Effect of Adsorption of Metal Elements Ni and V on the Structure of Humin
-
摘要:
贵州下寒武统牛蹄塘组黑色页岩富集了以Ni、V为主的伴生元素,并且富有机质,目前金属元素Ni、V与有机质的共富集机制尚不清楚,但有机质在金属离子的富集、迁移和转化的过程中具有重要作用。探究金属元素作用对有机质结构的影响有助于准确地认识有机质和金属元素的共富集机制。本文以胡敏素为研究对象,分别与Ni、V两种金属标准溶液混合后恒温振荡,通过元素组成、X射线光电子能谱(XPS)和固体核磁共振碳谱(13C-NMR)由表到里揭示金属溶液作用前后胡敏素结构的变化特征。结果表明:胡敏素的元素组成以C、O为主,Ni、V两种金属溶液作用后,均造成胡敏素中O和S元素的相对含量减少,C和N元素的相对含量增加。XPS测试显示,胡敏素表面的C元素主要以芳香碳形态赋存,O元素则主要以羟基氧形态赋存;对于不同赋存形态的C元素,Ni、V金属溶液作用后对其影响趋势一致,均使芳香碳、羟基碳和羰基碳减少,主要破坏芳香碳(C—C/C—H)单键;而对于不同赋存形态的O元素,Ni金属溶液作用后则使羟基氧和羧基氧减少,使其中的富氢富氧官能团脱出,V金属溶液作用后则使羰基氧和羧基氧减少,破坏其中的羰基双键(C=O)。13C-NMR测试显示,作用前后的胡敏素有机质芳香结构主要以单环或者双环结构存在,两种金属溶液均能使氧接芳碳($f_{\rm{ar}}^{\rm{P}} $)和桥接芳碳($f_{\rm{ar}}^{\rm{B}} $)中的富氧富氢官能团从芳环中脱出、胡敏素中脂链长度变短、有机碳的稳定性降低、活性有机碳含量减少以及疏水程度变小。通过对比分析表明,胡敏素对Ni、V金属元素具有一定的氧化能力,两种金属溶液作用后均能使胡敏素中C、O元素的赋存形态发生改变,Ni金属溶液主要影响脂肪碳结构,V金属溶液则主要影响芳碳结构。
Abstract:BACKGROUNDBlack shales are mostly developed in special periods in geological history. They not only record the evolution characteristics of paleoenvironment, paleoclimate and paleontology, but also are carriers of organic matter, oil and gas and various metal deposits. Taking the black shale of the Lower Cambrian Niutitang Formation in Guizhou as an example, it not only shows the extraordinary enrichment of V, Ni and other metal elements, forming vanadium ore and nickel-molybdenum ore, but is also rich in organic matter, with TOC content of 0.7%-14.6% (average 5.2%). At present, the co-enrichment mechanism of metal elements Ni, V and organic matter is still unclear, but organic matter plays an important role in the enrichment, migration and transformation of metal ions.
OBJECTIVESTo understand the co-enrichment mechanism of organic matter and metal elements by exploring the effect of metal elements on the structure of organic matter.
METHODSTake two groups of 50mL polypropylene centrifuge tubes A and B, and add 5g of humin to each centrifuge tube. Then add 20mL of Ni single element standard solution to the group A centrifuge tube, and 20mL of V single element standard solution to the group B centrifuge tube. Place the centrifuge tube in a constant temperature oscillator for 24h with the temperature of 298K and the speed of 220r/min. After standing for 24h, the filtered solid part is placed in a 50mL beaker and dried. The dried samples (numbered as HM-Ni and HM-V) and the original humin sample (numbered HM) are analyzed by element analyzer, X-ray photoelectron spectroscopy (XPS) and solid-state nuclear magnetic resonance carbon spectroscopy (13C-NMR).
