• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

海河流域大清河平原区地下水化学特征及演化规律分析

孟瑞芳, 杨会峰, 白华, 徐步云

孟瑞芳, 杨会峰, 白华, 徐步云. 海河流域大清河平原区地下水化学特征及演化规律分析[J]. 岩矿测试, 2023, 42(2): 383-395. DOI: 10.15898/j.cnki.11-2131/td.202207010121
引用本文: 孟瑞芳, 杨会峰, 白华, 徐步云. 海河流域大清河平原区地下水化学特征及演化规律分析[J]. 岩矿测试, 2023, 42(2): 383-395. DOI: 10.15898/j.cnki.11-2131/td.202207010121
MENG Ruifang, YANG Huifeng, BAI Hua, XU Buyun. Chemical Characteristics and Evolutionary Patterns of Groundwater in the Daqing River Plain Area of Haihe Basin[J]. Rock and Mineral Analysis, 2023, 42(2): 383-395. DOI: 10.15898/j.cnki.11-2131/td.202207010121
Citation: MENG Ruifang, YANG Huifeng, BAI Hua, XU Buyun. Chemical Characteristics and Evolutionary Patterns of Groundwater in the Daqing River Plain Area of Haihe Basin[J]. Rock and Mineral Analysis, 2023, 42(2): 383-395. DOI: 10.15898/j.cnki.11-2131/td.202207010121

海河流域大清河平原区地下水化学特征及演化规律分析

基金项目: 

国家自然科学基金地质联合基金 U2244214

中国地质调查局地质调查项目 DD20190336

中国地质调查局地质调查项目 DD2022175

中国地质科学院基本科研业务费项目 SK202118

中国地质科学院基本科研业务费项目 SK202216

河北省创新能力提升计划高水平人才团队建设专项 225A4204D

详细信息
    作者简介:

    孟瑞芳,硕士,副研究员,主要从事水文地质与水循环研究工作。E-mail: 631216332@163.com

    通讯作者:

    杨会峰,博士,研究员,主要从事水文地质与水循环研究工作。E-mail: yanghuifeng@mail.cgs.gov.cn

  • 中图分类号: P641.12;P332.7

Chemical Characteristics and Evolutionary Patterns of Groundwater in the Daqing River Plain Area of Haihe Basin

  • 摘要:

    地下水超采引发大清河流域范围内一系列生态环境负效应,地下水与地表水关系密切,厘清大清河流域平原区地下水化学特征及演化规律,对大清河流域水资源合理开发利用具有重要意义,然而目前尚缺乏对大清河流域地下水化学特征特别是其历史以来的演变规律作系统的分析。本文以海河流域大清河平原区地下含水系统为例,采集浅层含水层组47个水样和深层含水层组32个水样,测试了主要阴离子(Cl-、SO42-、NO3-)和阳离子(K+、Na+、Ca2+、Mg2+)等指标,利用水化学类型、吉布斯模型、离子比值关系等方法,研究其水化学特征及演化规律。测试结果显示:浅层含水层组受到气象和人为因素影响较大,浅层和深层含水层组pH值(7.35~8.92)差异不大,偏碱性;浅层含水层组由于农业活动等影响,造成局部地区的硝酸盐和硫酸盐污染。水岩相互作用分析显示:硅酸盐矿物风化是研究区主要的矿物来源,硅酸盐矿物溶解、阳离子交换为主要的水化学作用。研究区浅层地下水水化学特征总体上受地形和水文地质条件的影响,由山前平原-中部平原呈规律性分布。现状地下水化学类型为沿地下水径流方向由山前的HCO3-Ca·Mg(Ca)型,经HCO3-Mg·Ca、HCO3-Mg·Ca·Na、HCO3-Na·Mg·Ca向HCO3·Cl-Na·Ca、HCO3·Cl·SO4-Na至平原中部冲湖积平原的Cl(SO4)-Na转变。水化学演变分析显示中部平原地下水由以Cl·HCO3-Ca·Na、HCO3·Cl-Ca·Na型为主,转变为当前条件下以Cl·HCO3-Ca·Na、SO4·Cl-Na·Mg型为主。总体上,研究区现状水化学类型复杂多样,且分布上虽然仍受地形与地质条件的控制,但越来越多地受到以开采为主的人类活动的影响,应重视人类活动对该区域地下水的影响,合理布置开采方案。本文利用水化学方法研究了大清河流域平原区地下水化学特征及演化规律,厘清了大清河流域平原的水化学特征以及水化学类型演变规律,初步分析了演变趋势造成的原因,特别是指明地下水化学演变越来越受到人类活动的影响,后续将在水化学未来的演变预测上进行相关的研究。

