Determination of Magnesium Isotopic Composition of Plant Chlorophylls Based on HPLC and MC-ICP-MS
-
摘要:
叶绿素a和叶绿素b是植物光合作用时吸收光能的主要色素,其中叶绿素b能帮助叶绿素a扩展吸收光谱促使其吸收更多光能,叶绿素a和叶绿素b比例的改变有助于植物适应光照变化。准确测定叶绿素a和叶绿素b的镁同位素值对研究叶绿素形成过程中镁的生物合成路径等问题具有重要意义,其中将叶绿素a和叶绿素b分离并收集是使用多接收电感耦合等离子体质谱仪(MC-ICP-MS)准确测定两者镁同位素值的关键。高效液相色谱(HPLC)是分离叶绿素的常用仪器,但目前HPLC分离叶绿素的方法主要聚焦于细菌和藻类叶绿素分离。因此,需开发一套能将植物叶绿素a和叶绿素b分离的方法,且该方法分离的样品适用于MC-ICP-MS的镁同位素测定。本文基于665nm检测波长和C18色谱柱(7.6mm×250mm,5μm),以三因素三水平正交设计优化HPLC条件,分析影响样品运行因素间的关系,得出符合要求的参数条件。经过优化的HPLC方法柱温为25℃,流速为1mL/min,流动相为甲醇-丙酮(80∶20,V/V)。结果表明:通过外标法定量分析叶绿素a和叶绿素b所得标准曲线在5~50mg/L浓度范围内的相关系数均大于0.9996,检测限为0.40~1.09mg/L,定量限为1.22~3.31mg/L,相对标准偏差(RSD)小于8.10%,样品加标回收率介于91.92%~111.11%。采用该方法对样品进行分离后,再利用MC-ICP-MS对前处理后的样品进行镁同位素测定,标准-样品间插法测定的数据表明镁同位素测试结果可靠,证明本文建立的方法为植物叶绿素a和叶绿素b的分离提供了技术支撑,且分离样品可用于镁同位素测定。
要点(1) HPLC正交试验中,流动相中丙酮和甲醇的比例是影响叶绿素分离效果的最重要参数。
(2)建立了叶绿素提取、HPLC分离、镁同位素测定的方法。
(3)碳三和碳四光合路径植物中,叶绿素a的镁同位素值均大于叶绿素b的镁同位素值。
HIGHLIGHTS(1) In the HPLC orthogonal test, the ratio of acetone and methanol in mobile phase is the most important parameter affecting the chlorophyll separation effect.
(2) A method for chlorophyll extraction, HPLC separation, and magnesium isotope determination is established.
(3) The magnesium isotope values of chlorophyll a were higher than those of chlorophyll b in both C3 and C4 photosynthetic pathway plants.
Abstract:The accurate determination of magnesium isotope values of chlorophyll a and chlorophyll b is particularly important for the study of magnesium biosynthesis pathways during chlorophyll formation. HPLC is required before MC-ICP-MS can be utilized, but HPLC lacks a method for separating chlorophylls. Therefore, it is necessary to develop a set of methods for separating plant chlorophyll a and chlorophyll b. The samples separated by this method are suitable for magnesium isotope determination by MC-ICP-MS. Based on the detection wavelength of 665nm and C18 column (7.6mm×250mm, 5μm), the HPLC conditions were optimized by three-factor and three-level orthogonal design to obtain the required parameters. The correlation coefficients of chlorophyll a and chlorophyll b standard curves in the concentration range of 5−50mg/L were greater than 0.9996, the detection limits were 0.40−1.09mg/L, the quantification limits were 1.22−3.31mg/L, the relative standard deviation was less than 8.10%, and the recoveries were 91.92%−111.11%. The magnesium isotope data of the isolated samples also showed that the column temperature of 25℃, flow rate of 1mL/min, and methanol-acetone (80∶20, V/V) mobile phase were reliable as HPLC separation conditions. The method established in this paper provides technical support for the separation of chlorophyll a and chlorophyll b in plants, and the separated samples can be used for magnesium isotope determination. The BRIEF REPORT is available for this paper at http://www.ykcs.ac.cn/en/article/doi/10.15898/j.ykcs.202208300161.
BRIEF REPORTSignificance: Chlorophylls in plants can be divided into chlorophyll a and chlorophyll b[7-8]. Magnesium is the central atom of chlorophylls, and isotopic fractionation occurs in the synthesis process of the two chlorophylls[10]. The determination of magnesium isotopes of chlorophyll a and chlorophyll b can be used to explore the utilization of magnesium in the growth process of plants[11] and the biosynthesis path of magnesium in the formation of chlorophylls[12]. Therefore, the accurate determination of magnesium isotope composition is of great significance to further study the fractionation mechanism of magnesium isotope in chlorophyll synthesis. The separation of chlorophyll a and chlorophyll b in plants is the first step to determine the magnesium isotope values of chlorophylls. At present, the separation methods of chlorophylls before the determination of magnesium isotopes of chlorophylls mainly include DEAE-Sepharose column and high-performance liquid chromatography (HPLC). However, DEAE-Sepharose columns are time-consuming and vulnerable, and HPLC lacks a separation method suitable for magnesium isotope determination of chlorophyll b[11,13-17]. Therefore, a separation method suitable for the determination of magnesium isotopes of chlorophyll a and chlorophyll b can be developed based on HPLC.
Methods: Before the separation of chlorophylls by HPLC, it is necessary to extract chlorophylls from plants, which can be further divided into extraction and purification steps of chlorophylls. The extraction process was divided into the following steps: First, the liquid nitrogen was mixed with the leaves and ground into powder; Then methanol was added and extracted 3 times at −30℃ for 24h each time. The purification process was divided into the following steps: sodium chloride solution (5mol/L) was added to the methanol extract and mixed; n-hexane centrifugation was added, n-hexane solution was collected, and the process was repeated many times until the n-hexane phase was colorless; Finally, the collected n-hexane solution was blown dry, dissolved in acetone and stored at −30℃.
After the extraction of the chlorophylls from the plant, a HPLC method for the separation of chlorophyll a and chlorophyll b was developed. According to the previous application of HPLC[11,15,17], an orthogonal test was used to explore the effects of column temperature, flow rate and mobile phase on plant chlorophyll separation. Three different conditions were selected for each factor to design the orthogonal test table (Table 1). The mixed standard samples of chlorophyll a and b were separated according to Table 1. Each group of experiments was repeated 3 times and the average values of required data were taken for analysis. The detection wavelength of 665nm was used to determine the chlorophylls. According to the experimental requirements, HPLC parameters were selected to test the effectiveness of the HPLC method. Chlorophyll a and chlorophyll b in the samples were then separated using this HPLC method.
