Research Progress of Geological Reference Materials in China
-
摘要:
地质标准物质是保障地质样品分析结果准确性的重要基准。目前,一级地质标准物质数量居十三大类首位,形成了具有国际影响力的地质标准物质体系。本文依据基体类型和定值特性,将一级地质标准物质划分为基础、矿石、海洋、环境、能源和特殊用途等六类,总结了各类标准物质的研制数量、特点、定值指标、应用范围及意义。针对现阶段数量众多的地质标准物质在应用中还存在研制数量少、系列化不足、基体类型单一、定值指标少等问题,本文分析了不同类型存在的具体问题及产生的原因,探究研制技术成熟的地质标准物质中仍有多种成分难定值以及定值方法单一的可能原因,重点讨论了标准物质研制技术中影响定值水平的细节问题:①阐述了均匀性检验测量方法的优缺点,XRF法以其高精密度的优势应用于均匀性检验值得关注和研究;②提出了考虑元素性质、含量级次兼顾测试技术评定均匀性未检元素的不确定度评定方法;③分析了稳定性不确定度在总不确定度构成中成为主要贡献量的原因是当前的计算方法造成的,有待于进一步研究合理的评定方法;④建议针对不同类型标准物质,制定相对扩展不确定度控制限以获得准确可靠的标准值。结合当前地质标准物质存在的不足和工作需求,本文提出了研制关键金属矿石标准物质、符合“一带一路”沿线国家地质背景的土壤和水系沉积物标准物质、海洋沉积物和海洋矿产与海产品标准物质、生物元素标准物质与有机污染物标准物质的建议。
Abstract:Geological reference material is a primary standard to ensure the accuracy of geological sample analysis results. After more than 40 years of development, China has developed and certified thousands of geological reference materials covering different media such as rock, ore, soil, sediment, organism, and water. China’s metrological management department divides the certified reference material into two classes according to the classification class, the first-class reference material (GBW) and the second-class reference material [GBW(E)]. According to their attributes and application fields, they are divided into 13 categories[6-7], and the geological reference materials belong to the seventh category [GBW07 and GBW(E)07]. It can be seen from the National Sharing Platform for Reference Materials (https://www.ncrm.org.cn) that by the end of the 13th Five-Year Plan, the total number of geological reference materials approved by the State Administration for Market Regulation is 1013, including 718 first-class certified reference materials, and the amount of first-class certified reference materials ranks first in the 13 categories (Fig.1). Geological materials are the most important and basic raw materials in the development of human society, with various types, complex components, and large differences in component content. It is because of the complexity of geological materials and the demand for reliable quantitative analysis that thousands of geological reference materials have been developed. Some reference materials developed by some industrial geological agencies are classified into other categories in classification management, such as isotope reference materials belonging to the fourth category, biological composition reference materials belonging to the tenth category, coal reference materials belonging to the eleventh category, these reference materials are widely used in related geological work, and in this paper they will be classified as geological reference materials. To systematically grasp the development status of geological reference materials in China, the first-class geological certified reference materials are comprehensively sorted, and are divided into six categories according to the type of matrix, property value and application scope: basic, ore, marine, environment, energy and special purpose (Table 1), and the development situation of each type, matrix characteristics and fixed value index respectively are summarized. On the basis of summarizing the results, on one hand, the main problems existing in the application of geological reference materials and the causes of these problems are analyzed. On the other hand, the detailed technical problems that may affect the uncertainty in the process of homogeneity, stability and characterization are discussed, and the views and suggestions are expounded. In this paper, the first-class geological certified reference materials are divided into the following six categories to summarize the development of each type: (1) 260 basic geological reference materials have been developed, the type of matrix including rock, soil and river sediments. The characteristic components of the certified value are generally 70 elements and compounds, which are mainly used as monitoring standards for sample analysis in basic geological surveys and research. (2) 272 ore geological reference materials have been developed, including precious metal ore, metal ore, single mineral, and non-metallic ore. The specific mineral types are shown in Table 1. There are generally 20 property values, which are the main technical indicators in mineral exploration. They are mainly used as a monitoring standard for geological exploration, mineral processing and smelting, comprehensive utilization, commodity inspection and trade amongst other fields. (3) 16 marine geological reference materials have been developed, including marine sediments and marine minerals. The specific samples include 10 marine sediment reference materials namely, 1 near sea, 1 Yellow Sea, 2 South China Sea, 1 East China Sea, 3 deep Pacific Ocean, 1 Antarctic Ocean and 1 Arctic Ocean. Six marine mineral reference materials are three polymetallic nodules and three ocean cobalt-enriched crusts. The characteristic composition of the certification value is the same as that of the basic geological reference material, but slightly less, generally 51-71 kinds. This is a necessary chemical composition measurement standard for marine sediment measurement and marine mineral resource survey and research. (4) 101 standard materials for environmental geology have been developed, including the available state of soil elements, the form of soil and sediment elements, the valence state of groundwater elements, the extractable state of soil elements, biological inorganic elements, organic pollutants in soil and sediment and other reference materials. The characteristic components of the matrix and certified values are the total amount of inorganic elements in biological samples, the available states, and forms of elements in soil and sediment, the valence states of elements in water and organochlorine pesticides, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons in soil and sediment. This kind of reference material provides analytical quality monitoring standards for land quality geochemical surveys and evaluation, regional ecological geochemical evaluations, multi-objective geochemical surveys and detailed surveys of soil pollution. (5) 23 energy geological reference materials have been developed. The property values of oil-generating rock reference materials are organic carbon, pyrolysis hydrocarbon S2, pyrolysis peak temperature Tmax, and chloroform asphalt “A”. The property values of coal reference material are calorific value, ash, volatile matter, total sulfur, carbon, hydrogen, nitrogen, true relative density and phosphorus, chlorine, fluorine, and arsenic. The property values of the reference materials of highly evolved hydrocarbon source rock are pyrolysis hydrocarbon S2, pyrolysis peak temperature Tmax, and total organic carbon TOC. This is the monitoring standard for the exploration, evaluation and rational utilization of energy and mineral resources. (6) 129 reference materials for special purposes have been developed, including 20 synthetic reference materials for emission spectroscopy and 4 synthetic reference materials for X-ray fluorescence spectroscopy analysis. The property values are 28-29 inorganic chemical elements. There are 38 isotope reference materials, and the property values of those include isotope abundance and abundance ratio. There are 35 electron probe reference materials, and the property values are generally two principal components of their minerals. There are 15 reference materials for phase analysis, and the property values are the corresponding main phase. There are 5 soil limit water content reference materials, and the property values are 10mm liquid limit, plastic limit, and plastic index. There are 12 soil pH reference materials, and the property values are pH. It can be seen from the classification and summary that the geological reference material matrix in China is rich in types and quantities, which establishes an influential