013.07.52.duansm.012
[33] Cette Publication Technique. Guidelines for the protection and management of aquatic sediment quality in Ontario[S]. 1993: 3.
[34] Mu Z,Wang Y C,Wu J K,et al. The influence of cascade reservoir construction on sediment biogenic substance cycle in Lancang River from the perspective of phosphorus fractions[J]. Ecological Engineering, 2020, 158: 106051. doi: 10.1016/j.ecoleng.2020.106051
[35] Marip J B,Yuan X Y,Zhu H,et al. Spatial distribution and environmental significance of phosphorus fractions in river sediments and its influencing factor from Hongze and Tiaoxi Watersheds,Eastern China[J]. International Journal of Environmental Research and Public Health, 2020, 17(16): 5787. doi: 10.3390/ijerph17165787
[36] Qin L H,Lei P,Lei Q L,et al. Evaluating the effect of dam construction on the phosphorus fractions in sediments in a reservoir of drinking water source,China[J]. Environmental Monitoring and Assessment, 2020, 192(2): 99−109. doi: 10.1007/s10661-019-8053-4
[37] Yang P,Yang C H,Yin H B. Dynamics of phosphorus composition in suspended particulate matter from a turbid eutrophic shallow lake (Lake Chaohu,China):Implications for phosphorus cycling and management[J]. Science of the Total Environment, 2020, 741: 140203. doi: 10.1016/j.scitotenv.2020.140203
[38] Rydin E,Malmaeus J M,Karlsson O M,et al. Phosphorus release from coastal Baltic Sea sediments as estimated from sediment profiles[J]. Estuarine Coastal and Shelf Science, 2011, 92(1): 111−117. doi: 10.1016/j.ecss.2010.12.020
[39] 袁和忠,沈吉,刘恩峰. 太湖不同湖区沉积物磷形态变化分析[J]. 中国环境科学, 2010, 30(11): 1522−1528. Yuan H Z,Shen J,Liu E F. Analysis of phosphorus forms in different regions of Taihu Lake[J]. China Environmental Science, 2010, 30(11): 1522−1528.
[40] Ruban V,Brigault S,Demare D,et al. An investigation of the origin and mobility of phosphorus in freshwater sediments from Bort-Les-Orgues Reservior,France[J]. Journal of Environmental Monitoring, 1999, 1: 403−407. doi: 10.1039/a902269d
-
期刊类型引用(2)
1. 刘欣月,李海波,刘胜山,何文杰,董浩,程艳,乔俊豪,徐银. 大冶湖沉积物氮磷形态分布特征及生态风险评价. 环境科学学报. 2024(06): 161-173 . 百度学术
2. 王若凡,刘雨欣,李佩钢,唐悦,谢微. 黄河兰州段河岸带沉积物磷的形态分布及释放风险. 干旱区研究. 2024(12): 2035-2044 . 百度学术
其他类型引用(0)
-
其他相关附件