After the chlorophyll samples were separated, their magnesium isotope values were determined. Firstly, magnesium ions were obtained by destroying organic matter of the samples with wet chemical digestion[28-29], then the method developed by Bao et al.[30] was used to purify the magnesium element, and finally the magnesium isotope values of the samples[30-31] were determined by sample-standard-bracketing based on MC-ICP-MS.
Data and Results: The retention time of chlorophyll a and the separation degree of chlorophyll a and chlorophyll b were taken as the test indexes of the orthogonal test (Table 1). By comparing the range R corresponding to each factor under each test index, the influence degree of each factor on the experimental method was determined, and the HPLC operating conditions meeting the requirements were selected. It can be seen from Table 1 that factors affecting the separation degree of chlorophyll a and chlorophyll b and the retention time of chlorophyll a are all factors C (mobile phase), B (flow rate) and A (temperature) from the largest to the smallest.
After the optimized HPLC operating conditions were obtained through orthogonal experiments, the linear range, detection limit, quantification limit, method precision and sample recovery rate were used to evaluate whether the improved HPLC method could meet the experimental requirements. In the concentration range of 5−50mg/L, the linear regression equations of the standard curves of chlorophyll a and chlorophyll b were y=115888x+9504 and y=27570x-1302, and the correlation coefficients were 1.0000 and 0.9996, respectively. The detection limits of chlorophyll a and chlorophyll b were 0.40mg/L and 1.09mg/L, and the quantification limits were 1.22mg/L and 3.31mg/L, respectively (Table 2). The relative standard deviations of chlorophyll a and chlorophyll b were less than 8.10% (Table 3). The recoveries of chlorophyll a and chlorophyll b ranged from 100.91% to 110.40% and 91.92% to 111.11%, respectively.
After confirming that the optimized HPLC method met the experimental requirements of chlorophyll separation, the magnesium isotope values of the samples were determined to further verify the proposed method. The isotope values of the seawater measured in this experiment were within the normal range. In the three-isotope diagram composed of magnesium isotopes of seawater and chlorophylls (Fig.2), most samples were located on a straight line with a slope of 0.5214.
-
风化壳淋积型稀土矿床,即离子吸附型稀土矿床,此类矿床轻重稀土元素分配齐全,且可不经矿物分解的形式来分离稀土元素,是中国的优势矿产资源,也是世界上稀缺的矿产资源[1-5]。风化壳淋积型稀土矿床中稀土元素的赋存状态非常复杂,前人将此类矿床中的稀土元素划分为离子吸附相(含可交换性吸附态、专性吸附态),胶体分散相(含胶体吸附态、凝胶态),独立矿物相(含表生矿物态、残留矿物态),晶格杂质相(含类质同象态、内潜同晶态),这“四相八态”被称为“全相”稀土。目前“离子型”稀土提取工艺基本只能够利用“可交换吸附态”的稀土元素即“离子相”稀土,其他相态的稀土元素尚不能被有效地回收利用[6]。传统观点认为,风化壳淋积型稀土矿床中,稀土主要以吸附态赋存于风化壳黏土矿物表面,独立矿物相、晶格杂质等其他赋存形式占比较少。但近年来同步辐射研究显示,稀土元素也同时以内层络合物形式存在[7-8],而内层络合有可能抑制了矿石中稀土的离子交换率[9]。稀土元素还可以与有机质形成稳定的有机-稀土络合物[10]。如何将离子吸附型稀土矿中各种形态的稀土元素有效地溶出,对于提高稀土资源利用率十分重要。
分析风化壳淋积型稀土矿样品中的稀土元素时,常用的前处理方法有酸溶、碱熔、强电解质交换等方法。对于离子吸附型稀土矿,盐酸-硝酸-氢氟酸-高氯酸-硫酸(五酸)敞开法可在一定条件下代替操作复杂的碱熔法[11-12],用于测定样品中的“全相”稀土元素。《离子型稀土矿混合稀土氧化物化学分析方法 十五个稀土元素氧化物配分量的测定》(GB/T 18882.1—2008)中则选择使用50%的盐酸来溶出离子型稀土矿样品中的稀土元素。硫酸铵浸提是目前应用最为普遍的提取离子吸附型稀土矿中稀土元素的方法,也是在离子吸附型稀土矿稀土提取工艺中最常用的前处理方法[13-16]。上述前处理方法对风化壳淋积型稀土矿样品中稀土元素的溶出机理与结果的差异,尚无相关比较与讨论。
本文选取混合酸(五酸)消解、盐酸消解、硝酸消解、硫酸铵浸提的前处理方法,对来自中国南岭地区风化壳淋积型稀土矿的多个稀土样品开展了前处理研究,使用电感耦合等离子体质谱(ICP-MS)对处理后的样品进行测定,并探讨了不同前处理方法获得结果的差异,以及稀土元素化学特征和赋存状态之间的关系。以期为进一步研究风化壳淋积型稀土矿中稀土元素提取方法提供新的思路。
1. 实验部分
1.1 仪器设备及工作条件
稀土元素的测定使用的仪器为NexION 300D电感耦合等离子体质谱仪(美国PerkinElmer公司)。仪器工作条件见表1。
表 1 电感耦合等离子体质谱仪工作条件Table 1. Operating parameters for ICP-MS measurements.工作参数 设定值 工作参数 设定值 ICP功率 1300W 跳峰 1点/质量 冷却气流速 13.0L/min 停留时间 10ms/点 辅助气流速 1.2L/min 扫描次数 40次 雾化气流速 0.9L/min 测量时间 31s 取样锥孔径 1.0mm 截取锥孔径 0.9mm 超锥孔径 1.1mm 样品消解实验主要设备:控温鼓风干燥箱;多孔控温电热板;平板电热板;分析天平;30mL带盖聚四氟乙烯坩埚;100mL玻璃烧杯及表面皿;50mL离心管等。