quality monitoring system for geological sample analysis, ensures the reliability and consistency of geological sample test data, and significantly improves the comparability and scientific value of relevant data. At present, there are still some problems in the application and development technology of a large number of geological reference materials. The problems are discussed and analyzed, hoping to draw attention to improving the value determination class of geological reference materials. In the aspect of application, the specific problems existing in different types of geological reference materials and their causes at the present stage are analyzed and development suggestions are proposed, according to the work needs of current mineral resources, international cooperation, marine strategy, ecological civilization and other fields. In the aspect of development technology, some detail technologies which may affect the value determination class in the process of homogeneity, stability and characterization are analyzed. In the aspect of development technology, some detail technologies which may affect the setting in the process of homogeneity, stability and value setting are analyzed. The test method of homogeneity and the evaluation method of stability uncertainty are discussed. Suggestions are made for the uncertainty evaluation method of unexamined elements for homogeneity test and control limit of relative extended uncertainty. 1. Three problems existing in the current application of geological reference materials are analyzed: (1) The quantity of some types of reference materials developed is small, the gradient distribution of characteristic values is insufficient, and the matrix type is simple. For example, the amount of marine geology, micro-area analysis, energy and mineral resource reference material development is small. The ore-forming elements of key metal ore reference materials are mainly low content, lacking rich ore grade or higher content grade. The matrix types of the samples of organic pollutant reference materials are only soil and sediment, and the property values are only organochlorine pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons and other compounds, and the matrix types and target compounds are few. The main reasons for these problems are difficulty in obtaining samples, little working demand, difficulty in ensuring the uniformity and stability of the sample preparation technology, large error of analysis technology unable to determine the value. (2) There are many components in the geological reference materials with mature development technology that have no certified values. The reasons of low element content and test interference are mainly analyzed. (3) At the current class of analytical technology, there is only one measurement method for several elements, and for some elements, with the widespread application of modern instrumental analysis technology, the optional measurement method is gradually becoming singular. 2. The detail technology of four aspects in the development of reference material is discussed: (1) Uniformity testing method. XRF is a widely used measurement method for the uniformity test of geological standard materials due to its high testing precision. However, due to its large sample size, XRF cannot meet the requirements of minimum sample size. Since the release and implementation of China National Technical Specification for Measurement “General and Statistical Principles for Characterization of Reference Materials” (JJF1343) in 2012, the uniformity of reference materials was tested by ICP-MS and ICP-OES under 0.1g weighing sample[24-30]. The measurement precision of these two methods is not as good overall as that of XRF, and the accuracy of individual elements is poor, which may cause the numerical value to be too large when calculating the uncertainty introduced by uniformity, thus affecting the reasonable evaluation of the uncertainty of property value. For this reason, some scholars[34-35] improved the XRF sample preparation device, studied the accuracy and precision of the method under 0.1g weighing sample, and verified the application effect for uniformity testing. However, only 10 major components in the reference materials of soil and stream sediments were tested under 0.1g weighing sample, while the reference materials of other matrix types and other trace elements, especially heavy elements, have not been studied and tested. Therefore, the feasibility of the XRF method with a sample size of 0.1g still needs to be verified. (2) Uncertainty calculation method for elements without uniformity test. The composition of geological materials is complex, and its reference substances generally have multiple attribute values, and the content of each component is greatly different, so it is usually difficult to test the uniformity of all attribute values. According to the provisions of JJF1646—2017, the characteristic of representative and less homogeneous should be selected for uniformity evaluation. The uncertainty of the untested elements can be evaluated according to the concentration and geochemical properties with reference to the uncertainty introduced by the tested elements. However, the exact calculation method was not specified. An evaluation method that considers both element properties, content and test methods (Table 2) is presented here. The specific calculation method is to multiply the relative uncertainty (Ur) of the uniformity of the detected element by the standard value μ of the undetected element and take it as the uncertainty component ubb of the undetected element. (3) Evaluation method of stability uncertainty. At present, trend analysis method is generally used to evaluate the stability uncertainty (us) of geological reference materials, and the calculation formula is us=s(b1)·t. It can be seen from the formula that the longer the stability monitoring time, the greater the stability uncertainty introduced. The stability uncertainty data of several reference materials were compared and determined to be the main contribution to the total uncertainty, which is inconsistent with the long-term observation of the stability of the geological reference materials. Therefore, this calculation method is not suitable to evaluate the uncertainty introduced into the stability of geological reference material. Meng et al.[42] suggested using the analysis of variance to calculate, and the comparative analysis showed that us was still the main contribution to the total uncertainty. Wang et al.[43] used range method to calculate us, but the application of this method in geological reference materials has yet to be verified. In conclusion, the reasonable evaluation of stability uncertainty of matrix reference materials with more test error sources needs to be studied further. (4) Control limits for relative extended uncertainty. The determination of the property value of geological reference materials usually has certain control requirements for relative extended uncertainty (Urel), but these control limits are rarely introduced in the public information of the reference material. It was not until the specification JJF1646 published in 2017 that Urel was required in principle. Urel is the embodiment of the quality of property value data. Urel control limits in Table 3 are proposed on the basis of the principle requirements of JJF1646—2017 by referring to the control limits in the development of existing reference materials and the analysis of different types of geological reference materials. In the process of development, the developer also needs to comprehensively consider the matrix condition, setting index, element content of the sample and formulate reasonable Urel control limits of uncertainty in combination with the current analysis technology class, to obtain accurate and reasonable property value and uncertainty.
