• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

黑龙江省海伦地区浅层地下水中“三氮”分布特征及来源解析

李丽君, 刘强

李丽君,刘强. 黑龙江省海伦地区浅层地下水中“三氮”分布特征及来源解析[J]. 岩矿测试,2023,42(4):809−822. DOI: 10.15898/j.ykcs.202208270160
引用本文: 李丽君,刘强. 黑龙江省海伦地区浅层地下水中“三氮”分布特征及来源解析[J]. 岩矿测试,2023,42(4):809−822. DOI: 10.15898/j.ykcs.202208270160
LI Lijun,LIU Qiang. Distribution Characteristics and Source Analysis of “Three Nitrogen” in Shallow Groundwater in Hailun Area of Heilongjiang Province[J]. Rock and Mineral Analysis,2023,42(4):809−822. DOI: 10.15898/j.ykcs.202208270160
Citation: LI Lijun,LIU Qiang. Distribution Characteristics and Source Analysis of “Three Nitrogen” in Shallow Groundwater in Hailun Area of Heilongjiang Province[J]. Rock and Mineral Analysis,2023,42(4):809−822. DOI: 10.15898/j.ykcs.202208270160

黑龙江省海伦地区浅层地下水中“三氮”分布特征及来源解析

基金项目: 中国地质调查局地质调查项目“松嫩平原水文地质调查”(DD20190340)
详细信息
    作者简介:

    李丽君,硕士,正高级工程师,从事岩矿测试及地质矿产方法研究。E-mail:475876904@qq.com

    通讯作者:

    刘强,硕士,正高级工程师,从事水文地质及水资源调查评价。E-mail:94778933@qq.com

  • 中图分类号: X523;X131.2

Distribution Characteristics and Source Analysis of “Three Nitrogen” in Shallow Groundwater in Hailun Area of Heilongjiang Province

  • 摘要:

    近年来随着人类活动增加、工业废水的大量排放以及农业氮肥过量施用,使得地下水中“三氮”(即硝酸盐氮、氨氮、亚硝酸盐氮)污染问题愈加严重,对人体带来潜在健康风险。通过地下水“三氮”污染分布及来源作出解析,对于开展污染源头防控具有重要的现实意义。本文以黑龙江省海伦地区浅层地下水作为研究对象,采用气相分子吸收光谱法(GMA)及电感耦合等离子体质谱法(ICP-MS)测定了地下水中“三氮”及其他金属元素的检出情况,应用内梅罗综合污染指数法对地下水中“三氮”划分水质污染等级,综合运用Pearson相关性分析、正定矩阵因子分析法(PMF)等方法,识别和定量解析污染源及贡献。结果表明:①研究区地下水中硝酸盐氮含量范围在0.021~123.05mg/L之间,平均浓度为15.27mg/L;氨氮含量范围在 ND~3.91mg/L之间,平均浓度为0.33mg/L;亚硝酸盐含量范围在ND~0.65mg/L之间。与《地下水质量标准》(GB/T 14848—2017)Ⅲ类水指标对比,硝酸盐氮超标率为20.0%,氨氮超标率为12.5%。②内梅罗综合污染指数评价结果表明,研究区地下水水质污染等级一级至三级中度污染地下水占比为92.5%,整体上水质“三氮”污染较轻。海伦地区“三氮”空间分布整体上呈现出氨氮、硝酸盐氮流域中心区近端含量高、远端含量低的趋势。硝酸盐氮及氨氮超标点主要分布在研究区中部的人类活动密集区域。亚硝酸盐氮在空间分布上沿海伦河流向呈现出北高南低的趋势。③正定矩阵因子分析模型(PMF)源解析结果表明,硝酸盐氮主要来源于生活与工业复合源;亚硝酸盐氮主要来源于自然源;氨氮主要来源于生活与农业复合源。与中南部长三角武进地区太湖平原、西南部成都平原及东南部广花盆地地下水相比,海伦地区氨氮含量偏低,硝酸盐氮均值则均高于中南部地区。“三氮”的源解析结果呼应了东三省尤其是黑龙江部分地区“三氮”含量较高的分布特征。海伦地区地下水“三氮”污染程度整体上相对较轻,人类活动对地下水中“三氮”分布的影响较大。

  • 铀是中国短缺的战略性矿产资源,核电所需铀资源对外依存度已达90%以上,中国铀矿资源禀赋不佳,虽然近年发现了一批大型铀矿床,但其中开发成本较低(40~80美元/kg)的储量仅占全球的7.8%。受开发技术条件等影响,短期内产量难以实现快速增长。砂岩型铀矿是全球重要的铀矿床类型之一,约占全球铀矿资源总储量的50%,是铀矿勘查和开发首选目标。松辽盆地是中国东部地区寻找砂岩型铀矿的主要盆地之一,不同于中亚地区楚萨雷苏和锡尔达林近1000km的大型层间氧化带海相砂岩含铀盆地,其为断凹转换盆地1-4,盆地面积与深度比值小,铀大量富集除了受表生流体成矿作用外,还受到深部油气还原、辉绿岩侵入的中低温热液叠加成矿等多因素影响5-10,故松辽盆地铀矿为复成因砂岩型铀矿,铀矿的赋存状态复杂,以盆地南部的钱家店铀矿尤为典型,是研究铀矿赋存状态和铀矿物特征的典型代表。研究铀含量配分比例的半定量特征,对矿床成因进一步研究及地浸开发奠定重要理论基础,有利于促进提高矿床地浸回收率,增强中国对铀矿资源的开发利用程度。

    前人采用岩矿鉴定、电子探针、逐级化学提取、扫描电镜等方法11-17研究了钱家店铀矿床铀矿特征,取得了较好进展,认为铀矿物的赋存状态以独立铀矿物为主,独立矿物主要是沥青铀矿,铀石次之,铀矿物具有与黄铁矿、碳酸盐等共生的特点18-19。也有人认为钱家店铀矿以吸附态铀矿为主20,占总铀含量的73.5%,独立铀矿物含量较少,而独立铀矿物以沥青铀矿为主,含少量钛铀矿和含钛铀矿物。也有学者对钱家店铀矿床周边相同成矿条件的白兴吐矿床研究认为独立铀矿物以铀石为主21-28。目前对钱家店铀矿床铀赋存状态尚存在争议,矿石不同矿物中铀含量尚不明确,主要是由于对各种测定方法的结果尚缺乏综合考虑,再加上没有直接对碎屑矿物进行微区原位铀含量测定,致使铀在不同矿物中的配分认识不清,只是一种定性的认识。