1.2 标准溶液和主要试剂
单元素标准储备液:La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Y、Sc、Ba浓度均为1000μg/mL (国家有色金属及电子材料分析测试中心)。
ICP-MS校准标准工作溶液:由标准储备液逐级稀释至20ng/mL。其中STD1为Sc、Y、La、Ce、Pr、Nd、Sm、Eu的混合溶液,各元素浓度均为20ng/mL,介质分别为5%硝酸和5%盐酸;STD2为Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu的混合溶液,各元素浓度均为20ng/mL,介质分别为5%硝酸和5%盐酸。
干扰校正溶液:Ba、Ce、Pr、Nd单元素溶液,浓度均为1μg/mL,介质分别为5%硝酸和5%盐酸。
内标溶液:10ng/mL 的Rh、Re混合溶液,介质分别为5%硝酸和5%盐酸。内标溶液于测定时通过三通在线加入。
硝酸、盐酸、氢氟酸均为BV Ⅲ级;硫酸、高氯酸为优级纯;过氧化氢:MOS级;硫酸铵:分析纯;超纯水:电阻率大于18MΩ•cm。
1.3 样品采集及处理方法
实验用样品采集自南岭地区的六个离子吸附型稀土样品,编号分别为L03、L05、L14、L22、L20、L28。按照《岩石和矿石化学分析方法总则及一般规定》(GB/T 14505)的相关规定,加工样品的粒径应小于74μm,于105℃烘箱烘干2h,备用。
对样品分别开展混合酸(五酸)消解、盐酸消解、硝酸消解、硫酸铵浸提的前处理。其消解流程如下。
(1)混合酸消解(五酸):称取0.1000g样品置于30mL聚四氟乙烯坩埚中,加入3mL盐酸、2mL硝酸、3mL氢氟酸、1mL高氯酸、1mL 50%硫酸,盖上坩埚盖,把坩埚放在控温电热板上,开启电热板,控制温度为130℃分解样品2h。洗净坩埚盖,将电热板升温至150℃,继续分解样品2h,然后将电热板升温至180℃蒸至高氯酸浓烟冒尽。取下坩埚,冷却至室温,用50%盐酸冲洗坩埚壁,再放在电热板上继续赶酸,直至溶液体积不再变化,重复操作此步骤两次。取下坩埚,加入10mL 50%盐酸,将坩埚放置在电热板上溶解盐类约15min,取下坩埚冷却至室温后,转移至50mL容量瓶中,用水稀释定容,摇匀备用。分取制备的溶液2.50mL,稀释至10.00mL,摇匀,此为混合酸消解样品待测溶液。
(2)硝酸消解:称取0.3000g样品置于100mL烧杯中,加入20mL 50%硝酸,加热至冒大气泡后,冷却至室温,用水定容至100mL。移取上述溶液10mL用5%硝酸定容至100mL;此为硝酸消解样品待测溶液。
(3)硝酸+过氧化氢消解:称取0.3000g样品置于100mL烧杯中,加入20mL 50%硝酸和0.5mL过氧化氢,加热至冒大气泡后,冷却至室温,用水定容至100mL。移取上述溶液10mL用5%硝酸定容至100mL;此为硝酸和过氧化氢消解样品待测溶液。
(4)盐酸+过氧化氢消解:称取0.3000g样品置于100mL烧杯中,加入20mL 50%盐酸和0.5mL过氧化氢,加热至冒大气泡后,冷却至室温,用水定容至100mL。移取上述溶液10mL用5%盐酸定容至100mL;此为盐酸和过氧化氢消解样品待测溶液。
(5)硫酸铵浸提:称取5.00g样品置于50mL离心管中,加入2.5%硫酸铵溶液40mL,摇匀后静置24h。取1mL上清液,加入5%硝酸9mL,此为硫酸铵浸提取样品待测溶液。
所有前处理方法的试剂空白与样品消解均同时进行。
1.4 样品测定
按照ICP-MS操作规程启动仪器,仪器点火后稳定30min以上。用仪器调试液进行仪器参数最佳化调试。按表1中的仪器工作条件测定溶液中的139La、140Ce、141Pr、142Nd、152Sm、153Eu、158Gd、159Tb、164Dy、165Ho、166Er、169Tm、174Yb、175Lu、89Y、45Sc共16种元素,同时测定空白溶液。以常用的干扰系数校正法来消除轻稀土对重稀土的干扰[17-21]。不同消解方法应选取与之基体相匹配的内标和校准溶液,以降低质谱测定中的基体效应。
混合酸溶采用离子型稀土矿石国家一级标准物质GBW07160、GBW07161进行质量监控;其他前处理方法通过加标试验对前处理过程进行监控。
2. 结果与讨论
2.1 样品前处理方法的评价
2.1.1 混合酸(五酸)消解方法
混合酸(五酸)消解法是基于经典四酸消解法的基础之上。通常情况下,酸溶法过程中引入氢氟酸是为了使样品完全分解,特别是硅酸盐结构的分解。但对于稀土样品,引入氢氟酸易生成难溶氟化物,导致稀土结果偏低。引入少量硫酸能有效地提升赶酸过程的温度,同时赶酸过程中溶液不会完全蒸干,既有利于难溶稀土氟化物的分解,也能尽量地避免稀土氟化物的沉淀。对于离子吸附型稀土矿,五酸敞开法可在一定条件下代替操作复杂的碱熔法[11],用于测定样品中的稀土元素。本研究中采用GBW07160和GBW07161对五酸消解法进行监控,测定结果均在标准值范围内(表2)。因此,可将混合酸(五酸)消解的结果视为样品中“全相”稀土量。
表 2 GBW07160和GBW07161采用混合酸(五酸)消解测定结果(n=3)Table 2. Analytical results of GBW07160 and GBW07161 determined by open mixed acid digestion (n=3).稀土
元素GBW07160 GBW07161 五酸消解结果
(μg/g)标准值
(μg/g)五酸消解结果
(μg/g)标准值
(μg/g)Sc 6.22 5.67~6.98 8.29 7.69±0.59 Y 2383 2386±205 965 976±47 La 85.3 93.8±8.5 2271 2362±145 Ce 24.7 28.3±4.1 178 187±8.1 Pr 33.8 37.2 440 447±24.8 Nd 170 189±17 1568 1595±86 Sm 115 129±17 286 285±25.9 Eu 1.10 1.55±0.26 62.3 64.8±3.63 Gd 210 234 234 226±26 Tb 46.4 49.1±5.1 31.6 34.6±2.2 Dy 315 314±44 182 183±17 Ho 68.1 65.5±5.4 31.9 35.7±4.0 Er 207 192±26 90.1 96±9 Tm 26.8 27.7±3.1 12.3 13.2±1.1 Yb 184 193±26 78.1 87.8±11 Lu 24.9 26.7±2.6 11.24 12.0±0.88 2.1.2 盐酸、硝酸消解或硫酸铵浸提法
硝酸、盐酸消解处理或是硫酸铵浸提法,都只能将离子吸附型稀土样品中部分稀土元素溶出。50%的盐酸或硝酸能够溶出以离子状态吸附于黏土矿物或铁锰氧化物中的稀土元素,以及以氧化物、碳酸盐、磷酸盐等形式存在的稀土元素。但是对于硅酸盐结构中的稀土元素,其溶出效果有限。硫酸铵浸提法则只能溶出离子相稀土。呈离子状态被吸附于高岭土、长石、云母等黏土表面和颗粒间的稀土元素,在遇到化学性质更活泼的阳离子强电解质NH4+时能被其交换解吸而转入溶液。这部分能被离子交换浸出工艺交换出的稀土,即为离子相稀土[14]。
硝酸消解、硝酸+过氧化氢消解、盐酸+过氧化氢消解法和硫酸铵提取法,在称取样品后加入高浓度标准溶液,随后按1.3节方法处理样品,对前处理流程进行监控。各元素加入量及结果见表3,以样品L14和L28为例,加标回收率在80%~120%之间,满足实验分析要求。
表 3 加标试验回收率 (n=3)Table 3. Recovery rates of added standard tests (n=3).样品
L04硝酸消解 硝酸+双氧水消解 盐酸+双氧水消解 硫酸铵浸提 加标量
(μg)回收量
(μg)回收率
(%)加标量
(μg)回收量
(μg)回收率
(%)加标量
(μg)回收量
(μg)回收率
(%)加标量
(μg)回收量
(μg)回收率