-
碲和硒是稀散元素,在高新科技领域具有重要应用,已被中国和欧美国家列为战略性关键矿产资源[1-2]。一直以来全球碲、硒矿产资源主要采自斑岩-矽卡岩铜金矿床,如中国广东大宝山铜矿和江西城门山铜矿[3-4],研究斑岩矿床中碲、硒的产出情况对国家资源战略保障具有重要意义。云南普朗斑岩型铜金矿床位于三江特提斯成矿域义敦岛弧南部,属于超大型斑岩矿床,已探明铜资源储量4.31Mt,金资源量113t[5]。矿区内出露的地层为中三叠统尼汝组和上三叠统图姆沟组,侵入岩为普朗复式岩体,由石英闪长玢岩(~216Ma)、石英二长斑岩(~215Ma)和花岗闪长斑岩(~206Ma)组成,岩体出露总面积约为11km2(图1)。前人对普朗矿床的地质特征、成岩成矿时代、成矿物质来源、成矿流体性质等作了大量工作,但对矿床中碲硒的含量和赋存状态等研究还较为薄弱。本文报道了普朗矿床中产出的碲化物和硒化物,以期为斑岩矿床中碲硒的勘查和综合利用提供资料。
本次研究对象主要为普朗矿床中的铜精矿和钼精矿样品,测试分析均在东华理工大学核资源与环境国家重点实验室完成。样品的矿相学观察利用ZEISS Axio Scope A1光学显微镜及ZEISS Sigma 300场发射扫描电镜完成,扫描电镜的加速电压为20kV,发射电流为10μA[6]。矿物成分利用JXA-8530F Plus型电子探针分析完成,实验设定加速电压为15kV,电流为20nA,探针直径为1μm,使用ZAF方法对X射线强度进行校正。分析标样选择砷化镓(As),黄铜矿(Cu),黄铁矿(Fe、S),自然银(Ag),碲铋矿(Te、Bi),辉钼矿(Mo),自然铅(Pb),自然锑(Sb),硒化镉(Se),自然金(Au),自然铂(Pt),自然钯(Pd)。测试主量元素的精确度和准确度均小于2%。
普朗铜金矿床中的碲和硒含量高,并形成大量碲化物、硒化物和富硒矿物。矿床精矿中的碲和硒含量分别达74.3×10−6和270×10−6。碲在钾化带中的含量为0.3×10−6~0.43×10−6,较绢英岩化带中的高(0.02×10−6~0.12×10−6),由矿体中心向外,碲品位逐渐降低[7]。硒在钾化带和绢英岩化带的含量无明显差别,分别为1.49×10−6~2.44×10−6和1.04×10−6~3.00×10−6。矿石中的碲与金呈正相关关系,硒与银呈正相关关系。普朗铜矿床中,碲和硒主要以碲化物、硒化物和富硒矿物形式存在,形成辉碲铋矿、碲钯矿、硒银矿和富硒方铅矿等(图2)。辉碲铋矿是普朗含量最多的碲化物,反射光下为白色略带淡蓝色,矿物成分较均一,Bi含量为58.36%~61.24%,Te含量为31.03%~34.50%,S含量为3.76%~4.54%(图2e)。普朗辉碲铋矿中含有较高的Se(0.77%~3.63%)。辉碲铋矿的化学式为Bi2.02~2.08(Te1.74~1.93S0.85~1.01Se0.08~0.33)2.90~2.98。碲钯矿属于独立铂族元素矿物,在自然界很少见,中国斑岩矿床中仅江西德兴有报道[8],在全球其他斑岩矿床中非常少见。普朗碲钯矿粒径为1~5μm,反射光下呈亮白色(图2a)。碲钯矿中Pd和Pt可以类质同象取代,因此含量变化较大,Pd含量为16.26%~25.69%,Pt含量为4.82%~17.66%,Te含量为61.25%~66.76%(图2f)。碲钯矿化学式为(Pd0.64~0.98Pt0.09~0.37)0.98~1.03Te1.97~1.02。硒银矿是普朗含量最多的硒化物,反射光下为白色带微蓝绿色(图2c)。硒银矿中普遍含S,含量为0.55%~2.65%,Ag含量普遍偏低,为70.22%~72.77%,Se含量为24.09%~27.31%(图2g)。硒银矿化学式为Ag1.89~1.98(Se0.87~1.01S0.05~0.24)1.02~1.11。富硒方铅矿属于PbS1-xSex矿物,其中x值可在0~1之间连续变化。普朗富硒方铅矿S和Se的含量变化大,分别为4.01%~12.52%和1.85%~19.13%,Pb含量为73.91%~82.52%,大多数样品中含有Ag,最高含量达1.61%。普朗富硒方铅矿形成了较完整的PbS-PbSe固溶体系列(图2h),化学式为Pb0.98~1.01(S0.35~0.97Se0.07~0.67)0.99~1.02。
图 2 碲硒矿物显微照片及矿物元素含量三元图a—碲钯矿反射光镜下照片; b—碲钯矿BSE照片; c—硒银矿反射光镜下照片; d—硒银矿BSE照片; e— Bi-Te-S体系三元图; f— Te-Pd-Pt体系三元图; g—Ag-Se-S体系三元图; h—Pb-Se-S体系三元图。Mol—辉钼矿; Mrk—碲钯矿; Nau—硒银矿; Py—黄铁矿。Figure 2. Photomicrographs of tellurium and selenium minerals and ternary plots of element contents. a—Reflected light photomicrograph of merenskyite; b—BSE image of merenskyite; c—Reflected light photomicrograph of naumannite; d—BSE image of naumannite; e—Ternary plot of Bi-Te-S system; f—Ternary plot of Te-Pd-Pt system; g—Ternary plot of Ag-Se-S system; h—Ternary plot of Pb-Se-S system. Mol=Molybdenite, Mrk=Merenskyite, Nau=Naumannite, Py=Pyrite.矿床中的碲和硒可以指示物质来源和成矿过程。碲和硒具有亲硫特点,碲会部分进入硫化物晶格,但更易形成碲的独立矿物;硒属于强亲硫元素,在较高温的条件下易于进入硫化物晶格,在中低温条件下,硫含量较低时,可形成硒的独立矿物。洋壳中的铁锰结壳、页岩及浮游沉积物等是自然界中碲和硒的重要储库[9],因此在洋陆俯冲过程中,大陆岩石圈地幔和洋壳的部分熔融会形成富碲、硒的岩浆[10-11]。碲和硒在硫化物熔体中的相容性很高(D硫化物/硅酸盐>600),碲倾向于存在液相硫化物(SL)中,而硒则更易进入单硫化物固熔体(MSS)(DTe SL/硅酸盐/DSe SL/硅酸盐为5~9,DTe MSS/硅酸盐/DSe MSS/硅酸盐为0.5~0.8)[12]。当富碲、硒的岩浆到达下地壳,会结晶分异形成富Co、Ni的硅酸盐矿物,碲、硒存在硫化物熔体中继续向上运移;当岩浆到达中地壳,温度低于900℃时,硫化物熔体与Te-Se熔体发生相分离;当岩浆到达上地壳,侵位形成班岩体及Cu矿床,Ag-Pt-Pd则高度集中在富Te-Se熔体中,并最终形成贵金属矿物[13]。普朗铜金矿床中的碲和硒可能与区内晚三叠世的俯冲造山密切相关,富碲和硒的岩浆也促进了铂族元素的富集成矿。
普朗斑岩铜金矿床中碲化物和硒化物的发现,对资源的综合利用及矿床成因研究具有重要意义。矿床中碲和硒的资源量规模大,大部分以独立矿物形式存在,且常与Au-Ag-PGE共生,具有较好的经济回收利用价值。碲化物和硒化物的产出也为成矿物质来源及岩浆演化过程提供了新的研究方向。
-
表 1 一级地质标准物质种类、数量和基体特性
Table 1 The type, number and matrix of geological certified reference materials in China.