RESULTSThe results show that the elemental composition of humin is mainly C and O. After the action of Ni and V metal solutions, the relative contents of O and S elements in humin decrease, and the relative contents of C and N elements increase. The ratio of H/C and O/C atoms is HM>HM-V>HM-Ni. XPS test shows that the C element on the surface of humin is mainly in the form of aromatic carbon, while the O element is mainly in the form of hydroxyl oxygen. For C with different occurrence forms, the influence trend of Ni and V metal solutions on them is the same, which reduces aromatic carbon, hydroxyl carbon and carbon-based carbon, and mainly destroys aromatic carbon (C—C/C—H) single bonds. For O with different occurrence forms, the Ni metal solution reduces hydroxyl oxygen and carboxyl oxygen, which makes the hydrogen-enriched and oxygen-enriched functional groups prolapse; the V metal solution reduces carbonyl oxygen and carboxyl oxygen, which destroys the carbonyl double bond (C=O). Solid-state nuclear magnetic resonance carbon spectroscopy (13C-NMR) tests show that the action of Ni metal solution can reduce the relative contents of bridged aromatic carbon (far B), oxygen-connected aromatic carbon (far P), carbonyl carbon (fa O), methyl and quaternary carbon (fal *), as well as methylene and methine carbon (fal H); V metal solution can reduce the relative contents of protonated aromatic carbon (far H), bridged aromatic carbon (far B), oxygen-connected aromatic carbon (far P), carbonyl carbon (fa O), methyl and quaternary carbon (fal *), as well as methylene and methine carbon (fal H). Both metal solutions can make the O-enriched and H-enriched functional groups in oxygen-linked aromatic carbon (far P) and bridged aromatic carbon (far B) prolapse from the aromatic ring, shorten the lipid chain length in humin, reduce the stability of organic carbon, reduce the content of active organic carbon and reduce the degree of hydrophobicity.
CONCLUSIONSThrough comparative analysis, it is shown that humin has a certain oxidation ability to Ni and V metal elements. After the action of the two metal solutions, the occurrence morphology of C and O elements in humin can be changed. Ni metal solution mainly affects the aliphatic carbon structure, while V metal solution mainly affects the aromatic carbon structure.
-
Keywords:
- organic matter /
- humin /
- metal elements /
- XPS /
- 13C-NMR /
- structural characteristics
-
碲和硒是稀散元素,在高新科技领域具有重要应用,已被中国和欧美国家列为战略性关键矿产资源[1-2]。一直以来全球碲、硒矿产资源主要采自斑岩-矽卡岩铜金矿床,如中国广东大宝山铜矿和江西城门山铜矿[3-4],研究斑岩矿床中碲、硒的产出情况对国家资源战略保障具有重要意义。云南普朗斑岩型铜金矿床位于三江特提斯成矿域义敦岛弧南部,属于超大型斑岩矿床,已探明铜资源储量4.31Mt,金资源量113t[5]。矿区内出露的地层为中三叠统尼汝组和上三叠统图姆沟组,侵入岩为普朗复式岩体,由石英闪长玢岩(~216Ma)、石英二长斑岩(~215Ma)和花岗闪长斑岩(~206Ma)组成,岩体出露总面积约为11km2(图1)。前人对普朗矿床的地质特征、成岩成矿时代、成矿物质来源、成矿流体性质等作了大量工作,但对矿床中碲硒的含量和赋存状态等研究还较为薄弱。本文报道了普朗矿床中产出的碲化物和硒化物,以期为斑岩矿床中碲硒的勘查和综合利用提供资料。
