• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

硼同位素分析测试技术研究进展

冯林秀, 李正辉, 曹秋香, 田世洪, 黄文夏, 王田

冯林秀, 李正辉, 曹秋香, 田世洪, 黄文夏, 王田. 硼同位素分析测试技术研究进展[J]. 岩矿测试, 2023, 42(1): 16-38. DOI: 10.15898/j.cnki.11-2131/td.202209140170
引用本文: 冯林秀, 李正辉, 曹秋香, 田世洪, 黄文夏, 王田. 硼同位素分析测试技术研究进展[J]. 岩矿测试, 2023, 42(1): 16-38. DOI: 10.15898/j.cnki.11-2131/td.202209140170
FENG Linxiu, LI Zhenghui, CAO Qiuxiang, TIAN Shihong, HUANG Wenxia, WANG Tian. A Review on the Development of Boron Isotope Analytical Techniques[J]. Rock and Mineral Analysis, 2023, 42(1): 16-38. DOI: 10.15898/j.cnki.11-2131/td.202209140170
Citation: FENG Linxiu, LI Zhenghui, CAO Qiuxiang, TIAN Shihong, HUANG Wenxia, WANG Tian. A Review on the Development of Boron Isotope Analytical Techniques[J]. Rock and Mineral Analysis, 2023, 42(1): 16-38. DOI: 10.15898/j.cnki.11-2131/td.202209140170

硼同位素分析测试技术研究进展

基金项目: 

国家重点研发计划项目“战略性矿产资源开发利用”专项“我国西部伟晶岩型锂等稀有金属成矿规律与勘查技术项目” 2021YFC2901900

“北喜马拉雅锂等稀有金属找矿预测与勘查示范课题” 2021YFC2901903

东华理工大学博士启动基金项目 DHBK2019306

东华理工大学博士启动基金项目 DHBK2019292

中国铀业有限公司-东华理工大学核资源与环境国家重点实验室联合创新基金项目 2022NRE-LH-05

自然资源部深地科学与探测技术实验室开放课题 SinoProbe Lab 202217

江西省“双千计划”创新领军人才长期项目 2020101003

江西省自然科学基金重点项目 20224ACB203011

东华理工大学高层次人才引进配套经费 1410000874

详细信息
    作者简介:

    冯林秀,硕士研究生,主要从事同位素地球化学研究。E-mail:13734035074@163.com

    通讯作者:

    李正辉,博士,讲师,主要从事非传统稳定同位素研究。E-mail:zhunjingying@163.com

  • 中图分类号: O657.63

A Review on the Development of Boron Isotope Analytical Techniques

  • 摘要:

    硼(B)是一个质量较轻的流体活动性元素。它有2个稳定同位素:10B和11B,两者之间相对质量差较大,导致自然界显著的硼同位素分馏。因此,硼同位素作为强有力的非传统稳定同位素示踪工具,在化学、环境、生物、地球及行星科学等研究领域具有广泛的应用。近二十年来,国内外硼同位素分析测试技术不断改进并取得了诸多重要进展。然而,获取高质量硼同位素数据,在样品消解、分离纯化以及质谱测试三个主要环节中仍然存在很多挑战。因为硼具有易挥发性及其在不同pH值环境中因配位不同导致同位素分馏,样品消解和分离纯化对硼同位素准确测量有很大影响。样品消解法主要有高温水解法、酸溶法、碱熔法和灰化法,其中酸溶法与碱熔法是最常用的方法。分离纯化法主要包括离子交换法、硼酸甲酯蒸馏法和微升华法。这些样品前处理方法各有利弊。质谱测试方法主要有两类:一类是溶液法,即热电离质谱法(TIMS)或多接收电感耦合等离子体质谱法(MC-ICP-MS);另一类是微区原位分析法,即二次离子质谱法(SIMS)或激光剥蚀法(LA)-MC-ICP-MS。不同的测试方法对样品前处理要求不同:溶液法要求去除基质;微区原位分析法要求样品与标样的成分匹配。这些测试方法也存在不同技术挑战:TIMS分析过程中容易产生同位素分馏。而SIMS和LA-MC-ICP-MS分析过程中存在缺少标准样品、样品表面污染、低含量样品精度有限及高含量样品重现性差等问题。基于MC-ICP-MS测量低含量样品中硼同位素的独特优势,本文深入探讨了基体效应、记忆效应和质量歧视效应三方面的现存挑战,通过梳理文献和数据对比,在总结现有硼同位素地球化学研究方法的基础上提出一些分析测试技术发展方向的建议。

    要点

    (1) 硅酸盐样品消解有两种常用方法:酸溶法和碱熔法。酸溶法本底低,但是容易引起硼同位素分馏。碱熔法本底高,本底可以校正,但是需要昂贵的坩埚。

    (2) 分离纯化硼主要有两种方法:离子交换法和微升华法。离子交换法可高效、准确提纯硼,但是会有基体效应。微升华法不会产生基体效应,但是该方法很难建立,操作不当容易造成硼同位素分馏。

    (3) MC-ICP-MS是目前最常用和准确测定硼同位素的方法,但是面临着三方面挑战:基体效应、记忆效应、质量歧视效应。

    HIGHLIGHTS

    (1) Two digestion methods have been applied for silicate sample dissolution regarding boron (B), including acid dissolution, and alkali fusion. Acid dissolution has low blank levels but could cause B isotope fractionation. Alkali fusion has higher blank levels that can be corrected but require expensive crucibles.

    (2) Two principal methods currently used to purify B are ion exchange and microsublimation. The ion exchange method is efficient and produces accurate results but could have matrix effects. The microsublimation method is difficult to set up and could cause B isotope fractionation if done incorrectly, but it has no matrix effect.

    (3) MC-ICP-MS is the most versatile and precise method for B isotopic analysis, which has the challenges of matrix effect, memory effect, and mass bias.

  • 硼(B)的原子序数为5,是自然界较轻的非金属元素。硼有2个稳定同位素10B和11B,丰度分别为19.9%和80.1%。硼同位素组成的表达方式:δ11B=[(11B/10B)样品/(11B/10B)标准-1]×1000‰。其中,标准为美国国家标准局(NIST)的SRM951硼酸标样,其推荐11B/10B比值为4.04362±0.00137[1]。不同地质储库δ11B的变化范围为-70‰~+75‰(图 1)[2-6]。因此,硼同位素已广泛应用于化学、环境、生物、地球及行星科学等研究领域,例如星云形成过程和宇宙事件[7]、地表风化过程[7-13]、壳幔演化和板块俯冲作用过程[7, 14-25]、古气候和古海洋的重建[26-34]、成矿作用和矿床成因研究[35-39]、地下水和环境地球化学研究[40-45]

    图  1  不同地质储库的硼同位素组成
    据Marschall等[2];Xiao等[3];Gaillardet等[4];李银川等[5];DeHoog等[6]修改。
    Figure  1.  Boron isotopic composition of various geological reservoirs. Modified after Marschall, et al[2]; Xiao, et al[3]; Gaillardet, et al[4]; Li, et al[5]; De Hoog, et al[6].

    目前,硼同位素分析方法主要有两类:一类是溶液整体分析法,分为正热电离质谱法(P-TIMS)、负热电离质谱法(N-TIMS)及多接收电感耦合等离子体质谱法(MC-ICP-MS);另一类是微区原位分析法,分为二次离子质谱法(SIMS)和激光剥蚀多接收电感耦合等离子体质谱法(LA-MC-ICP-MS)。获取高精度的硼同位素数据还面临着巨大的挑战:①TIMS分析过程中容易产生较大幅度、难以校正的同位素分馏。需要将硼转化成分子量较大的化合物才能通过热电离质谱进行测量;②MC-ICP-MS测试通过标样-样品交叉法(SSB)进行校正。但样品需要溶解,且样品基体需要通过柱化学方法去除。由于硼在酸性介质中易挥发,使得样品前处理流程存在硼损失而不能保证回收率,而且还使得超净实验室面临普遍存在的硼污染。MC-ICP-MS还存在着严重的记忆效应[46];③SIMS以及LA-MC-ICP-MS分析的挑战来自于:(a)缺少基体匹配的标准样品;(b)样品表面污染;(c)低含量样品测定精度有限,而高含量样品重现性差[47]

    吕苑苑等[48]对硼同位素分析方法进行了阶段性总结。近年来,硼同位素分析测试技术在不断改进并取得重要进展(图 2),特别是微升华法提纯硼及高精度MC-ICP-MS测定硼同位素[46-47]。本文在前人工作基础上,综述了样品消解、分离纯化和质谱测定三个主要环节的技术进展及其存在的问题,并对提纯硼的离子交换法、微升华法和目前主流的高精度MC-ICP-MS法测定硼同位素存在的基体效应、记忆效应、质量歧视效应三个主要挑战及相应的改进技术进行了详细介绍,在此基础上提出一些分析测试技术发展方向。

    图  2  硼同位素的分析测试方法总结(样品量和测试精度,95%置信度)
    据Marschall等[49](SIMS); Fietzke等[50](LA-MC-ICP-MS); Foster等[51], Ni等[52](TE-NTIMS); Misra等[53](ICP-MS); Hemming等[54], Kasemann等[55](N-TIMS);Foster等[56](MC-ICP-MS); He等[57], Trotter等[58](P-TIMS)修改。
    Figure  2.  Summary of sample amounts and reported precision (at 95% confidence) in the commonly used techniques for boron isotope analysis. Modified after Marschall, et al[49](SIMS); Fietzke, et al[50](LA-MC-ICP-MS); Foster, et al[51] and Ni, et al[52](TE-NTIMS); Misra, et al[53](ICP-MS); Hemming, et al[54] and Kasemann, et al[55](N-TIMS); Foster, et al[56](MC-ICP-MS); He, et al[57] and Trotter, et al[58](P-TIMS).

    固体样品首先需要溶解,然后从溶液基体中提纯硼,以减少基体效应、同质异位素干扰并增强电离作用[46, 59]

    样品消解方法主要有4种:高温水解法、酸溶法、碱熔法和灰化法,其中酸溶法与碱熔法是最常用的方法。本文总结了这些方法所用的试剂以及实验条件等方面细节。

    高温水解法应用于富硼样品的消解,其原理是利用硼的挥发性将硼提取到流经熔融样品上方的蒸汽流中[60-61]。具体操作是:将粉末或碎片状样品放在一石英管中的铂舟中,再将石英管置入高温炉,在1400℃温度下通过水蒸气,样品中硼将会被水蒸汽提取[60]。如果样品中含有较高浓度的挥发性组分如硫,就需要对冷凝物进一步纯化,因为挥发性组分有时会对后续测试产生影响。

    高温水解法提取的时间取决于样品类型和用量。在1400℃条件下,1h能提取0.10g合成玻璃中超过98%的硼,而提取7.0g海洋玄武岩中的硼需要8h[60]。因此,高温水解法很耗时间,适合于富硼的样品(如:电气石)。而大多数铝硅酸盐矿物硼含量低于50μg/g,质谱测定需要1~10μg硼,所以需要处理几克样品。因为处理起来很耗时,而且用的试剂量太大,工序繁杂势必增加污染,水解过程中产生Na、Cl和Si等杂质,这些杂质会干扰硼的离子化进程,因而高温水解法不适用于处理低硼含量样品[62]

    酸溶法即用酸溶解固体样品,是分析实验中最常用的方法。常用的酸有盐酸、硝酸、氢氟酸、高氯酸。不同样品需要不同类型的酸。例如,碳酸盐样品用硝酸或盐酸。硅酸盐样品使用高纯度的氢氟酸和硝酸。对于特别难熔或富含有机物的固体样品则可考虑用高氯酸溶解。硼在酸性介质溶液中易挥发,可能导致溶液中硼的丢失,加入甘露醇以形成稳定的硼-甘露醇复合物来抑制硼的挥发,从而降低硼同位素分馏[63-64]。在使用热电离同位素质谱(TIMS)测定δ11B值时,NO3-会产生CNO-,形成同质异位素干扰[65-66],所以使用TIMS方法测定硼同位素组成时需要避免使用硝酸。

    碱熔法是将样品与碱性熔剂按照一定比例混合在高温下发生熔融的方法[8, 67-70]。使用熔剂有:K2CO3、Na2CO3、NaOH、KOH、Na2O2。在使用Na2CO3或K2CO3作熔剂时,熔剂与样品的质量比为2∶1~7∶1[67]或5∶1[68],熔样温度在1000℃左右(Na2CO3熔点为850℃,K2CO3熔点为891℃),样品消解时使用铂坩埚。采用NaOH或KOH作熔剂时,熔剂与样品的质量比为5∶1,而且熔样温度较低,仅需500℃,但是NaOH和KOH对铂坩埚有侵蚀作用,以它们作熔剂时,应避免使用铂坩埚。采用Na2O2作熔剂时,样品与熔剂的质量比为1∶4,熔样温度在490℃,使用玻璃碳坩埚[71]。主要消解方法详见表 1

    表  1  地质样品硼同位素测定的主要消解方法
    Table  1.  The main digestion methods for boron isotope determination in geological samples
    酸的种类 样品类型 参考文献
    酸溶法 HCl 碳酸盐 Wei等[26],Foster等[56],Wei等[72]
    HNO3 碳酸盐 Marschall等[47],Buisson等[73]
    HF 硅酸盐 Makishima等[74],Wei等[75],Krolikowska-Ciaglo等[76]
    HF+HNO3 硅酸盐 Wei等[75]
    HF+HCl 硅酸盐 Nakamura等[63],Pi等[77]
    碱熔法 样品消解熔剂 坩埚类型 熔样温度(℃) 参考文献
    K2CO3 铂钇坩埚 1000 Tonarini等[68]
    K2CO3 铂金坩埚 950 晏雄等[78]
    Na2CO3 铂坩埚 900 Musashi等[67],Bhushan等[79]
    Na2CO3+K2CO3 铂坩埚 850 王刚等[80]
    NaOH 镍坩埚 500 Musashi等[67]
    Na2O2 玻璃碳坩埚 490 Cai等[71]
    下载: 导出CSV 
    | 显示表格