标准物质
种类
Types of CRMs标准物质
名称
Name of CRMs标准物质国家编号(GBW)
Country number (GBW) of CRMs数量
Quantity样品基体特性
Sample matrix characteristics十三五期间研制数量Quantity developed during the 13th Five-Year Plan period 基础
地质类
Basic geology岩石
RockGBW07101~GBW07114,
GBW07120~GBW07136,
GBW07725~GBW07732,
GBW07835~GBW07837,
GBW07870~GBW07874,
GBW07397~GBW0740051 超基性岩、花岗岩、安山岩、玄武岩、石英砂岩、页岩、石灰岩、花岗质片麻岩、斜长角闪岩、霓霞正长岩、粗面岩、花岗闪长岩、辉长岩、流纹岩、白云岩、辉绿岩、金伯利岩、伟晶岩、蛇纹岩、石英岩、含铀砂岩、二辉斜长麻粒岩、峨眉山玄武岩、辉石橄榄岩、炭硅质页岩、炭质硅质岩、富硒岩石、南极玄武岩、南极凝灰岩、碳酸盐岩
Ultrabasic rocks, granite, andesite, basalt, quartz sandstone, shale, limestone, granitic gneiss, plagioamphibolite, aegirine syenite, trachyte, granodiorite, gabbro, rhyolite, dolomite, diabase, kimberlite, pegmatite, serpentine, quartzite, uraniferous sandstone, diplagioclase granulite, Emei Mountain basalt, pyroxene peridotite, carbonaceous siliceous shale, carbonaceous siliceous rocks, selenium-rich rocks, Antarctic basalts, Antarctic tuff, carbonate rocks17 水系
沉积物
Stream sedimentGBW07301~GBW07312,
GBW07317~GBW07332,
GBW07343~GBW07351,
GBW07358~GBW07366
GBW07482~GBW07492,
GBW07375~GBW0738467 包括不同地质背景和景观区、成矿区带的水系沉积物及黄河三角洲沉积物
Including different geological background and landscape areas, metallogenic belt drainage sediment and Yellow River delta sediment10 土壤
SoilGBW07401~GBW07411,
GBW07418~GBW07435,
GBW07439, GBW07440,
GBW07446~GBW07457,
GBW07475~GBW07480,
GBW07385~GBW07391,
GBW07913~GBW07942,
GBW07536~GBW07573,
GBW07900~GBW07904,
GBW07978~GBW07986,
GBW07965~GBW07968142 取自不同地质背景的不同土壤类型,包括丘陵山区、平原区、干旱荒漠区、半干旱草原区、黄土地区、三江源地区,及沿海地区滩涂沉积物与河流沉积物、大流域河口泛滥平原沉积物、底泥,农用地土壤等
Different soil types were obtained from different geological backgrounds, including hills and mountains, plain area, arid desert area, semi-arid grassland area, loess area, three-river headwaters area, coastal tidal flat sediment and river sediment, large basin estuary flood plain sediment, bottom mud, and agricultural land soil93 矿石
地质类
Ore geology金属矿石
Metallic
oreGBW07201, GBW07202,
GBW07213,
GBW07218~GBW07227,
GBW07261~GBW07266,
GBW07818~GBW07830,
GBW07838~GBW07842,
GBW07846~GBW07853,
GBW07875~GBW07878,
GBW07139~GBW07140,
GBW07896~GBW0789955 铁、铬、锰、钒、钛等各种黑色金属矿石
Iron, chromium, manganese, vanadium, titanium and other black metal ores10 GBW07231~GBW07241,
GBW07279~GBW07287,
GBW07162~GBW07176,
GBW07141~GBW07149
GBW07367~GBW07374,
GBW07894~GBW07895,
GBW0719955 铜、铅、锌、镍(钴)、钨、锡、钼(铋)、锑等有色金属矿石
Copper, lead, zinc, nickel (cobalt), tungsten, tin, molybdenum (bismuth), antimony and other non-ferrous metal ores2 GBW07177~GBW07182 6 铝土矿
Bauxite- GBW07150~GBW07161,
GBW07183~GBW07188,
GBW07392~GBW07396,
GBW07733~GBW07735,
GBW07890~GBW0789330 铍、锂、钽、锆、锶等稀有稀土矿石
Beryllium, lithium, tantalum, zirconium, strontium and other rare earth ores12 GBW07831~GBW07834 4 锗、镓、铟、铊稀散元素矿石
germanium, gallium, indium, thallium ores- 贵金属
矿石
Precious metal oreGBW07203~GBW07209,
GBW07228~GBW07230,
GBW07242~GBW07248,
GBW07297~GBW07300,
GBW07801~GBW07810,
GBW07854~GBW07864,
GBW07255~GBW07260,
GBW07288~GBW07294
GBW07340~GBW07342,
GBW07194~GBW07198,
GBW07736~GBW0773765 金、银、铂族金属矿石
Gold, silver, platinum group metal ores13 硫化物单矿物
Sulfide monomi-
neralGBW07267~GBW07270 4 黄铁矿、黄铜矿、方铅矿和闪锌矿
Pyrite, chalcopyrite, galena and sphalerite- 非金属
矿石
Non-metallic oreGBW07137, GBW07318,
GBW07210~GBW07212,
GBW07214~GBW07217,
GBW07250~GBW07254,
GBW07277, GBW07278,
GBW07811~GBW07817,
GBW07843~GBW07845,
GBW07865~GBW07869,
GBW07879~GBW07889,
GBW07742~GBW07744,
GBW07905~GBW0791253 珍珠岩、海泡石、磷矿石、石灰石、白云石、萤石、砷矿石、重晶石、矽线石、菱镁矿、电气石、透辉石、硅藻土、高岭土、膨润土、凹凸棒
Perlite, sepiolite, phosphate ore, limestone, dolomite, fluorite, arsenic ore, barite, sillimanite, magnesite, tourmaline, diopside, diatomite, kaolin, bentonite, attapulgite29 海洋
地质类
Marine geology海洋
沉积物
Marine sedimentGBW07313~GBW07316,
GBW07357,
GBW07333~GBW07336,
GBW0748110 黄海、南海、东海、近海、太平洋深海、南极、北极海洋沉积物
Sediment of Yellow Sea, South China Sea, East China Sea, near sea, Pacific, Antarctic Ocean and Arctic Ocean- 海洋矿产
Marine mineralsGBW07249, GBW07295,
GBW07296,
GBW07337~GBW073396 多金属结核、富钴结壳
Polymetallic nodules and cobalt-enriched crusts- 环境
地质类
Environ-
mental geology生物无机元素
Bioinor-
ganic elementGBW07601~GBW07605,
GBW10010~GBW10028,