    本文采用薄片鉴定、逐级化学提取、电子探针等综合方法判定钱家店铀矿物特征与赋存状态,配合激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)微区原位方法测定矿石中各类矿物中的铀含量,最终对不同方法的结果进行综合处理,得出矿石不同矿物中铀含量配分比例的半定量特征认识,拟为矿床成因及地浸开发提供依据。

    钱家店铀矿床位于松辽盆地南部开鲁坳陷东北部(图1),是松辽盆地超大型砂岩型铀矿床,铀矿平均品位0.024%,平均铀量为2.59kg/m2[29。铀主要赋存于上白垩统姚家组下段,岩性主要为细砂岩、中砂岩、粉砂岩及泥岩,含矿砂岩以浅灰色为主,铀矿化受控于油气还原的白色砂岩,矿体整体形态在平面上多呈块状、板状或不规则状分布。矿区发育有近EW、NW和NNE向三组断裂构造,中北部发育三个剥蚀天窗,形成小型层间氧化带,构造控矿作用也较明显。晚白垩世以来辉绿岩沿断裂带侵入,侵位于姚家组和嫩江组,平面上受断裂控制整体呈北东向带状展布并基本与铀矿化区域重合。故钱家店铀矿床铀成矿受基性岩热液、油气还原流体和层间氧化大气降水等流体影响,有丰富的铀矿化蚀变,包括较强的还原褪色、赤铁矿化、黄铁矿化和碳酸盐化等蚀变特征30-32,还有高岭石化、蒙脱石化、伊利石化以及绿泥石化等黏土矿物蚀变等现象,致使铀赋存状态复杂,铀矿物多样,在不同矿物中的配分也异于传统层间氧化带成矿模式。

    图  1  松辽盆地西南部钱家店铀矿床位置
    Figure  1.  Geographical location of Qianjiadian uranium deposit in the Southwest Songliao Basin

    采用岩矿鉴定方法鉴定砂岩型铀矿石中不同矿物含量,利用逐级化学提取实验测定吸附态和结合态铀含量,利用电子探针手段区分独立铀矿物种类,尝试以LA-ICP-MS微区原位分析不同矿物中铀的含量。综合以上测试方法明确铀矿赋存状态与配分,具体方法如下。

    本次在钱家店铀矿岩心库系统编录了钱家店铀矿床钱Ⅱ、钱Ⅲ、钱Ⅳ和QC四个区块代表性井位的岩心,采集了姚家组下段不同颜色、粒度和蚀变特征等具有代表性铀矿石样品(表1),通过伽马分析仪现场初步测定样品中铀的含量,样品编号采取Q(钱家店简称)+取样时间+样品采样时排序号方式命名,如Q2019-26样品编号为2019年采集的钱家店第26块样品。测试过程中为保障实验测试分析数据准确性,采用核工业203研究所实验室铀标准溶液(CAS号:7440-61-1)、西安地质调查中心实验室提供的晶质铀矿和西北大学大陆动力学国家重点实验购置的美国NIST系列(NIST SRM610 和NIST SRM612)和USGS参考玻璃(BCR-2G)作为本次研究的标准物质。

    表  1  钱家店铀矿床采集样品信息
    Table  1.  Information of samples collected from Qianjiadian uranium deposit
    序号样品编号岩性采样井号铀含量
    (µg/g)
    采样深度
    (m)
    1Q2019-26灰白色中砂岩Q4-04-07240402.0
    2Q2019-28灰色炭质条带中砂岩Q4-04-0770433.0
    3Q2019-37红色泥质砂岩,致密Q4-45-01160316.8
    4Q2019-48杂色泥质砂岩,致密Q2-WT-4140361.2
    5Q2019-49含炭屑,杂色砾岩Q2-WT-4120361.9
    6Q2019-50灰白色疏松砂岩Q2-WT-490362.1
    7Q2019-51灰色泥岩Q3-27-04145387.0
    8Q2019-52灰色中砂岩Q3-27-04110387.2
    9Q2021-115白色细砂岩,疏松Q3-39-08200339.8
    10Q2021-143杂色细砂岩,含碳屑QC105225231.8
    11Q2021-151浅红灰色中砂岩QC43100527.9
    12Q2021-167灰绿色细砂岩,含泥砾QC100150344.3
    13Q2021-170灰绿色泥质粉砂岩QC10090347.5
    下载: 导出CSV 
    | 显示表格

    逐级化学提取(SCEE)实验主要被应用于铀矿和煤领域,是利用定量的方法来研究目标元素在不同赋存状态下的含量比例。本次研究是利用铀元素在不同赋存状态下的溶解度不同,选择相应的化学溶剂由弱到强依次将样品中不同赋存状态下的铀元素萃取出来,测定溶解液中UO2的丰度代表对应赋存状态下的含量,以此确定铀元素在样品中的赋存状态,实现铀赋存状态的定量化研究。实验在核工业203研究所完成,所用仪器为核工业北京地质研究院制造的MUA型激光荧光仪,铀检测方法是依据《土壤、岩石等样品中铀的测定 激光荧光法》(EJ/T 550—2000),《铀矿石中铀的测定 三氧化钛还原/钒酸铵氧化滴定法》(EJ/T 267.3—1984),分析流程参照Tessier等33和《岩石矿物分析》(第四版)34实验方法,并将试剂进一步完善(表2),称取1g(精确至0.0001g)试样至50mL离心管中,分步定量提取样品中吸附态铀和结合态铀含量,其中铀吸附态包括水溶态、碳酸盐吸附态、铁锰氧化物吸附态三种,铀结合态分为硫化物及有机质结合态和残渣态两种。逐级化学提取实验中虽然可测出铀矿石中不同赋存状态的铀总含量,但所测结果是不同铀矿物相同状态的混合数据,此方法不能区分出铀矿物类型,需要采用电子探针进一步识别独立铀矿物。