(%)Sc 6.00 6.48 108 6.00 5.96 99.4 6.00 5.43 90.5 200 215.4 108 Y 6.00 6.50 108 6.00 5.72 95.3 6.00 6.19 103 200 183.2 91.6 La 6.00 6.84 114 6.00 6.86 114 6.00 5.99 100 200 212.9 106 Ce 6.00 6.29 105 6.00 6.53 109 6.00 6.60 110 200 208.1 104 Pr 6.00 5.75 96 6.00 6.08 101 6.00 7.12 119 200 192.0 96.0 Nd 6.00 5.66 94 6.00 5.92 98.7 6.00 6.40 107 200 177.9 89.0 Sm 6.00 6.43 107 6.00 6.57 109 6.00 6.49 108 200 203.4 102 Eu 6.00 6.14 102 6.00 6.28 105 6.00 6.18 103 200 200.6 100 Gd 1.50 1.44 96 1.50 1.70 113 1.50 1.61 107 80.0 80.4 100 Tb 1.50 1.62 108 1.50 1.68 112 1.50 1.63 109 80.0 80.2 100 Dy 1.50 1.45 96 1.50 1.67 111 1.50 1.64 109 80.0 80.1 100 Ho 1.50 1.61 108 1.50 1.61 107 1.50 1.57 105 80.0 82.8 103 Er 1.50 1.62 108 1.50 1.67 111 1.50 1.37 91.6 80.0 84.3 105 Tm 1.50 1.55 103 1.50 1.57 105 1.50 1.57 104 80.0 80.9 101 Yb 1.50 1.60 106 1.50 1.63 109 1.50 1.60 106 80.0 77.7 97.1 Lu 1.50 1.50 100 1.50 1.56 104 1.50 1.58 105 80.0 83.7 105 样品
L28硝酸消解 硝酸+双氧水消解 盐酸+双氧水消解 硫酸铵浸提 加标量
(μg)回收量
(μg)回收率
(%)加标量
(μg)回收量
(μg)回收率
(%)加标量
(μg)回收量
(μg)回收率
(%)加标量
(μg)回收量
(μg)回收率
(%)Sc 6.00 6.55 109 6.00 6.55 109 6.00 5.87 97.9 100 106.6 107 Y 6.00 6.10 102 6.00 6.27 104 6.00 5.92 98.6 100 105.1 105 La 6.00 6.76 113 6.00 6.88 115 6.00 4.93 82.1 100 107.6 108 Ce 6.00 6.18 103 6.00 6.56 109 6.00 6.14 102 100 106.8 107 Pr 6.00 6.16 103 6.00 6.10 102 6.00 6.68 111 100 110.9 111 Nd 6.00 6.13 102 6.00 6.19 103 6.00 5.04 84.0 100 116.6 117 Sm 6.00 6.55 109 6.00 6.45 107 6.00 5.95 99.2 100 98.9 98.9 Eu 6.00 6.35 106 6.00 6.31 105 6.00 6.17 103 100 118.4 118 Gd 1.50 1.64 109 1.50 1.79 119 1.50 1.75 116 4.00 4.09 102 Tb 1.50 1.61 108 1.50 1.54 103 1.50 1.56 104 4.00 3.88 96.9 Dy 1.50 1.44 96.0 1.50 1.70 114 1.50 1.57 104 4.00 4.31 108 Ho 1.50 1.61 107 1.50 1.57 105 1.50 1.55 103 4.00 4.17 104 Er 1.50 1.56 104 1.50 1.69 113 1.50 1.46 97.1 4.00 3.92 98.0 Tm 1.50 1.52 102 1.50 1.49 100 1.50 1.53 102 4.00 4.03 101 Yb 1.50 1.51 100 1.50 1.56 104 1.50 1.50 100 4.00 3.61 90.3 Lu 1.50 1.52 102 1.50 1.55 103 1.50 1.52 102 4.00 4.01 100 2.2 样品前处理方法对提取结果的影响
选取六个离子吸附型稀土矿样品,采用不同前处理方法测得各稀土元素总量见表4。不同前处理方法提取出的稀土量存在较大差异,其中混合酸(五酸)消解结果最高,硝酸消解、硝酸和过氧化氢消解、盐酸和过氧化氢消解结果相近,略低于混合酸(五酸)消解溶出稀土量,硫酸铵浸提溶出稀土量最低。用50%硝酸、盐酸等消解方法溶出的稀土量占混合酸(五酸)消解溶出稀土量(全相稀土)的71.7%~97.5%,硫酸铵浸提溶出的稀土量(离子相稀土)仅占全相稀土量的9.1%~75.5%(表4)。这与混合酸(五酸)消解溶出全相稀土,50%的盐酸或硝酸能溶出离子态以及以氧化物、碳酸盐、磷酸盐等形式存在的稀土,而硫酸铵浸提仅能溶出离子相稀土的原理一致。
表 4 不同前处理方法测得稀土总量与提取率 (n=3)Table 4. Content and extraction rates of REEs by different pretreatment methods (n=3).样品前处理方式 六个离子吸附型稀土样品稀土总量测定结果(μg/g) L20 L28 L22 L14 L05 L03 混合酸 208 344 310 511 771 152 硝酸 178 275 276 439 752 109 硝酸+过氧化氢 176 265 272 444 737 113 盐酸+过氧化氢 175 259 267 419 707 119 硫酸铵浸提 19.0 106 160 308 581 15.4 样品前处理方式 六个离子吸附型稀土样品稀土总量提取率(%) L20 L28 L22 L14 L05 L03 硝酸 85.6 79.9 89.0 85.9 97.5 71.7 硝酸+过氧化氢 84.6 77.0 87.7 86.9 95.6 74.3 盐酸+过氧化氢 84.1 75.3 86.1 82.0 91.7 78.3 硫酸铵浸提 9.1 30.8 51.7 60.3 75.5 10.2 注:提取率为各种方法提取稀土结果与混合酸(五酸)消解结果(全相稀土)相比的百分数。 2.3 稀土元素特性及赋存状态对提取结果的影响
不同消解方法结果的差异与样品中稀土元素的赋存状态密切相关,混合酸消解能够将样品结构彻底破坏,样品中所有的稀土元素都能被溶出。受原岩化学成分的影响,不同矿区风化壳矿石的化学成分不完全相同,但有许多共同点。稀土元素在风化壳各层发生分异-富集,原岩在风化后仍有一部分稀土以矿物相形式赋存[14],离子相的稀土的含量与风化壳各层的风化程度、矿物组成等因素密切相关[22-24],风化壳不同部位离子相稀土含量占比不尽相同。盐酸或硝酸能够溶出以离子状态吸附于黏土矿物或铁锰氧化物中的稀土元素,以及碳酸盐、磷酸盐等形式存在的稀土元素。但是,还有部分稀土元素稳定存在于不能被硝酸和盐酸完全溶解的硅酸盐矿物晶格中。而硫酸铵浸提只能将样品中离子相稀土溶出,因此,盐酸和硝酸的消解结果低于全相稀土的量,高于硫酸铵浸提法。
实验结果(图1)显示,硝酸和盐酸消解处理中,Sc的提取率也远低于稀土元素总量的提取率,硫酸铵浸提则不能将钪(Sc)溶出。这是由于Sc3+的离子半径(0.075nm)明显小于镧系元素离子半径(0.106~0.085nm),却与Mg2+(0.072nm)和Fe3+(0.078nm)具有相似的离子半径,因而能以类质同象的形式替换Mg2+、Fe3+离子进入多种造岩矿物的晶格中[25-26]。因此,Sc元素几乎不能被NH4+以离子交换的形式置换到溶液中,而存在于造岩矿物晶格中的Sc也只能被硝酸或者盐酸部分溶出。
铈(Ce)是地壳中丰度最高的稀土元素,Ce作为变价元素,其含量变化受氧化还原条件等多种因素影响[27]。自然界中的Ce通常呈Ce3+和Ce4+两种价态,Ce3+极易氧化成Ce4+,以胶态相Ce(OH)4或矿物相方铈矿(CeO2)的形式而滞留于原地[28-29]。Ce与其他稀土元素不同的富集-分异特性也导致在硫酸铵浸提中,Ce元素的提取率与其他稀土元素提取率、轻稀土总量提取率以及稀土总量提取率之间不存在相关性(图1和图2)。
比较不同消解方法中稀土元素的提取率可以发现,离子半径相近的稀土元素,提取率也往往相近(图2和图3)。钇(Y)与镧系元素具有很强的化学亲和性,与钬(Ho)也具有相似的离子半径(Y3+ 0.088nm,Ho3+ 0.089nm),因此将Y划为重稀土一组[30]。从图3也可以发现,在同一种前处理方法中,Y和Ho具有相近的提取率。大部分情况下轻稀土的提取率高于重稀土,轻稀土单元素提取率与轻稀土总量(除Ce以外)提取率(图2)、重稀土单元素提取率与重稀土总量提取率正相关(图3)。
3. 结论