本次研究对象主要为普朗矿床中的铜精矿和钼精矿样品,测试分析均在东华理工大学核资源与环境国家重点实验室完成。样品的矿相学观察利用ZEISS Axio Scope A1光学显微镜及ZEISS Sigma 300场发射扫描电镜完成,扫描电镜的加速电压为20kV,发射电流为10μA[6]。矿物成分利用JXA-8530F Plus型电子探针分析完成,实验设定加速电压为15kV,电流为20nA,探针直径为1μm,使用ZAF方法对X射线强度进行校正。分析标样选择砷化镓(As),黄铜矿(Cu),黄铁矿(Fe、S),自然银(Ag),碲铋矿(Te、Bi),辉钼矿(Mo),自然铅(Pb),自然锑(Sb),硒化镉(Se),自然金(Au),自然铂(Pt),自然钯(Pd)。测试主量元素的精确度和准确度均小于2%。
普朗铜金矿床中的碲和硒含量高,并形成大量碲化物、硒化物和富硒矿物。矿床精矿中的碲和硒含量分别达74.3×10−6和270×10−6。碲在钾化带中的含量为0.3×10−6~0.43×10−6,较绢英岩化带中的高(0.02×10−6~0.12×10−6),由矿体中心向外,碲品位逐渐降低[7]。硒在钾化带和绢英岩化带的含量无明显差别,分别为1.49×10−6~2.44×10−6和1.04×10−6~3.00×10−6。矿石中的碲与金呈正相关关系,硒与银呈正相关关系。普朗铜矿床中,碲和硒主要以碲化物、硒化物和富硒矿物形式存在,形成辉碲铋矿、碲钯矿、硒银矿和富硒方铅矿等(图2)。辉碲铋矿是普朗含量最多的碲化物,反射光下为白色略带淡蓝色,矿物成分较均一,Bi含量为58.36%~61.24%,Te含量为31.03%~34.50%,S含量为3.76%~4.54%(图2e)。普朗辉碲铋矿中含有较高的Se(0.77%~3.63%)。辉碲铋矿的化学式为Bi2.02~2.08(Te1.74~1.93S0.85~1.01Se0.08~0.33)2.90~2.98。碲钯矿属于独立铂族元素矿物,在自然界很少见,中国斑岩矿床中仅江西德兴有报道[8],在全球其他斑岩矿床中非常少见。普朗碲钯矿粒径为1~5μm,反射光下呈亮白色(图2a)。碲钯矿中Pd和Pt可以类质同象取代,因此含量变化较大,Pd含量为16.26%~25.69%,Pt含量为4.82%~17.66%,Te含量为61.25%~66.76%(图2f)。碲钯矿化学式为(Pd0.64~0.98Pt0.09~0.37)0.98~1.03Te1.97~1.02。硒银矿是普朗含量最多的硒化物,反射光下为白色带微蓝绿色(图2c)。硒银矿中普遍含S,含量为0.55%~2.65%,Ag含量普遍偏低,为70.22%~72.77%,Se含量为24.09%~27.31%(图2g)。硒银矿化学式为Ag1.89~1.98(Se0.87~1.01S0.05~0.24)1.02~1.11。富硒方铅矿属于PbS1-xSex矿物,其中x值可在0~1之间连续变化。普朗富硒方铅矿S和Se的含量变化大,分别为4.01%~12.52%和1.85%~19.13%,Pb含量为73.91%~82.52%,大多数样品中含有Ag,最高含量达1.61%。普朗富硒方铅矿形成了较完整的PbS-PbSe固溶体系列(图2h),化学式为Pb0.98~1.01(S0.35~0.97Se0.07~0.67)0.99~1.02。
图 2 碲硒矿物显微照片及矿物元素含量三元图a—碲钯矿反射光镜下照片; b—碲钯矿BSE照片; c—硒银矿反射光镜下照片; d—硒银矿BSE照片; e— Bi-Te-S体系三元图; f— Te-Pd-Pt体系三元图; g—Ag-Se-S体系三元图; h—Pb-Se-S体系三元图。Mol—辉钼矿; Mrk—碲钯矿; Nau—硒银矿; Py—黄铁矿。Figure 2. Photomicrographs of tellurium and selenium minerals and ternary plots of element contents. a—Reflected light photomicrograph of merenskyite; b—BSE image of merenskyite; c—Reflected light photomicrograph of naumannite; d—BSE image of naumannite; e—Ternary plot of Bi-Te-S system; f—Ternary plot of Te-Pd-Pt system; g—Ternary plot of Ag-Se-S system; h—Ternary plot of Pb-Se-S system. Mol=Molybdenite, Mrk=Merenskyite, Nau=Naumannite, Py=Pyrite.矿床中的碲和硒可以指示物质来源和成矿过程。碲和硒具有亲硫特点,碲会部分进入硫化物晶格,但更易形成碲的独立矿物;硒属于强亲硫元素,在较高温的条件下易于进入硫化物晶格,在中低温条件下,硫含量较低时,可形成硒的独立矿物。洋壳中的铁锰结壳、页岩及浮游沉积物等是自然界中碲和硒的重要储库[9],因此在洋陆俯冲过程中,大陆岩石圈地幔和洋壳的部分熔融会形成富碲、硒的岩浆[10-11]。碲和硒在硫化物熔体中的相容性很高(D硫化物/硅酸盐>600),碲倾向于存在液相硫化物(SL)中,而硒则更易进入单硫化物固熔体(MSS)(DTe SL/硅酸盐/DSe SL/硅酸盐为5~9,DTe MSS/硅酸盐/DSe MSS/硅酸盐为0.5~0.8)[12]。当富碲、硒的岩浆到达下地壳,会结晶分异形成富Co、Ni的硅酸盐矿物,碲、硒存在硫化物熔体中继续向上运移;当岩浆到达中地壳,温度低于900℃时,硫化物熔体与Te-Se熔体发生相分离;当岩浆到达上地壳,侵位形成班岩体及Cu矿床,Ag-Pt-Pd则高度集中在富Te-Se熔体中,并最终形成贵金属矿物[13]。普朗铜金矿床中的碲和硒可能与区内晚三叠世的俯冲造山密切相关,富碲和硒的岩浆也促进了铂族元素的富集成矿。
普朗斑岩铜金矿床中碲化物和硒化物的发现,对资源的综合利用及矿床成因研究具有重要意义。矿床中碲和硒的资源量规模大,大部分以独立矿物形式存在,且常与Au-Ag-PGE共生,具有较好的经济回收利用价值。碲化物和硒化物的产出也为成矿物质来源及岩浆演化过程提供了新的研究方向。
-
表 1 样品元素分析结果
Table 1 Elemental analysis results of samples.