    表  2  砂岩型铀矿逐级化学提取实验步骤
    Table  2.  Experimental steps for stepwise chemical extraction of sandstone-type uranium deposit
    提取步骤 铀赋存状态 样品处理试剂 萃取条件
    振荡时间(h) 温度(℃)
    1 水溶态 20mL去离子水 24 20
    2 碳酸盐吸附态 1mol/L乙酸钠+1mol/L乙酸(pH=4.75) 24 20
    3 铁锰氧化物吸附态 0.04mol/L盐酸氢胺+25%乙酸(pH=2) 3 90
    4 硫化物及有机质结合态 30%双氧水+0.2mol/L硝酸(pH=2) 3 90
    30%双氧水+3.2mol/L乙酸铵(pH=2) 3 90
    5 残渣态 残渣600℃灰化后双氧水溶解
    下载: 导出CSV 
    | 显示表格

    电子探针是识别矿物的重要测试手段,可明确钱家店铀矿石中独立铀矿物的成分并计算铀矿物类型,本次研究为保证可以识别出较大颗粒铀矿物,挑选了铀矿石中铀品位较高的样品,磨制了厚度为150~200μm的加厚电子探针片,在中国地质调查局西安地质调查中心电子探针实验室完成测试,仪器型号为EMX-SM7SM7,实验电压控制在20kV,实验电流控制在1×10−8A,束斑大小在1~5μm范围内,检出角大小为40°,常温(25℃),电子探针虽然在区分铀矿物特征具有明显优势,但只能以分析矿物表面成分,其内部物质或晶格中吸附的铀元素无法准确分析,需要采用LA-ICP-MS进一步分析不同矿物中的铀含量。

    应用LA-ICP-MS原位微区手段测试矿石中不同矿物中吸附的UO2含量,本次选用西北大学大陆动力学国家重点实验室飞秒激光剥蚀四极杆电感耦合等离子体质谱仪(LA-ICP-MS)完成,激光剥蚀系统是193nm准分子激光剥蚀系统(RESOlution M-50,ASI),包含一台193nm ArF准分子激光器、一个双室样品室和电脑控制的高精度X-Y样品台移动、定位系统。双室样品池能有效地避免样品间交叉污染,减少样品吹扫时间。激光能量密度为6J/cm2,频率为5Hz。每个样品数据包括大约20~30s空白信号、50s样品信号以及60s吹扫时间。对矿石中岩屑、石英、黏土、方解石等碳酸盐、磁铁矿、沥青铀矿等不同矿物中的铀含量进行测定。

    逐级化学提取(SCEE)实验在质量监控方面,采取加标回收方法,在被测溶液中加入铀标准溶液(CAS号:7440-61-1),加标回收率控制在90%~110%范围内视为样品测试合格。在电子探针实验中选择标准:GB/T 15245—2002,以晶质铀矿作为本次实验标准样品监控样,保障实验测试分析数据准确性,实验室定量分析总量允许偏差小于±3%,实验室实际测试误差小于±1%35。在LA-ICP-MS原位微区手段定量测试实验中以NIST系列(NIST SRM610 和NIST SRM612)和USGS参考玻璃(BCR-2G)为校正标准,采用多外标、单内标法对元素含量进行定量计算,对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量计算)采用软件ICP MS DataCal完成。

    具有代表性的6件铀矿石样品逐级化学提取分析结果显示,不同样品因其矿物组成不同,样品间的铀赋存状态测试数据有一定差异,其中Q2019-37和Q2019-48两个泥质砂岩样品较为特殊,水溶态含量较低,这与泥岩中的铀难地浸性质一致,但两个样品中碳酸岩呈细脉状,故碳酸岩吸附含量较高。6个样品平均测试结果显示,钱家店铀矿石中以吸附态铀(包括水溶态、碳酸盐吸附态、铁锰氧化物吸附态)为主,占总铀含量的80.09%(表3),其中黏土矿物吸附和常规硅酸盐矿物内部缺陷吸附的水溶态铀占比19.43%,方解石等碳酸盐吸附的铀占比47.86%,铁锰氧化物吸附态铀占比12.80%。矿石中以铀独立矿物形式或类质同象形式存在的结合态铀(硫化物及有机质结合态、残渣态)占比19.91%,其中硫化物及有机质结合态铀占比为5.66%,独立铀矿物或在矿物晶格中的铀(残渣态)占比为14.25%。故钱家店铀矿以吸附态铀矿为主,吸附态与独立铀矿物的比例约为4∶1。

    表  3  钱家店铀矿石逐级化学提取占比
    Table  3.  Gradual chemical extraction fraction ratio of Qianjiadian uranium ores
    样品编号 矿石岩性 水溶态占比
    (%)
    碳酸盐吸附态占比
    (%)
    铁锰氧化物吸附态占比
    (%)
    硫化物及有机质结合态占比
    (%)
    残渣态占比
    (%)
    Q2019-26 灰白色中砂岩 12.10 56.95 1.58 4.97 24.39
    Q2019-37 红色泥质砂岩 2.81 54.77 3.35 12.80 26.28
    Q2019-48 杂色泥质砂岩 3.60 75.49 0.95 8.24 11.72
    Q2019-49 含炭屑杂色砾岩 39.66 40.48 2.28 3.38 14.20
    Q2021-115 含炭屑杂色砂岩 33.46 35.51 28.13 0.76 2.14
    Q2021-151 浅红灰色中砂岩 24.92 23.96 40.49 3.84 6.79
    平均占比 19.43 47.86 12.80 5.66 14.25
    下载: 导出CSV 
    | 显示表格