    目前,碱熔法在消解岩石样品方面,应用最为广泛。其优点是快速处理数量较多的样品,缺点是样品量大、本底较高、温度较高、铂坩埚价格昂贵、高纯的助熔剂很难制备[62],主要适用于各种(铝)硅酸盐岩石和含硼的铝硅酸盐矿物(电气石)的消解、熔融。

    灰化法主要用于消解植物样品,常采用干灰化法、湿灰化法和微波消解法。

    干灰化法是将生物样品置于坩埚里,放入马弗炉中进行灰化,最后将灰分用酸溶解[81-82]。坩埚材质为石英或铂坩埚,马弗炉升温到200℃保持10min,重复三次,600℃保持2h[83]。干灰化法能够定量移除有机质,未使用试剂,能避免引起硼空白以及同质异位素干扰[84]。湿灰化法则是将硝酸、盐酸或高氯酸等强酸与植物样品混合置于消解容器内进行加热、消解样品[85]。湿灰化法应避免使用含硼量较高的消解容器,以保持全过程低空白。微波消解法将植物样品与硝酸、盐酸溶液混合,放入聚四氟乙烯(PFA)微波消解罐中,属于内部加热方式,能使样品迅速升温受热均匀,要求控制好内部温度、压力和功率[86-88]。微波消解法的优势是效率高且酸的用量少,能有效地避免样品的交叉污染和引入硼的本底。

    在进行硼同位素测试前,需要对样品进行硼分离纯化,将硼与杂质元素分离,避免杂质元素对硼同位素测试产生影响,同时也可以使质谱仪保持良好的稳定状态。目前,硼的分离纯化方法有三种:硼酸甲酯蒸馏法、离子交换法和微升华法。硼酸甲酯蒸馏法是利用硼酸甲酯的挥发性将硼从更难熔的相中分离出来的方法,吕苑苑等[48]对该方法作了详细介绍。目前,离子交换法是硼分离纯化最有效的方法,而微升华法是高效、简单分离提纯硼的方法。因此,以下对这两种方法进行详细介绍,总结和对比了硼分离纯化的化学流程。

    离子交换法主要有混合树脂法[62]、硼特效树脂法[63, 68, 89-92]、混合树脂-硼特效树脂相结合的两步法[80, 75]以及阴离子树脂法[75]

    (1) 混合树脂法

    混合树脂法是将阴离子树脂与阳离子树脂混合,来实现硼的分离纯化[62]。肖应凯等[93]使用上海正一号强酸性阳离子交换树脂(6mol/L盐酸再生)和德国产Ion Exchange Ⅱ型弱碱性阴离子交换树脂(10% NaHCO3再生),采用动态和静态交换相结合的方法分离硼,其回收率达到98%以上。最初的阴阳离子交换树脂只能一次性使用,Wang等[94]改进了树脂的使用方法,使用后的混合树脂可用网筛筛分后再生,达到了可再生使用的目的。

    氢氟酸消解岩石样品,会引入少量主要阳离子杂质。因此,Nakamura等[63]使用阳离子树脂AG50W-X12和阴离子树脂AG1-X14来去除样品中阴阳杂质离子,硼回收率也可以达到~100%。这种方法的优点是试剂用量小,速度快,树脂可以反复使用;缺点是由于硼在酸性介质中具有很大的挥发性,所以每个步骤都需要小心谨慎,以避免硼组分丢失。碱熔法用K2CO3作为助熔剂,引入了大量的钾离子,可用阳离子交换树脂AG50W-X12除去[70]

    (2) 硼特效树脂法

    Amberlite IRA 743树脂是当今最常用的硼特效树脂[95-96],由疏水性苯乙烯骨架和叔胺基团组成,能从碱性溶液中强烈地吸附硼酸根阴离子[97-100]。该树脂广泛应用于各种样品中硼纯化分离过程[59, 101-102]。它可单独使用[102-104],可与阳离子交换树脂AG50W-X8[8, 68, 70, 81, 105-106]或者AG50W-X12联合使用[69, 87],也可与混合树脂[77-78]联合使用,还可与其他分离方法(微升华法)联合使用[8]

    Amberlite IRA 743硼特效树脂是一种阴离子树脂,能从碱性溶液中吸附硼。由酸溶法前处理的样品产生Ca2+、Fe3+、Mg2+、Al3+等金属阳离子,它们在碱性条件下,会与OH-结合,形成能够强烈吸附硼的氢氧化物沉淀[78, 107-108],造成硼的损失以及不容忽略的硼同位素分馏。可以采用两步或者三步离子法避免沉淀产生[75, 107]。或者加入适量EDTA-2Na饱和溶液,再将样品溶液调成碱性,能有效地抑制沉淀产生[78]

    从Amberlite IRA 743硼特效树脂中定量洗脱硼,通常使用0.1~0.5mol/L硝酸。洗脱所有硼所需的硝酸体积取决于其摩尔浓度、树脂筛孔尺寸、柱体积和柱几何形状。由于硼在酸性溶液中具有挥发性,通常避免使用干燥步骤进一步浓缩洗脱液。因此,离子交换柱要进行优化设计,保证柱子可以用足够低量的硝酸回收硼,从而使最终硼浓度不会被稀释到超过质谱精确测量所需的浓度[56, 98]

    离子交换树脂含有机质,进行离子交换法可能将树脂中的有机物引入纯化样品。有机质的存在对于后期TIMS测定会产生干扰[45],对于MC-ICP-MS测定则无影响。

    (3) 阴离子树脂法

    Wei等[72]开发了使用Bio-Rad AG MP-1强阴离子交换树脂的单柱流程,用于分离经过酸溶解的样品。具体做法是:200~400目的0.6g AG MP-1树脂加入到Eichrom公司生产的10mL聚丙烯分离柱中。树脂首先用5mL的Milli-Q水清洗3次,然后用3mL的24mol/L氢氟酸清洗4次,之后用3mL Milli-Q水清洗4次,最后再用2mL 3mol/L氢氟酸水清洗1次,就可以用于硼的离子交换纯化[72, 109]。该方法能有效地分离纯化硼,去除基体元素,降低MC-ICP-MS测定过程中的基体效应。然而,在化学过程中需要大量氢氟酸(浓度24mol/L,每个样品约24mL),操作危险、繁琐。

    2001年,Gaillardet等[110]受到Birck等[111]分离纯化Os的方法启发,首次设计了一套微升华硼的装置和方法。微升华法的依据是在酸性条件下,溶液中的硼主要以H3BO3形式存在,在加热条件下硼易挥发。具体操作为:将少量待分析的含硼溶液放入5mL Savillex # 24号锥形烧杯的盖子中,将烧杯倒置,用铝箔纸包裹好后放置在电热板上进行加热(约为70~80℃,持续12h)。利用酸性条件下硼挥发特性,使硼元素蒸发到上方尖端处,而其他元素继续留在盖子上。等样品蒸发完毕,自然状态下冷却杯子,然后将上方尖端处蒸发冷凝后的液体取出,待测。

    (1) 微升华实验

    为了高效地纯化分离硼,避免硼同位素分馏和损失,学者们对微升华法实验条件作了相应尝试。就微升华装置的加热温度、持续时间而言,最初Gaillardet等[110]推荐在70℃下,将微升华装置加热12~14h。Wang等[112]将微升华法实验温度提高到98℃,他们认为自制电炉上有热量损失,且使用涂层石墨架代替铝箔。Misra等[53]将实验温度调整为95℃,持续加热15~18h。Roux等[87]尝试将温度控制在110℃,将微升华装置放置在电热板上加热3h。Raitzsch等[113]则在100℃下,将微升华装置在电热板上加热24h。Xiao等[81]在90℃温度下加热12h,或110℃下加热4h。最初微升华装置使用电热板加热,难以保证样品均匀加热。为确保样品均匀加热,改进为孔或消解块[112, 114]。初始的微升华装置能够处理的最大样品体积仅为0.05mL[80, 112],后期经过改造,可以扩大到0.5mL[87]、1mL[115]。针对是否加入甘露醇以避免硼损失问题,Gaillardet等[110]结果表明,在60~65℃下,缓慢蒸发10~12h,可实现硼完全回收,没有观察到硼同位素分馏和硼损失,并认为甘露醇的加入对于这种条件下微升华过程是不必要的。如果将干燥的残余物加热超过1h或者将更高的温度用于硼溶液升华,则观察到硼的损失,这种条件下有必要添加甘露醇以形成非挥发性硼酯的固体基体来避免硼损失[90]

    微升华法可以单独使用,也可以与离子交换法结合使用。微升华法已应用于处理富含有机质溶液[110]、岩石[77]、碳酸盐[53, 112]、河水[98]、地下水、海水[53, 110, 116]、珊瑚和有孔虫[116-117]、植物[81, 87]等类型的样品[77, 112, 116]

    与离子交换法一样,如果硼回收不完全,可能会发生硼同位素分馏[52, 109, 111]。碳酸盐样品的回收率可以通过分析装载在盖子上物质的B/Ca比率以及最终馏出物和残余物的硼浓度来确定[53, 110, 112](图 3)。

    图  3  微升华实验装置图
    a— “微升华”技术提纯硼,据Birck等[111]、Wang等[112]、Pi等[77];b—0.5mL微升华装置,据Roux等[87];c—3mL圆柱形容器装置,据肖军等[118]修改;d—0.5mL双层装置,据Wang等[115]修改;e—1mL双瓶装置,据Wang等[115]修改;f—均匀受热装置,据Liu等[116]修改。
    Figure  3.  Devices designed and applied for boron microsublimation. a—"microsublimation" technology purifies boron; b-0.5mL microsublimation devices; c—3mL cylindrical container devices; d—0.5mL double-layer device; e—1mL two-bottle device; f—uniform heating and cooling device. Modified after Birck, et al[111]; Wang, et al[112]; Pi, et al[77]; Roux, et al[87]; Xiao, et al[118]; Wang, et al[115]; Liu, et al[116].

    (2) 微升华法的优缺点

    微升华法的优势是高效去除基体、操作简单、过程空白低(图 4)、高通量和定量回收以及劳动强度成本低[119]。微升华法可以避免通过离子交换法将有机残留物引入纯化样品。缺点是目前最多只能蒸发1mL样品[115]。再多则会超过上方尖型处的容量,使样品会继续反流到盖子中,达不到分离的效果。其对容器的密封性要求严格,若密闭不严,部分硼蒸发缺失会造成同位素分馏,甚至硼完全损失[53, 110, 112]。由于测试的时候一般要求最后样品硼浓度在100μg/L,需要3mL,因此,要求原始样品硼浓度要高于3μg/mL。但自然界液体样品,主要是河水、井水、雨水, 其硼浓度多是ng/g级的,因此微升华法只适合高硼浓度样品。

    图  4  离子交换法和微升华法分离纯化硼的过程空白污染对比图
    据Buisson等[73]修改。
    Figure  4.  Comparisons of boron procedural blank contamination between ion exchange chromatography and micro-sublimation. Modified after Buisson, et al[73].

    微升华与离子交换法的化学流程对比见表 2

    表  2  硼分离纯化的化学流程对比
    Table  2.  Comparison of chemistric purification procedure of boron
    分离纯化方法 第1步 第2步 第3步 参考文献
    离子交换法 硼特效树脂 吕苑苑[103]
    硼特效树脂 AG50W-X8阳离子树脂 - Tonarini等[68]
    硼特效树脂 上海正一号阳离子树脂和德国产弱碱性阴离子交换树脂 - 王刚等[80]
    Dowex 50W-X8阳离子树脂+ Ion exchangeⅡ阴离子树脂 硼特效树脂 Dowex 50W-X8阳离子树脂+ Ion exchange Ⅱ阴离子树脂 Wei等[72]
    AG50W-X8阳离子树脂 硼特效树脂 Ion-exchanger Ⅱ与AG50W-X8组成的阴阳离子混合树脂 张艳灵等[107]
    AG50W-X12阳离子树脂 硼特效树脂 - Roux等[69]
    AG50W-X8阳离子树脂 硼特效树脂 - Liu等[106]
    微升华法 微升华 - - Pi等[77],He等[117]
    硼特效树脂 阳离子树脂AG50W-X8 微升华 Chetelat等[70],Lemarchand等[8]
    AG50W-X12阳离子树脂 微升华 - Roux等[87]
    阳离子树脂AG50W-X8 微升华 - Roux等[69]
    下载: 导出CSV 
    | 显示表格

    硼同位素质谱测定技术主要有TIMS、MC-ICP-MS、SIMS和LA-MC-ICP-MS。其中,前两者上机测试样品为溶液,后两者则是固体样品。本文在样品分离纯化、样品量和分析精度方面对以上4种质谱技术进行了详细的总结和概括。

    TIMS是较为传统的测定方法,可分为P-TIMS和N-TIMS。P-TIMS法检测离子为Na2BO2+、Rb2BO2+、Cs2BO2+正离子,优点是方法成熟、稳定且精度高,但要求样品纯度高,所需硼量较大。而N-TIMS法,硼同位素则以BO2-负离子形式测定,优点是不需要从样品基体中化学分离硼元素。

    P-TIMS常采用Na2BO2+、Rb2BO2+或Cs2BO2+作为检测离子测定样品中硼同位素的组成,该方法最先适用于高精度地质样品的硼同位素分析[120]。最初检测离子是Na2BO2+,由于该离子的质量数较低(Na210BO2+和Na211BO2+质量数分别为88和89),相对质量差较大,同位素分馏现象比较明显,所以精度较低,仅为±2‰[121]。为了获取好的精度,Spivack等[60]改用测定质量数大的Cs2BO2+离子(Cs210BO2+质量数为308,Cs211BO2+质量数为309)。大的分子质量数降低由仪器引起的同位素分馏,该方法精度提高到约为±0.25‰(95%的置信度[117])。早期P-TIMS法的样品量相对较大(5000ng[60]),这是由于这些重的碱-硼酸盐多原子离子产率相对较低,质量数为308和309的空间间隔紧密,需要采用动态峰跳扫模式。后来人们在样品量和精度方面作了一系列改进。1988年Xiao等[122]采用Cs2BO2+离子方法实现了硼同位素组成的高精度测定,首次在涂样过程中使用石墨悬浮液,石墨的存在使Cs2BO2+离子发射的灵敏度增加了100倍,能在数小时内获得稳定离子流,没有观察到明显同位素分馏,对NBS SRM951硼酸11B/10B比值测定精度达到0.004%。Nakano等[123]进一步提高了11B/10B比值测定精度,并减少了所需样品量,因此对于小至20ng硼的样品量[57, 124],实现比值精度为0.032%(在95%的置信度下)。这些最新的方法为使用P-TIMS获得小样品的准确数据提供了可能性。目前,用P-TIMS进行硼的质谱测定,对于前处理纯化分离的要求高。通常用到的前处理包括离子交换、溶剂萃取以及微升华等[118]。常用Cs2BO2+离子作为检测离子,测试精度高,约为±0.1‰~0.4‰,被认为是测定硼同位素组成的最精确的方法。