样品编号 元素组成(%) 原子比 C H N S O H/C O/C HM 40.71 2.79 0.65 0.24 55.62 0.82 1.03 HM-Ni 42.82 2.83 1.66 0.14 52.55 0.79 0.92 HM-V 41.46 2.77 1.73 0.14 53.90 0.80 0.98 表 2 样品的XPS宽扫分析结果
Table 2 Results of XPS wide scan analysis of samples.
样品编号 样品表面C、O元素含量(%) O/C C O HM 45.98 52.24 0.85 HM-Ni 43.80 53.43 0.92 HM-V 43.83 53.52 0.92 表 3 胡敏素13C-NMR谱化学位移归属
Table 3 Attribution of chemical shifts in 13C-NMR spectra of huminin.
基团 结构 化学位移(×10−6) 甲基碳 12~16 芳香甲基碳 16~22 与脂肪族甲基相连的亚甲基碳 23~32 亚甲基碳 32~36 次甲基碳和季碳 36~50 氧与甲基或亚甲基碳连接 50~60 氧与亚甲基碳连接 60~70 氧与季碳相连 75~90 质子化芳碳 100~129 桥接芳碳 129~137 侧枝芳碳 137~148 氧接芳碳 148~165 羧基碳 165~190 羰基碳 190~220 表 4 C1s和O1s的XPS分峰拟合结果
Table 4 XPS split peak fitting results of C1s and O1s.
元素峰 元素形态 结合能
(eV)不同元素形态的含量(%) HM HM-Ni HM-V C 1s 芳香碳 284.4 42.01 32.25 31.12 脂肪碳 285.1 30.61 35.11 38.96 羟基碳 286.0 4.34 3.51 3.90 酮基碳 286.7 8.09 9.37 10.04 羰基碳 287.8 4.50 2.41 2.47 羧基碳 288.7 10.46 17.34 13.51 O 1s 羰基氧 531.5±0.05 26.50 33.03 24.95 羟基氧 532.9 69.09 64.30 71.70 羧基氧 536.15±0.1 4.41 2.67 3.35 表 5 样品的13C-NMR分峰拟合结构参数
Table 5 13C-NMR split peak fitting structural parameters of samples.
样品
编号含量(%) far farH farB farS farP fa faC faO fal fal* falH falO HM 66.43 39.86 14.44 0.7 12.13 15.25 4.49 10.76 18.32 4.89 10.41 3.02 HM-Ni 67.55 42.16 12.32 8.05 5.02 17.11 7.47 9.64 15.33 3.38 8.65 3.3 趋势 +1.12 +2.3 −2.12 +7.35 −7.11 +1.86 +2.98 −1.12 −2.99 −1.51 −1.76 +0.28 HM-V 61.59 38.71 13.98 4.81 4.09 16.68 7.23 9.45 21.73 6.17 10.19 5.37 趋势 −4.84 −1.15 −0.55 +4.11 −8.04 +1.43 +2.74 −1.31 3.41 −1.28 −0.22 +2.35 注:far—芳碳; fa—羧基和羰基碳; fal—脂肪碳; farH—质子化芳碳; farB—桥接芳碳; farS—侧枝芳碳; farP—氧接芳碳; faC—羧基碳; faO—羰基碳; fal*—甲基碳和季碳; falH—亚甲基碳和次甲基碳; falO—氧接脂肪碳。 表 6 样品部分结构参数
Table 6 Some structural parameters of samples.