    对钱家店铀矿石电子探针片观察发现独立铀矿物颗粒较小,约为10~150μm,主要分布在石英、长石、黄铁矿等矿物颗粒缝隙中。独立铀矿物整体较少,所占矿物比例并不与铀矿石品位相符,也说明铀矿物是以吸附态铀矿物为主。优选颗粒较大的独立铀矿物并测定了16个点,数据显示独立铀矿物主要有沥青铀矿、含钛铀矿物和铀石三种(表4)。由于沥青铀矿主要形成于中性-弱酸性、弱氧化-弱还原性,故SiO2含量较低,钱家店铀矿SiO2含量变化较大,在0.67%~12.34%之间,平均为6.46%;沥青铀矿中UO2含量在40%~65%之间。沥青铀矿主要呈雪花状、星点状、草莓状、不规则状等多种形态组成细小胶粒或胶粒结合体,均呈它形结构,与黄铁矿共生关系密切(图2),或围绕黄铁矿边缘生长,或充填黄铁矿的裂隙,或与黄铁矿交叉共生产出。沥青铀矿在电子探针片中出现的频率大于其他独立铀矿物。

    表  4  钱家店铀矿物电子探针成分分析结果
    Table  4.  Composition of uranium minerals measured by electron probe microanalyzer in Qianjiadian
    样品编号 Na2O
    (%)
    SiO2
    (%)
    Al2O3
    (%)
    TiO2
    (%)
    FeO
    (%)
    CaO
    (%)
    K2O
    (%)
    UO2
    (%)
    PbO
    (%)
    P2O5
    (%)
    总量
    (%)
    矿物类型
    Q2019-26 0.420 1.141 0.044 2.911 0.062 2.612 0 64.555 0.000 2.225 74.410 沥青铀矿
    1.318 1.154 0.245 43.995 0.893 1.704 0.347 32.412 0.052 1.773 84.443 含钛铀矿
    Q2019-28 0.178 1.185 0.163 31.252 0.960 1.228 0.000 53.206 0.000 1.645 89.996 含钛铀矿
    3.068 3.544 0.714 9.108 2.736 1.382 0.963 54.024 0.006 1.729 77.724 含钛铀矿
    0.118 4.991 0.164 0.000 0.200 2.993 0.000 43.305 0.000 2.506 54.782 沥青铀矿
    Q2019-51 0.050 3.897 2.142 6.926 1.187 4.051 0.000 55.205 0.000 4.781 78.303 含钛铀矿
    0.068 10.685 0.453 0.182 1.993 2.502 0.000 63.436 0.000 3.689 83.032 沥青铀矿
    0.338 8.368 1.022 0.249 2.845 4.154 0.000 64.080 0.068 5.543 87.025 沥青铀矿
    0.249 12.345 1.569 0.017 1.805 4.307 0.000 63.169 0.069 5.096 89.133 沥青铀矿
    0.079 15.705 6.26 0.051 2.889 3.32 0.382 48.621 0.007 4.204 83.311 铀石
    Q2021-167 0.79 0.682 0.009 0.3 1.51 4.035 0 78.578 0.021 1.394 88.883 沥青铀矿
    Q2021-143 0.252 0.674 0.068 0 1.148 4.412 0 68.405 0 2.084 78.333 沥青铀矿
    0.7 1.137 0.138 0 0.847 5.186 0 70.828 0.031 2.762 83.298 沥青铀矿
    Q2021-170 0.133 9.615 0.171 0.15 7.379 2.315 0 39.428 0.042 5.759 74.047 沥青铀矿
    0.528 9.696 0.243 0 5.628 2.347 0 39.506 0.06 6.544 76.032 沥青铀矿
    0.525 16.209 2.902 0 9.301 2.599 0 37.89 0.119 6.373 87.170 铀石
    下载: 导出CSV 
    | 显示表格
    图  2  沥青铀矿与黄铁矿密切共生
    Figure  2.  Close symbiosis between pitchblende and pyrite

    探针片中发现有含钛铀矿物,其TiO2含量在10%~44%之间变化,UO2含量差异较大,在30%~64%之间波动,因铀与钛铁矿交代作用不彻底,继承了钛铁矿的网络状析离体而形成丝网状结构,在电子探针图像上部分含钛铀矿具有网格状特点(图3),故含钛铀矿物中Ti及U含量分布不均匀,且Ti与U含量呈反比,反映钱家店铀矿成矿过程中有中低温热液参与。矿石中还有少量的铀石矿物,据《铀矿物学》铀石中SiO2含量约18.2%16,而钱家店铀矿物中,铀石中SiO2含量平均为16%,主要分布在矿物碎屑边缘,呈块状分布。

    图  3  含钛铀矿物电子探针背散射图像
    Figure  3.  Electron probe backscatter images of titanium-containing uranium minerals

    对铀矿石中不同矿物颗粒进行LA-ICP-MS测试分析发现,在水溶态吸附铀的矿物中,疏松多孔结构的黏土矿物可充分接触含铀流体并提供容矿空间,平均铀含量为17.94%(表5),是水溶态主要吸附铀的矿物。碳酸盐吸附态的矿物中,方解石等碳酸盐在所有吸附态铀中占比最高,平均占总铀含量47.86%,这也是铀矿物常与碳酸盐矿物共生关系的体现2

    表  5  钱家店铀矿石中各矿物UO2配分统计
    Table  5.  UO2 distribution statistics of various minerals in Qianjiadian uranium ores
    赋存状态分类 矿物种类 逐级化学提取铀
    (%)
    矿物含量
    (%)
    铀含量
    (%)
    测试方法 铀的配分
    (%)
    水溶态 岩屑 19.43 6.5 0.012 电子探针 0.07
    石英 21.6 0.04 0.79
    黑云母 0.96 0.043 LA-ICP-MS 0.04
    黏土 14.28 1.37 17.94
    钾长石 14.67 0.044 0.59
    碳酸盐吸附态 方解石等
    碳酸盐
    47.86 10.3 1.43 电子探针 47.86
    铁锰氧化物吸附态 磁铁矿 12.80 0.85 0.036 LA-ICP-MS 0.36
    闪锌矿 0.91 0.022 0.23
    其他铁锰氧化物 2.49 0.42 逐级化学提取测算 12.21
    有机质黄铁矿结合态 黄铁矿 5.66 11.6 0.048 LA-ICP-MS 0.43
    有机质 5.64 1.20 逐级化学提取测算 5.23
    残渣态 含钛铀矿 14.25 1.83 26.88 电子探针 2.78
    沥青铀矿 2.7 59.35 9.07
    铀石 0.94 43.25 2.30
    独居石 1.42 0.77 扫描电镜 0.06
    块磷铝石 0.8 0.13 0.01
    磷灰石 0.97 0.18 0.01
    锆石 1.54 0.19 LA-ICP-MS 0.02
    下载: 导出CSV 
    | 显示表格