GBW10043~GBW1005234 大米、小麦、玉米、黄豆、圆白菜、菠菜、芹菜、胡萝卜、豆角、大葱、蒜粉、紫菜、大虾、扇贝、鸡肉、猪肝、奶粉、花粉、螺旋藻、人参、黄芪、苹果、灌木枝叶、杨树叶、柑橘叶、茶叶、人发
Rice, wheat, corn, soybeans, cabbage, spinach, celery, carrots, beans, green onions, garlic powder, seaweed, prawns, scallops, chicken, pig liver, milk powder, pollen, spirulina, ginseng, Astragalus, apple, shrub branches and leaves, poplar leaves, citrus leaves, tea leaves, and human hair- 土壤元素有效态
Effective state of soil elementsGBW07412~GBW07417,
GBW07458~GBW07461,
GBW07493~GBW0749816 黑龙江黑土、辽宁棕壤、河南黄潮土、新疆灰钙土、陕西黄绵土、四川紫色土、安徽黄棕壤、湖北水稻土、江西红壤、广东赤红壤、陕西塿土、陕西黑垆土、青海栗钙土、宁夏灌淤土、甘肃灌漠土、新疆棕漠土
Heilongjiang black soil, Liaoning brown soil, Henan yellow tide soil, Xinjiang gray calcareous soil, Shaanxi leossial soil, Sichuan purple soil, Anhui yellow brown soil, Hubei paddy soil, Jiangxi red soil, Guangdong laterite soil, Shaanxi Lou soil, Shaanxi dark loessial soil, Qinghai chestnut soil, Ningxia irrigated silt soil, Gansu irrigated desert soil, and Xinjiang brown desert soil6 元素形态
Element formGBW07436~GBW07438,
GBW07441~GBW07445,
GBW07462, GBW07463,
GBW07974~GBW07977,
GBW07464~GBW0746819 土壤和沉积物元素形态、湖泊沉积物中磷形态、土壤碳形态、地下水砷价态
Elemental morphology in soil and sediment, phosphorus morphology in lake sediment, soil carbon morphology, arsenic valence state in groundwater4 元素可提
取态
Element
extractable
stateGBW07943~GBW07964 22 土壤重金属元素可提取态
Extractable state of heavy metal elements in soil22 有机成分
Organic ingredientsGBW07469~GBW07474,
GBW07352~GBW0735510 土壤中有机氯农药和多氯联苯与沉积物中多环芳烃
Organochlorine pesticides and polychlorinated biphenyls in soil and polycyclic aromatic hydrocarbons in sediment4 能源
地质类
Energy geology生油岩
Oil source rockGBW07115~GBW07119 5 灰色泥岩、黑灰色泥岩、深灰色页岩、深灰绿色泥岩、紫红色致密页岩
Gray mudstone, black gray mudstone, dark gray shale, dark gray green mudstone, purple tight shale- 煤
CoalGBW11139~GBW11154 16 肥煤、气煤、1/3焦煤、弱黏煤、焦煤、贫瘦煤、无烟煤、长焰煤、气煤、气肥煤
Fat coal, gas coal, 1/3 coking coal, weak viscous coal, coking coal, lean coal, anthracite, long flame coal, gas coal, gas fertilizer coal- 页岩气
Shale gasGBW07499~GBW07500 2 碳质泥岩、煤
Carbonaceous mudstone, coal2 特殊
地质类
Special geology人工合成
Artificial synthesisGBW07701~GBW07724 24 合成硅酸盐、灰岩、X射线荧光光谱
Synthetic silicates, limestone, X-ray fluorescence spectra- 同位素
IsotopeGBW04409~GBW04419,
GBW04421, GBW04422,
GBW04435, GBW04436,
GBW04439,
GBW04458~GBW04461,
GBW04476, GBW04477,
GBW04494~GBW04497,
GBW04507~GBW04510,
GBW04701~GBW04703,
GBW04137~GBW0414138 地质年龄标准物质包括铷-锶、钐-钕、铀-铅、铀系、钾-氩、氩-氩法、铼-锇等;稳定同位素标准物质包括硫化银硫同位素、硅酸盐氧同位素、碳酸盐碳氧稳定同位素、海洋沉积物碳氮稳定同位素、有机化学物质碳氮稳定同位素、石英砂岩和纯试剂硅同位素、富钴结壳锇同位素、水中氢氧同位素、单体碳同位素
The reference materials for geological age include rubidium-strontium, samarium-neodymium, uranium-lead, uranium series, potassium-argon, argon-argon process, and rhenium-osmium; stable isotope reference materials include silver sulfide sulfur isotope, silicate oxygen isotope, carbonates carbon oxygen isotope, marine sediments carbon nitrogen stable isotope, organic chemicals carbon nitrogen stable isotope, quartz sandstone and pure reagent silicon isotope, cobalt-rich crust osmium isotope, hydrogen and oxygen isotope in water, and monomer carbon isotope16 电子探针
Electronic probeGBW07501~GBW07535 35 方铅矿、闪铅矿、辰矿、重晶石、白铅矿、白钨矿、铌锰矿、碲化镉、硒化锌、砷化镓、硒化锌、锑化铟、磷化铟、砷化铟、氧化锌、铌酸钾、铅玻璃、硼玻璃、蓝晶石、黄铁矿、橄榄石、歪长石、铬铁矿、石英、锰铁榴石、五磷酸钪、五磷酸镧、五磷酸铈、五磷酸镨、五磷酸钕、五磷酸钐、五磷酸钆、五磷酸钬、五磷酸镱、五磷酸镥
Galena, amphibolite, chenite, barite, cerussite, scheelite, mangancolumbite, cadmium telluride, zinc selenide, gallium arsenide, zinc selenide, indium antimonide, indium phosphates, indium arsenide, zinc oxide, potassium niobate, lead glass, boron glass, cyanite, pyrite, olivine, anorthoclase, chromite, quartz, ployadelphite, scandium pentaphosphate, lanthanum pentaphosphate, cerium pentaphosphate, praseodymium pentaphosphate, neodymium pentaphosphate, samarium pentaphosphate, gadolinium pentaphosphate, holmium pentaphosphate, ytterbium pentaphosphate, lutecium pentaphosphate- 物相分析
Phase analysisGBW07189~GBW07193,
GBW07271~GBW07276,
GBW07738~GBW0774115 金矿石、铁矿石、铋矿石
Gold ore, iron ore, and bismuth ore4 土壤特定用途
Soil specific useGBW07969~GBW07973 5 土壤界限含水率
Soil limit water cnotent5 GBW07987~GBW07998 12 土壤酸碱度
Soil pH12 表 2 未检元素均匀性实验不确定度的计算依据参照已检元素
Table 2 Calculation basis for the uncertainty of elements without homogeneity test.
