• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

树脂柱串联法分离地质样品中Sr-Nd-U

骆正骅, 李超, 赖正, 王晨羽, 郭玉龙, 段知非, 徐娟, 杨守业

骆正骅, 李超, 赖正, 王晨羽, 郭玉龙, 段知非, 徐娟, 杨守业. 树脂柱串联法分离地质样品中Sr-Nd-U[J]. 岩矿测试, 2023, 42(1): 102-113. DOI: 10.15898/j.cnki.11-2131/td.202204060072
引用本文: 骆正骅, 李超, 赖正, 王晨羽, 郭玉龙, 段知非, 徐娟, 杨守业. 树脂柱串联法分离地质样品中Sr-Nd-U[J]. 岩矿测试, 2023, 42(1): 102-113. DOI: 10.15898/j.cnki.11-2131/td.202204060072
LUO Zhenghua, LI Chao, LAI Zheng, WANG Chenyu, GUO Yulong, DUAN Zhifei, XU Juan, YANG Shouye. Separation of Sr, Nd, and U from Geological Samples Using Tandem Resin Column[J]. Rock and Mineral Analysis, 2023, 42(1): 102-113. DOI: 10.15898/j.cnki.11-2131/td.202204060072
Citation: LUO Zhenghua, LI Chao, LAI Zheng, WANG Chenyu, GUO Yulong, DUAN Zhifei, XU Juan, YANG Shouye. Separation of Sr, Nd, and U from Geological Samples Using Tandem Resin Column[J]. Rock and Mineral Analysis, 2023, 42(1): 102-113. DOI: 10.15898/j.cnki.11-2131/td.202204060072

树脂柱串联法分离地质样品中Sr-Nd-U

基金项目: 

国家自然科学基金项目 42076063

国家自然科学基金项目 41991324

上海市自然科学基金项目 20ZR1460400

上海市自然科学基金项目 21590712700

详细信息
    作者简介:

    骆正骅,硕士研究生,海洋地球化学专业。E-mail:luozh@tongji.edu.cn

    通讯作者:

    李超,博士,副教授,从事边缘海沉积地球化学研究。E-mail:cli@tongji.edu.cn

  • 中图分类号: O657.63

Separation of Sr, Nd, and U from Geological Samples Using Tandem Resin Column

  • 摘要:

    Sr、Nd、U等同位素体系被广泛应用于地球表生过程中年代测定及物源示踪等研究, 高效地分离这些同位素体系,对于推广这些同位素方法的应用具有重要现实意义。若要同时分析地质样品中Sr、Nd、U三种元素的同位素,现有方法往往需要消解两份样品,一份用于Sr-Nd而另一份用于U的分离提纯。这种方法不但增加了样品用量,而且需要多次蒸干溶液转换介质,既延长了分离流程也增加了样品被污染的风险。为了提高样品利用率和分析效率,本文通过将树脂柱串联改进了分离流程,提出一种仅需消解一份样品,便可同时提取Sr、Nd、U三种元素的新方法。本方法中Sr的分离采用Sr特效树脂,包含Nd在内的稀土元素(REE)的分离采用AG50W-X8树脂,U的分离采用UTEVA特效树脂。实验中将三种树脂柱串联,采用3mol/L硝酸淋洗液淋洗,同步进行平衡树脂、上样、洗杂志,避免了蒸干操作。分离后的淋出液使用电感耦合等离子体质谱仪(ICP-MS)测试元素含量。结果表明:U的回收率接近99.9%,Sr的回收率超过90%,Nd的回收率超过80%;同时三种树脂柱串联的分离流程,主要基体元素(K、Ca、Na、Ba、Fe、Rb等)的去除率均超过99%,降低了对Sr、Nd、U高精度同位素分析的干扰;REE中的Sm则可以通过后续使用Ln树脂等进一步去除。此外,本文还交换了Sr特效树脂和UTEVA树脂的位置,比对两种不同串联顺序对分离结果的影响,结果表明两种树脂柱串联顺序对目标元素的分离并无显著影响。使用该方法可以有效地实现Sr、Nd、U的分离,在减少操作步骤的同时节省约一半的样品用量,提高了同位素分析效率。