    N-TIMS法测量硼是1983年由Zeininger和Heumann[125]开发的。该方法通过测定负离子BO2-(10B16O2-11B16O2-质量数分别为42和43)实现对硼同位素的测定。当使用金属离子(La3+、Na+、Cs+、Ca2+、Ba2+)的硝酸盐或氢氧化物作为发射剂时,具有非常高的离子产率。N-TIMS灵敏度极高,可以测定硼含量为1ng甚至更少(150pg)的样品,分析精度为0.4‰~0.7‰[126-130]。该方法对样品的前处理要求不高,海水、高盐卤水、地下水和碳酸钙等天然物质可以不经纯化过程而直接进行测试[59, 126, 131]

    然而,该方法的不足之处主要有仪器引起的质量分馏较大以及同质异位素17O和CNO-干扰。10B17O16O-的质量数为43,会对11B16O16O-的离子峰形成干扰,使测定值比实际值偏大,需要进行氧的校正。丰度较大的12C14N16O-的质量数为42,会与10B16O16O-的离子峰重叠,使测得的11B/10B比值偏小[132]。实验室常用高纯双氧水来消解CNO混合物及其他有机物[133]。使用二次离子倍增器得到m/z=26(CN-)的信号来检测CNO-的干扰。精确校正仪器引起的质量分馏方法有:①使用线性回归来校正与电离相关的随时间变化的分馏[127];该方法的质量分馏呈明显的时间相关性。②采用全蒸发(TE)技术,由于采用随时间对各离子流积分的方式,因此可被认为最大程度地消除了质量歧视[134]。用全蒸发-负热电离质谱法(TE-NTIMS),整个样品被电离,并且11B/10B比率由总11B测量值/总10B测量值确定[51, 116]。Liu等[116]利用TE-TIMS测定了内部珊瑚标样的δ11B值,仅用了1ng样品,精度为±1.17‰。③在测定过程中严格地控制灯丝温度,特别是在灯丝预热和数据采集期间,会减少仪器质量分馏程度,并提高分析的精度[55]。另外,未分离干净的杂质元素(如Fe、Si、C)会对硼的离子化形成干扰[59]。当N-TIMS法用于分析碳酸盐硼同位素时准确度较差,其测定结果与MC-ICP-MS测定结果相比存在0.5‰~2.7‰的偏差,这种偏差可能与样品基体相关[55-56, 130]

    MC-ICP-MS方法可以用来直接测试柱化学分离出来的硼溶液的11B/10B比值,该分析方法具有灵敏度高、精度较高和时间消耗较少、样品引入测试仪器相对较简单等优点。更重要的是,该方法不会受到有机物质的同位素干扰,从而使得样品化学前处理过程更容易。但是MC-ICP-MS测定硼同位素过程中仍然存在基体效应、记忆效应、质量歧视效应三个主要问题。

    MC-ICP-MS在测定硼同位素过程中主要存在两种干扰:光谱干扰和非光谱干扰[98]。光谱干扰即以氩气为载气时,存在40Ar4+10B的干扰[135-136]。非光谱干扰为质量大的基体元素对质量小的硼元素产生抑制效应[137]。Chen等[138]指出,不同类型和浓度的酸(盐酸、硝酸、氢氟酸)作为载体对硼同位素MC-ICP-MS测试没有显著的影响。但是,样品中杂质的成分和浓度会带来非光谱干扰。学者们研究了各种元素(钙、镁、硅、钠)的基体效应[77, 135](图 5)。其中随着Ca2+离子浓度的增加,NIST SRM951标样溶液的硼同位素比值有逐步降低的趋势[135],但是也有研究发现了相反的趋势(吕苑苑等[103],见图 6)。据吕苑苑等[103]修改。

    图  5  硼同位素掺杂实验
    据Guerrot等[135]、Pi等[77]修改。
    Figure  5.  Matrix-artifacts may have occurred during the doping experiments on boron isotopic measurements by MC-ICP-MS. Modified after Guerrot, et al[135] and Pi, et al[77].
    图  6  Ca2+离子基体效应实验
    Figure  6.  Matrix effect experiments of Ca2+. Modified after Lyu, et al[103].

    为了去除这些基体效应对硼同位素测量的影响,大部分研究除了采用硼特效树脂分离之外,还需要进行阳离子树脂分离。Cai等[71]采用的过氧化钠碱熔法在这个问题上有一定的优势,因为在强碱性环境下大部分阳离子以氢氧化物形式沉淀,这样可以通过离心的方式与硼富集的上清液分离。所以,Cai等[71]仅需要使用硼特效树脂实现一步分离纯化硼。为了确定洗脱液中的Na和Si对硼同位素ICP-MS的测量没有影响, 他们测量了洗脱液中Na和Si的含量。通常,洗脱液中的钠硼比(Na/B)小于5,这意味着对于50ng/g的硼溶液,Na的含量高达0.25μg/g。多项研究表明,Na对硼同位素测量没有明显的基体效应[102, 139]。所以,碱熔法引入的钠不会影响硼同位素比值的测量。在不进行额外稀释的情况下,从流纹岩(JR-2)到黏土(B-8)等地质标样的洗脱液产生的硅硼比(Si/B)高达12,这意味着在50ng/g硼中含有高达0.6μg/g Si。但是,掺杂4μg/g Si的951标准样品与纯951标准样品在Nu Plasma MC-ICP-MS上测量出来的硼同位素比值没有偏差,这意味着至少对于Nu Plasma MC-ICP-MS,可以在ICP-MS上准确测量使用碱熔纯化样品的硼同位素比值[72]

    Aggarwal等[62]指出,溶液中的硅会影响到硼的离子化,硅应当被彻底分离。但是对于硅酸盐(岩石、矿物)样品,硼、硅属于对角线元素,地球化学性质相似,两元素难以彻底分离[72],见图 7a。硅浓度为1.4μg/g时,测定结果偏差较大,反映了较高含量的硅会导致硼同位素测定不稳定[48]。标样NIST SRM951测试结果表明,当硅硼比(Si/B)=1∶10时,实验结果没有影响。当硅硼比大于2.0∶1.0时,相较真值高~+2‰,当硅硼比低时,有负的偏移[72],见图 7b。目前,学者们较少研究硅组分影响硼同位素测定的问题,需要进一步开展研究进行深入讨论。因此,有必要开发更有效的硼化学分离技术来克服基体效应。

    图  7  B/Si分离以及Si的基体效应
    据Wei等[140]修改。
    Figure  7.  B/Si separation and Si matrix effect. Modified after Wei, et al[140].

    利用MC-ICP-MS系统进行硼同位素测试过程中存在严重的记忆效应。硼记忆效应产生的原因尚不清楚,有待于进一步研究, 包括:来自雾室中样品的附着[141-142];来自仪器进样系统表面硼酸盐的吸附[143];仪器管路系统内硼的累积[144]。目前主要有5种解决硼记忆效应的方法(表 3)。第一种方法是使用不同的清洗溶液,如硝酸、氢氟酸、氨水、甘露醇、Triton 100、EDTA、水和NaF[102],见图 8。第二种方法是直接进样,硼不在雾化室残留而直接进入仪器[145-146]。第三种方法是雾化器通入氨水,通过抑制硼的信号来消除硼的干扰[104, 146, 148]。第四种方法是改造了抗氢氟酸组件,利用低浓度氢氟酸淋洗[75]。第五种方法是空白扣除法[71]。此外,消除硼的记忆效应,还需要考虑清洗次数和清洗时间问题。

    表  3  消除硼记忆效应的方法
    Table  3.  Methods of eliminating boron memory effect
    方法序号 使用方法 参考文献
    第一种 使用不同的清洗液(硝酸、氨水、甘露醇、Triton 100、EDTA、NaF、氢氟酸等) He等[102]
    第二种 直接进样 Louvat等[145-146]
    第三种 雾化器通入氨水 Foster等[104];Zhang等[147]
    第四种 改造了抗氢氟酸的组件,利用低浓度氢氟酸淋洗 Wei等[75]
    第五种 空白扣除 Cai等[71]
    下载: 导出CSV 
    | 显示表格
    图  8  NaF清洗测试时11B信号强度的变化
    据He等[102]修改。
    Figure  8.  The 11B signal intensity during time using NaF rinse solution. The 11B signal was recorded using different rinse solution after injecting a 60ng/g boron solution for 2min. Modified after He, et al[102].

    上述解决硼记忆效应的每种方法各有优缺点。如:第二种直接进样法,直接进样雾化器的费用比较昂贵,而且直接进样雾化器应用于MC-ICP-MS时会影响等离子体的稳定性,常导致等离子体熄灭[48]。第三种雾化器通入氨水法,在MC-ICP-MS的应用效果并不理想[48],仪器测定的数据需要进行校正。因此,大部分研究采用空白扣除的方法来进行数据校正,如Wei等[72]采用的零峰值空白校正(On-peak Zero Blank):(11B/10B)sample=(11Bmeasured-11Bblank)/(10Bmeasured-10Bblank)。但是各个实验室测量空白的方式有所不同。其中,Cai等[71]详细地阐述了空白测试的顺序:60s水清洗—硝酸测量本底—951标准溶液测量—60s水清洗—硝酸测量本底—样品测量—60s水清洗—硝酸测量本底—951标准溶液测量。数据表明,该流程可以迅速有效地降低ICP-MS上硼的本底,并有效地解决硼记忆效应带来的数据偏差,详见Cai等[71]原文中的图 3图 4

    质量歧视效应一般认为是因为MC-ICP-MS中空间电荷效应产生的。与较轻的同位素相比,这种效应导致较重的同位素优先被提取和传输,因此,较轻同位素相对于较重的同位素比值存在偏差[149]。质量歧视效应主要与所测定离子的质量数有关,测定的离子质量数越小,质量歧视效应的影响越大。对于轻质量数硼同位素,质量歧视效应明显,在15%/amu~40%/amu[150](图 9)。MC-ICP-MS测定过程中的歧视效应采用标样-样品交叉法(SSB)校正[72, 104],以最大程度地降低同位素质量歧视效应[72]

    图  9  不同MC-ICP-MS测量的质量歧视与原子质量的关系图
    据Rehkämper等[150]修改。
    Figure  9.  Plot of mass bias per amu (in %) vs. atomic mass for various elements measured by different MC-ICP-MS instruments. Modified after Rehkämper, et al[150].

    SIMS分析硼同位素,用一次离子束(常用O-或Cs+或Ga-)照射样品表面,使其溅射出二次离子(11B+10B+)并引入质量分析器,按照质荷比进行质谱分析[151]。SIMS硼同位素分析早期是使用小型Cameca IMS f-SIMS系列,如Chaussidon等[152]用IMS 3f SIMS测量了地球玄武岩和陨石球粒中11B/10B。目前更多地使用大型的Cameca IMS 1270、1280 SIMS, 这类仪器具有高空间分辨率、稳定性和灵敏度,因此可以测定低硼样品中的硼同位素比值。如Kasemann等[55]和Blamart等[153]采用Cameca IMS 1270测定了深海文石珊瑚、双壳类、有孔虫和参考玻璃的硼同位素,Marschall等[49]采用IMS 1280 SIMS测定了硅酸盐玻璃硼同位素。

    SIMS的突出优势在于具有高的空间分辨率。一次离子束束斑大小为5~100μm。单点总分析时间为10~30min,剥蚀深度为0.1~5μm。小体积的样品溅射使SIMS成为解决空间异质性的理想方法,例如有孔虫和珊瑚骨骼[153-154]、熔体包裹体[155]

    小的分析体积也意味着SIMS同位素分析所需的硼质量非常小,比其他方法低几个数量级(图 2)。SIMS对于高浓度样品(≥20μg/g B),分析精度通常在0.4‰和1.0‰(2SE)之间[49, 156-157];对于低浓度样品,分析精度更加低[158]。对含1μg/g硼的样品,SIMS分析精度为精确为3‰[49]。对于低浓度样品分析,仪器不稳定或样品表面污染都可能引起分析精度的偏差[47]。表面污染是SIMS硼分析中的一个挑战,已采取多种措施来减少和量化表面污染,如:避免使用含硼润滑剂和抛光材料;用无硼去离子水在超声波中清洗样品架;用足够的预溅射时间来去除表面污染物[152, 159-160]。量化任何残留污染物的最佳方法是分析含有≤1ng/g硼的石英玻璃Herasil-102[160]

    SIMS分析硼同位素时,质量分辨设置约为1200(10%峰高时的mm),确保消除主要干扰(9BeH+30Si3+10B+的干扰;10BH+11B+的干扰)。SIMS仪器质量分馏通常在2%~6%之间[152],采用的是外标法校正仪器质量分馏。用于校正仪器质量分馏的参考物质有MPI-DING岩石玻璃标准[161]。在硼同位素测定中广泛使用的61X系列NIST玻璃(例如SRM610、SRM612),会产生与所有自然成分的玻璃相差2‰~4‰的分馏,不适合作为SIMS分析硼同位素的外标[162-163]。对于碳酸盐的分析,无机方解石标准和多孔珊瑚样品被用于质量分馏校正[55]。多数学者认为SIMS原位硼同位素分析的基体效应不显著或者可以忽略,如硼酸溶液、海水、硅酸盐玻璃和电气石的基体效应小于1.6‰[151]。各种电气石成分之间基体效应较小(< 2‰)或可忽略[156-157, 164-165]。然而,最近McGregor等[166]利用Cameca IMS-4f SIMS仪器测定硼同位素的研究表明硼柱晶石的基体效应为4‰~5‰,取决于其铁含量。