    铁锰氧化物吸附态的矿物中,本实验仅发现了磁铁矿和闪锌矿等矿物,从测试结果看,这两种矿物中铀吸附含量远小于逐级化学提取中的比例,主要是因为本实验样品中尚有未发现的其他铁锰氧化物,通过逐级化学提取数据测算其铀含量占比12.21%,还需要进一步开展大量的实验数据统计。硫化物及有机质结合态的矿物中,因技术方法限制,电子探针和LA-ICP-MS无法直接测定有机质中UO2含量,目前只能通过逐级化学提取数据测算其铀含量占比5.23%,而黄铁矿表面吸附铀矿相对含量较低,占比仅0.43%。以残渣态的矿物中,独立铀矿物中UO2含量最高,沥青铀矿、含钛铀矿和铀石三种矿物中铀含量共占14.15%,以类质同象方式赋存在锆石、独居石、磷灰石、块磷铝石等矿物中的UO2含量仅共占0.10%,这些类质同象的铀尚无法进行开采。

    通过对岩矿鉴定矿物含量比例、逐级化学提取中铀各组分的比例,以及电子探针测定含量结果综合分析、半定量计算各矿物吸附或赋存UO2的份额(表5),认为钱家店铀矿石吸附态铀主要赋存在方解石等碳酸盐、铁黏土和锰氧化物中,独立铀矿物以沥青铀矿为主,主要赋存在有机质、黄铁矿周边。

    采用薄片鉴定、化学逐级提取、电子探针等方法判定铀矿物特征与赋存状态,LA-ICP-MS微区原位方法测定各矿物铀含量,认为钱家店铀矿床铀矿物以吸附态为主,约占铀总量80%,其中分布在方解石等碳酸盐矿物吸附铀约占47.86%,黏土矿物吸附铀约占17.94%,铁锰氧化物矿物吸附铀约占12.21%。结合态铀矿物约占20%,有机质(煤屑)约占5.23%,沥青铀矿约占9.07%,含钛铀矿和铀石约占5.08%。

    通过对本次测试结果进行综合处理,形成了钱家店铀矿床中铀含量配分比例的半定量特征认识,可对矿床成因研究及地浸开发奠定基础。但本次研究尚存有局限性,不能对有机质中铀含量直接进行LA-ICP-MS微区原位测定,部分矿物在本次实验测试的样品中未发现,不同矿物实验测试的选择有待完善,后期将加大实验数据量来增强统计规律。

  • 图  1   研究区地下水采样点及“三氮”含量空间分布示意图

    Figure  1.   Schematic diagrams of groundwater sampling points and “three nitrogen” content in the study area. a—ammonia nitrogen; b—nitrate nitrogen; c—nitrite nitrogen.

    图  2   基于PMF的各因子对地下水中“三氮”及重金属等含量分布的贡献率

    因子1—生活-工业复合源;因子2—自然源;因子3—农业源;因子4—生活源。

    Figure  2.   Contribution rate of each factor based on PMF to the distribution of three nitrogen and heavy metals in the groundwater. Factor 1—Living-industrial compound source; Factor 2—Natural source; Factor 3—Agricultural source; Factor 4—Domestic source.

    表  1   样品测试质量控制结果统计

    Table  1   Statistics of recovery rate and relative deviation.

    分析项目加标回收率
    (80%~120%)
    实验室重复样相对偏差
    (≤15%)
    Mn90.9%~110.6%3.40
    Cd89.6%~113.6%2.40
    Pb85.0%~105.0%5.10
    Zn85.6%~90.2%12.6
    Cu83.0%~95.0%11.4
    Co84.0%~94.0%11.2
    Ni82.0%~89.0%11.8
    As97.0%~107.0%4.10
    Hg85.0%~98.3%14.5
    NO3 -N82.1%~96.0%11.0
    NH4 +-N83.0%~89.0%11.9
    NO2 -N82.2%~92.0%13.4
    F82.3%~91.1%13.2
    Cl85.0%~92.5%12.4
    SO4 2−83.0%~90.0%13.0
    下载: 导出CSV

    表  2   内梅罗综合污染指数分级标准16

    Table  2   Nemerow comprehensive pollution index classification standard16.

    内梅罗综合
    污染指数 F
    污染等级污染程度 内梅罗综合
    污染指数 F
    污染等级污染程度
    F≤0.8未污染 4.25<F≤7.2较重污染
    0.80<F≤2.5轻度污染F≥7.2严重污染
    2.5<F≤4.25中度污染
    下载: 导出CSV

    表  3   研究区地下水中“三氮”含量统计

    Table  3   Statistics of ammonia nitrogen, nitrate nitrogen, and nitrite nitrogen contents in groundwater.

    统计项目硝酸盐氮
    含量
    氨氮
    含量
    亚硝酸盐氮含量
    最大值(mg/L)123.053.910.65
    最小值(mg/L)0.021ND(未检出)ND(未检出)
    平均值(mg/L)15.270.330.12
    标准偏差28.560.790.26
    变异系数(100%)1.872.422.27
    《地下水质量标准》(GB/T 14848—2017)Ⅲ类水(mg/L)200.51.0
    偏度2.523.662.43
    峰度6.4713.665.94
    检出率(%)10077.590.0
    超标率(%)2012.50
    下载: 导出CSV

    表  4   研究区地下水内梅罗综合污染指数(F)评价结果

    Table  4   Evaluation results of Nemerow comprehensive pollution index in groundwater in the study area.