    要点

    (1) 将树脂柱串联,采用相同淋洗液同步进行平衡树脂、上样、洗杂质,避免了蒸干操作。

    (2) UTEVA特效树脂和Sr特效树脂的上下串联顺序,对Sr、Nd、U元素的回收率并无显著影响。

    (3) 多次重复回收利用树脂可能导致树脂柱失效,影响对目标元素的吸附能力,需要及时更换新树脂。

    HIGHLIGHTS

    (1) The resin columns are connected in series, and the same eluent is used to balance the resin, load the sample, and wash the impurities simultaneously, avoiding the operation of evaporation to dryness.

    (2) Reversing the column positions, UTEVA column and Sr column, has no effect on Sr, Nd and U separation and the column recovery.

    (3) Multiple reuse of resin can lead to resin column lapse, affecting the adsorption capacity of the target element, thus new resins should be used in a timely manner.

  • 实现资源、环境和经济的协调发展是当下世界各国广泛关注的问题。发展绿色矿业、推进绿色勘查、建设绿色矿山,是促进资源、环境和经济协调发展的重要一环,也是适应新时期资源国情的重要举措。我国建设“绿色矿山”的理念始于2006年。2009年《全国矿产资源规划2008—2015》明确提出“绿色矿山建设”的目标任务和要求。2011年“发展绿色矿业”被纳入国家“十二五”规划。2015年将“发展绿色矿业,加快推进绿色矿山建设”列入国家生态文明建设的重要内容。2016年国家选取50个矿山开展绿色矿业发展示范区建设,提出了“绿色勘查”行动宣言[1]。随着绿色矿山、绿色矿业、绿色开采、绿色勘查等理念的相继提出,有关单位和行业协会也重点研发了相关标准。2018年6月,中国矿业联合会发布了《绿色勘查指南》,同年7月,自然资源部发布了《有色金属行业绿色矿山建设规范》(适用于铜矿、铝土矿、铅锌矿、钨矿、钼矿、锑矿、锡矿、镍矿、镁矿)等9项推荐性行业标准,这是我国第一部绿色矿山建设规范。但针对“能源金属”锂的绿色调查及矿山环境评价的研究成果鲜见报道。锂是新兴产业发展不可或缺的战略资源,被称为“21世纪的能源金属”[2]。四川西部甲基卡具有锂矿资源的区位优势,是我国重要的大型能源金属资源基地。大型资源基地的“绿色调查”,是在资源基地环境扰动最小的前提下,实现找矿部署最优化和生态环境保护最大化,通过创新方法,以地质背景与生态环境作为整体系统进行调查研究,通过地质学、水文地质学、工程地质学、地球化学、生态学、环境科学、数学等专业的跨学科综合调查成果来优化找矿部署,重视3S新技术新方法应用,适度调整或替代对环境影响大的勘查手段,快速恢复景观和健康的生态系统,以服务于保障大型资源基地生态安全,调整优化找矿突破工作布局。对于大型矿产资源基地的调查评价,其所面临的社会、政治、经济、环境等方面的问题远比一般性矿产地质调查复杂[3],已有部分重点开发项目由于环境问题处于停滞状态[4]

    我国专家学者已开展了大量绿色矿山及矿山环境评价指标的研究工作,取得了丰富的研究成果,可以归纳为两大类。第一类是针对政策、计划、各类矿产资源规划方案实施可能产生的环境影响评价指标的研究,主要集中在矿区可持续发展指标体系[5-11]、矿区生态文明指标体系[12]、绿色矿山指标体系[13-16]、战略性环评指标体系[17]、矿产资源安全评价指标体系[18-19]五个方面;第二类是针对不同景观区(如平原湿热带、干旱戈壁带),不同矿种(如硫化物多金属矿、钨锡矿、金银矿、镉矿等)矿区整体生态环境为重点指标系列的研究,主要包括矿区生态系统健康评价指标体系[20-21]、矿区生态环境质量评价指标体系[22-28]、矿区资源承载力评价指标体系[29-30]、矿区土壤质量评价指标体系[31-33]、环境影响评价指标体系[34-40]、矿产资源开发利用指标体系[41-46]。但未见针对高海拔特殊地貌区锂矿山绿色调查与环境评价指标体系研究成果的报道。