    要点

    (1) 浅层含水层组TDS变化幅度大,深层含水层组TDS变化幅度小,浅层含水层组受到气象和人为因素影响较大。

    (2) 硅酸盐矿物风化溶解、阳离子交换为主要的矿物来源和水化学作用。

    (3) 浅层地下水化学特征总体上受地形和水文地质条件的影响,由山前平原-中部平原呈规律性分布。

    (4) 研究区水化学类型复杂多样,且越来越多地受到以开采为主的人类活动的影响。

    HIGHLIGHTS

    (1) The TDS of the shallow aquifer groups varies greatly, while the TDS of the deep aquifer groups has a small variation. The shallow aquifer groups are more influenced by meteorological and anthropogenic factors.

    (2) Weathering dissolution of silicate minerals and cation exchange are the main mineral sources and water chemistry.

    (3) The chemical characteristics of shallow groundwater are generally influenced by the topography and hydrogeological conditions and are regularly distributed from the piedmont plain to the central plain.

    (4) The current water chemistry types are complex and diverse and are increasingly influenced by human activities such as mining.

  • 01   地球化学基准与环境监测实验室分析指标对比与建议

    王学求1, 2,张勤1, 2,白金峰1, 2,姚文生1, 2,刘妹1, 2,刘雪敏3,王玮1, 2

    (1.自然资源部地球化学探测重点实验室,中国地质科学院地球物理地球化学勘查研究所,河北廊坊 065000;2.联合国教科文组织全球尺度地球化学国际研究中心,河北廊坊 065000;3.成都理工大学,四川成都 610059)

    全球变化是当今社会普遍关注的热点问题,自然和人为注入或导致的化学元素及其化合物再分配是引起全球变化的主导因素。要监控全球化学变化,特别是监控人类排放的重金属、放射性等注入量以及碳循环,首先要建立全球地球化学基准网,获得化学元素基准值和基准图,作为未来环境变化的定量参照标尺。全球代表性样品采集和实验室高质量分析数据是关键,环境变化量必须大于野外采样误差和实验室分析误差之和,才能鉴别环境变化。该文提出了实验室分析的6条基本准则,用于指导全球高质量和一致性地球化学数据的获取,拟为在地球化学基准网基础上,最终建成全球性地球化学观测网,持续监测全球化学变化奠定基础。

    15   地质样品中贵金属元素的预处理方法研究进展

    王烨,于亚辉*,王琳,张明炜,黄杰,吴林海

    (河南省岩石矿物测试中心国土资源部贵金属分析与勘查技术重点实验室,河南郑州 450012)

    贵金属已被全球许多国家列为战略性关键矿产资源,受到了严格控制、管理及储备。而贵金属元素在地壳中的含量甚微,如金仅为15×10-9,银为1×10-7;对于铂族元素,即使是有价值的工业富集,其品位与金相当甚至更低,导致了贵金属的供需矛盾日渐突出。由于贵金属稀少及其重要的应用价值,建立准确测定痕量、超痕量贵金属元素的分析方法,对于贵金属矿产资源勘查、评价和合理开采具有重要的指导意义。贵金属分析作为地质样品分析中最困难的任务之一,已成为影响贵金属矿产资源勘查、评价及相关研究工作的瓶颈,也是长期以来地球化学家难以获得广泛认同的铂族元素地壳丰度值的重要原因。对于含有贵金属的地质样品,其组成十分复杂,贵金属元素的分解、分离富集则是关键的研究内容。目前,锡试金法、镍锍试金法是分解贵金属的主要技术手段,采用碲共沉淀法、吸附法等方法进行分离富集,结合高灵敏度的ICP-MS,可实现8个贵金属元素的同时分析测定。实际应用中,该文建议应针对不同类型地质样品的特点,选取适宜的分解及分离富集方法,并严格控制流程本底及各个环节污染问题,实现多技术、多方法联用,满足贵金属分析的要求。