样品编号 XBP Cn 脂肪碳/芳香碳 疏水碳/亲水碳 烷基碳/烷氧碳 HM 0.22 14.87 0.28 4.47 5.07 HM-Ni 0.18 1.07 0.23 3.90 3.65 HM-V 0.23 2.12 0.35 3.54 3.05 注:XBP= farB/ far; Cn= farH/ farS; 脂肪碳/芳香碳= fal/ far; 疏水碳/亲水碳=( fal*+ falH+ far)/( falO+ fa); 烷基碳/烷氧碳=( fal*+ falH)/ falO。 -
[1] 叶杰,范德廉. 黑色岩系型矿床的形成作用及其在我国的产出特征[J]. 矿物岩石地球化学通报,2000,19(2):95−102. doi: 10.3969/j.issn.1007-2802.2000.02.004 Ye J,Fan D L. Characteristics and mineralization of ore deposits elated to black shale series[J]. Bulletin of Mineralogy,Bulletin of Mineralogy,Petrology and Geochemistry, 2000, 19(2):95−102. doi: 10.3969/j.issn.1007-2802.2000.02.004
[2] Hui T,Lei P,Xiao X M,et al. A preliminary study on the pore characterization of lower Silurian black shales in the Chuandong thrust fold belt,southwestern China using low pressure N2 adsorption and FE-SEM methods[J]. Marine and Petroleum Geology, 2013, 48:8−19. doi: 10.1016/j.marpetgeo.2013.07.008
[3] 周姣花,周晶,牛睿,等. 重砂分级-扫描电镜-能谱等技术研究湖南张家界黑色页岩贵金属元素赋存状态[J]. 岩矿测试,2019,38(6):649−659. doi: 10.15898/j.cnki.11-2131/td.201905090057 Zhou J H,Zhou J,Niu R,et al. Study on occurrence of noble mental elements in black shale series in Zhangjiajie,Hunan Province by heavy placer classification-SEM-EDS and other techniques[J]. Rock and Mineral Analysis, 2019, 38(6):649−659. doi: 10.15898/j.cnki.11-2131/td.201905090057
[4] 张爱云, 伍大茂, 郭丽娜, 等. 海相黑色页岩建造地球化学与成矿意义[M]. 北京: 科学出版社, 1987. Zhang A Y, Wu D M, Guo L N, et al. Geochemistry and mineralization significance of marine black shale formation[M]. Beijing: Science Press, 1987.
[5] Fu Y,Dong L,Li C,et al. New Re-Os isotopic constrains on the formation of the metalliferous deposits of the lower Cambrian Niutitang Formation[J]. Journal of Earth Science, 2016, 27(2):271−281. doi: 10.1007/s12583-016-0606-7
[6] 朱立军, 张大伟, 张金川, 等. 上扬子东部古生代被动陆缘页岩气地质理论技术与实践[M]. 北京: 科学出版社, 2019. Zhu L J, Zhang D W, Zhang J C, et al. Geological theory and practice of shale gas in Paleozoic passive continental margin, eastern of upper Yangtze[M]. Beijing: Science Press, 2019.
[7] 王坤阳,杜谷,杨玉杰,等. 应用扫描电镜与X射线能谱仪研究黔北黑色页岩储层孔隙及矿物特征[J]. 岩矿测试,2014,33(5):634−639. doi: 10.3969/j.issn.0254-5357.2014.05.004 Wang K Y,Du G,Yang Y J,et al. Characteristics study of reservoirs pores and mineral compositions for black shale,northern Guizhou,by using SEM and X-ray EDS[J]. Rock and Mineral Analysis, 2014, 33(5):634−639. doi: 10.3969/j.issn.0254-5357.2014.05.004
[8] 范德廉, 张焘, 叶杰, 等. 中国的黑色岩系及其有关矿床[M]. 北京: 科学出版社, 2004. Fan D L, Zhang T, Ye J, et al. Black shale and its related ore deposit of China[M]. Beijing: Science Press, 2004.
[9] 戴传固,郑启钤,陈建书,等. 贵州雪峰—加里东构造旋回期成矿地质背景研究[J]. 地学前缘,2013,20(6):219−225. Dai C G,Zheng Q Q,Chen J S,et al. The metallogenic geological background of the Xuefeng—Caledonian tectonic cycle in Guizhou,China[J]. Earth Science Frontiers, 2013, 20(6):219−225.