    硼同位素古环境指标研究中,需要测试精度和准确度为0.2‰~0.4‰,因此目前,SIMS还不能应用于该领域中。但是,使用大型SIMS仪器分析天然火山玻璃等固体岩石样品时可以达到1‰~2‰的精度和准确度,满足了地幔地球化学应用要求[49]

    LA-MC-ICP-MS是激光剥蚀系统(LA)对固体样品微区采样后,产生的气溶胶传输至MC-ICP-MS的同位素分析方法[167]。在溶液法MC-ICP-MS首次应用于硼同位素分析后不久[168],LA-MC-ICP-MS用于原位测定δ11B[169]。LA-MC-ICP-MS进样系统非常灵活,可以分析各种样品大小和类型,并且相对快速(每2~5min测量1个样品)。目前,利用LA-MC-ICP-MS已经开展了富硼硅酸盐矿物电气石[170-172]、少量含硼白云母[173-175]、碳酸盐[50]等固体样品的硼同位素微区原位测试研究。最近,中国地质大学(武汉)团队开发了适用于液体样品的LA-MC-ICP-MS硼同位素分析技术[176]

    样品表面形态并不影响该方法的精确测定,因此无需对样品进行高度抛光[177]。但是,该方法存在空白污染问题,需要在分析前清洁样品表面[50],采用样品-标样交叉法(SSB)对质量歧视进行校正。该方法假定,整个分析过程中外部标准的分馏与样品相同,即利用仪器对样品测定前后两个标样的质量歧视因子平均值进行校正[50, 170]。硼同位素微区分析标样有NIST SRM610玻璃、NIST SRM612、IAEA B4电气石。测定的样品是否必须使用相同基体组成的标样,还存在争议:部分学者认为没有必要[50, 170];而部分学者则认为如果NIST玻璃标样作为分析CaCO3基体的样品-标样交叉法,则需要>2‰的校正[177]。虽然LA-MC-ICP-MS的样品/束斑尺寸仍然大于SIMS,其准确度和精度低于溶液法,但是因具有原位、实时、快速分析、高空间分辨率、高灵敏度的优势使其分析成为一种有吸引力的技术。表 4概括了硼同位素质谱测定技术中,样品分离纯化、样品量和分析精度。

    表  4  硼同位素分析测试方法对比
    Table  4.  Comparison of boron isotope determination methods
    硼同位素分析测试方法 样品分离纯化 样品量
    (ng)
    δ11B值测定精度
    (‰)
    参考文献
    正热电离质谱法
    (P-TIMS)
    阳和阴离子交换树脂
    (硼特效树脂)
    20~1000 0.1~0.3 Spivack等[60],Trotter等[58],He等[57]
    负热电离质谱法
    (N-TIMS)
    无/阳和阴离子交换树脂
    (硼特效树脂)
    1~10 0.3~1.0 Hemming等[54],Kasemann等[55],Foster等[56],Clarkson等[129]
    全蒸发-负热电离质谱法
    (TE-NTIMS)
    - 0.3~1 1~2 Foster等[51],Ni等[52],Liu等[116]
    高分辨率电感耦合等离子体质谱法
    (HR-ICP-MS)
    微升华或阳和/或阴离子交换树脂
    (硼特效树脂)
    3~5 0.5~0.7 Misra等[53]
    多接收电感耦合等离子体质谱法
    (MC-ICP-MS)
    微升华或阳和/或阴离子交换树脂
    (硼特效树脂)
    5~50 0.2~0.3 Foster等[104],Louvat等[145],Foster等[56],Zhu等[147]
    激光剥蚀电感耦合等离子体质谱法
    (LA-MC-ICP-MS)
    - 0.8 < 1 le Roux等[169]
    0.1~0.3 0.5~1.75 Fietzke等[50],Thil1等[177]
    二次离子质谱法
    (SIMS)
    - 0.001~0.00001 0.5~3 Chaussidon等[152],Kasemann等[55],Liu等[116],Marschall等[49]
    下载: 导出CSV 
    | 显示表格

    硼同位素是一种在化学、环境、生物、地球及行星科学等研究领域有广泛应用的非传统稳定同位素示踪工具。早在20世纪80年代非传统稳定同位素兴起之前,中国肖应凯领导的团队已在盐湖化学、海洋科学等方面开展了硼同位素研究。二十余年以后,尽管各大院校都在开展硼同位素的研究,迄今为止,无论是化学纯化处理还是质谱测量方面,高精度δ11B的测定均较具挑战性。这是因为硼元素在大多酸性介质中易挥发,而且同时会发生很大幅度的同位素分馏。

    本文总结了近二十年来国内外学者在硼同位素样品前处理、分离富集以及仪器测定方法的进展,其中包括不同类型样品(碳酸盐、硅酸盐、水样、植物)的消解、分离纯化和质谱测定方法。通过实验数据的总结和比较,我们发现,化学前处理是精确测定硼同位素以及元素含量的关键。尤其是硼含量低的固体样品(如硅酸盐)在不同的化学前处理流程(如碱熔法)中依然存在硼丢失和基体离子残存的突出问题。因此,建立低硼含量固体样品硼元素分析测试技术是将来的重点发展方向。目前,MC-ICP-MS既适用于溶液法也适用于微区原位法,是硼同位素分析的主流方法。但是,MC-ICP-MS存在的基体效应、记忆效应和质量歧视效应问题仍然需要进一步的实验和理论研究。

    致谢: 南京大学魏海珍教授和中国科学院南京地质古生物研究所蔡悦研究员亲自修改了本文,极大地提高了本文质量。两位审稿专家以及东华理工大学核资源与环境国家重点实验室陈露老师给予了宝贵意见和建议。在此一并表示衷心的感谢!
  • 图  1   不同地质储库的硼同位素组成

    据Marschall等[2];Xiao等[3];Gaillardet等[4];李银川等[5];DeHoog等[6]修改。

    Figure  1.   Boron isotopic composition of various geological reservoirs. Modified after Marschall, et al[2]; Xiao, et al[3]; Gaillardet, et al[4]; Li, et al[5]; De Hoog, et al[6].

    图  2   硼同位素的分析测试方法总结(样品量和测试精度,95%置信度)

    据Marschall等[49](SIMS); Fietzke等[50](LA-MC-ICP-MS); Foster等[51], Ni等[52](TE-NTIMS); Misra等[53](ICP-MS); Hemming等[54], Kasemann等[55](N-TIMS);Foster等[56](MC-ICP-MS); He等[57], Trotter等[58](P-TIMS)修改。

    Figure  2.   Summary of sample amounts and reported precision (at 95% confidence) in the commonly used techniques for boron isotope analysis. Modified after Marschall, et al[49](SIMS); Fietzke, et al[50](LA-MC-ICP-MS); Foster, et al[51] and Ni, et al[52](TE-NTIMS); Misra, et al[53](ICP-MS); Hemming, et al[54] and Kasemann, et al[55](N-TIMS); Foster, et al[56](MC-ICP-MS); He, et al[57] and Trotter, et al[58](P-TIMS).

    图  3   微升华实验装置图

    a— “微升华”技术提纯硼,据Birck等[111]、Wang等[112]、Pi等[77];b—0.5mL微升华装置,据Roux等[87];c—3mL圆柱形容器装置,据肖军等[118]修改;d—0.5mL双层装置,据Wang等[115]修改;e—1mL双瓶装置,据Wang等[115]修改;f—均匀受热装置,据Liu等[116]修改。

    Figure  3.   Devices designed and applied for boron microsublimation. a—"microsublimation" technology purifies boron; b-0.5mL microsublimation devices; c—3mL cylindrical container devices; d—0.5mL double-layer device; e—1mL two-bottle device; f—uniform heating and cooling device. Modified after Birck, et al[111]; Wang, et al[112]; Pi, et al[77]; Roux, et al[87]; Xiao, et al[118]; Wang, et al[115]; Liu, et al[116].

    图  4   离子交换法和微升华法分离纯化硼的过程空白污染对比图

    据Buisson等[73]修改。

    Figure  4.   Comparisons of boron procedural blank contamination between ion exchange chromatography and micro-sublimation. Modified after Buisson, et al[73].

    图  5   硼同位素掺杂实验

    据Guerrot等[135]、Pi等[77]修改。

    Figure  5.   Matrix-artifacts may have occurred during the doping experiments on boron isotopic measurements by MC-ICP-MS. Modified after Guerrot, et al[135] and Pi, et al[77].

    图  6   Ca2+离子基体效应实验

    Figure  6.   Matrix effect experiments of Ca2+. Modified after Lyu, et al[103].

    图  7   B/Si分离以及Si的基体效应

    据Wei等[140]修改。

    Figure  7.   B/Si separation and Si matrix effect. Modified after Wei, et al[140].

    图  8   NaF清洗测试时11B信号强度的变化

    据He等[102]修改。

    Figure  8.   The 11B signal intensity during time using NaF rinse solution. The 11B signal was recorded using different rinse solution after injecting a 60ng/g boron solution for 2min. Modified after He, et al[102].

    图  9   不同MC-ICP-MS测量的质量歧视与原子质量的关系图

    据Rehkämper等[150]修改。

    Figure  9.   Plot of mass bias per amu (in %) vs. atomic mass for various elements measured by different MC-ICP-MS instruments. Modified after Rehkämper, et al[150].

    表  1   地质样品硼同位素测定的主要消解方法

    Table  1   The main digestion methods for boron isotope determination in geological samples

    酸的种类 样品类型 参考文献
    酸溶法 HCl 碳酸盐 Wei等[26],Foster等[56],Wei等[72]
    HNO3 碳酸盐 Marschall等[47],Buisson等[73]
    HF 硅酸盐 Makishima等[74],Wei等[75],Krolikowska-Ciaglo等[76]
    HF+HNO3 硅酸盐 Wei等[75]
    HF+HCl 硅酸盐 Nakamura等[63],Pi等[77]
    碱熔法 样品消解熔剂 坩埚类型 熔样温度(℃) 参考文献
    K2CO3 铂钇坩埚 1000 Tonarini等[68]
    K2CO3 铂金坩埚 950 晏雄等[78]
    Na2CO3 铂坩埚 900 Musashi等[67],Bhushan等[79]
    Na2CO3+K2CO3 铂坩埚 850 王刚等[80]
    NaOH 镍坩埚 500 Musashi等[67]
    Na2O2 玻璃碳坩埚 490 Cai等[71]
    下载: 导出CSV

    表  2   硼分离纯化的化学流程对比

    Table  2   Comparison of chemistric purification procedure of boron

    分离纯化方法 第1步 第2步 第3步 参考文献
    离子交换法 硼特效树脂 吕苑苑[103]
    硼特效树脂 AG50W-X8阳离子树脂 - Tonarini等[68]
    硼特效树脂 上海正一号阳离子树脂和德国产弱碱性阴离子交换树脂 - 王刚等[80]
    Dowex 50W-X8阳离子树脂+ Ion exchangeⅡ阴离子树脂 硼特效树脂 Dowex 50W-X8阳离子树脂+ Ion exchange Ⅱ阴离子树脂 Wei等[72]
    AG50W-X8阳离子树脂 硼特效树脂 Ion-exchanger Ⅱ与AG50W-X8组成的阴阳离子混合树脂 张艳灵等[107]
    AG50W-X12阳离子树脂 硼特效树脂 - Roux等[69]
    AG50W-X8阳离子树脂 硼特效树脂 - Liu等[106]
    微升华法 微升华 - - Pi等[77],He等[117]
    硼特效树脂 阳离子树脂AG50W-X8 微升华 Chetelat等[70],Lemarchand等[8]
    AG50W-X12阳离子树脂 微升华 - Roux等[87]
    阳离子树脂AG50W-X8 微升华 - Roux等[69]
    下载: 导出CSV

    表  3   消除硼记忆效应的方法

    Table  3   Methods of eliminating boron memory effect

    方法序号 使用方法 参考文献
    第一种 使用不同的清洗液(硝酸、氨水、甘露醇、Triton 100、EDTA、NaF、氢氟酸等) He等[102]
    第二种 直接进样 Louvat等[145-146]
    第三种 雾化器通入氨水 Foster等[104];Zhang等[147]
    第四种 改造了抗氢氟酸的组件,利用低浓度氢氟酸淋洗 Wei等[75]
    第五种 空白扣除 Cai等[71]
    下载: 导出CSV

    表  4   硼同位素分析测试方法对比

    Table  4   Comparison of boron isotope determination methods

    硼同位素分析测试方法 样品分离纯化 样品量
    (ng)
    δ11B值测定精度
    (‰)
    参考文献
    正热电离质谱法
    (P-TIMS)
    阳和阴离子交换树脂
    (硼特效树脂)
    20~1000 0.1~0.3 Spivack等[60],Trotter等[58],He等[57]
    负热电离质谱法
    (N-TIMS)
    无/阳和阴离子交换树脂
    (硼特效树脂)
    1~10 0.3~1.0 Hemming等[54],Kasemann等[55],Foster等[56],Clarkson等[129]
    全蒸发-负热电离质谱法
    (TE-NTIMS)
    - 0.3~1 1~2 Foster等[51],Ni等[52],Liu等[116]
    高分辨率电感耦合等离子体质谱法
    (HR-ICP-MS)
    微升华或阳和/或阴离子交换树脂
    (硼特效树脂)
    3~5 0.5~0.7 Misra等[53]
    多接收电感耦合等离子体质谱法
    (MC-ICP-MS)
    微升华或阳和/或阴离子交换树脂
    (硼特效树脂)
    5~50 0.2~0.3 Foster等[104],Louvat等[145],Foster等[56],Zhu等[147]
    激光剥蚀电感耦合等离子体质谱法
    (LA-MC-ICP-MS)
    - 0.8 < 1 le Roux等[169]
    0.1~0.3 0.5~1.75 Fietzke等[50],Thil1等[177]
    二次离子质谱法
    (SIMS)
    - 0.001~0.00001 0.5~3 Chaussidon等[152],Kasemann等[55],Liu等[116],Marschall等[49]
    下载: 导出CSV
  • [1]

    Cantanzaro E J, Champion C E, Garner E L, et al. Boric acid: Isotopic and assay standard reference materials[M]. US: National Bureau Standards Special Publication, 1970, 260(17): 701.