    30   特殊地质样品中钼同位素分析的化学前处理方法研究

    闻静1, 2,张羽旭1*,温汉捷1, 2,朱传威1,樊海峰1

    (1.中国科学院地球化学研究所,矿床地球化学国家重点实验室,贵州贵阳 550081;2.中国科学院大学,北京 100049)

    钼(Mo)是氧化还原敏感元素,其同位素分馏受氧化还原条件的控制,在不同的地质样品中有明显的同位素组成分异,因此Mo同位素组成可以示踪地质时期的气候和环境变化、揭示物质迁移规律和成矿作用。在应用MC-ICP-MS分析Mo同位素前,需对样品进行分离纯化,达到富集Mo和去除干扰元素(如Ru)的目的。已有学者开发了地质样品的前处理方法,在现代水圈中的Mo地球化学循环、古环境、古气候和行星演化过程等研究中应用于相关样品的处理。但是传统的阴、阳离子树脂双柱法在处理某些Fe含量特别高且含Ca的特殊地质样品(如含大量黄铁矿的钙质泥岩、钙质页岩)时,需多次过阳离子交换树脂,步骤较繁琐。针对此类特殊地质样品,该文开发了阴离子交换树脂单柱-二次淋洗法,获得Mo回收率>96%,符合质谱仪分析Mo同位素的要求,且Ru的去除率接近100%,比原方法提高了约12%。该方法也适用于处理多种性质的样品,对拓展Mo同位素在地学领域的应用具有重要意义。

    92   微波消解-电感耦合等离子体发射光谱法测定粉煤灰中的镓

    黄靖,王英滨*,周冠轩,马真乾

    (中国地质大学(北京)数理学院,北京 100083)

    镓是一种重要的战略资源,主要从铝土矿中回收获得。随着铝土矿资源的枯竭,需要开发新的途径获取镓。粉煤灰含有丰富的镓元素,准确测定粉煤灰中镓的含量对于实现其回收具有重要作用。粉煤灰的基体复杂,微量镓的浸出存在一定的困难。已报道的地质样品中镓含量的测定方法很多,但存在前处理周期长、过程繁琐、用酸量大、环境污染严重等问题。该文以内蒙古某电厂采集的粉煤灰与粉煤灰标准物质为例,利用硝酸-氢氟酸-盐酸-高氯酸,采用微波消解法处理样品。该方法通过引入盐酸,减少了氢氟酸的用量,因而缩短了除氟时间,在地质样品中微量镓分析领域具有参考价值。

    99   固体直接进样-电热蒸发电感耦合等离子体质谱联用分析土壤中的重金属元素

    乔磊1,叶永盛1,李鹰1,付永强1,周建光2,俞晓峰1

    (1.聚光科技(杭州)股份有限公司,浙江杭州  310000;2.浙江大学,浙江杭州 310000)

    随着工业化发展,环境重金属污染问题频繁爆发,土壤作为人类赖以生存的重要资源首当其冲。其重金属的准确检测,对于全面、系统地了解土壤环境中重金属的迁移、转化以及提出有效的整治方法具有重要的指导意义。近年来,基于电热蒸发-电感耦合等离子体质谱(ETV-ICP-MS)技术对土壤中重金属含量进行检测成为国内外研究热点。该文通过改进电热蒸发炉结构、优化仪器参数,采用梯度升温、基体匹配校正方法、管路伴热传输和氩气在线稀释等策略,并结合移动车载ICP-MS技术,建立了环境现场固体粉末直接进样ETV-ICP-MS联用定量分析土壤中Cr、Cu、Zn、As、Cd、Hg和Pb等重金属元素的方法。该方法是一种有实用价值的环境现场土壤样品分析技术。

  • 图  1   研究区水系分布及采样点分布

    Figure  1.   Distribution of water systems and sampling points in the study area.