[10] Shi C H,Cao J,Hu K,et al. New understandings of Ni–Mo mineralization in early Cambrian black shales of South China:Constraints from variations in organic matter in metallic and non-metallic intervals[J]. Ore Geology Reviews, 2014, 59:73−82. doi: 10.1016/j.oregeorev.2013.12.007
[11] 夏鹏,付勇,杨镇,等. 黔北镇远牛蹄塘组黑色页岩沉积环境与有机质富集关系[J]. 地质学报,2020,94(3):947−956. doi: 10.3969/j.issn.0001-5717.2020.03.019 Xia P,Fu Y,Yang Z,et al. The relationship between sedimentary environment and organic matter accumulation in the Niutitang black shale in Zhenyuan,northern Guizhou[J]. Acta Geologica Sinica, 2020, 94(3):947−956. doi: 10.3969/j.issn.0001-5717.2020.03.019
[12] Mao J W,Lehmann B,Du A D,et al. Re-Os dating of polymetallic Ni-Mo-PGE-Au mineralization in lower Cambrian black shales of South China and its geologic significance[J]. Economic Geology, 2002, 97:1051−1061. doi: 10.2113/gsecongeo.97.5.1051
[13] XU L G,Lehmann B,Mao J W,et al. Mo isotope and trace element patterns of lower Cambrian black shales in South China:Multi-proxy constraints on the paleoenvironment[J]. Chemical Geology, 2012, 318-319:45−59. doi: 10.1016/j.chemgeo.2012.05.016
[14] Lehmann B,Frei R,Xu L G,et al. Early Cambrian black shale-hosted Mo-Ni and V mineralization on the rifted margin of the Yangtze Platform,China:Reconnaissance chromium isotope data and a refined metallogenic model[J]. Economic Geology, 2016, 111:89−103. doi: 10.2113/econgeo.111.1.89
[15] 李胜荣,高振敏. 湘黔地区牛蹄塘组黑色岩系稀土特征——兼论海相热水沉积岩稀土模式[J]. 矿物学报,1995,15(2):225−229. doi: 10.3321/j.issn:1000-4734.1995.02.017 Li S R,Gao Z M. REE characteristics of black rock series of the lower Cambrian Niutitang Formation in Hunan—Guizhou Province,China,with a discussion on the REE patterns in marine hydrothermal sediments[J]. Acta Mineralogica Sinica, 1995, 15(2):225−229. doi: 10.3321/j.issn:1000-4734.1995.02.017
[16] 蒋少涌,凌洪飞,赵葵东,等. 华南寒武纪早期牛蹄塘组黑色岩系中Ni-Mo多金属硫化物矿层的Mo同位素组成讨论[J]. 岩石矿物学杂志,2008,27(4):341−345. doi: 10.3969/j.issn.1000-6524.2008.04.011 Jiang S Y,Ling H F,Zhao K D,et al. A discussion on Mo isotopic composition of black shale and Ni-Mo sulfide bed in the early Cambrian Niutitang Formation in South China[J]. Acta Petrologica et Mineralogica, 2008, 27(4):341−345. doi: 10.3969/j.issn.1000-6524.2008.04.011
[17] Han T,Fan H F,Zhu X Q,et al. Submarine hydrothermal contribution for the extreme element accumulation during the early Cambrian,South China[J]. Ore Geology Reviews, 2017, 86:297−308. doi: 10.1016/j.oregeorev.2017.02.030
[18] 上海化工学院煤化工专业腐植酸小组. 腐植酸制品在环境保护中的应用[J]. 环境科学,1976(1):57−63. doi: 10.13227/j.hjkx.1976.01.011 Humic Acid Group of Coal Chemical Industry,Shanghai Institute of Chemical Technology. Application of humic acid products in environmental protection[J]. Environmental Science, 1976(1):57−63. doi: 10.13227/j.hjkx.1976.01.011
[19] 蒋展鹏,廖孟钧. 腐殖质及其在环境污染控制中的作用[J]. 环境污染与防治,1990,23(3):24−28. doi: 10.15985/j.cnki.1001-3865.1990.03.008 Jiang Z P,Liao M J. Humus and its role in environmental pollution control[J]. Environmental Pollution & Control, 1990, 23(3):24−28. doi: 10.15985/j.cnki.1001-3865.1990.03.008
[20] 孙海洋. 乌梁素海沉积物中不同组分胡敏素对铜作用机制研究[D]. 呼和浩特: 内蒙古大学, 2018. Sun H Y. Binding characteristics of copper to natural humin fractions sequentially extracted from the Lake Wuliangsuhai sediments[D]. Hohhot: Inner Mongolia University, 2018.