    内梅罗综合污染
    指数(F)范围
    污染等级污染程度样品数量
    (件)
    占比
    (%)
    F≤0.8未污染2665
    0.80<F≤2.5轻度污染1025
    2.5<F≤4.25中度污染12.5
    4.25<F≤7.2较重污染37.5
    F≥7.2严重污染00
    下载: 导出CSV

    表  5   地下水中“三氮”与重金属及阴离子的Pearson相关性系数

    Table  5   Pearson correlation coefficient of heavy metals and negative ions in the groundwater.

    组分MnCdPbZnCuCoNiAsHgNO3 −NNH4 +−NNO2 −NFClSO4 2−
    Mn 1
    Cd −0.166 1
    Pb 0.151 0.220 1
    Zn 0.086 0.191 0.172 1
    Cu 0.085 −0.037 0.469** 0.196 1
    Co 0.380* 0.196 0.423** 0.137 0.112 1
    Ni −0.026 0.103 0.191 0.155 0.009 0.400* 1
    As 0.302 −0.160 0.396* −0.135 0.020 0.326* 0.031 1
    Hg −0.103 −0.047 −0.090 0.005 0.014 −0.016 0.385* −0.103 1
    NO3 −N −0.304 0.370* −0.038 −0.204 0.060 0.329* 0.319* −0.146 −0.117 1
    NH4 +−N 0.059 −0.107 −0.055 0.040 −0.067 −0.138 −0.157 0.106 −0.075 −0.132 1
    NO2 −N 0.181 −0.146 −0.101 −0.212 −0.028 0.327* −0.095 0.167 0.003 −0.169 −0.033 1
    F 0.082 0.195 0.189 0.509** 0.080 −0.029 −0.195 0.312* −0.116 −0.287 0.193 −0.009 1
    Cl −0.051 −0.049 0.169 −0.212 0.106 0.440** 0.485** 0.087 0.198 0.605** −0.122 −0.098 −0.098 1
    SO4 2− −0.157 0.244 0.044 −0.236 0.104 0.376* 0.288 −0.041 −0.024 0.897** −0.153 −0.182 −0.157 0.796** 1
    注: “**”表示在 0.01水平(双侧)上显著相关,“*”表示在 0.05水平(双侧)上显著相关。
    下载: 导出CSV

    表  6   地下水中“三氮”及重金属含量实测值与模拟预测值的拟合结果

    Table  6   Fitting results of measured value and simulated predicted value of three nitrogen and heavy metal contents in the groundwater.

    分析项目R2截距斜率P/O
    Mn 0.672 10.139 0.369 0.894
    Cd 0.901 10.667 0.548 0.779
    Pb 0.605 5.161 0.237 0.802
    Co 0.870 −10.208 0.856 0.804
    Ni 0.557 75.286 0.786 0.781
    As 0.733 45.310 0.812 0.870
    NO3 −N 0.749 −1.193 0.752 0.775
    NH4 +−N 0.797 0.186 0.756 0.896
    NO2 −N 0.750 0.114 0.756 0.887
    Cl 0.773 −10.369 0.835 0.791
    SO4 2− 0.531 −9.631 0.921 0.809
    下载: 导出CSV
  • [1] 杜新强,方敏,冶雪艳. 地下水“三氮”污染来源及其识别方法研究进展[J]. 环境科学, 2018, 39(11): 5266−5275.

    Du X Q,Fang M,Ye X Y. Research progress on the sources of inorganic nitrogen pollution in groundwater and identification methods[J]. Environmental Science, 2018, 39(11): 5266−5275.

    [2] 张涵,李奇翎,郭珊珊,等. 成都平原典型区地下水污染时空异质性及污染源分析[J]. 环境科学学报, 2019, 39(10): 3516−3527.

    Zhang H,Li Q L,Guo S S,et al. Spatial temporal heterogeneity and pollution sources of groundwater pollution in typical area of Chengdu Plain[J]. Acta Scientiae Circumstantiae, 2019, 39(10): 3516−3527.

    [3] 李谨丞,曹文庚,潘登,等. 黄河冲积扇平原浅层地下水中氮循环对砷迁移富集的影响[J]. 岩矿测试, 2022, 41(1): 120−132.

    Li J C,Cao W G,Pan D,et al. Influences of nitrogen cycle on arsenic enrichment in shallow groundwater from the Yellow River Alluvial Fan Plain[J]. Rock and Mineral Analysis, 2022, 41(1): 120−132.

    [4] 付坤. 超深层地下水中“三氮”的迁移转化规律研究[D]. 焦作: 河南理工大学, 2018: 49−50.

    Fu K. Study on the migration and trans formation of NH4 +, NO2 , and NO3 in super deep groundwater[D]. Jiaozuo: Henan Polytechnic University, 2018: 49−50.

    [5] 张晓沛. 再生水回灌区地下水水化学特征及三氮迁移模拟[D]. 北京: 中国地质大学(北京), 2017: 58−59.

    Zhang X P. The water chemical characteristics of groundwater and the simulation of nitrogen migration in the irrigation area of reclaimed water[D]. Beijing: China University of Geosciences (Beijing), 2017: 58−59.

    [6] 傅雪梅. 基于水化学和同位素的地下水硝酸盐源解析研究[D]. 上海: 上海大学, 2019.

    Fu X M. Groundwater nitrate source identification based on hydrochemical and isotopes[D]. Shanghai: Shanghai University, 2019.

    [7] 常文博,李凤,张媛媛,等. 元素分析-同位素比值质谱法测量海洋沉积物中有机碳和氮稳定同位素组成的实验室间比对研究[J]. 岩矿测试, 2020, 39(4): 535−545. doi: 10.15898/j.cnki.11-2131/td.202003090027

    Chang W B,Li F,Zhang Y Y,et al. Inter-laboratory comparison of measuring organic carbon and stable nitrogen isotopes in marine sediments by elemental analysis-isotope ratio mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(4): 535−545. doi: 10.15898/j.cnki.11-2131/td.202003090027

    [8] 张涵,杜昕宇,高菲,等. 联合PMF模型与稳定同位素的地下水污染溯源[J]. 环境科学, 2022, 43(8): 4054−4063.