    本文在分析川西大型锂资源基地的自然环境、实地调研当地矿业开发现状的基础上,将绿色调查与环境评价两方面工作有机结合,通过3S技术手段对生态环境现状及变化过程进行信息提取,结合2016—2018年连续三年对该区地表水、土壤等多环境介质的野外调查取样与分析结果,分四个层次构建指标框架,建立了一套适用于大型锂资源基地的有针对性的评价指标体系。根据这套创新的调查和评价指标体系,对经过验证的、成熟的评价方法进行优化,运用Python语言研建了基于支持向量机的大型锂资源基地环境评价模型。运用该模型,对甲基卡锂资源基地进行评价,将其环境现状划分为四个级别,实现对大型资源基地环境现状“像元级”的评价,旨在为合理开发锂矿资源提供决策依据。

    川西甲基卡地处青藏高原东部,是少数民族世代游牧的草场分布区,生态环境脆弱,其特殊的外部环境决定了在综合地质调查工作中必须走出一条高效、可行的绿色发展之路。采用科学的方法对每一阶段的开发活动开展环境调查评价、提出环境影响预测,是服务支撑生态环境保护与修复、建设绿色矿山、提高我国矿产资源保障能力的必然要求。从以往的环境评价指标体系研究中可以看出,不同国家、不同地区对于矿产资源环境评价的指标体系是互不相同的,每个指标体系的建立都是研究区自然、经济和特定外部环境特征的反映,指标体系的建立应适应现实工作的需要。尤其是针对川西高原特殊的地理景观区和脆弱的生态环境区环境评价,不能机械地运用前人的方法,要在仔细分析当地的自然环境了解当地矿业开发现状的基础上,结合适合于实地情况的绿色调查手段和高效的计算机运算平台,从而实现对大型资源基地环境的高效、实用的评价,为提出保障甲基卡锂辉石资源基地生态安全的对策,科学决策、合理开发锂矿资源提供基础依据。

    当前对于环境评价工作已经有了很多有效的模型实现方法,如层次分析法、专家打分法、改进的二元对比分析法、熵权法、模糊综合评价法、协调程度评价法、多级模糊模式识别模型、等权加和法、加权求和法、PSR模型法、加权综合指数法等。相应的研究成果在矿产资源环境评价的各个阶段都获得了很好的效果,本文综合运用遥感、GIS技术,实现大型资源基地开发决策与空间信息结合,建立了大型资源基地的环境综合评价模型,并采用计算机编程辅助对模型进行实现和验证。

    大型资源基地绿色调查与环境评价的指标体系应全面反映大型基地生态系统的自然特征(勘查初期)、矿山建设及矿产资源开发前后生态环境的变化特征、客观评价并预测资源开发的环境影响,并有针对性地提出矿山环境恢复治理措施,应是一个动态的、可持续监测的、科学的指标体系。在环境评价的同时,发挥环境地球化学调查的优势,将绿色调查与环境评价两方面工作有机结合。对指标的选择既要涵盖矿区环境评价普遍适用的指标,又要包含大型资源基地特定矿种在资源开发利用、生态环境保护方面的影响因子。指标体系的构建应分层次、分阶段、可量化、不冗余,并涵盖动态监测的结果。评价模型的建立及计算方法的选择应准确、实用、可推广,并能有效地结合空间信息,便于矿产资源开发利用管理及决策。

    大型资源基地“绿色调查”有两个基本环节。一是将绿色调查与环境评价两方面工作有机结合,分层次构建指标框架,应用3S技术对生态环境现状及变化过程(如地形坡度、地质灾害隐患、植被覆盖度等)进行信息提取,辅以野外调查,根据实际情况优化调查取样手段,通过技术创新,实现调查过程的低扰动、无污染和零排放。通过对调查区的土壤、地表水、植被等连续的采样检测,高精度分析(ICP-MS等)其中有益有害元素的组成与含量,测定其理化特征参数(pH、Eh等),为评价指标体系的建立提供了大量宝贵的可选择指标,使得评价体系更加完整、真实。