[21] 刘晓婷. 湖泊沉积物中不同组分胡敏素与重金属作用机制研究[D]. 呼和浩特: 内蒙古大学, 2017. Liu X T. Binding characteristics of heavy metals to natural humin fractions sequentially extracted from the lake sediments[D]. Hohhot: Inner Mongolia University, 2017.
[22] 朱燕,李爱民,李超,等. 土壤有机质级份的红外和热重特性[J]. 环境化学,2005,24(3):288−292. doi: 10.3321/j.issn:0254-6108.2005.03.014 Zhu Y,Li A M,Li C,et al. Characteristics of soil humin substances by infrared spectra and thermal gravity[J]. Environmental Chemistry, 2005, 24(3):288−292. doi: 10.3321/j.issn:0254-6108.2005.03.014
[23] 窦森, 肖彦春, 张晋京. 土壤胡敏素各组分数量及结构特征初步研究[J]. 土壤学报, 2006, 43(6): 934-940. Dou S, Xiao Y C, Zhang J J. Quantities and structural characteristics of various fractions of soil humin[J]. Acta Pedologica Sinica, 2006, 43(6): 934-940.
[24] 吉凡. 土壤/有机物料中腐殖物质组分结构特征及对铜离子吸附作用的研究[D]. 长春: 吉林农业大学, 2014. Ji F. Structural characteristics of humic substances derived from soil/organic material and its adsorption of Cu2+[D]. Changchun: Jilin Agricultural University, 2014.
[25] Malekani K,Rice J A,Lin J S. The effect of sequential removal of organic matter on the surface morphology of humin[J]. Soil Science, 1997, 162(5):333−342. doi: 10.1097/00010694-199705000-00003
[26] Rosa G,Gardea-Torresdey J L,Peralta-Videa J R,et al. Use of silica-immobilized humin for heavy metal removal from aqueous solution under flow conditions[J]. Bioresource Technology, 2003, 90(1):11−17. doi: 10.1016/S0960-8524(03)00099-3
[27] Havelcová M,Mizera J,Sykorová I,et al. Sorption of metal ions on lignite and the derived humic substances[J]. Journal of Hazardous Materials, 2009, 161(1):559−564. doi: 10.1016/j.jhazmat.2008.03.136
[28] 范春莹,谢修鸿,燕爱春,等. 土壤胡敏素结构特征及对铜离子的吸附特性[J]. 土壤学报,2018,55(6):1460−1471. Fan C Y,Xie X H,Yan A C,et al. Structure and Cu(Ⅱ) adsorption of soil humin[J]. Acta Pedologica Sinica, 2018, 55(6):1460−1471.
[29] Aranda V,Oyonarte C. Characteristics of organic matter in soil surface horizons derived from calcareous and metamorphic rocks and different vegetation types from the mediterranean high-mountains in SE Spain[J]. European Journal of Soil Biology, 2006, 42(4):247−258. doi: 10.1016/j.ejsobi.2006.03.001
[30] Rice J A,Maccarthy P. Statistical evaluation of the elemental composition of humic substances[J]. Organic Geochemistry, 1991, 17(5):635−648. doi: 10.1016/0146-6380(91)90006-6
[31] Perminova I V,Frimmel F H,Kudryavtsev A V,et al. Molecular weight characteristics of humic substances from different environments as determined by size exclusion chromatography and their statistical evaluation[J]. Environmental Science & Technology, 2003, 37(11):2477−2485.
[32] 罗琼. 污泥堆肥富里酸与腐殖酸的纯化与应用研究[D]. 天津: 天津大学, 2019. Luo Q. Purification and application of fulvic acid and humic acid from sludge compost[D]. Tianjin: Tianjin University, 2019.