本文初步讨论了不同前处理方法溶出风化壳淋积型稀土矿中稀土元素的差异及影响因素,能够为进一步研究风化壳淋积型稀土矿中稀土元素提取方法提供参考依据。混合酸(五酸)消解能够提取出风化壳淋积型稀土矿样品中的全相稀土,可用于评价风化壳淋积型稀土矿中稀土总量。硝酸消解、硝酸和过氧化氢消解、盐酸和过氧化氢消解能够溶出离子相稀土,以及以氧化物、碳酸盐、磷酸盐等形式存在的稀土元素,对于硅酸盐结构中的稀土元素,不能完全溶出,因此,该方法适用于评价样品中以离子态、氧化物、碳酸盐、磷酸盐等形式存在稀土元素的含量。硫酸铵浸提则能提取出离子相稀土,可用于评价风化壳淋积型稀土矿中离子态稀土含量。
稀土元素的提取率,受稀土元素化学特性和赋存状态的影响较大。由于Sc3+的离子半径明显小于其他稀土元素,能以类质同象的形式进入多种造岩矿物的晶格中,从而导致硫酸铵浸提不能将Sc溶出。Ce元素与其他稀土元素不同的富集-分异特性,也使得其在硫酸铵浸提中提取率与其他轻稀土元素不一致。具有相近离子半径的稀土元素,在相同的前处理中往往提取效率也相近。
-
表 1 叶绿素分离条件正交试验设计与结果
Table 1 Designs and results of orthogonal test on chlorophyll separation conditions
正交试验编号 影响因素 正交试验结果 A柱温
(℃)B流速
(mL/min)C流动相
(V/V)叶绿素a
保留时间(min)叶绿素a和叶绿素b
分离度1 A1:25 B1:0.8 C1:甲醇-丙酮
(90∶10)22.08 6.22 2 A1:25 B2:1.0 C2:甲醇-丙酮
(80∶20)13.34 4.60 3 A1:25 B3:1.2 C3:甲醇-丙酮
(70∶30)8.53 3.19 4 A2:30 B1:0.8 C2:甲醇-丙酮
(80∶20)15.16 4.85 5 A2:30 B2:1.0 C3:甲醇-丙酮
(70∶30)9.44 3.51 6 A2:30 B3:1.2 C1:甲醇-丙酮
(90∶10)13.42 4.99 7 A3:35 B1:0.8 C3:甲醇-丙酮
(70∶30)10.93 3.49 8 A3:35 B2:1.0 C1:甲醇-丙酮
(90∶10)14.77 5.40 9 A3:35 B3:1.2 C2:甲醇-丙酮
(80∶20)9.37 4.47 叶绿素a和叶绿素b
分离度T1 14.01 14.56 16.61 T2 13.35 13.51 13.92 T3 13.36 12.65 10.19 $ \overline{{T}}_1 $ 4.67 4.85 5.54 $ \overline{{T}}_2 $ 4.45 4.50 4.64 $ \overline{{T}}_3 $ 4.45 4.22 3.40 R 0.22 0.63 2.14 叶绿素a
保留时间T1 43.95 48.17 50.27 T2 38.02 37.55 37.87 T3 35.07 31.32 28.90 $ \overline{{T}}_1 $ 14.65 16.06 16.76 $ \overline{{T}}_2 $ 12.67 12.52 12.62 $ \overline{{T}}_3 $ 11.69 10.44 9.63 R 2.96 5.62 7.13 注:Ti代表各因素相同水平实验结果之和,$ \mathit{\overline{T}_i} $代表实验结果的平均值,相同因素下Ti越大,表明该水平对实验结果影响越大;R代表极差,是各水平最大平均值与最小平均值之差,R值越大,表明该因素对实验结果影响越大。 表 2 方法检测限和定量限
Table 2 Detection limit and quantification limit of the method
叶绿素类别 方法检测限
(mg/L)方法定量限
(mg/L)叶绿素a 0.40 1.22 叶绿素b 1.09 3.31 表 3 方法精密度
Table 3 Precision of the method
叶绿素类别 浓度(mg/L) RSD
(%)叶绿素a 9.00 8.79 9.09 9.04 9.16 8.44 2.99 16.86 16.31 16.07 14.44 17.58 14.94 7.32 35.38 35.49 32.31 35.47 34.06 35.62 3.79 叶绿素b 8.86 8.12 8.50 8.02 8.82 7.79 5.30 15.33 14.71 14.11 12.71 15.45 13.05 8.10 36.24 36.16 33.35 36.00 34.92 36.78 3.51 表 4 样品加标回收率
Table 4 Spiked recoveries of the samples
植物种类 叶绿素种类 取样量
(µg)加标量
(µg)7次实测值(µg) 样品加标回收率(%) 水稻 叶绿素a 2.11 2.50 4.80 4.82 4.87 4.82 4.78 4.87 4.81 107.60 108.40 110.40 108.40 106.80 110.40 108.00 叶绿素b 0.82 0.99 1.80 1.73 1.83 1.74 1.87 1.88 1.92 98.99 91.92 102.02 92.93 106.06 107.07 111.11 玉米 叶绿素a 1.88 2.19 4.09 4.21 4.26 4.22 4.24 4.23 4.26 100.91 106.39 108.68 106.85 107.76 107.31 108.68 叶绿素b 0.48 0.66 1.14 1.12 1.16 1.21 1.19 1.17 1.18 100.00 96.97 103.03 110.61 107.58 104.55 106.06 表 5 本实验样品镁同位素值与文献报道值的对比
Table 5 Comparison of magnesium isotope values in this experiment and reported values in literatures
样品类型 样品或叶绿素类别 序号 δ26Mg(‰) 2SD(‰) δ25Mg(‰) 2SD(‰) n 数据来源 海水 海水 1 −0.78 0.05 −0.41 0.02 3 本文实验 2 −0.84 0.11 −0.42 0.09 4 [35] 3 −0.83 0.05 / / 3 [36] 水稻 叶绿素a 4 −0.40 0.07 −0.22 0.06 3 本文实验 叶绿素b 5 −0.88 0.07 −0.48 0.05 3 本文实验 玉米 叶绿素a 6 1.69 0.13 0.87 0.04 3 本文实验 叶绿素b 7 −0.64 0.06 −0.34 0.03 3 本文实验 水芹 叶绿素a 8 −0.414 0.12 −0.21 0.08 5 [11] 9 −0.440 0.19 −0.22 0.14 5 [11] 玉米 叶绿素a 10 2.16 0.16 1.12 0.12 5 [11] 11 2.75 0.20 1.56 0.16 5 [11] 常春藤 叶绿素a 12 −0.022 0.119 −0.027 0.095 4 [14] 13 0.014 0.029 −0.012 0.022 1 [14] 叶绿素b 14 −0.455 0.090 −0.262 0.074 4 [14] 15 −0.380 0.029 −0.232 0.026 1 [14] -
[1] 刘金科, 韩贵琳. 镁同位素在森林生态系统研究中的应用[J]. 生态学杂志, 2019, 38(3): 899−907. doi: 10.13292/j.1000-4890.201903.005 Liu J K, Han G L. Research advances about magnesium isotope in forest ecosystems[J]. Chinese Journal of Ecology, 2019, 38(3): 899−907. doi: 10.13292/j.1000-4890.201903.005
[2] 陈良碧, 蔡丹, 张林安, 等. 植物镁离子转运及镁胁迫响应机制研究进展[J]. 生命科学研究, 2021, 25(5): 442−447. doi: 10.16605/j.cnki.1007-7847.2021.08.0189 Chen L B, Cai D, Zhang L A, et al. Advances in mechanisms of magnesium transport and response to magnesium stress in plants[J]. Life Science Research, 2021, 25(5): 442−447. doi: 10.16605/j.cnki.1007-7847.2021.08.0189