    The red dots in the figure are shallow groundwater sampling points, blue dots are deep sampling points, and the solid blue line is the boundary between shallow water and deep water. According to the spatial structure and distribution of the aquifer and the relative water barrier, the Quaternary water-bearing system is divided into Ⅰ, Ⅱ, Ⅲ and Ⅳ water-bearing groups. As the thickness of the Ⅰ aquifer group is small, most of them are not exploited separately, and the hydraulic connection between the Ⅰ and Ⅱ aquifer groups is close, so it can be regarded as a unified aquifer system, i.e. Ⅰ+Ⅱ aquifer groups, which are "shallow aquifer groups" and are the main exploited layer section for agricultural water. The Ⅲ and Ⅳ aquifer groups are "deep aquifer groups", where the Ⅲ aquifer group is the main mining section for urban life and industrial water in the working area. The direction of groundwater runoff and runoff characteristics of the Ⅰ+Ⅱ aquifer groups and the Ⅲ aquifer group in this area are basically the same, and the direction of groundwater runoff is roughly the same as the topographic tendency and the direction of surface water runoff, i.e. the northern part flows from north west to south east, while the southern part moves from south west to north east.

    图  2   研究区现状地下水化学类型分布图

    a—浅层含水层; b—深层含水层。

    Figure  2.   Distribution of current groundwater chemical types (a. shallow aquifer, b. deep aquifer).

    The study area is a single-structure diving area in front of the mountain, with coarse aquifer particles, abundant groundwater recharge, strong alternating circulation, and simple water chemistry type, mainly bicarbonate calcium-magnesium (HCO3-Ca-Mg) type water with low mineralization. Along the direction of groundwater runoff, the water chemistry type changes from HCO3-Ca-Mg(Ca) type in piedmont plain, through HCO3-Mg-Ca, HCO3-Mg-Ca-Na, HCO3-Na-Mg-Ca to HCO3-Cl-Na-Ca, HCO3-Cl-SO4-Na to Cl(SO4)-Na in the central alluvial plain. The distribution of chemical characteristics of deep groundwater is generally controlled by hydrogeological conditions, and is regularly distributed from the piedmont plain to the central plain; compared with shallow groundwater, the chemical type of deep groundwater is relatively simple, from the top of the piedmont plainalluvial floodplain fan to the bottom of the alluvial floodplain fan, and the main anion in most parts of the plain is HCO3 type; the cations of deep groundwater are relatively complex, and the zonation is more obvious: from the piedmont plain to the bottom of the alluvial floodplain fan, the cations change to HCO3-Cl-Na and HCO3-Cl-SO4-Na. The deep groundwater cations are relatively more complex and more obvious: from the piedmont plain to the bottom of the alluvial fan, the cations transition from Ca, Ca-Mg, Mg-Ca, Na-Mg-Ca (Mg-Ca-Na) type to Na-Ca, Na type water.

    图  3   地下水样品(a, b)吉布斯图; (c)Mg2+/Na+与Ca2+/Na+比值关系图; (d)HCO3-/Na+与Ca2+/Na+比值关系图

    Figure  3.   (a, b) Gibbs diagrams of groundwater samples; (c) Ratio relationship chart of Mg2+/Na+ and Ca2+/Na+; (d) Ratio relationship charts of HCO3-/Na+ and Ca2+/Na+.

    Most of the water sample points in the TDS vs. Na+/(Na++Ca2+) diagram are located in the middle of the diagram, and a few are distributed outside the box, and the points in the TDS vs. Cl-/(Cl-+HCO3-) diagram are all distributed inside the box. The shallow aquifer groups are basically located within the water-rock interaction area, and individual points show some influence of evaporation concentration. The deep aquifer groups are all subject to water-rock interaction and is less affected by evaporation and atmospheric precipitation. The analysis results show that the milligram equivalent concentration ratio of (Ca2++Mg2+)+(HCO3-+SO42-) to Na++K+-Cl- is close to-1, indicating that the cation exchange is more significant. Groundwater samples in the study area are mostly distributed near the end elements of silicate minerals, indicating that weathering of silicate minerals is the main hydrogeochemical control factor in the study area.