[33] 燕爱春,谢修鸿,范春莹,等. 土壤胡敏素对铜离子的吸附作用及其机理研究[J]. 环境科学学报,2018,38(12):4779−4788. doi: 10.13671/j.hjkxxb.2018.0275 Yan A C,Xie X H,Fan C Y,et al. Adsorption behavior and mechanism of Cu(II) on soil humin[J]. Acta Scientiae Circumstantiae, 2018, 38(12):4779−4788. doi: 10.13671/j.hjkxxb.2018.0275
[34] Chen W X,Wang H,Gao Q,et al. Association of 16 priority polycyclicaromatic hydrocarbons with humic acid and humin fractions in a peat soil and implications for their long-term retention[J]. Environmental Pollution, 2017, 230:882−890. doi: 10.1016/j.envpol.2017.07.038
[35] Leoš D,Jana B S,Vojtěch E,et al. Spectral characterization and comparison of humic acids isolated from some European lignites[J]. Fuel, 2018, 213:123−132. doi: 10.1016/j.fuel.2017.10.114
[36] Guo Z Z,Zhang J,Kang Y,et al. Rapid and efficient removal of Pb(II) from aqueous solutions using biomass-derived activated carbon with humic acid in-situ modification[J]. Ecotoxicology and Environmental Safety, 2017, 145:442−448. doi: 10.1016/j.ecoenv.2017.07.061
[37] 徐芳,刘辉,王擎,等. 霍林河褐煤化学结构特性的13C-NMR与FTIR对比分析[J]. 化工学报,2017,68(11):4272−4278. Xu F,Liu H,Wang Q,et al. Comparison of huolinhe lignite structural features by using 13C-NMR & FTIR techniques[J]. CIESC Journal, 2017, 68(11):4272−4278.
[38] 张晋京,窦森,朱平,等. 长期施用有机肥对黑土胡敏素结构特征的影响——固态13C核磁共振研究[J]. 中国农业科学,2009,42(6):2223−2228. doi: 10.3864/j.issn.0578-1752.2009.06.045 Zhang J J,Dou S,Zhu P,et al. Effect of long-term application of organic fertilizer on structural characteristics of humin in black soil:A solid-state 13C-NMR study[J]. Scientia Agricultura Sinica, 2009, 42(6):2223−2228. doi: 10.3864/j.issn.0578-1752.2009.06.045
[39] Okolo G N,Neomagus H W,Everson R C,et al. Chemical-structural properties of south African bituminous coals:Insights from wide angle XRD-carbon fraction analysis,ATR–FTIR,solid state 13C-NMR,and HRTEM techniques[J]. Fuel, 2015, 158:779−792. doi: 10.1016/j.fuel.2015.06.027
[40] Niekerk D V,Mathews J P. Molecular representations of permian-aged vitrinite-rich and inertinite-rich South African coals[J]. Fuel, 2010, 89(1):73−82. doi: 10.1016/j.fuel.2009.07.020
[41] 孙昱东,宋立飞,韩忠祥,等. 固态13C-NMR法表征渣油沥青质的结构组成[J]. 石油学报(石油加工),2018,34(6):1149−1154. doi: 10.3969/j.issn.1001-8719.2018.06.013 Sun Y D,Song L F,Han Z X,et al. Structure and composition characterization of asphaltenes by solid-state 13C-NMR[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2018, 34(6):1149−1154. doi: 10.3969/j.issn.1001-8719.2018.06.013
[42] 李梓瑄,迟凤琴,张久明,等. 长期定位施肥对黑土养分平衡和胡敏素分子结构动态变化的影响[J]. 光谱学与光谱分析,2018,38(12):3875−3882. Li Z X,Chi F Q,Zhang J M,et al. Effects of long-term localized fertilization on nutrient balance and dynamic change of humin molecular structure in black soil[J]. Spectroscopy and Spectral Analysis, 2018, 38(12):3875−3882.
-
期刊类型引用(2)
1. 王大钊,梁丰,王艳军,李凯旋,刘家军,冷成彪. 斑岩系统中低熔点亲铜元素与稀贵金属赋存状态和富集机制研究:以藏东南普朗超大型斑岩Cu-Au矿床为例. 岩石学报. 2025(02): 621-641 . 百度学术
2. 刘家军,王大钊,翟德高,高燊,郑波,王佳新,张斌,王冠智,王泽琳,汪林炜,翁国明. 低熔点亲铜元素(LMCE)在金成矿中的作用及促进金富集的机理. 矿床地质. 2024(04): 712-734 . 百度学术
其他类型引用(0)