[3] Tian X Y, He D D, Bai S, et al. Physiological and molecular advances in magnesium nutrition of plants[J]. Plant and Soil, 2021, 468(1-2): 1−17. doi: 10.1007/s11104-021-05139-w
[4] Kleczkowski L A, Igamberdiev A U. Magnesium signaling in plants[J]. International Journal of Molecular Sciences, 2021, 22(3): 1159. doi: 10.4161/15592324.2014.992287
[5] Xie K, Cakmak I, Wang S Y, et al. Synergistic and antagonistic interactions between potassium and magnesium in higher plants[J]. The Crop Journal, 2021, 9(2): 249−256. doi: 10.1016/j.cj.2020.10.005
[6] Ishfaq M, Wang Y Q, Yan M W, et al. Physiological essence of magnesium in plants and its widespread deficiency in the farming system of China[J]. Frontiers in Plant Science, 2022, 13: 802274. doi: 10.3389/fpls.2022.802274
[7] 李佳佳, 于旭东, 蔡泽坪, 等. 高等植物叶绿素生物合成研究进展[J]. 分子植物育种, 2019, 17(18): 6013−6019. doi: 10.13271/j.mpb.017.006013 Li J J, Yu X D, Cai Z P, et al. An overview of chlorophyll biosynthesis in higher plants[J]. Molecular Plant Breeding, 2019, 17(18): 6013−6019. doi: 10.13271/j.mpb.017.006013
[8] Hu X Y, Gu T Y, Khan I, et al. Research progress in the interconversion, turnover and degradation of chlorophyll[J]. Cells, 2021, 10(11): 3134. doi: 10.3390/cells10113134
[9] Qiu N W, Jiang D C, Wang X S, et al. Advances in the members and biosynthesis of chlorophyll family[J]. Photosynthetica, 2019, 57(4): 974−984. doi: 10.32615/ps.2019.116
[10] 黄康俊, 滕方振, 沈冰, 等. 镁同位素示踪表生地质过程的原理及应用[J]. 矿物岩石地球化学通报, 2022, 41(2): 213−234, 201. doi: 10.19658/j.issn.1007-2802.2022.41.014 Huang K J, Teng F Z, Shen B, et al. Tracing surficial processes by magnesium isotopes: Principles and applications[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022, 41(2): 213−234, 201. doi: 10.19658/j.issn.1007-2802.2022.41.014
[11] Wrobel K, Karasiński J, Tupys A, et al. Magnesium-isotope fractionation in chlorophyll-a extracted from two plants with different pathways of carbon fixation (C3, C4)[J]. Molecules, 2020, 25(7): 1644. doi: 10.3390/molecules25071644
[12] Moynier F, Fujii T. Theoretical isotopic fractionation of magnesium between chlorophylls[J]. Scientific Reports, 2017, 7: 6973. doi: 10.1038/s41598-017-07305-6
[13] Black J R, Yin Q Z, Casey W H. An experimental study of magnesium-isotope fractionation in chlorophyll-a photosynthesis[J]. Geochimica et Cosmochimica Acta, 2006, 70(16): 4072−4079. doi: 10.1016/j.gca.2006.06.010
[14] Black J R, Yin Q Z, Rustad J R, et al. Magnesium isotopic equilibrium in chlorophylls[J]. Journal of the American Chemical Society, 2007, 129(28): 8690−8691. doi: 10.1021/ja072573i
[15] Ra K, Kitagawa H. Magnesium isotope analysis of different chlorophyll forms in marine phytoplankton using multi-collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2007, 22(7): 817−821. doi: 10.1039/b701213f
[16] Pokharel R, Gerrits R, Schuessler J A, et al. Magnesium stable isotope fractionation on a cellular level explored by cyanobacteria and black fungi with implications for higher plants[J]. Environmental Science & Technology, 2018, 52(21): 12216−12224. doi: 10.1021/acs.est.8b02238
[17] Isaji Y, Yoshimura T, Araoka D, et al. Magnesium isotope fractionation during synthesis of chlorophyll a and bacteriochlorophyll a of benthic phototrophs in hypersaline environments[J]. ACS Earth and Space Chemistry, 2019, 3(6): 1073−1079. doi: 10.1021/acsearthspacechem.9b00013
[18] Yamori W, Hikosaka K, Way D A. Temperature response of photosynthesis in C3, C4, and CAM plants: Temperature acclimation and temperature adaptation[J]. Photosynthesis Research, 2014, 119(1-2): 101−117. doi: 10.1007/s11120-013-9874-6
[19] 杨淑华, 巩志忠, 郭岩, 等. 中国植物应答环境变化研究的过去与未来[J]. 中国科学:生命科学, 2019, 49(11): 1457−1478. doi: 10.1360/SSV-2019-0201 Yang S H, Gong Z Z, Guo Y, et al. Studies on plant responses to environmental change in China: The past and the future[J]. Scientia Sinica Vitae, 2019, 49(11): 1457−1478. doi: 10.1360/SSV-2019-0201