    对于水环境评价中涉及的元素及主要阴阳离子的含量数据由如下测试方法获得。主要阴离子测定仪器:离子色谱仪,型号Dionex DX-600,分离柱(Dionex IonPac AS18 4mm);保护柱(Dionex IonPac AG18 4mm);自动再生微膜抑制器(ASRS ULTRAⅡ 4mm);电导检测器。主要阳离子测定仪器:电感耦合等离子体发射光谱仪(ICP-OES),型号Optima 8300(美国PerkinElmer公司),测试精度 < 5%。微量元素测定仪器:电感耦合等离子体质谱仪(ICP-MS);按照仪器操作说明规定条件启动仪器,进行仪器参数最佳化试验,并进行校准,校准数据采集至少三次,取平均值。每批试料测定时,同时测定实验室试剂空白溶液。每批试料测定时,同时分析单元素干扰溶液,以获得干扰系数(k)并进行干扰校正。试料测定中间用清洗空白溶液清洗系统。

    对于土壤环境评价中涉及的元素含量数据由如下测试方法获得。采集的土壤样品置于电热恒温鼓风干燥箱中于65℃烘干至恒重,过200目筛,得到土壤粉末。于封闭溶样的聚四氟乙烯内罐中,称取粉末样品0.0500g(误差范围±0.0010g),随后加2mL氢氟酸、1mL硝酸,盖上盖,装入钢套中封闭,于190℃加热保温30h。待冷却后打开盖子,取出聚四氟乙烯内罐,置于电热板上,170℃蒸发至干。加0.5mL硝酸再次蒸发至干,这一步骤重复两次,加50%硝酸5mL,盖上盖,将聚四氟乙烯内罐装钢套中封闭。熔样器放入烘箱中,150℃下保温3h,熔样器冷却之后,将其内溶液转至50mL容量瓶中,用超纯水定容至刻度,以备ICP-MS测定。

    除土壤粉末样品制备外,以上测试均在国家地质实验测试中心完成。

    二是研究建立相应计算方法与评价模型,环境效应的影响因素多样,包括大量定性、定量数据,最终要实现每一个评价指标的量化分级,宏观掌握每一阶段的开发活动的环境影响程度,辅助规范大型基地矿产资源开发利用的管理及决策。本文确立的大型锂矿资源基地绿色调查与环境评价技术准则、实现途径与最终目标如图 1所示。

    图  1  绿色调查与环境评价技术准则、实现途径与最终目标
    Figure  1.  Technical guidelines, implementation approaches and ultimate goals of the green survey and environmental assessment

    大型资源基地矿产资源的开发时间跨度长、社会经济影响大,特别是当大型资源基地位于特殊地貌区或生态脆弱区时,其生态影响深远。川西高原生态的脆弱性主要受到自然环境和人类活动两方面作用的影响。研究区平均海拔超过3700米,由于海拔效应使得温度明显低于同纬度的其他地区,被称为“世界第三极”。同时该区域深处大陆内部远离海岸线,空气寒冷干燥降水量低,土壤发育历史短,肥力较弱,植物结构单一。低温缺水加之土壤肥力较差使得植物生产力低下,更新速度缓慢,破坏后恢复速度慢[47]。这一系列自然因素决定了川西高原生态承载力较弱的事实,使其对于外界扰动较为敏感,容易出现退化现象,且退化破坏后较难恢复。人为活动极大地扰动了生态系统稳定的状态,由于生态脆弱区的生态承载力的水平低下,人为活动如果没有得到有效的规范和控制,很容易超出环境生态的承载力,对环境造成破坏。尤其是矿业资源开发中的采矿、选矿、冶炼很容易给环境带来破坏,须在开发规划之初就有所重视。