    图  4   研究区地下水样品主要离子比值图

    Figure  4.   Major ion ratios of groundwater samples.

    Most of the groundwater samples exhibit Cl-/(Na++K+) < 1, indicating that silicate mineral dissolution (such as potassium feldspar and sodium feldspar) is the main source of excess Na+ and K+, except for rock salt in dissolved state. The HCO3-/(Ca2++Mg2+) of the shallow aquifer groups samples is basically<1, showing excess Ca2+ and Mg2+, indicating other sources of Ca2+ or Mg2+, while the (HCO3-+SO42-)/(Ca2++Mg2+) of the shallow aquifer groups is distributed above and below the 1∶1 line on both sides, suggesting that evaporite minerals (e.g. gypsum) may also be an important source of Ca2+ for the shallow aquifer groups. Both HCO3-/(Ca2++Mg2+) and (HCO3-+SO42-)/(Ca2++Mg2+) of the deep aquifer groups are located above the 1∶1 line, with excess HCO3- implying silicate dissolution dominance, or the presence of cation exchange, leading to lower Ca2+ content. The water samples of the shallow and deep aquifer groups are mainly distributed below the (Cl-+SO42-)/(HCO3-)=1∶1 line, indicating that their chemical components are subject to great dissolution by carbonate rocks

    图  5   地下水样SO42-/Ca2+与NO3-/Ca2+的比值关系图

    Figure  5.   Relationship between SO42-/Ca2+ and NO3-/Ca2+ in groundwater samples.

    The SO42-/Ca2+ to NO3-/Ca2+ ratios of the deep aquifer groups were all greater than 1, except for the 240m water well in the north of Erlangmiao Village, Dingzhou City, Hebei Province, which was less than 1. This indicates that the deep aquifer groups are basically affected by industrial and mining activities, but not by agricultural activities and residential sewage. In the shallow aquifer groups, the SO42-/Ca2+ to NO3-/Ca2+ ratio of 27 water samples is greater than 1, and the SO42-/Ca2+ to NO3-/Ca2+ ratio of 20 water samples is less than 1, which means that the shallow aquifer groups are partly influenced by industrial and mining activities, and partly influenced by agricultural activities and domestic sewage of residents

    表  1   研究区地下水水化学参数统计

    Table  1   Statistical results of groundwater hydrochemical parameters in the study area

    地下水类型 特征值 pH TDS
    (mg/L)
    K+
    (mg/L)
    Na+
    (mg/L)
    Ca2+
    (mg/L)
    Mg2+
    (mg/L)
    Cl-
    (mg/L)
    SO42-
    (mg/L)
    HCO3-
    (mg/L)
    NO3-
    (mg/L)
    浅层含水层组 最小值 7.35 254.10 0.26 7.61 12.88 14.44 5.26 6.48 177.30 0.20
    最大值 8.92 6015.00 2.69 1393.00 194.00 341.40 693.30 3091.00 558.30 298.40
    平均值 7.90 664.14 1.14 87.49 76.15 47.60 70.66 162.27 333.28 28.78
    标准偏差 0.35 907.40 0.66 218.22 39.03 51.66 120.67 483.46 90.21 48.99
    变异系数 0.04 1.37 0.58 2.49 0.51 1.09 1.71 2.98 0.27 1.70
    深层含水层组 最小值 7.40 197.10 0.30 8.26 4.43 1.12 1.75 4.99 155.60 0.71
    最大值 8.80 691.40 2.61 189.80 58.29 20.82 86.22 255.70 305.10 17.46
    平均值 8.03 278.58 1.46 56.52 28.98 10.60 15.37 27.41 221.23 4.55
    标准偏差 0.38 88.95 0.65 37.97 14.91 5.54 19.14 43.89 39.67 4.05
    变异系数 0.05 0.32 0.45 0.67 0.51 0.52 1.25 1.60 0.18 0.89
    Note: The test results showed that the largest deviation was in the water sample from Hanbao Village, Liu Lizhuang Town, Anxin County, Baoding City, Hebei Province, which was from the shallow aquifer groups, and the maximum TDS reached 6015.00mg/L. The TDS of the shallow aquifer groups ranged from 254.10 to 6015.00mg/L, with an average of 664.14mg/L, with a large coefficient of variation and a large variation in TDS, indicating that the shallow aquifer groups were affected by meteorological and human factors. The TDS of the deep aquifer group ranged from 197.10 to 691.40mg/L, with an average of 278.58mg/L, and the coefficient of variation was small, indicating that the groundwater of the deep aquifer groups was less affected by meteorological and human activities than that of the shallow aquifer groups. The pH values of the shallow and deep aquifer groups in the study area were not significantly different (7.35-8.92) and were alkaline. The NO3-maximum value of 298.40mg/L and the SO42-maximum value of 3091.00mg/L in the shallow aquifer groups, but the average value is not significant, indicating that the shallow aquifer groups have caused local nitrate and sulfate pollution due to agricultural activities and other influences.
    下载: 导出CSV
  • [1] 何宝南, 何江涛, 孙继朝, 等. 区域地下水污染综合评价研究现状与建议[J]. 地学前缘, 2022, 29(3): 51-63. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202203005.htm