[20] 张宏宇. 胡敏酸对水稻吸收硒和镉的影响研究[D]. 武汉: 中国地质大学(武汉), 2020: 24-25. Zhang H Y. Effect of humic acid on selenium and cadmium uptake in rice (Oryza sativa L. )[D]. Wuhan: China University of Geosciences (Wuhan), 2020: 24−25.
[21] 丁跃, 吴刚, 郭长奎. 植物叶绿素降解机制研究进展[J]. 生物技术通报, 2016, 32(11): 1−9. doi: 10.13560/j.cnki.biotech.bull.1985.2016.11.001 Ding Y, Wu G, Guo C K. Research advance on chlorophyll degradation in plants[J]. Biotechnology Bulletin, 2016, 32(11): 1−9. doi: 10.13560/j.cnki.biotech.bull.1985.2016.11.001
[22] 邱念伟, 王修顺, 杨发斌, 等. 叶绿素的快速提取与精密测定[J]. 植物学报, 2016, 51(5): 667−678. doi: 10.11983/CBB15190 Qiu N W, Wang X S, Yang F B, et al. Fast extraction and precise determination of chlorophyll[J]. Chinese Bulletin of Botany, 2016, 51(5): 667−678. doi: 10.11983/CBB15190
[23] Pniewski F. HPLC separation of cyanobacterial and algal photosynthetic pigments[J]. Biologia, 2020, 75(2): 223−233. doi: 10.2478/s11756-019-00407-8
[24] Hu X Y, Khan I, Jiao Q S, et al. Chlorophyllase, a common plant hydrolase enzyme with a long history, is still a puzzle[J]. Genes, 2021, 12(12): 1871. doi: 10.3390/genes12121871
[25] Barry C S. The stay-green revolution: Recent progress in deciphering the mechanisms of chlorophyll degradation in higher plants[J]. Plant Science, 2009, 176(3): 325−333. doi: 10.1016/j.plantsci.2008.12.013
[26] Hu X, Tanaka A, Tanaka R. Simple extraction methods that prevent the artifactual conversion of chlorophyll to chlorophyllide during pigment isolation from leaf samples[J]. Plant Methods, 2013, 9: 19. doi: 10.1186/1746-4811-9-19
[27] 周武先, 段媛媛, 卢超, 等. 高效提取3种不同类型植物叶片色素的方法[J]. 西北农业学报, 2019, 28(1): 97−104. doi: 10.7606/j.issn.1004-1389.2019.01.012 Zhou W X, Duan Y Y, Lu C, et al. Efficient methods for extracting pigments from three different types of plant leaves[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2019, 28(1): 97−104. doi: 10.7606/j.issn.1004-1389.2019.01.012
[28] 刘亚轩, 李晓静, 白金峰, 等. 植物样品中无机元素分析的样品前处理方法和测定技术[J]. 岩矿测试, 2013, 32(5): 681−693. doi: 10.15898/j.cnki.11-2131/td.2013.05.001 Liu Y X, Li X J, Bai J F, et al. Review on sample pretreatment methods and determination techniques for inorganic elements in plant samples[J]. Rock and Mineral Analysis, 2013, 32(5): 681−693. doi: 10.15898/j.cnki.11-2131/td.2013.05.001
[29] 李杨子, 黄华宇, 贺茂勇, 等. 植物的非传统稳定同位素前处理及测定技术研究进展[J]. 地球环境学报, 2023, 14(3): 284−296. doi: 10.7515/JEE221016 Li Y Z, Huang H Y, He M Y, et al. Advances in non-traditional stable isotope pretreatment and determination techniques for plants[J]. Journal of Earth Environment, 2023, 14(3): 284−296. doi: 10.7515/JEE221016
[30] Bao Z A, Huang K J, Huang T Z, et al. Precise magnesium isotope analyses of high-K and low-Mg rocks by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(5): 940−953. doi: 10.1039/c9ja00002j
[31] 刘嘉文, 田世洪, 王玲. 镁同位素体系在重要地质过程中的应用[J]. 地学前缘, 2023, 30(3): 399−424. doi: 10.13745/j.esf.sf.2022.10.46 Liu J W, Tian S H, Wang L. Application of magnesium stable isotopes for studying important geological processes—A review[J]. Earth Science Frontiers, 2023, 30(3): 399−424. doi: 10.13745/j.esf.sf.2022.10.46
[32] 梁洁, 李栋, 王明达, 等. 利用正交实验法优化青藏高原湖泊沉积色素提取与分析[J]. 中国科学:地球科学, 2016, 46(4): 497−511. doi: 10.1007/s11430-015-5240-1 Liang J, Li D, Wang M D, et al. Application of orthogonal design to the extraction and HPLC analysis of sedimentary pigments from lakes of the Tibetan Plateau[J]. Science China: Earth Sciences, 2016, 46(4): 497−511. doi: 10.1007/s11430-015-5240-1
[33] 程红艳, 陈军辉, 张道来, 等. 超声波辅助提取RP-HPLC法测定浒苔中的叶绿素a、b[J]. 海洋科学, 2010, 34(2): 23−27. Cheng H Y, Chen J H, Zhang D L, et al. Determination of chlorophyll a and chlorophyll b in Enteromorpha prolifera by ultrasound-assisted extraction with RP-HPLC[J]. Marine Sciences, 2010, 34(2): 23−27.