    Zhang H,Du X Y,Gao F,et al. Groundwater pollution source identification by combination of PMF model and stable isotope technology[J]. Environmental Science, 2022, 43(8): 4054−4063.

    [9] 刘楠涛,吴飞,袁巍,等. 长江与黄河源丰水期地表水中汞的分布特征、赋存形态及来源解析[J]. 环境科学, 2022, 43(11): 5064−5072. doi: 10.13227/j.hjkx.202201143

    Liu N T,Wu F,Yuan W,et al. Mercury speciation,distribution,and potential sources in surface waters of the Yangtze and Yellow River source basins of Tibetan Plateau during wet season[J]. Environmental Science, 2022, 43(11): 5064−5072. doi: 10.13227/j.hjkx.202201143

    [10] 陈盟,潘泳兴,黄奕翔,等. 阳朔典型铅锌矿区流域土壤重金属空间分布特征及来源解析[J]. 环境科学, 2022, 43(10): 4545−4555. doi: 10.13227/j.hjkx.202201127

    Chen M,Pan Y X,Huang Y X,et al. Spatial distribution and sources of heavy metals in soil of a typical lead-zinc mining area,Yangshuo[J]. Environmental Science, 2022, 43(10): 4545−4555. doi: 10.13227/j.hjkx.202201127

    [11] 许燕颖,刘友存,张军,等. 赣江上游典型流域水体三氮及重金属空间分布特征与风险评价[J]. 地球与环境, 2020, 48(5): 574−583. doi: 10.14050/j.cnki.1672-9250.2020.48.070

    Xu Y Y,Liu Y C,Zhang J,et al. Spatial distribution and risk assessment of nitrogen and heavy metals in typical watershed of the upper reaches of Ganjiang River[J]. Earth and Environment, 2020, 48(5): 574−583. doi: 10.14050/j.cnki.1672-9250.2020.48.070

    [12] 吴昊,朱红霞,袁懋,等. 气相分子吸收光谱法测定土壤中铵态氮和硝态氮的含量[J]. 岩矿测试, 2021, 40(1): 165−171.

    Wu H,Zhu H X,Yuan M,et al. Determination of ammonium nitrogen and nitrate nitrogen in soil by gas phase molecular absorption spectrometry[J]. Rock and Mineral Analysis, 2021, 40(1): 165−171.

    [13] 蓝天杉. 北京通州区浅层地下水中“三氮”迁移转化与弱透水层阻滞作用研究[D]. 长春: 吉林大学, 2019.

    Lan T S. The transportation and transformation of “Three Nitrogen” in shallow groundwater and the retarding effect of aquitard in Tongzhou, Beijing[D]. Changchun: Jilin University, 2019.

    [14] 田辉. 基于SWAT与Visual Modflow的海伦市水资源模拟与合理配置研究[D]. 长春: 吉林大学, 2020.

    Tian H. Research on water resources simulation and reasonable allocation of Hailun City based on SWAT and Visual Modflow[D]. Changchun: Jilin University, 2020.

    [15] 曹文庚,杨会峰,南天,等. 南水北调中线受水区保定平原地下水质量演变预测研究[J]. 水利学报, 2020, 51(8): 924−935.

    Cao W G,Yang H F,Nan T,et al. Prediction of groundwater quality evolution in the Baoding Plain of the SNWDP benefited regions[J]. Journal of Hydraulic of Engineering, 2020, 51(8): 924−935.

    [16] 雷正国,陶月赞. 地下水水源地水质评价方法探讨[J]. 节水灌溉, 2019(8): 80−83.

    Lei Z G,Tao Y Z. Discussion on water quality assessment method for groundwater source[J]. Water Saving Irrigation, 2019(8): 80−83.

    [17] 吴娟娟,卞建民,万罕立,等. 松嫩平原地下水氮污染健康风险评估[J]. 中国环境科学, 2019, 39(8): 3493−3500.

    Wu J J,Bian J M,Wan H L,et al. Health risk assessment of groundwater nitrogen pollution in Songlnen Plain[J]. China Environmental Science, 2019, 39(8): 3493−3500.

    [18] 李天宇,董宏志,孔庆轩,等. 松嫩平原哈尔滨地区地下水环境背景值分析[J]. 水文, 2016, 36(3): 24−28,74.

    Li T Y,Dong H Z,Kong Q X,et al. Background values of groundwater environment in Harbin area of Songnen Plain[J]. Journal of China Hydrology, 2016, 36(3): 24−28,74.

    [19] 李圣品,李文鹏,殷秀兰,等. 全国地下水质分布及变化特征[J]. 水文地质工程地质, 2019, 46(6): 1−8. doi: 10.16030/j.cnki.issn.1000-3665.2019.06.01

    Li S P,Li W P,Yin X L,et al. Distribution and evolution characteristics of national groundwater quality from 2013 to 2017[J]. Hydrogeology & Engineering Geology, 2019, 46(6): 1−8. doi: 10.16030/j.cnki.issn.1000-3665.2019.06.01

    [20] 孙小淇. 武进区地表水水质分布特征及其氮污染来源解析研究[D]. 上海: 华东理工大学, 2020: 19-24.

    Sun X Q. Investigations on distribution of water quality and sources tracing of nitrogen pollution in Wujin District surface water[D]. Shanghai: East China University of Science and Technology, 2020: 19-24.

    [21] 庞园,李志威,张明珠. 广花盆地地下水三氮时空分布特征及影响因素分析[J]. 生态环境学报, 2018, 27(5): 916−925. doi: 10.16258/j.cnki.1674-5906.2018.05.017

    Pang Y,Li Z W,Zhang M Z. Analysis of spatial-temporal distribution and influencing factors of three-nitrogen in groundwater of Guanghua Basin[J]. Ecology and Environmental Sciences, 2018, 27(5): 916−925. doi: 10.16258/j.cnki.1674-5906.2018.05.017

    [22] 左朝晖. 北京东北部平原区地下水氮素污染源解析及其贡献率研究[D]. 石家庄: 河北地质大学, 2020.