    [2]

    Marschall H R, Foster G L. Boron isotopes in the Earth and planetary sciences-A short history and introduction[M]//Marschall H, Foster G. Boron Isotopes: The Fifth Element. Springer Press, 2018: 1-11.

    [3]

    Xiao J, Xiao Y K, Jin Z D, et al. Boron isotope variations and its geochemical application in nature[J]. Australian Journal of Earth Sciences, 2013, 60(4): 431-447. doi: 10.1080/08120099.2013.813585

    [4]

    Gaillardet J, Lemarchand D. Boron in the weathering en-vironment[M]//Marschall H, Foster G. Boron Isotopes: The Fifth Element. Springer Press, 2018: 163-188.

    [5] 李银川, 董戈, 高昉, 等. 硼同位素分馏的实验理论认识和矿床地球化学研究进展[J]. 地学前缘, 2020, 27(3): 14-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202003003.htm

    Li Y C, Dong G, Gao F, et al. Experimental and theoretical understanding of boron isotope fractionation and advances in ore deposit geochemistry study[J]. Earth Science Frontiers, 2020, 27(3): 14-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202003003.htm

    [6]

    DeHoog J C M, Savov I P. Boron isotopes as a tracer of subduction zone processes[M]//Marschall H, Foster G. Boron isotopes: The fifth elelment. Springer Press, 2018: 217-247.

    [7] 蒋少涌, 于际民, 凌洪飞, 等. 壳-幔演化和板块俯冲作用过程中的硼同位素示踪[J]. 地学前缘, 2000, 7(2): 391-399. doi: 10.3321/j.issn:1005-2321.2000.02.008

    Jiang S Y, Yu J M, Ling H F, et al. Boron isotope as a tracer in the study of crust-mantle evolution and subduction processes[J]. Earth Science Frontiers, 2000, 7(2): 391-399. doi: 10.3321/j.issn:1005-2321.2000.02.008

    [8]

    Lemarchand D, Cividini D, Turpault M P, et al. Boron isotopes in different grain size fractions: Exploring past and present water-rock interactions from two soil profiles (Strengbach, Vosges Mountains)[J]. Geochimica et Cosmochimica Acta, 2012, 98: 78-93. doi: 10.1016/j.gca.2012.09.009

    [9]

    Mao H R, Liu C Q, Zhao Z Q. Source and evolution of dissolved boron in rivers: Insights from boron isotope signatures of end-members and model of boron isotopes during weathering processes[J]. Earth-Science Reviews, 2019, 190: 439-459. doi: 10.1016/j.earscirev.2019.01.016

    [10] 毛海若. 中国东部花岗岩风化过程中的硼同位素地球化学研究[D]. 贵阳: 中国科学院地球化学研究所, 2018.

    Mao H R. Boron isotope geochemistry during weathering of granite in eastern China[D]. Guiyang: Institute of Geochemistry Chinese Academy of Sciences, 2018.

    [11]

    Lei F, Wei H Z, Yi S W, et al. Variations of the East Asian monsoon over the past 800kyr constrained by the boron isotope composition of paleo-rainwater inferred from loess-paleosol deposits in NE China[J]. Earth and Planetary Science Letters, 2021, 561: 116826. doi: 10.1016/j.epsl.2021.116826

    [12]

    Wei H Z, Lei F, Jiang S Y, et al. Implication of boron isotope geochemistry for the pedogenic environments in loess and paleosol sequences of central China[J]. Quaternary Research, 2015, 83(1): 243-255. doi: 10.1016/j.yqres.2014.09.004

    [13] 雷昉, 鹿化煜, 魏海珍, 等. 黄土高原南部黄土-古土壤酸溶相硼同位素组成(δ11B)及其对季风降水变化的指示[J]. 中国科学: 地球科学, 2014, 44(7): 1508-1518. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201407014.htm

    Lei F, Lu H Y, Wei H Z, et al. Variation of monsoon precipitation revealed by boron isotopic composition of the acid soluble in loess-paleosol sediments from southern Chinese Loess Plateau[J]. Scientia Sinica Terrae, 2014, 44(7): 1508-1518. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201407014.htm

    [14]

    Ryan J G, Leeman W P, Morris J D, et al. The boron systematics of intraplate lavas: Implications for crust and mantle evolution[J]. Geochimica et Cosmochimica Acta, 1996, 60(3): 415-422. doi: 10.1016/0016-7037(95)00402-5

    [15]

    Palmer M R. Boron cycling in subduction zones[J]. Elements: An International Magazine of Mineralogy, Geochemistry and Petrology, 2017, 13(4): 237-242.

    [16]

    Liu H Q, Xu Y G, Wei G J, et al. B isotopes of Carboni-ferous-Permian volcanic rocks in the Tuha Basin mirror a transition from subduction to intraplate setting in central Asian Orogenic Belt[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(11): 7946-7964. doi: 10.1002/2016JB013288

    [17]

    Gou G N, Wang Q, Wyman D A, et al. In situ boron isotopic analyses of tourmalines from Neogene magmatic rocks in the northern and southern margins of Tibet: Evidence for melting of continental crust and sediment recycling[J]. Solid Earth Sciences, 2017, 2(2): 43-54. doi: 10.1016/j.sesci.2017.03.003

    [18]

    Guo S, Zhao K D, John T, et al. Metasomatic flow of metacarbonate-derived fluids carrying isotopically heavy boron in continental subduction zones: Insights from tourmaline-bearing ultra-high pressure eclogites and veins (Dabie terrane, eastern China)[J]. Geochimica et Cosmochimica Acta, 2019, 253: 159-200. doi: 10.1016/j.gca.2019.03.013

    [19]

    Tomanikova L, Savov I P, Harvey J, et al. A limited role for metasomatized subarc mantle in the generation of boron isotope signatures of arc volcanic rocks[J]. Geology, 2019, 47(6): 517-521. doi: 10.1130/G46092.1

    [20]

    Zhang Y Y, Yuan C, Sun M, et al. Recycled oceanic crust in the form of pyroxenite contributing to the Cenozoic continental basalts in central Asia: New perspectives from olivine chemistry and whole-rock B-Mo isotopes[J]. Contributions to Mineralogy and Petrology, 2019, 174(10): 1-22.

    [21]

    Zhang Y Y, Yuan C, Sun M, et al. Molybdenum and boron isotopic evidence for carbon-recycling via carbonate dissolution in subduction zones[J]. Geochimica et Cosmochimica Acta, 2020, 278: 340-352. doi: 10.1016/j.gca.2019.12.013

    [22]

    Fan J J, Wang Q, Li J, et al. Boron and molybdenum isotopic fractionation during crustal anatexis: Constraints from the Conadong leucogranites in the Himalayan Block, South Tibet[J]. Geochimica et Cosmochimica Acta, 2021, 297: 120-142. doi: 10.1016/j.gca.2021.01.005

    [23] 林秋婷, 陈晨, 刘海洋. 硼的地球化学性质及其在俯冲带的循环与成矿初探[J]. 岩石学报, 2020, 36(1): 5-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202001002.htm

    Lin Q T, Chen C, Liu H Y. Boron prospecting based on boron cycling in subduction zone[J]. Acta Petrologica Sinica, 2020, 36(1): 5-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202001002.htm

    [24] 郭顺. 俯冲-碰撞带硼循环[J]. 矿物岩石地球化学通报, 2021, 40(5): 1049-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202105007.htm

    Guo S. Boron cycling in subduction-collision zones[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2021, 40(5): 1049-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202105007.htm

    [25]

    Li Y C, Wei H Z, Palmer M R, et al. Equilibrium boron isotope fractionation during serpentinization and applications in understanding subduction zone processes[J]. Chemical Geology, 2022, 609: 121047. doi: 10.1016/j.chemgeo.2022.121047

    [26]

    Wei G J, McCulloch M T, Mortimer G, et al. Evidence for ocean acidification in the Great Barrier Reef of Australia[J]. Geochimica et Cosmochimica Acta, 2009, 73(8): 2332-2346. doi: 10.1016/j.gca.2009.02.009

    [27]

    Wei G J, Wang Z B, Ke T, et al. Decadal variability in seawater pH in the West Pacific: Evidence from coral δ11B records[J]. Journal of Geophysical Research: Oceans, 2015, 120(11): 7166-7181. doi: 10.1002/2015JC011066

    [28] 刘卫国, 彭子成, 肖应凯, 等. 南海珊瑚礁硼同位素组成及环境意义[J]. 地球化学, 1999, 28(6): 534-541. doi: 10.3321/j.issn:0379-1726.1999.06.003

    Liu W G, Peng Z C, Xiao Y K, et al. Boron isotopic composition of corals from South China Sea and their environmental significance[J]. Geochimica, 1999, 28(6): 534-541. doi: 10.3321/j.issn:0379-1726.1999.06.003

    [29] 肖应凯, Swihard G H, 肖云, 等. 海水蒸发时蒸气相硼的浓度及硼同位素分馏研究[J]. 盐湖研究, 2001, 9(4): 15-23. doi: 10.3969/j.issn.1008-858X.2001.04.003

    Xiao Y K, Swihard G H, Xiao Y, et al. A preliminary study of theboron concentration in vapor and the iostopic fracnation of boron during evapooration of seawater[J]. Journal of Salt Lake Research, 2001, 9(4): 15-23. doi: 10.3969/j.issn.1008-858X.2001.04.003

    [30] 马云麒, 肖应凯, 贺茂勇, 等. 中国古生代腕足和珊瑚的硼同位素特征[J]. 中国科学: 地球科学, 2011, 41(7): 984-999. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201107012.htm

    Ma Y Q, Xiao Y K, He M Y, et al. Boron isotopic composition of paleozoic brachiopod and coeval coral calcites in Yunnan-Guizhou Plateau, China[J]. Scientia Sinica Terrae, 2011, 41(7): 984-999. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201107012.htm

    [31] 柯婷, 韦刚健, 刘颖, 等. 南海北部珊瑚高分辨率硼同位素组成及其对珊瑚礁海水pH变化的指示意义[J]. 地球化学, 2015, 44(1): 1-8. doi: 10.3969/j.issn.1007-2802.2015.01.001

    Ke T, Wei G J, Liu Y, et al. High resolution boron isotopic compositions of a coral from the northern South China Sea and their implications for reconstruction of seawater pH[J]. Geochimica, 2015, 44(1): 1-8. doi: 10.3969/j.issn.1007-2802.2015.01.001

    [32]

    Wei H Z, Zhao Y, Liu X, et al. Evolution of paleo-climate and seawater pH from theLate Permian to postindustrial periods recorded by boron isotopes and B/Ca in biogenic carbonates[J]. Earth-Science Reviews, 2021, 215: 103546. doi: 10.1016/j.earscirev.2021.103546

    [33]

    Wang Y J, Wei H Z, Jiang S Y, et al. Mechanism of boron incorporation into calcites and associated isotope fractionation in a steady-state carbonate-seawater system[J]. Applied Geochemistry, 2018, 98: 221-236. doi: 10.1016/j.apgeochem.2018.09.013

    [34]

    Wei H Z, Jiang S Y, Xiao Y K, et al. Boron isotopic fractionation and trace element incorporation in various species of modern corals in Sanya Bay, South China Sea[J]. Journal of Earth Science, 2014, 25(3): 431-444. doi: 10.1007/s12583-014-0438-2

    [35]

    Palmer M R, Slack J F. Boron isotopic composition of tourmaline from massive sulfide deposits and tourmalinites[J]. Contributions to Mineralogy and Petrology, 1989, 103(4): 434-451. doi: 10.1007/BF01041751

    [36]

    Su Z K, Zhao X F, Li X C, et al. Using elemental and boron isotopic compositions of tourmaline to trace fluid evolutions of IOCG systems: The worldclass Dahongshan Fe-Cu deposit in SW China[J]. Chemical Geology, 2016, 441: 265-279. doi: 10.1016/j.chemgeo.2016.08.030

    [37]

    Codeço M S, Weis P, Trumbull R B, et al. Chemical and boron isotopic composition of hydrothermal tourmaline from the Panasqueira W-Sn-Cu deposit, Portugal[J]. Chemical Geology, 2017, 468: 1-16. doi: 10.1016/j.chemgeo.2017.07.011

    [38]

    Zheng Z, Deng X H, Chen H J, et al. Fluid sources and metallogenesis in the Baiganhu W-Sn deposit, East Kunlun, NW China: Insights from chemical and boron isotopic compositions of tourmaline[J]. Ore Geology Reviews, 2016, 72: 1129-1142. doi: 10.1016/j.oregeorev.2015.09.006

    [39]

    Yang S Y, Jiang S Y, Palmer M R. Chemical and boron isotopic compositions of tourmaline from the Nyalam leucogranites, South Tibetan Himalaya: Implication for their formation from B-rich melt to hydrothermal fluids[J]. Chemical Geology, 2015, 419: 102-113. doi: 10.1016/j.chemgeo.2015.10.026

    [40] 张天睿, 汤书婷, 颜妍, 等. 地下水样品中硼同位素组成的测定[J]. 世界核地质科学, 2020, 37(2): 6. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYD202002006.htm

    Zhang T R, Tang S T, Yan Y, et al. Determination of boron isotopic composition in groundwater samples[J]. World Nuclear Geoscience, 2020, 37(2): 6. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYD202002006.htm

    [41]

    Wei H Z, Jiang S Y, Tan H B, et al. Boron isotope geochemistry of salt sediments from the Dongtai Salt Lake in Qaidam Basin: Boron budget and sources[J]. Chemical Geology, 2014, 380: 74-83. doi: 10.1016/j.chemgeo.2014.04.026

    [42]

    Li Y C, Wei H Z, Palmer M R, et al. Boron coordination and B/Si ordering controls over equilibrium boron isotope fractionation among minerals, melts, and fluids[J]. Chemical Geology, 2021, 561: 120030. doi: 10.1016/j.chemgeo.2020.120030

    [43]

    Zhao Y, Wei H Z, Liu X, et al. Isotope evidence for multiple sources of B and Cl in Middle Miocene (Badenian) evaporites, Carpathian Mountains[J]. Applied Geochemistry, 2021, 124: 104819. doi: 10.1016/j.apgeochem.2020.104819

    [44]

    Li Y C, Chen H W, Wei H Z, et al. Exploration of driving mechanisms of equilibrium boron isotope fractionation in tourmaline group minerals and fluid: A density functional theory study[J]. Chemical Geology, 2020, 536: 119466. doi: 10.1016/j.chemgeo.2020.119466

    [45]

    Wu H P, Jiang S Y, Wei H Z, et al. An experimental study of organic matters that cause isobaric ions interference for boron isotopic measurement by thermal ionization mass spectrometry[J]. International Journal of Mass Spectrometry, 2012, 328: 67-77.