序号
No.要素
Factor分类选择的依据
Basis for classification1 按元素的地球化学性质分类
Classification by geochemical properties of elements造岩元素
Rock forming elements (SiO2, Al2O3, MgO, CaO, Na2O, K2O)铁族元素 Iron group elements (Ti, V, Cr, Mn, Fe, Co, Ni) 稀有稀土元素
Rare earth elements (Li, Be, Rb, Cs, Nb, Ta, Zr, Hf, Sc, Ym, REE)放射性元素
Radioactive elements (U, Th)钨钼族元素
Tungsten-molybdenum group elements (W, Sn, Mo, Bi)亲铜成矿元素
Chalcophile metallogenic elements (Cu, Pb, Zn, Au, Ag, As, Sb, Hg)分散元素
Disperse elements (Sr, Ba, Cd, Ga, In, Tl, Ge, Se, Te, Re)矿化剂及卤族元素
Mineralizer and halogen elements (B, C, N, P, S, F, Cl, Br, I)铂族元素
Platinum group elements (Pt, Pd, Os, Ir, Ru, Rh)2 按元素含量进行量级分类
Classification of magnitude by element content%,μg/g,ng/g 3 按元素测量方法分类
Classification by element measurement method筛选定值元素的全部测试方法中占比最大的方法作为该元素的主体测试方法,将均匀性已检元素和未检元素按主体测试方法分类。
The method with the largest proportion among all the test methods for screening the element with a fixed value is used as the subject test method of the element. The elements tested and untested for uniformity are classified according to the subject test method.表 3 相对扩展不确定度($ {U}_{\mathrm{r}\mathrm{e}\mathrm{l}} $)的控制条件
Table 3 Control conditions of relative extended uncertainty.
含量范围
Content range控制限Control limits JJF1646—2017 岩石、土壤、各类沉积物
Rock, soil, sediment矿石
Ore生物[23]
Biota[23]有效态、形态、价态
Effective state, form, valence state>30% / ≤1% ≤2% / / >10% ≤2% ≤2% ≤5% / / >1% ≤5% ≤5% ≤8% ≤10% 0.1%~1% ≤10% ≤10% ≤10% ≤10% ≤15% 100~1000μg/g ≤15% ≤15% ≤15% ≤20% 10~100μg/g ≤15% ≤20% ≤25% 1~10μg/g ≤20% ≤20% ≤20% 0.1~1μg/g ≤25% ≤25% ≤30% ≤25% ≤30% <0.1μg/g ≤30% ≤30% ≤35% ≤30% ≤35% <0.01µg/g ≤35% / / ≤35% / 注:为表格统一,没有对应含量级次控制限的以“/”表示。 -
[1] 尹明. 我国地质分析测试技术发展现状及趋势[J]. 岩矿测试,2009,28(1):37−52. doi: 10.3969/j.issn.0254-5357.2009.01.009 Yin M. Progress and prospect on geoanalytical techniques in China[J]. Rock and Mineral Analysis, 2009, 28(1):37−52. doi: 10.3969/j.issn.0254-5357.2009.01.009
[2] 刘勇胜,屈文俊,漆亮,等. 中国岩矿分析测试研究进展与展望(2011—2020)[J]. 矿物岩石地球化学通报,2021,40(3):515−539. Liu Y S,Qu W J,Qi L,et al. Advances and perspectives of researches on rock and mineral analyses in China (2011—2020)[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2021, 40(3):515−539.
[3] Yan M C,Cheng Z Z. Study and application of geochemical reference materials in the institute of geophysical and geochemical exploration[J]. Geostandards and Geoanalytical Research, 2007, 31(4):301−309. doi: 10.1111/j.1751-908X.2007.00133.x
[4] 卢晓华,薄梦,吴雪,等. 标准物质领域发展现状及趋势[J]. 化学试剂,2022,44(10):1403−1410. Lu X H,Bo M,Wu X,et al. Current situation and trends on the development of reference materials[J]. Chemical Reagents, 2022, 44(10):1403−1410.
[5] Wilson S A,Potts P J, Webb P C. Three new geochemical reference materials for mineral exploration and environmental contamination studies:SdAR-L2,SdAR-M2 and SdAR-H1[J]. Geostandards and Geoanalytical Research, 2021, 45(2):359−367. doi: 10.1111/ggr.12300
[6] 陈钰,程义斌,孟凡敏,等. 国内外标准物质发展现况[J]. 环境卫生学杂志,2017,7(2):156−163. Chen Y,Cheng Y B,Meng F M,et al. Review on statues of reference materials in different countries[J]. Journal of Environmental Hygiene, 2017, 7(2):156−163.
[7] 李恩重,徐大军,酆晨,等. 我国标准样品分类原则和命名方法研究[J]. 中国标准化,2021(22):6−14,20. Li E Z,Xu D J,Feng C,et al. Research on classification principles and nomenclature of reference material in China[J]. China Standardization, 2021(22):6−14,20.
[8] 李延河. “同位素分析新技术与地质应用研究新进展”专辑特邀主编寄语[J]. 地球学报,2020,41(5):583−589. Li Y H. Guest editor’s preface to the “New technologies of isotope analysis and its applications in geology”[J]. Acta Geoscientica Sinica, 2020, 41(5):583−589.
[9] 王松,高钰涯,王军,等. 微区原位元素及同位素分析标准物质研究进展[J]. 质谱学报,2021,42(5):641−655. Wang S,Gao Y Y,Wang J,et al. Recent progress of reference materials for in-situ elemental and isotopic microanalysis[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(5):641−655.