    Zuo Z H. Source analysis and contribution rate of groundwater nitrogen pollution in the plain area of Northeast Beijing[D]. Shijiazhuang: Hebei GEO University, 2020.

    [23] 张鑫. 地表水、地下水硝酸盐时空变化及其来源分析[D]. 西安: 西北大学, 2021.

    Zhang X. Spatiotemporal variation and source analysis of nitrate in surface water and groundwater: Guanzhong section of Wei River Basin[D]. Xi’an: Northwest University, 2021.

    [24] 吕晓立,刘景涛,朱亮,等. 兰州市地下水中“三氮”污染特征及成因[J]. 干旱区资源与环境, 2019, 33(1): 95−100. doi: 10.13448/j.cnki.jalre.2019.015

    Lyu X L,Liu J T,Zhu L,et al. Distribution and source of nitrogen pollution in groundwater of Lanzhou City[J]. Journal of Arid Land Resources and Environment, 2019, 33(1): 95−100. doi: 10.13448/j.cnki.jalre.2019.015

    [25] 李桂芳,杨恒,叶远行,等. 高原湖泊周边浅层地下水:氮素时空分布及驱动因素[J]. 环境科学, 2022, 43(6): 3027−3036. doi: 10.13227/j.hjkx.202109195

    Li G F,Yang H,Ye Y X,et al. Shallow groundwater around plateau lakes:Spatiotemporal distribution of nitrogen and its driving factors[J]. Environmental Science, 2022, 43(6): 3027−3036. doi: 10.13227/j.hjkx.202109195

    [26]

    Viktor Y, Еlena V, Valentin R. Influence of ammonium nitrogen on the treatment efficiency of underground water at iron removal stations[J]. Groundwater for Sustainable Development, 2023(22): 100943.

    [27]

    Ashu R, Kiran P, Ramet M, et al. Hydrochemical characteristics and potential health risks of nitrate, fluoride, and uranium in Kota district, Rajasthan, India[J]. Environmental Science and Pollution Research, 2023: 1−21.

    [28] 何宝南,何江涛,孙继朝,等. 区域地下水污染综合评价研究现状与建议[J]. 地学前缘, 2022, 29(3): 51−63. doi: 10.13745/j.esf.sf.2022.1.29

    He B N,He J T,Sun J Z,et al. Comprehensive evaluation of regional groundwater pollution:Research status and suggestions[J]. Earth Science Frontiers, 2022, 29(3): 51−63. doi: 10.13745/j.esf.sf.2022.1.29

    [29] 韩彬,林法祥,丁宇,等. 海州湾近岸海域水质状况调查与风险评价[J]. 岩矿测试, 2019, 38(4): 429−437. doi: 10.15898/j.cnki.11-2131/td.201806190073

    Han B,Lin F X,Ding Y,et al. Quality survey and risk assessment of the coastal waters of Haizhou Bay[J]. Rock and Mineral Analysis, 2019, 38(4): 429−437. doi: 10.15898/j.cnki.11-2131/td.201806190073

    [30] 罗飞,巴俊杰,苏春田,等. 武水河上游区域土壤重金属污染风险及来源分析[J]. 岩矿测试, 2019, 38(2): 195−203. doi: 10.15898/j.cnki.11-2131/td.201806040069

    Luo F,Ba J J,Su C T,at al. Contaminant assessment and sources analysis of heavy metals in soils from the upper reaches of the Wushui River[J]. Rock and Mineral Analysis, 2019, 38(2): 195−203. doi: 10.15898/j.cnki.11-2131/td.201806040069

    [31] 郭涛,陈海洋,滕彦国,等. 东北典型农产区流域地下水水质评价与污染源识别[J]. 北京师范大学学报(自然科学版), 2017, 53(3): 316−322.

    Guo T,Chen H Y,Teng Y G,et al. Pollution assessment and source identification of basin groundwater in typical agricultural areas in Northeast China[J]. Journal of Beijing Normal University (Natural Science), 2017, 53(3): 316−322.

    [32] 洪慧,李娟,汪洋,等. 基于统计学方法的地下水水质评价与成因分析——以齐齐哈尔市为例[J]. 环境工程技术学报, 2019, 9(4): 431−439. doi: 10.12153/j.issn.1674-991X.2019.04.160

    Hong H,Li J,Wang Y,et al. Groundwater quality evaluation and causes analysis based on statistical methods:Taking Qiqihar City as an example[J]. Journal of Environmental Engineering Technology, 2019, 9(4): 431−439. doi: 10.12153/j.issn.1674-991X.2019.04.160

    [33] 马小雪,龚畅,郭加汛,等. 长江下游快速城市化地区水污染特征及源解析:以秦淮河流域为例[J]. 环境科学, 2021, 42(7): 3291−3303. doi: 10.13227/j.hjkx.202011184

    Ma X X,Gong C,Guo J X,et al. Water pollution characteristics and source apportionment in rapid urbanization region of the lower Yangtze River:Considering the Qinghai River catchment[J]. Environmental Science, 2021, 42(7): 3291−3303. doi: 10.13227/j.hjkx.202011184

    [34]

    Guo W J, Zhang Z Y, Wang H, et al. Exposure characteristics of antimony and coexisting arsenic from multi-path exposure in typical antimony mine area[J]. Journal of Environmental Management, 2021: 112493.

    [35]

    Zhu Y, Yang J, Wang L, et al. Factors influencing the uptake and speciation transformation of antimony in the soil-plant system, and the redistribution and toxicity of antimony in plants[J]. Science of the Total Environment, 2020: 140232.

    [36]

    Wang Y Z, Duan X J, Wang L. Spatial distribution and source analysis of heavy metals in soils influenced by industrial enterprise distribution: Case study in Jiangsu Province[J]. Science of the Total Environment, 2020: 134953.

图(2)  /  表(6)
计量
  • 文章访问数:  187
  • HTML全文浏览量:  47
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-26
  • 修回日期:  2022-10-08
  • 录用日期:  2023-05-28
  • 网络出版日期:  2023-06-27
  • 刊出日期:  2023-08-30

目录

/

返回文章
返回