    [46]

    Aggarwal S K, You C F. A review on the determination of isotope ratios of boron with mass spectrometry[J]. Mass Spectrometry Reviews, 2017, 36(4): 499-519. doi: 10.1002/mas.21490

    [47]

    Marschall H, Foster G. Boron isotopes[M]. Springer, 2018: 13-33.

    [48] 吕苑苑, 赵平, 高剑峰, 等. 硼同位素分析方法研究进展[J]. 地质科学, 2009(3): 1052-1061. doi: 10.3321/j.issn:0563-5020.2009.03.021

    Lyu Y Y, Zhao P, Gao J F, et al. Research progress of boron isotope analysis methods[J]. Chinese Journal of Geology, 2009(3): 1052-1061. doi: 10.3321/j.issn:0563-5020.2009.03.021

    [49]

    Marschall H R, Monteleone B D. Boron isotope analysis of silicate glass with very low boron concentrations by secondary ion mass spectrometry[J]. Geostandards and Geoanalytical Research, 2015, 39(1): 31-46. doi: 10.1111/j.1751-908X.2014.00289.x

    [50]

    Fietzke J, Heinemann A, Taubner I, et al. Boron isotope ratio determination in carbonates via LA-MC-ICP-MS using soda-lime glass standards as reference material[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(12): 1953-1957. doi: 10.1039/c0ja00036a

    [51]

    Foster G L, Ni Y, Haley B, et al. Accurate and precise isotopic measurement of sub-nanogram sized samples of foraminiferal hosted boron by total evaporation NTIMS[J]. Chemical Geology, 2006, 230(1-2): 161-174. doi: 10.1016/j.chemgeo.2005.12.006

    [52]

    Ni Y, Foster G L, Elliott T. The accuracy of δ11B measurements of foraminifers[J]. Chemical Geology, 2010, 274(3-4): 187-195. doi: 10.1016/j.chemgeo.2010.04.008

    [53]

    Misra S, Owen R, Kerr J, et al. Determination of δ11B by HR-ICP-MS from mass limited samples: Application to natural carbonates and water samples[J]. Geochimica et Cosmochimica Acta, 2014, 140: 531-552. doi: 10.1016/j.gca.2014.05.047

    [54]

    Hemming N G, Hönisch B. Boron isotopes in marine carbonate sediments and the pH of the ocean[J]. Developments in Marine Geology, 2007, 1: 717-734.

    [55]

    Kasemann S A, Schmidt D N, Bijma J, et al. In situ boron isotope analysis in marine carbonates and its application for foraminifera and palaeo-pH[J]. Chemical Geology, 2009, 260(1-2): 138-147. doi: 10.1016/j.chemgeo.2008.12.015

    [56]

    Foster G L, Hönisch B, Paris G, et al. Interlaboratory comparison of boron isotope analyses of boric acid, seawater and marine CaCO3 by MC-ICPMS and NTIMS[J]. Chemical Geology, 2013, 358: 1-14. doi: 10.1016/j.chemgeo.2013.08.027

    [57]

    He M Y, Xiao Y K, Zhang D J, et al. Accurate and precise determination of boron isotopic ratios at low concentration by positive thermal ionization mass spectrometry using static multicollection of Cs2BO2+ ions[J]. Analytical Chemistry, 2013, 85(13): 6248-6253. doi: 10.1021/ac400066r

    [58]

    Trotter J, Montagna P, McCulloch M, et al. Quantifying the pH 'vital effect' in the temperate zooxanthellate coral Cladocora caespitosa: Validation of the boron seawater pH proxy[J]. Earth and Planetary Science Letters, 2011, 303(3-4): 163-173. doi: 10.1016/j.epsl.2011.01.030

    [59]

    Hemming N G, Hanson G N. A procedure for the isotopic analysis of boron by negative thermal ionization mass spectrometry[J]. Chemical Geology, 1994, 114(1-2): 147-156. doi: 10.1016/0009-2541(94)90048-5

    [60]

    Spivack A J, Edmond J M. Determination of boron isotope ratios by thermal ionization mass spectrometry of the dicesium metaborate cation[J]. Analytical Chemistry, 1986, 58(1): 31-35. doi: 10.1021/ac00292a010

    [61]

    Palmer M R. Boron-isotope systematics of Halmahera arc (Indonesia) lavas: Evidence for involvement of the subducted slab[J]. Geology, 1991, 19(3): 215-217. doi: 10.1130/0091-7613(1991)019<0215:BISOHA>2.3.CO;2

    [62]

    Aggarwal J K, Palmer M R. Boron isotope analysis: A review[J]. Analyst, 1995, 120(5): 1301-1307. doi: 10.1039/an9952001301

    [63]

    Nakamura E, Ishikawa T, Birck J L, et al. Precise boron isotopic analysis of natural rock samples using a boron-mannitol complex[J]. Chemical Geology, 1992, 94(3): 193-204. doi: 10.1016/S0009-2541(10)80004-X

    [64] 肖应凯, 廖步勇, 王中良, 等. 长江口咸淡水混合过程中溶解态硼的含量及同位素组成特征[J]. 矿物岩石地球化学通报, 2003, 22(4): 324-327. doi: 10.3969/j.issn.1007-2802.2003.04.008

    Xiao Y K, Liao B Y, Wang Z L, et al. The content and isotopic composition of dissolved boron during the mixing of salt and fresh water in the Yangtze Estuary[J]. Bulletin of Mineralogy, Petrollgy and Geochemistry, 2003, 22(4): 324-327. doi: 10.3969/j.issn.1007-2802.2003.04.008

    [65]

    Wei H Z, Xiao Y K, Sun A, et al. Effective elimination of isobaric ions interference and precise thermal ionization mass spectrometer analysis for boron isotope[J]. International Journal of Mass Spectrometry, 2004, 235(2): 187-195. doi: 10.1016/j.ijms.2004.04.010

    [66] 马学海, 马云麒, 宋建国, 等. 三步离子交换法用于高精度测定硝酸盐卤水样品中硼同位素[J]. 分析化学, 2020, 48(6): 780-785. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX202006013.htm

    Ma X H, Ma Y Q, Song J G, et al. Three-step ion exchange method for high-precision determination of boron isotopes in nitrate brine samples[J]. Chinese Journal of Analytical Chemistry, 2020, 48(6): 780-785. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX202006013.htm

    [67]

    Musashi M, Oi T, Ossaka T, et al. Extraction of boron from GSJ rock reference samples and determination of their boron isotopic ratios[J]. Analytica Chimica Acta, 1990, 231: 147-150. doi: 10.1016/S0003-2670(00)86411-9

    [68]

    Tonarini S, Pennisi M, Leeman W P. Precise boron isotopic analysis of complex silicate (rock) samples using alkali carbonate fusion and ion-exchange separation[J]. Chemical Geology, 1997, 142(1-2): 129-137. doi: 10.1016/S0009-2541(97)00087-9

    [69]

    Roux P, Turpault M P, Kirchen G, et al. Boron dissolved and particulate atmospheric inputs to a forest ecosystem (northeastern France)[J]. Environmental Science and Technology, 2017, 51(24): 14038-14046. doi: 10.1021/acs.est.7b03226

    [70]

    Chetelat B, Liu C Q, Gaillardet J, et al. Boron isotopes geochemistry of the Changjiang Basin Rivers[J]. Geochimica et Cosmochimica Acta, 2009, 73(20): 6084-6097. doi: 10.1016/j.gca.2009.07.026

    [71]

    Cai Y, Rasbury E T, Wooton K M, et al. Rapid boron isotope and concentration measurements of silicate geological reference materials dissolved through sodium peroxide sintering[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(10): 2153-2163. doi: 10.1039/D1JA00195G

    [72]

    Wei H Z, Jiang S Y, Hemming N G, et al. An improved procedure for separation/purification of boron from complex matrices and high-precision measurement of boron isotopes by positive thermal ionization and multicollector inductively coupled plasma mass spectrometry[J]. Talanta, 2014, 123: 151-160. doi: 10.1016/j.talanta.2014.02.009

    [73]

    Buisson M, Louvat P, Thaler C, et al. High precision MC-ICP-MS measurements of 11B/10B ratios from ng amounts of boron in carbonate samples using microsublimation and direct injection (μ-dDIHEN)[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(10): 2116-2131. doi: 10.1039/D1JA00109D

    [74]

    Makishima A, Nakamura E, Nakano T. Determination of boron in silicate samples by direct aspiration of sample HF solutions into ICPMS[J]. Analytical Chemistry, 1997, 69(18): 3754-3759. doi: 10.1021/ac970383s

    [75]

    Wei G J, Wei J X, Liu Y, et al. Measurement on high-precision boron isotope of silicate materials by a single column purification method and MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(4): 606-612. doi: 10.1039/c3ja30333k

    [76]

    Krolikowska-Ciaglo S, Deyhle A, Hauff F, et al. Boron isotope geochemistry and U-Pb systematics of altered MORB from the Australian Antarctic Discordance (ODP Leg 187)[J]. Chemical Geology, 2007, 242(3-4): 455-469. doi: 10.1016/j.chemgeo.2007.05.004

    [77]

    Pi J, You C F, Chung C H. Micro-sublimation separation of boron in rock samples for isotopic measurement by MC-ICPMS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(5): 861-867. doi: 10.1039/C3JA50344E

    [78] 晏雄, 蒋少涌, 魏海珍, 等. 硼硅酸盐矿物硼的化学分离纯化与同位素测定方法[J]. 分析化学, 2012, 40(11): 1654-1660. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201211007.htm

    Yan X, Jiang S Y, Wei H Z, et al. Chemical separation, purification and isotopic determination of borosilicate mineral boron[J]. Chinese Journal of Analytical Chemistry, 2012, 40(11): 1654-1660. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201211007.htm

    [79]

    Bhushan K S, Goswami P G, Venkatesh K, et al. Fusion method for sample preparation for isotopic composition determination of boron in refractory materials by thermal ionizationmass spectrometry with validation using dissolved and purified sample[J]. International Journal of Mass Spectrometry, 2021, 467: 116624. doi: 10.1016/j.ijms.2021.116624

    [80] 王刚, 肖应凯. 盐湖卤水硼同位素测定中硼的二次离子交换分离[J]. 分析化学, 2000, 28(8): 936-940. doi: 10.3321/j.issn:0253-3820.2000.08.003

    Wang G, Xiao Y K. Secondary ion exchange separation of boron in the determination of boron isotope in salt lake brine[J]. Chinese Journal of Analytical Chemistry, 2000, 28(8): 936-940. doi: 10.3321/j.issn:0253-3820.2000.08.003

    [81]

    Xiao J, Vogl J, Rosner M, et al. A validated analytical procedure for boron isotope analysis in plants by MC-ICP-MS[J]. Talanta, 2019, 196: 389-394. doi: 10.1016/j.talanta.2018.12.087

    [82]

    Xu Q C, Dong Y L, Zhu H Y, et al. Separation and analysis of boron isotope in high plant by thermal ionization mass spectrometry[J]. International Journal of Analytical Chemistry, 2015: 36424.

    [83]

    Vogl J, Rosner M. Production and certification of a unique set of isotope and delta reference materials for boron isotope determination in geochemical, environmental and industrial materials[J]. Geostandards and Geoanalytical Research, 2012, 36(2): 161-175. doi: 10.1111/j.1751-908X.2011.00136.x

    [84]

    Rosner M, Pritzkow W, Vogl J, et al. Development and validation of a method to determine the boron isotopic composition of crop plants[J]. Analytical Chemistry, 2011, 83(7): 2562-2568. doi: 10.1021/ac102836h

    [85] 刘善江, 赵丽萍. 植株中全硼测定方法的研究[J]. 华北农学报, 2007, 22(2): 169-170. doi: 10.3321/j.issn:1000-7091.2007.02.041

    Liu S J, Zhao L P. Study on determination of total boron in plants[J]. Acta Agriculturae Boreali-Sinica, 2007, 22(2): 169-170. doi: 10.3321/j.issn:1000-7091.2007.02.041

    [86]

    Vanderpool R A, Johnson P E. Boron isotope ratios in commercial produce and boron-10 foliar and hydroponic enriched plants[J]. Journal of Agricultural and Food Chemistry, 1992, 40(3): 462-466. doi: 10.1021/jf00015a020

    [87]

    Roux P, Lemarchand D, Hughes H J, et al. A rapid method for determining boron concentration (ID-ICP-MS) and δ11B (MC-ICP-MS) in vegetation samples after microwave digestion and cation exchange chemical purification[J]. Geostandards and Geoanalytical Research, 2015, 39(4): 453-466. doi: 10.1111/j.1751-908X.2014.00328.x

    [88] 宋伟娇, 代世峰, 赵蕾, 等. 微波消解-电感耦合等离子体质谱法测定煤中的硼[J]. 岩矿测试, 2014, 33(3): 327-331. doi: 10.3969/j.issn.0254-5357.2014.03.007

    Song W J, Dai S F, Zhao L, et al. Microwave digestion-inductively coupled plasma mass spectrometry for the determination of boron in coal[J]. Rock and Mineral Analysis, 2014, 33(3): 327-331. doi: 10.3969/j.issn.0254-5357.2014.03.007

    [89]

    Beary E S, Xiao Y K. Rapid and high-precision determination of boron isotope ratios in boron carbide by thermal ionisation mass spectrometric measurement of the dicaesium metaborate cation[J]. Analyst, 1990, 115(7): 911-913. doi: 10.1039/an9901500911

    [90]

    Ishikawa T, Nakamura E. Suppression of boron volatili-zation from a hydrofluoric acid solution using a boron-mannitol complex[J]. Analytical Chemistry, 2001, 62(23): 2612-2616.