[10] 陈意,胡兆初,贾丽辉,等. 微束分析测试技术十年(2011~2020)进展与展望[J]. 矿物岩石地球化学通报,2021,40(1):1−35,253. Chen Y,Hu Z C,Jia L H,et al. Progress of microbeam analytical technologies in the past decade (2011—2020) and prospect[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2021, 40(1):1−35,253.
[11] Rinaldi R,Llovet X. Electron probe microanalysis:A review of the past,present,and future[J]. Microsc Microanal, 2015, 21:1053−1069.
[12] Llovet X,Moya,Pinard P T,et al. Electron probe microanalysis:A review of recent developments and applications in materials science and engineering[J]. Progress in Materials Science, 2021(116):100673.
[13] Huang C,Wang H,Yang J H,et al. SA01—A proposed zircon reference material for microbeam U-Pb age and Hf-O isotopic determination[J]. Geostandards and Geoanalytical Research, 2020, 44(1):103−123. doi: 10.1111/ggr.12307
[14] 赵秀峰,高孝礼,曹磊,等. 土壤界限含水率标准物质研制[J]. 岩矿测试,2021,40(4):593−602. Zhao X F,Gao X L,Cao L,et al. Preparation of certified reference materials for soil limit water content[J]. Rock and Mineral Analysis, 2021, 40(4):593−602.
[15] 陶琛,李春生,初威澄,等. 非色散原子荧光光谱法同时检测硒和铅的光源干扰校正方法研究[J]. 分析化学,2019,47(1):163−168. Tao C,Li C S,Chu W C,et al. Correction method of light source interference for simultaneous determination of selenium and lead by non-dispersive hydride generation-atomic fluorescence spectrometry[J]. Chinese Journal of Analytical Chemistry, 2019, 47(1):163−168.
[16] 贾亚青,吴红,沈正生. 非色散原子荧光激发光源杂质检测方法与装置研究[J]. 计量学报,2017,38(4):504−506. Jia Y Q,Wu H,Shen Z S. Research on method and device of non-disperse atomic fluorescence exciting source impurity detection[J]. Acta Metrologica Sinica, 2017, 38(4):504−506.
[17] 赵宗生,赵小学,姜晓旭等. 原子荧光光谱测定土壤和水系沉积物中硒的干扰来源及消除方法[J]. 岩矿测试,2019,38(3):333−340. Zhao Z S,Zhao X X,Jiang X X,et al. Interference sources and elimination methods for the determination of selenium in soil and water sediment by atomic fluorescence spectrometry[J]. Rock and Mineral Analysis, 2019, 38(3):333−340.
[18] 苏文峰,李刚. 焙烧分离-氢化物发生-原子荧光光谱法测定土壤样品中微量硒[J]. 岩矿测试,2008,27(2):120−122. Su W F,Li G. Determination of trace selenium in soil samples by hydride generation atomic fluorescence spectrometry with baking separation[J]. Rock and Mineral Analysis, 2008, 27(2):120−122.
[19] 洪光辉,王晴晴,崔喜平,等. ICP-MS分析中的干扰及其消除研究进展[J]. 实验科学与技术,2021,19(3):14−21. Hong G H,Wang Q Q,Cui X P,et al. The development progress of interference and elimination with ICP-MS[J]. Experiment Science and Technology, 2021, 19(3):14−21.
[20] 白金峰,薄玮,张勤,等. 高分辨电感耦合等离子体质谱法测定地球化学样品中的36种元素[J]. 岩矿测试,2012,31(5):814−819. doi: 10.3969/j.issn.0254-5357.2012.05.010 Bai J F,Bo W,Zhang Q,et al. Determination of 36 elements in geochemical samples by high resolution inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2012, 31(5):814−819. doi: 10.3969/j.issn.0254-5357.2012.05.010
[21] 姚永刚,肖才锦,王平生,等. 嫦娥五号月壤中子活化分析研究[J]. 同位素,2022,35(1):70−74. doi: 10.7538/tws.2021.youxian.102 Yao Y G,Xiao C J,Wang P S,et al. Instrumental neutron activation analysis for Luanr samples returned by Chang’E-5[J]. Journal of Isotopes, 2022, 35(1):70−74. doi: 10.7538/tws.2021.youxian.102
[22] 姜怀坤,成学海,张文娟,等. 中子活化法测定地球化学样品中32种元素[J]. 理化检验(化学分册),2015,51(4):429−432. Jiang H K,Cheng X H,Zhang W J,et al. Determination of 32 elements in geochemistry samples by neutron activation analysis[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2015, 51(4):429−432.
[23] 鄢明才,史长义,顾铁新,等. 生物成分系列标准物质的研制[J]. 岩矿测试,2006,25(2):159−172. Yan M C,Shi C Y,Gu T X,et al. Preparation and certification of biological reference materials[J]. Rock and Mineral Analysis, 2006, 25(2):159−172.
[24] 刘瑱,马玲,时晓露,等. 石英岩化学成分分析标准物质研制[J]. 岩矿测试,2014,33(6):849−856. Liu Z,Ma L,Shi X L,et al. Preparation of quartzite reference materials for chemical composition analysis[J]. Rock and Mineral Analysis, 2014, 33(6):849−856.
[25] 洪飞,刘耀华,吕振生,等. 钛铁矿化学成分标准物质研制[J]. 岩矿测试,2014,33(1):67−73. doi: 10.3969/j.issn.0254-5357.2014.01.012 Hong F,Liu Y H,Lyu Z S,et al. Certified reference materials preparation of ilmenite chemical composition[J]. Rock and Mineral Analysis, 2014, 33(1):67−73. doi: 10.3969/j.issn.0254-5357.2014.01.012
[26] 许春雪,王亚平,张旭,等. 矽线石成分分析标准物质研制[J]. 岩矿测试,2017,36(4):396−404. Xu C X,Wang Y P,Zhang X,et al. Preparation of certified reference materials of sillimanite for chemical composition analysis[J]. Rock and Mineral Analysis, 2017, 36(4):396−404.
[27] 魏双,王家松,徐铁民,等. 海泡石化学成分分析标准物质研制[J]. 岩矿测试,2021,40(5):763−773. Wei S,Wang J S,Xu T M,et al. Preparation of sepiolite reference material for chemical composition analysis[J]. Rock and Mineral Analysis, 2021, 40(5):763−773.