    He B N, He J T, Sun J C, et al. Comprehensive evaluation of regional groundwater pollution: Research status and suggestions[J]. Earth Science Frontiers, 2022, 29(3): 51-63. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202203005.htm

    [2] 陈典, 张照荷, 赵微, 等. 北京市再生水灌区地下水中典型全氟化合物的分布现状及生态风险[J]. 岩矿测试, 2022, 41(3): 499-510. doi: 10.15898/j.cnki.11-2131/td.202111300190

    Chen D, Zhang Z H, Zhao W, et al. The occurrence, distribution and risk assessment of typical perfluorinated compounds in groundwater from a reclaimed wastewater irrigation area in Bejing[J]. Rock and Mineral Analysis, 2022, 41(3): 499-510. doi: 10.15898/j.cnki.11-2131/td.202111300190

    [3] 胡宗义, 何冰洋, 李毅. 中国流域水污染协同治理研究[J]. 中国软科学, 2022(5): 66-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRK202205007.htm

    Hu Z Y, He B Y, Li Y, et al. Research on collaborative governance of water pollution in river basin[J]. China Soft Science, 2022(5): 66-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRK202205007.htm

    [4]

    Said I, Merz C, Salman E R, et al. Identification of hydrochemical processes using multivariate statistics in a complex aquifer system of Sohag region, Egypt[J]. Environmental Earth Sciences, 2020, 79(8): 1-14.

    [5]

    Ahmed A, Clark I. Groundwater flow and geochemical evolution in the central Flinders Ranges, South Australia[J]. Science of the Total Environment, 2016, 572(1): 837-851.

    [6]

    Han D M, Liang X, Jin M G, et al. Hydrogeochemical indicators of groundwater flow systems in the Yangwu River Alluvial Fan, Xinzhou Basin, Shanxi, China[J]. Environmental Management, 2009, 44(2): 243-255. doi: 10.1007/s00267-009-9301-0

    [7]

    Chen J, Qian H, Gao Y Y, et al. Insights into hydrological and hydrochemical processes in response to water replenishment for lakes in arid regions[J]. Journal of Hydrology, 2020, 581, 124386. doi: 10.1016/j.jhydrol.2019.124386

    [8]

    Xiao Y, Shao J L, Cui Y L, et al. Groundwater circulation and hydrogeochemical evolution in Nomhon of Qaidam Basin, northwest China[J]. Journal of Earth System Science, 2017, 126(2): 1-16.

    [9]

    Jla B, Ywa B, Cza B, et al. Hydrogeochemical processes controlling the mobilization and enrichment of fluoride in groundwater of the North China Plain[J]. Science of the Total Environment, 2020, 730: 1-11.