    [91]

    Wang J H, Yin A, Harrison T M, et al. A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone[J]. Earth and Planetary Science Letters, 2001, 188(1-2): 123-133. doi: 10.1016/S0012-821X(01)00315-6

    [92]

    Xiao Y K, Liao B Y, Liu W G, et al. Ion exchange extraction of boron from aqueous fluids by Amberlite IRA 743 resin[J]. Chinese Journal of Chemistry, 2003, 21(8): 1073-1079.

    [93] 肖应凯, 王蕴慧, 曹海霞. 离子交换法分离硼——用于盐湖水中硼同位素丰度比值的质谱法测定[J]. 分析化学, 1983, 11(8): 604-607. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX198308010.htm

    Xiao Y K, Wang Y H, Cao H X. Separation of boron by ion exchange-mass spectrometry determination of boron isotope abundance ratios in salt lake water[J]. Chinese Journal of Analytical Chemistry, 1983, 11(8): 604-607. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX198308010.htm

    [94]

    Wang Q Z, Xiao Y K, Wang Y H, et al. Boron separation by the two-step ion-exchange for the isotopic measurement of boron[J]. Chinese Journal of Chemistry, 2002, 20(1): 45-50.

    [95] 李子夏, 逯海. 一步离子交换-多接收电感耦合等离子体质谱法测定高钙生物样品的硼同位素组成[J]. 岩矿测试, 2020, 39(3): 417-424. doi: 10.15898/j.cnki.11-2131/td.201909290141

    Li Z X, Lu H. One-step ion-exchange separation and measurement of boron isotope ratios in high calcium biological samples with by MC-ICP-MS[J]. Rock and Mineral Analysis, 2020, 39(3): 417-424. doi: 10.15898/j.cnki.11-2131/td.201909290141

    [96]

    Kiss E. Ion-exchange separation and spectrophotometric determination of boron in geological materials[J]. Analytica Chimica Acta, 1988, 211: 243-256. doi: 10.1016/S0003-2670(00)83684-3

    [97]

    Leeman W P, Vocke Jr R D, Beary E S, et al. Precise boron isotopic analysis of aqueous samples: Ion exchange extraction and mass spectrometry[J]. Geochimica et Cosmochimica Acta, 1991, 55(12): 3901-3907. doi: 10.1016/0016-7037(91)90085-J

    [98]

    Lemarchand D, Gaillardet J, Göpel C, et al. An optimized procedure for boron separation and mass spectrometry analysis for river samples[J]. Chemical Geology, 2002, 182(2-4): 323-334. doi: 10.1016/S0009-2541(01)00329-1

    [99]

    Yoshimura K, Miyazaki Y, Ota F, et al. Complexation of boric acid with the N-methyl-D-glucamine group in solution and in crosslinked polymer[J]. Journal of the Chemical Society, 1998, 94(5): 683-689.

    [100] 王刚, 肖应凯, 王蕴慧, 等. 岩石中硼的提取分离及同位素组成的测定[J]. 岩矿测试, 2000, 19(3): 169-172. doi: 10.3969/j.issn.0254-5357.2000.03.002

    Wang G, Xiao Y K, Wang Y H, et al. Extraction and separation of boron in rocks and determination of isotopic composition[J]. Rock and Mineral Analysis, 2000, 19(3): 169-172. doi: 10.3969/j.issn.0254-5357.2000.03.002

    [101]

    Vengosh A, Chivas A R, McCulloch M T. Direct deter-mination of boron and chlorine isotopic compositions in geological materials by negative thermal-ionization mass spectrometry[J]. Chemical Geology, 1989, 79(4): 333-343.

    [102]

    He M Y, Deng L, Lu H, et al. Elimination of the boron memory effect for rapid and accurate boron isotope analysis by MC-ICP-MS using NaF[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(5): 1026-1032. doi: 10.1039/C9JA00007K

    [103] 吕苑苑, 许荣华, 赵平, 等. 利用MC-ICP-MS对水样中硼同位素比值的测定[J]. 地球化学, 2008, 37(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200801001.htm

    Lyu Y Y, Xu R H, Zhao P. Determination of boron isotope ratios in aqueous samples by multiple collector ICP-MS[J]. Geochimica, 2008, 37(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200801001.htm

    [104]

    Foster G L. Seawater pH, pCO2 and[CO32-] variations in the Caribbean Sea over the last 130kyr: A boron isotope and B/Ca study of planktic foraminifera[J]. Earth and Planetary Science Letters, 2008, 271(1-4): 254-266. doi: 10.1016/j.epsl.2008.04.015

    [105]

    McCulloch M T, Holcomb M, Rankenburg K, et al. Rapid, high-precision measurements of boron isotopic compositions in marine carbonates[J]. Rapid Communications in Mass Spectrometry, 2014, 28(24): 2704-2712. doi: 10.1002/rcm.7065

    [106]

    Liu Y H, Huang K F, Lee D C. Precise and accurate boron and lithium isotopic determinations for small sample-size geological materials by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(5): 846-855. doi: 10.1039/C7JA00400A

    [107] 张艳灵, 肖应凯, 马云麒, 等. 三步离子交换方法用于黏土沉积物酸溶相中硼同位素测定[J]. 分析化学, 2016, 44(5): 809-815. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201605025.htm

    Zhang Y L, Xiao Y K, Ma Y Q, et al. Three-step ion exchange method for boron isotope determination in acid solution phase of clay sediments[J]. Chinese Journal of Analytical Chemistry, 2016, 44(5): 809-815. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201605025.htm

    [108] 杨剑, 马云麒, 李兴意, 等. 乙二胺四乙酸二钠用于沉积物酸溶相中高精度硼同位素测定方法研究[J]. 分析化学, 2019, 47(9): 1433-1439. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201909022.htm

    Yang J, Ma Y Q, Li X Y, et al. Study on high-precision determination of boron isotope in acid solution phase of sediment by disodium EDTA[J]. Chinese Journal of Analytical Chemistry, 2019, 47(9): 1433-1439. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201909022.htm

    [109] 魏静娴. Ⅰ. 硅酸盐高精度B同位素测定方法的建立及其应用Ⅱ. 南海海山玄武岩的年代学和地球化学研究[D]. 北京: 中国科学院大学, 2015.

    Wei J X. Ⅰ. High-precision measurement of boron isotope of silicate materials and its application. Ⅱ. Geochronological and geochemical studies on Cenozoic basalts from South China Sea Seamounts[D]. Beijing: University of Chinese Academy of Sciences, 2015.

    [110]

    Gaillardet J, Lemarchand D, Göpel C, et al. Evaporation and sublimation of boric acid: Application for boron purification from organic rich solutions[J]. Geostandards Newsletter, 2001, 25(1): 67-75. doi: 10.1111/j.1751-908X.2001.tb00788.x

    [111]

    Birck J L, Barman M R, Capmas F. Re-Os isotopic measurements at the femtomole level in natural samples[J]. Geostandards Newsletter, 1997, 21(1): 19-27. doi: 10.1111/j.1751-908X.1997.tb00528.x

    [112]

    Wang B S, You C F, Huang K F, et al. Direct separation of boron from Na-and Ca-rich matrices by sublimation for stable isotope measurement by MC-ICP-MS[J]. Talanta, 2010, 82(4): 1378-1384. doi: 10.1016/j.talanta.2010.07.010

    [113]

    Raitzsch M, Bijma J, Benthien A, et al. Boron isotope-based seasonal paleo-pH reconstruction for the southeast Atlantic-A multispecies approach using habitat preference of planktonic foraminifera[J]. Earth and Planetary Science Letters, 2018, 487: 138-150. doi: 10.1016/j.epsl.2018.02.002

    [114]

    Liu M C, Nittler L R, Alexander C M O D, et al. Lithium-beryllium-boron isotopic compositions in meteoritic hibonite: Implications for origin of 10Be and early Solar system irradiation[J]. The Astrophysical Journal Letters, 2010, 719(1): L99. doi: 10.1088/2041-8205/719/1/L99

    [115]

    Wang T H, You C F, Chung C H, et al. Macro-sublimation: Purification of boron in low-concentration geological samples for isotopic determination by MC-ICPMS[J]. Microchemical Journal, 2020, 152: 104424. doi: 10.1016/j.microc.2019.104424

    [116]

    Liu Y W, Aciego S M, Wanamaker Jr A D, et al. A high-throughput system for boron microsublimation and isotope analysis by total evaporation thermal ionization mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2013, 27(15): 1705-1714. doi: 10.1002/rcm.6619

    [117]

    He M Y, Xiao Y, Ma Y Q, et al. Effective elimination of organic matter interference in boron isotopic analysis by thermal ionization mass spectrometry of coral/foraminifera: Micro-sublimation technology combined with ion exchange[J]. Rapid Communications in Mass Spectrometry, 2011, 25(6): 743-749. doi: 10.1002/rcm.4906

    [118]

    van Hoecke K, Devulder V, Claeys P, et al. Comparison of microsublimation and ion exchange chromatography for boron isolation preceding its isotopic analysis via multi-collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(10): 1819-1826. doi: 10.1039/C4JA00111G

    [119] 肖军, 贺茂勇, 邓丽, 等. 一种简便、快速、高效文分离富集硼的装置和方法:

    CN201910887796. X[P]. 2019-11-29. Xiao J, He M Y, Deng L, et al. A simple, fast and efficient device and method for separating and enriching boron: CN201910887796. X[P]. 2019-11-29.

    [120]

    Ramakumar K, Parab A, Khodade P, et al. Determination of isotopic composition of boron[J]. Journal of Radioanalytical and Nuclear Chemistry, 1985, 94(1): 53-61. doi: 10.1007/BF02199553

    [121]

    Swihart G H. Instrumental techniques for boron isotope analysis[M]//Boron. Elsevier Press, 2018: 845-864.

    [122]

    Xiao Y K, Beary E S, Fassett J D. An improved method for the high-precision isotopic measurement of boron by thermal ionization mass spectrometry[J]. International Journal of Mass Spectrometry and Ion Processes, 1988, 85(2): 203-213. doi: 10.1016/0168-1176(88)83016-7

    [123]

    Nakano T, Nakamura E. Static multicollection of Cs2BO2+ ions for precise boron isotope analysis with positive thermal ionization mass spectrometry[J]. International Journal of Mass Spectrometry, 1998, 176(1-2): 13-21. doi: 10.1016/S1387-3806(98)14014-9

    [124]

    Deyhle A. Improvements of boron isotope analysis by positive thermal ionization mass spectrometry using static multicollection of Cs2BO2+ ions[J]. International Journal of Mass Spectrometry, 2001, 206(1-2): 79-89. doi: 10.1016/S1387-3806(00)00387-0

    [125]

    Zeininger H, Heumann K G. Boron isotope ratio measure-ment by negative thermal ionization mass spectrometry[J]. International Journal of Mass Spectrometry and Ion Physics, 1983, 48: 377-380. doi: 10.1016/0020-7381(83)87106-X

    [126]

    Hemming N G, Hanson G N. Boron isotopic composition and concentration in modern marine carbonates[J]. Geochimica et Cosmochimica Acta, 1992, 56(1): 537-543. doi: 10.1016/0016-7037(92)90151-8

    [127]

    Kasemann S, Meixner A, Rocholl A, et al. Boron and oxygen isotope composition of certified reference materials NIST SRM610/612 and reference materials JB-2 and JR-2[J]. Geostandards Newsletter, 2001, 25(2-3): 405-416. doi: 10.1111/j.1751-908X.2001.tb00615.x

    [128]

    You C F. Thermal ionization mass spectrometry tech-niques for boron isotopic analysis: A review[J]. Handbook of Stable Isotope Analytical Techniques, 2004, 1: 142-152.

    [129]

    Clarkson M O, Kasemann S A, Wood R A, et al. Ocean acidification and the Permo-Triassic mass extinction[J]. Science, 2015, 348(6231): 229-232. doi: 10.1126/science.aaa0193

    [130]

    Farmer J R, Hönisch B, Uchikawa J. Single laboratory comparison of MC-ICP-MS and N-TIMS boron isotope analyses in marine carbonates[J]. Chemical Geology, 2016, 447: 173-182. doi: 10.1016/j.chemgeo.2016.11.008

    [131]

    Barth S. Boron isotopic analysis of natural fresh and saline waters by negative thermal ionization masss pectrometry[J]. Chemical Geology, 1997, 143(3-4): 255-261. doi: 10.1016/S0009-2541(97)00107-1

    [132] 李世珍, 肖应凯, 魏海珍, 等. 硼同位素的负热电离质谱测定及其进展[J]. 盐湖研究, 2003, 11(4): 13-19. doi: 10.3969/j.issn.1008-858X.2003.04.002

    Li S Z, Xiao Y K, Wei H Z, et al. Negative thermal ionization mass spectrometry determination of boron isotopes and its progress[J]. Journal of Salt Lake Research, 2003, 11(4): 13-19. doi: 10.3969/j.issn.1008-858X.2003.04.002

    [133]

    Tonarini S, Pennisi M, Gonfiantini R. Boron isotope determinations in waters and other geological materials: Analytical techniques and inter-calibration of measurements[J]. Isotopes in Environmental and Health Studies, 2009, 45(2): 169-183. doi: 10.1080/10256010902931210

    [134] 逯海, 王军, 任同祥, 等. 全蒸发-热电离同位素质谱法测量结果精密度和准确性探讨[J]. 中国矿物岩石地球化学通报, 2011, 30(增刊), 504. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD201104001461.htm

    Lu H, Wang J, Ren T X, et al. Discussion on the precision and accuracy of measurement results by total evaporation-thermal ionization isotope mass spectrometry[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2011, 30(Supplement), 504. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD201104001461.htm

    [135]

    Guerrot C, Millot R, Robert M, et al. Accurate and high-precision determination of boron isotopic ratios at low concentration by MC-ICP-MS (Neptune)[J]. Geostandards and Geoanalytical Research, 2011, 35(2): 275-284. doi: 10.1111/j.1751-908X.2010.00073.x

    [136]

    Feldmann I, Tittes W, Jakubowski N, et al. Performance characteristics of inductively coupled plasma mass spectrometry with high mass resolution[J]. Journal of Analytical Atomic Spectrometry, 1994, 9(9): 1007-1014. doi: 10.1039/ja9940901007

    [137]

    Montaser A. Inductively coupled plasma mass spectro-metry[M]. John Wiley and Sons, 1998.