[28] 洪飞,赵伟,刘耀华,等. 菱镁矿、蛇纹岩、碲金矿化学成分标准物质研制[J]. 山东国土资源,2018,34(5):95−101. Hong F,Zhao W,Liu Y H,et al. Preparation of chemical composition standard material of magnesite serpentine and tellurium gold deposit[J]. Shandong Land and Resources, 2018, 34(5):95−101.
[29] 董学林,熊玉祥,肖宇鹰,等. 高品位多金属矿石成分分析标准物质研制[J]. 资源环境与工程,2021,35(6):905−913. Dong X L,Xiong Y X,Xiao Y Y,et al. Development of standard material for composition analysis of high grade polymetallic ore[J]. Resources Environment & Engineering, 2021, 35(6):905−913.
[30] Tang M L,Fan B L,Yao L Y,et al. Preparation and certification of reference materials (GBW07397,GBW07398,GBW07399 and GBW07400) for selenium and other trace element mass fractions[J]. Geostandards and Geoanalytical Research, 2020, 44(2):375−384. doi: 10.1111/ggr.12311
[31] 颜茂弘,鲍琪儿,王祖荫,等. 岩石标准物质均匀性的XRF检查法[J]. 岩矿测试,1988,7(1):61−65. Yan M H,Bao Q E,Wang Z Y,et al. A study on homogeneity test of powdered rock reference materials by XRF method[J]. Rock and Mineral Analysis, 1988, 7(1):61−65.
[32] 茅祖兴,鲁豪东. X射线荧光光谱法检验标准物质的均匀性[J]. 光谱学与光谱分析,1991,11(3):62−65,39. Mao Z X,Lu H D. Testing homogeneity of certified reference materials by XRF[J]. Spectroscopy and Spectral Analysis, 1991, 11(3):62−65,39.
[33] 李国会,樊守忠. X射线荧光光谱法在标准物质均匀性检验中的应用[J]. 地质实验室,1995,11(1):40−43. Li G H,Fan S Z. Application of X-ray fluorescence method in test for homogeneity of reference materials[J]. Geological Laboratory, 1995, 11(1):40−43.
[34] 赵红坤,于阗,肖志博,等. 粉末压片-X射线荧光光谱法在地球化学标准物质均匀性检验中的应用研究[J]. 光谱学与光谱分析,2021,41(3):755−762. Zhao H K,Yu T,Xiao Z B,et al. Homogeneity test of geochemical certified reference materials by X-ray fluorescence spectrometry with pressed-powder pellets[J]. Spectroscopy and Spectral Analysis, 2021, 41(3):755−762.
[35] 赵红坤,郝亚波,田有国,等. 熔融制样-X射线荧光光谱法测定小取样量地球化学样品中的主量元素[J]. 物探与化探,2020,44(4):778−783. Zhao H K,Hao Y B,Tian Y G,et al. The application of melting sample preparation-X ray fluorescence spectrometry to measuring a small amount of soil certified reference material[J]. Geophysical and Geochemical Exploration, 2020, 44(4):778−783.
[36] 杨卓孚. 岩矿石地质标准物质研制中的几个问题[J]. 化工矿产地质,1996(3):90−94, 101. Yang Z F. Some problems facing the preparation of standard samples for identification of rocks and ores[J]. Geology of Chemical Minerals, 1996(3):90−94, 101.
[37] 鄢明才. 地球化学标准物质标准值不确定度估算探讨[J]. 岩矿测试,2001,20(4):287−293. doi: 10.3969/j.issn.0254-5357.2001.04.011 Yan M C. Discussion on estimation of uncertainty of certified values from geochemical standard reference materials[J]. Rock and Mineral Analysis, 2001, 20(4):287−293. doi: 10.3969/j.issn.0254-5357.2001.04.011
[38] 杨佳佳,孙玮琳,徐学敏,等. 高演化烃源岩岩石热解和总有机碳标准物质研制[J]. 地质学报,2020,94(11):3515−3522. doi: 10.3969/j.issn.0001-5717.2020.11.023 Yang J J,Sun W L,Xu X M,et al. Preparation of certified reference materials for rock-eval and total organic carbon of postmature source rock[J]. Acta Geologica Sinica, 2020, 94(11):3515−3522. doi: 10.3969/j.issn.0001-5717.2020.11.023
[39] 刘妹,顾铁新,潘含江,等. 泛滥平原沉积物标准物质研制[J]. 岩矿测试,2018,37(5):558−571. Liu M,Gu T X,Pan H J,et al. Preparation of seven certified reference materials for floodplain sediments[J]. Rock and Mineral Analysis, 2018, 37(5):558−571.
[40] 陈宗定,许春雪,刘贵磊,等. 6种南方酸性土壤重金属元素氯化钙可提取态标准物质研制[J]. 冶金分析,2021,41(10):12−22. Chen Z D,Xu C X,Liu G L,et al. Development of six extractable certified reference materials of calcium chloride for analysis of heavy metals in southern acid soil[J]. Metallurgical Analysis, 2021, 41(10):12−22.
[41] 王干珍,彭君,李力,等. 锰矿石成分分析标准物质研制[J]. 岩矿测试,2021,40(6):1−10. Wang G Z,Peng J,Li L,et al. Preparation of standard material for composition analysis of manganese ore[J]. Rock and Mineral Analysis, 2021, 40(6):1−10.
[42] 孟凡敏,阚莹. 标准物质稳定性不确定度的评估[J]. 计量学报,2010,31(5A):112−114. Meng F M,Kan Y. Evaluatian of the uncertainty contribution of instability for reference material[J]. Acta Metrologica Sinica, 2010, 31(5A):112−114.
[43] 汪斌,卢晓华,王茜. 质量控制图在标准物质稳定性评估中的应用[J]. 化学试剂,2019,41(5):475−477. Wang B,Lu X H,Wang Q. Application of control chart for assessment of stability of reference materials[J]. Chemical Reagents, 2019, 41(5):475−477.
-
期刊类型引用(2)
1. 王大钊,梁丰,王艳军,李凯旋,刘家军,冷成彪. 斑岩系统中低熔点亲铜元素与稀贵金属赋存状态和富集机制研究:以藏东南普朗超大型斑岩Cu-Au矿床为例. 岩石学报. 2025(02): 621-641 . 百度学术
2. 刘家军,王大钊,翟德高,高燊,郑波,王佳新,张斌,王冠智,王泽琳,汪林炜,翁国明. 低熔点亲铜元素(LMCE)在金成矿中的作用及促进金富集的机理. 矿床地质. 2024(04): 712-734 . 百度学术
其他类型引用(0)