    [10] 刘君, 陈宗宇, 王莹, 等. 大规模开采条件下我国北方区域地下水水化学变化特征[J]. 地球与环境, 2017, 45(4): 408-414. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201704004.htm

    Liu J, Chen Z Y, Wang Y, et al. Evaluation of hydrochemical characteristics of regional groundwater systems in northern China under the conditions of large-scale exploitation[J]. Earth and Environment, 2017, 45(4): 408-414. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201704004.htm

    [11] 赵奕博, 尹钊, 史常青, 等. 大清河流域河岸植被带污染物净化能力研究[J]. 水土保持学报, 2022, 36(5): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS202205018.htm

    Zhao Y B, Yin Z, Shi C Q, et al. Study on pollutant purification capacity of riparian vegetation zonein daqing river basin[J]. Journal of Soiland Water Conservation, 2022, 36(5): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS202205018.htm

    [12] 杨忠俭, 董思远. BIM技术在京杭运河大清河航道工程中的应用[J]. 山东交通科技, 2022(2): 151-153. https://www.cnki.com.cn/Article/CJFDTOTAL-JTKE202202047.htm

    Yang Z J, Dong S Y. Application of BIM technology in the Daqing River waterway project of the Beijing—Hangzhou Canal[J]. Shandong Communications Technology, 2022(2): 151-153. https://www.cnki.com.cn/Article/CJFDTOTAL-JTKE202202047.htm

    [13] 姜鲁光, 杨成, 封志明, 等. 面向多目标情景的大清河流域水资源利用权衡[J]. 资源科学, 2021, 43(8): 1649-1661. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY202108012.htm

    Jiang L G, Yang C, Feng Z M, et al. Multi-scenario trade-off on water resources utilization in Daqing River Basin[J]. Resources Science, 2021, 43(8): 1649-1661. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY202108012.htm

    [14] 王钰升. 大清河流域平原区地下水人工补给方式研究[D]. 长春: 吉林大学, 2021.

    Wang Y S. Study of groundwater artificial recharge modes in plain area of Daqing River Basin[D]. Changchun: Jilin University, 2021.

    [15] 赵婧彤. 地下水人工补给过程中的促渗技术研究——以大清河流域典型区为例[D]. 长春: 吉林大学, 2021.

    Zhao J T. Study on infiltration promotion techniques during artificial recharge of groundwater——A case study of Daqing River Basin[D]. Changchun: Jilin University, 2021.

    [16] 庄玉峰. 大清河中下游地下水水源评价区水量安全性评价[J]. 水利规划与设计, 2017(5): 24-25, 83. https://www.cnki.com.cn/Article/CJFDTOTAL-SLGH201705008.htm

    Zhuang Y F. Water safety assessment of groundwater source assessment area in the middle and lower reaches of Daqing River[J]. Water Resources Planning and Design, 2017(5): 24-25, 83. https://www.cnki.com.cn/Article/CJFDTOTAL-SLGH201705008.htm

    [17] 董冬, 边静. 趋势面分析法在地下水动态预测中的应用[J]. 吉林地质, 2020, 39(2): 96-99. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ202002018.htm

    Dong D, Bian J. Application of trend surface analysis method in groundwater dynamic prediction[J]. Jilin Geology, 2020, 39(2): 96-99. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ202002018.htm

    [18] 刘旭东, 张瑞, 万宝. 基于Piper-PCA-MLP神经网络的矿井涌水水源识别方法研究[J]. 中国煤炭地质, 2022, 34(7): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT202207010.htm

    Liu X D, Zhang R, Wan B. Study on mine water inrush source discrimination method based on Piper-PCA-MLP neural network[J]. Coal Geology of China, 2022, 34(7): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT202207010.htm

    [19]

    Ma B, Jin M G, Liang X, et al. Groundwater mixing and mineralization processes in a mountain-oasis-desert basin, northwest China: Hydrogeochemistry and environmental tracer indicators[J]. Hydrogelogy Journal, 2018, 26: 233-250.