    [138]

    Chen X F, Zhang L, Wei G J, et al. Matrix effects and mass bias caused by inorganic acids on boron isotope determination by multi-collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(12): 2410-2417. doi: 10.1039/C6JA00328A

    [139]

    Smit M A, Scherstén A, Naeraa T, et al. Formation of Archean continental crust constrained by boron isotopes[J]. Geochemical Perspectives Letters, 2019, 12: 23-26.

    [140]

    Wei H Z, Jiang S Y, Yang T L, et al. Effect of metasilicate matrices on boron purification by Amberlite IRA 743 boron specific resin and isotope analysis by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(11): 2104-2107. doi: 10.1039/C4JA00153B

    [141]

    Mueller E, Kucharkowski R, Michel V, et al. Simul-taneous determination of the constituents in Al-Ge-Si alloys by inductively coupled plasma atomic emission spectrometry[J]. Fresenius' Journal of Analytical Chemistry, 1996, 355(3): 267-268.

    [142]

    Al-Ammar A S, Gupta R K, Barnes R M. Elimination of boron memory effect in inductively coupled plasma-mass spectrometry by ammonia gas injection into the spray chamber during analysis[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2000, 55(6): 629-635. doi: 10.1016/S0584-8547(00)00197-X

    [143]

    Evans S, Meisel T. Low blank determination of boron in geochemical materials[J]. Analytica Chimica Acta, 1994, 298(2): 267-270. doi: 10.1016/0003-2670(94)00269-X

    [144]

    Probst T U, Berryman N G, Lemmen P, et al. Comparison of inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry with quantitative neutron capture radiography for the determination of boron in biological samples from cancer therapy[J]. Journal of Analytical Atomic Spectrometry, 1997, 12(10): 1115-1122. doi: 10.1039/a700445a

    [145]

    Louvat P, Bouchez J, Paris G. MC-ICP-MS isotope measurements with direct injection nebulisation (d-DIHEN): Optimisation and application to boron in seawater and carbonate samples[J]. Geostandards and Geoanalytical Research, 2011, 35(1): 75-88. doi: 10.1111/j.1751-908X.2010.00057.x

    [146]

    Louvat P, Moureau J, Paris G, et al. A fully automated direct injection nebulizer (d-DIHEN) for MC-ICP-MS isotope analysis: Application to boron isotope ratio measurements[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(9): 1698-1707. doi: 10.1039/C4JA00098F

    [147]

    Zhang S, Henehan M J, Hull P M, et al. Investigating controls on boron isotope ratios in shallow marine carbonates[J]. Earth and Planetary Science Letters, 2017, 458: 380-393. doi: 10.1016/j.epsl.2016.10.059

    [148]

    Zhu G H, Ma J L, Wei G J, et al. Boron mass fractions and δ11B values of eighteen international geological reference materials[J]. Geostandards and Geoanalytical Research, 2021, 45(3): 583-598. doi: 10.1111/ggr.12397

    [149]

    Albarède F, Albalat E, Télouk P. Instrumental isotope fractionation in multiple-collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(8): 1736-1742. doi: 10.1039/C5JA00188A

    [150]

    Rehkämper M, Schönbächler M, Stirling C H. Multiple collector ICP-MS: Introduction to instrumentation, measurement techniques and analytical capabilities[J]. Geostandards Newsletter, 2001, 25(1): 23-40. doi: 10.1111/j.1751-908X.2001.tb00785.x

    [151] 张宏飞, 高山. 地球化学[M]. 北京: 地质出版社, 2012: 385.

    Zhang H F, Gao S. Geochemistry[M]. Beijing: Geological Publishing House, 2012: 385.

    [152]

    Chaussidon M, Robert F, Mangin D, et al. Analytical procedures for the measurement of boron isotope compositions by ion microprobe in meteorites and mantle rocks[J]. Geostandards Newsletter, 1997, 21(1): 7-17. doi: 10.1111/j.1751-908X.1997.tb00527.x

    [153]

    Blamart D, Rollion-Bard C, Meibom A, et al. Correlation of boron isotopic composition with ultrastructure in the deep-sea coral Lophelia Pertusa: Implications for biomineralization and paleo-pH[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(12): 1-11.

    [154]

    Rollion-Bard C, Chaussidon M, France-Lanord C. pH control on oxygen isotopic composition of symbiotic corals[J]. Earth and Planetary Science Letters, 2003, 215(1-2): 275-288. doi: 10.1016/S0012-821X(03)00391-1

    [155]

    Schmitt A K, Kasemann S, Meixner A, et al. Boron in central Andean ignimbrites: Implications for crustal boron cycles in an active continental margin[J]. Chemical Geology, 2002, 183(1-4): 333-347. doi: 10.1016/S0009-2541(01)00382-5

    [156]

    Büttner S H, Kasemann S A. Deformation-controlled cation diffusion in tourmaline: A microanalytical study on trace elements and boron isotopes[J]. American Mineralogist, 2007, 92(11-12): 1862-1874. doi: 10.2138/am.2007.2567

    [157]

    Drivenes K, Larsen R B, Müller A, et al. Late-magmatic immiscibility during batholith formation: Assessment of B isotopes and trace elements in tourmaline from the Land's End granite, SW England[J]. Contributions to Mineralogy and Petrology, 2015, 169(6): 1-27.

    [158]

    Fitzsimons I C W, Harte B, Clark R M. SIMS stable isotope measurement: Counting statistics and analytical precision[J]. Mineralogical Magazine, 2000, 64(1): 59-83. doi: 10.1180/002646100549139

    [159]

    Liu Y, Liu W G, Peng Z C, et al. Instability of seawater pH in the South China Sea during the mid-late Holocene: Evidence from boron isotopic composition of corals[J]. Geochimica et Cosmochimica Acta, 2009, 73(5): 1264-1272. doi: 10.1016/j.gca.2008.11.034

    [160]

    Marschall H R, Ludwig T. The low-boron contest: Minimising surface contamination and analysing boron concentrations at the ng/g-level by secondary ion mass spectrometry[J]. Mineralogy and Petrology, 2004, 81(3): 265-278.

    [161]

    Jochum K P, Stoll B, Herwig K, et al. MPI-DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(2): 1-44.

    [162]

    Rosner M, Wiedenbeck M, Ludwig T. Composition-induced variations in SIMS instrumental mass fractionation during boron isotope ratio measurements of silicate glasses[J]. Geostandards and Geoanalytical Research, 2008, 32(1): 27-38. doi: 10.1111/j.1751-908X.2008.00875.x

    [163]

    Gurenko A A, Kamenetsky V S. Boron isotopic compo-sition of olivine-hosted melt inclusions from Gorgona komatiites, Colombia: New evidence supporting wet komatiite origin[J]. Earth and Planetary Science Letters, 2011, 312(1-2): 201-212. doi: 10.1016/j.epsl.2011.09.033

    [164]

    Ludwig T, Marschall H R, von Strandmann P A, et al. A secondary ion mass spectrometry (SIMS) re-evaluation of B and Li isotopic compositions of Cu-bearing elbaite from three global localities[J]. Mineralogical Magazine, 2011, 75(4): 2485-2494. doi: 10.1180/minmag.2011.075.4.2485

    [165]

    Nakano T, Nakamura E. Boron isotope geochemistry of metasedimentary rocks and tourmalines in a subduction zone metamorphic suite[J]. Physics of the Earth and Planetary Interiors, 2001, 127(1-4): 233-252. doi: 10.1016/S0031-9201(01)00230-8

    [166]

    McGregor J R, Grew E S, De Hoog J C M, et al. Boron isotopic composition of tourmaline, prismatine, and grandidierite from granulite facies paragneisses in the Larsemann Hills, Prydz Bay, East Antarctica: Evidence for a non-marine evaporite source[J]. Geochimica et Cosmochimica Acta, 2013, 123: 261-283. doi: 10.1016/j.gca.2013.05.030

    [167] 蒋少涌, 陈唯, 赵葵东, 等. 基于LA-(MC)-ICP-MS的矿物微区原位同位素分析技术及其应用[J]. 质谱学报, 2021, 42(5): 623-640. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB202105007.htm

    Jiang S Y, Chen W, Zhao K D, et al. In situ microisotope analysis technology of minerals based on LA-(MC)-ICP-MS and its application[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(5): 623-640. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB202105007.htm

    [168]

    Lécuyer C, Grandjean P, Reynard B, et al. 11B/10B analy-sis of geological materials by ICP-MS Plasma 54: Application to the boron fractionation between brachiopod calcite and seawater[J]. Chemical Geology, 2002, 186(1-2): 45-55. doi: 10.1016/S0009-2541(01)00425-9

    [169]

    Le Roux P J, Shirey S B, Benton L, et al. In situ, multiple-multiplier, laser ablation ICP-MS measurement of boron isotopic composition (δ11B) at the nanogram level[J]. Chemical Geology, 2004, 203(1-2): 123-138. doi: 10.1016/j.chemgeo.2003.09.006

    [170] 侯可军, 李延河, 肖应凯, 等. LA-MC-ICP-MS硼同位素微区原位测试技术[J]. 科学通报, 2010, 55(22): 2207-2213. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201022007.htm

    Hou K J, Li Y H, Xiao Y K, et al. In situ boron isotope measurements of natural geological materials by LA-MC-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(29): 3305-3311. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201022007.htm

    [171]

    Zhao K D, Zhang L H, Palmer M R, et al. Chemical and boron isotopic compositions of tourmaline at the Dachang Sn-polymetallic ore district in South China: Constraints on the origin and evolution of hydrothermal fluids[J]. Mineralium Deposita, 2021, 56(8): 1589-1608. doi: 10.1007/s00126-021-01045-4

    [172]

    da Costa I R, Mourão C, Récio C, et al. Tourmaline occurrences within the Penamacor-Monsanto granitic pluton and host-rocks (central Portugal): Genetic implications of crystal-chemical and isotopic features[J]. Contributions to Mineralogy and Petrology, 2014, 167(4): 1-23.

    [173] 徐洁, 张贵宾, 李楠, 等. LA-MC-ICPMS电气石及白云母原位硼同位素测试方法及应用[J]. 岩石矿物学杂志, 2020, 39(3): 323-334. doi: 10.3969/j.issn.1000-6524.2020.03.008

    Xu J, Zhang G B, Li N, et al. LA-MC-ICPMS test method and application of in situ boron isotope of tourmaline and muscovite[J]. Acta Petrologica et Mineralogica, 2020, 39(3): 323-334. doi: 10.3969/j.issn.1000-6524.2020.03.008

    [174]

    Halama R, Konrad-Schmolke M, De Hoog J. Boron isotope record of peak metamorphic ultrahigh-pressure and retrograde fluid-rock interaction in white mica (Lago di Cignana, western Alps)[J]. Contributions to Mineralogy and Petrology, 2020, 175(3): 1-19.

    [175]

    Codeço M S, Weis P, Trumbull R B, et al. Boron isotope muscovite-tourmaline geothermometry indicates fluid cooling during magmatic-hydrothermal W-Sn ore formation[J]. Economic Geology, 2019, 114(1): 153-163. doi: 10.5382/econgeo.2019.4625

    [176]

    Liao X H, Hu Z C, Zhang W, et al. Isotopic analysis by laser ablation solution sampling MC-ICP-MS an example of boron[J]. Analytical Chemistry, 2021, 94(2): 1286-1293.

    [177]

    Thil F, Blamart D, Assailly C, et al. Development of laser ablation multi-collector inductively coupled plasma mass spectrometry for boron isotopic measurement in marine biocarbonates: New improvements and application to a modern Porites coral[J]. Rapid Communications in Mass Spectrometry, 2016, 30(3): 359-371. doi: 10.1002/rcm.7448

  • 期刊类型引用(7)

    1. 张琬璐,荆晓明. 海安凹陷曲塘次凹阜二段页岩油形成条件研究. 非常规油气. 2024(06): 34-43 . 百度学术
    2. 李志明,孙中良,黎茂稳,曹婷婷,李政,刘鹏,蒋启贵,钱门辉,陶国亮. 济阳坳陷第一轮页岩油探井“失利”原因剖析. 地球科学. 2023(01): 143-157 . 百度学术
    3. 王海斌. 牛庄洼陷页岩油大尺寸井眼优快钻井技术. 石油机械. 2023(07): 43-50 . 百度学术
    4. 肖新磊,席境阳,杜旭,王迎春. 胜利油田页岩油大井眼高效钻进技术研究与应用. 钻探工程. 2023(06): 122-128 . 百度学术
    5. 李志明,刘雅慧,何晋译,孙中良,冷筠滢,李楚雄,贾梦瑶,徐二社,刘鹏,黎茂稳,曹婷婷,钱门辉,朱峰. 陆相页岩油“甜点”段评价关键参数界限探讨. 石油与天然气地质. 2023(06): 1453-1467 . 百度学术
    6. 许智超,孙玮琳,王晓芳,杨佳佳,沈斌,徐学敏,张小涛,秦婧. 沉积岩中总有机碳测定的自动预处理方法. 岩矿测试. 2023(06): 1230-1239 . 本站查看
    7. 翁剑桥,李夏伟,戚明辉,张烨毓,王禹,张伟. 四川盆地龙马溪组页岩孔隙度实验方法分析. 岩矿测试. 2022(04): 598-605 . 本站查看

    其他类型引用(4)

图(9)  /  表(4)
计量
  • 文章访问数:  280
  • HTML全文浏览量:  79
  • PDF下载量:  51
  • 被引次数: 11
出版历程
  • 收稿日期:  2022-09-13
  • 修回日期:  2022-11-08
  • 录用日期:  2023-01-17
  • 网络出版日期:  2023-02-27
  • 刊出日期:  2023-01-27

目录

/

返回文章
返回