[34] 江涛, 丛敏, 甘居利, 等. 高效液相色谱法测定海洋水体与沉积物中光合色素[J]. 分析化学, 2012, 40(4): 517−522. doi: 10.3724/SP.J.1096.2012.11089 Jiang T, Cong M, Gan J L, et al. Determination of photosynthetic pigments in sea water and marine sediments by high performance liquid chromatography[J]. Chinese Journal of Analytical Chemistry, 2012, 40(4): 517−522. doi: 10.3724/SP.J.1096.2012.11089
[35] Bao Z A, Zong C L, Chen K Y, et al. Chromatographic purification of Ca and Mg from biological and geological samples for isotope analysis by MC-ICP-MS[J]. International Journal of Mass Spectrometry, 2020, 448: 116268. doi: 10.1016/j.ijms.2019.116268
[36] Zhang P, Huang K J, Luo M, et al. Constraining the terminal Ediacaran seawater chemistry by Mg isotopes in dolostones from the Yangtze Platform, South China[J]. Precambrian Research, 2022, 377: 106700. doi: 10.1016/j.precamres.2022.106700
[37] 王泽洲. 深部碳循环的Zn-Mg同位素示踪[D]. 北京: 中国地质大学(北京), 2020: 83-84. Wang Z Z. Tracing the deep carbon cycle using Zn-Mg isotopes[D]. Beijing: China University of Geosciences (Beijing), 2020: 83−84.
[38] 程方奎, 严家平, 范廷玉, 等. 基于正交试验法的景观水体叶绿素a最佳提取条件研究[J]. 生态科学, 2014, 33(6): 1085−1090. doi: 10.14108/j.cnki.1008-8873.2014.06.008 Cheng F K, Yan J P, Fan T Y, et al. Research on optimizing operation parameters for leaching chlorophyll-a of landscape water based on orthogonal experiments[J]. Ecological Science, 2014, 33(6): 1085−1090. doi: 10.14108/j.cnki.1008-8873.2014.06.008
[39] Zhao J, Yao P, Yu Z G, et al. Orthogonal design for optimization of pigment extraction from surface sediments of the Changjiang River Estuary[J]. Acta Oceanologica Sinica, 2011, 30(4): 33−42. doi: 10.1007/s13131-011-0131-6
[40] Vanheukelem L, Lewitus J, Kana T M, et al. Improved separations of phytoplankton pigments using temperature-controlled high performance liquid chromatography[J]. Marine Ecology Progress Series, 1994, 114(3): 303−313. doi: 10.3354/meps114303
[41] Tanaka R, Tanaka A. Chlorophyll cycle regulates the construction and destruction of the light-harvesting complexes[J]. Biochimica et Biophysica Acta-Bioenergetics, 2011, 1807(8): 968−976. doi: 10.1016/j.bbabio.2011.01.002
-
期刊类型引用(8)
1. 王鹏亮,刘双,张钰,钟顺清. 改性凹凸棒石对汞吸附及土壤汞钝化性能影响. 环境保护科学. 2025(01): 96-106 . 百度学术
2. 陶玲,米成成,王丽,王艺蓉,王彤玉,任珺. 凹凸棒石组配硫酸锌对土壤Cd的钝化效果及生态风险评价. 环境科学研究. 2022(01): 211-218 . 百度学术
3. 陶玲,仝云龙,余方可,杨万辉,王艺蓉,王丽,任珺. 碱改性凹凸棒石对土壤中镉化学形态及环境风险的影响. 岩矿测试. 2022(01): 109-119 . 本站查看
4. 练建军,邬洪艳,叶天然,孔巧平,徐晴,吴朝阳,陈波,牛司平. 改性凹凸棒负载硫化亚铁的制备及其对水中Mo(Ⅵ)的吸附机制. 环境科学. 2022(12): 5647-5656 . 百度学术
5. 端爱玲,杨树俊,韩张雄,张树雄,王思远,李敏. 矿区土壤重金属污染化学修复及强化方法研究进展. 矿产综合利用. 2022(06): 104-109 . 百度学术
6. 宿俊杰,刘永兵,王鹤立,郭威,王嘉良,王宏鹏,张原浩. 面向碱性农地镉污染土壤钝化的凹凸棒改性特征及效果研究. 岩矿测试. 2022(06): 1029-1039 . 本站查看
7. 胡佳晨. 凹凸棒石对重金属污染农田土壤钝化修复效果研究. 广东化工. 2021(11): 117-119 . 百度学术
8. 王卓群,邱少芬,孙瑞莲. 有机改性天然矿物钝化土壤重金属研究进展. 环境科学与技术. 2021(11): 101-108 . 百度学术
其他类型引用(12)