    [20] 陈毅. 白洋淀流域平原区地下水-孔隙水的水化学特征和水文地球化学过程[D]. 北京: 中国地质大学(北京), 2018.

    Chen Y. Pore-water and groundwater hydrochemical characteristics and hydrogeochemical processes in Baiyangdian Lake Basin[D]. Beijing: China University of Geosciences (Beijing), 2018.

    [21] 秦怡, 唐小惠, 李艳龙, 等. 枣庄市南部地下水水化学特征及其主要控制因素[J]. 安全与环境工程, 2022, 29(6): 132-138, 155. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202206016.htm

    Qin Y, Tang X H, Li Y L, et al. Hydrochemical characteristics and main controlling factor of the ground water in southern Zaozhuang[J]. Safety and Environmental Engineering, 2022, 29(6): 132-138, 155. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202206016.htm

    [22] 李锴雯. 河北省自然地理环境对植物的影响[J]. 现代农村科技, 2016(6): 73. https://www.cnki.com.cn/Article/CJFDTOTAL-HBNK201606073.htm

    Li K W. Influence of natural geographical environment on plants in Hebei Province[J]. Modern Rural Science and Technology, 2016(6): 73. https://www.cnki.com.cn/Article/CJFDTOTAL-HBNK201606073.htm

    [23] 侯思琰, 徐鹤, 刘德文, 等. 大清河流域主要河流与湿地生态水量计算与保障分析[J]. 吉林水利, 2021(8): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-JLSL202108002.htm

    Hou S Y, Xu H, Liu D W, et al. Calculation and guarantee analysis of ecological water volume of main rivers and wetlands in Daqing River Basin[J]. Jilin Water Conservancy, 2021(8): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-JLSL202108002.htm

    [24] 任宇, 曹文庚, 潘登, 等. 2010—2020年黄河下游河南典型灌区浅层地下水中砷和氟的演化特征及变化机制[J]. 岩矿测试, 2021, 40(6): 846-859. doi: 10.15898/j.cnki.11-2131/td.202110090143

    Ren Y, Cao W G, Pan D, et al. Evolution characteristics and change mechanism of arsenic and fluorine in shallow groundwater from a typical irrigation area in the lower reaches of the Yellow River (Henan) in 2010—2020[J]. Rock and Mineral Analysis, 2021, 40(6): 846-859. doi: 10.15898/j.cnki.11-2131/td.202110090143

    [25] 李谨丞, 曹文庚, 潘登, 等. 黄河冲积扇平原浅层地下水中氮循环对砷迁移富集的影响[J]. 岩矿测试, 2022, 41(1): 120-132. doi: 10.15898/j.cnki.11-2131/td.202110080140

    Li J C, Cao W G, Pan D, et al. Influences of nitrogen cycle on arsenic enrichment in shallow groundwater from the Yellow River Alluvial Fan Plain[J]. Rock and Mineral Analysis, 2022, 41(1): 120-132. doi: 10.15898/j.cnki.11-2131/td.202110080140

    [26] 曹文庚, 杨会峰, 高媛媛, 等. 南水北调中线受水区保定平原地下水质量演变预测研究[J]. 水利学报, 2020, 51(8): 12. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202008005.htm

    Cao W G, Yang H G, Gao Y Y, et al. Prediction of groundwater quality evolution in the Baoding Plain of the SNWDP benefited regions[J]. Journal of Hydraulic Engineering, 2020, 51(8): 12. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202008005.htm

  • 期刊类型引用(1)

    1. 万新,王先广,胡正华,肖玉如,胡秋萍,施鹏超,张永文,冯增会. 江西丰城天然微纳米硅碳矿床Re-Os同位素定年研究. 岩矿测试. 2023(06): 1078-1089 . 本站查看

    其他类型引用(0)

图(5)  /  表(1)
计量
  • 文章访问数:  239
  • HTML全文浏览量:  41
  • PDF下载量:  52
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-06-30
  • 修回日期:  2022-08-15
  • 录用日期:  2022-11-04
  • 网络出版日期:  2023-02-01
  • 刊出日期:  2023-03-27

目录

    /

    返回文章
    返回