    实现矿产资源的合理开发,既需要协调好生态环境保护与资源开发利用的关系,又要科学预判采矿对环境可能造成的影响,还要制定合理的环境保护与减缓不良环境影响的措施,三者缺一不可。因此,在大型基地矿产资源开发的不同阶段,其环境评价的指标应各有所侧重,模型及计算方法的选择也各有不同。结合生态脆弱区的特点,从资源开发不同阶段出发,本文形成了一套大型基地矿产资源开发不同阶段环境评价指标体系(表 1)。该表中,自然地理和地质背景是对自然环境生态的评价,从地形地貌、植被、降雨量、岩性组合等几个角度较全面地总结和评价了自然环境原有承载能力的水平,因此这几项评价指标贯穿了整个资源基地开发的各个阶段。矿业开发与其带来的对于土壤和水的影响属于人为活动给环境带来扰动的范畴,该指标体系中对其详细地划分为20项分指标,能够较为客观地涵盖了人为矿业生产中的这种活动以及对于环境各方面的影响。

    表  1  大型基地矿产资源开发不同阶段环境评价指标体系
    Table  1.  Environmental assessment index system for different stages of mineral resources development in large bases
    目标层 指标层 勘查初期阶段 矿产资源开发阶段 环境恢复治理阶段
    自然地理 地形地貌
    降雨量
    植被覆盖度
    地质背景 地质构造
    岩性组合
    矿业开发 主要开采方式
    噪声
    占用土地比例
    开采点密度
    采空区面积比
    开采回采率
    选矿回收率
    共伴生组分利用率
    尾矿利用率
    环境影响 地质灾害隐患
    地质灾害预警
    水资源破坏程度
    土壤资源破坏程度
    固废堆放占地
    废水废液排放
    大气环境质量
    荒漠化面积
    土壤侵蚀模数
    环境治理投入强度
    治理难度
    下载: 导出CSV 
    | 显示表格

    本文在青藏高原川西地区选择甲基卡大型资源基地及周边150平方公里范围为研究区域进行典型研究。川西锂辉石开发环境效应的影响因素多样,包括大量定性、定量数据。川西甲基卡大型锂矿基地正处于勘查初期阶段,本次研究参考《区域环境地质调查总则》基本要求,针对川西甲基卡锂辉石矿区环境特点与勘查开发阶段,对李东等(2015)[48]的矿山环境评价模型进行优化改进,结合2.3节构建的大型基地矿产资源开发不同阶段环境评价指标体系,建立了一套包括自然地理、基础地质、矿业开发以及地质环境在内4大类、12小类的评价指标体系。指标体系的构建共分2个层次:第一层次为4个矿山环境因子的大类指标划分,即自然地理(A)、基础地质(B)、矿山开发占地(C)和矿业活动有关的环境影响(D);第2个层次为各个大类指标的细化指标,包括12个分项指标(指标层,表 2)。

    表  2  环境效应评价指标量化处理标准
    Table  2.  Quantitative processing standard of the environmental effect evaluation index
    指标类型 评价指标 评价指标分级标准(分值)
    1 2 3
    自然地理(A) 地形地貌(A1)
    降水量(A2)
    植被覆盖度(A3)
    坡度>35°
    <200mm
    <40%
    坡度20°~35°
    200~900mm
    40%~60%
    坡度<20°
    >900mm
    >60%
    基础地质(B) 构造(B1)
    岩性组合(B2)
    强烈发育
    松散堆积物
    较发育
    软质岩为主
    不发育
    硬质岩为主
    矿业开发(C) 主要采选方式(C1)
    噪声(C2)
    占用土地比例(C3)
    浮选
    嘈杂
    >10%
    重选+磁选
    一般
    0~10%
    联合选矿
    安静
    无矿业占地
    环境影响(D) 地质灾害隐患(D1)
    地质灾害预警(D2)
    水环境破坏程度(D3)
    土壤环境破坏程度(D4)
    易发
    较多
    严重
    严重
    轻微
    一般
    一般
    一般
    基本没有
    较少

    下载: 导出CSV 
    | 显示表格

    评价过程中,依据建立的评价指标体系,通过典型区资料的收集处理包括Landsat遥感影像、研究区基础地质图、研究区数字高程模型(分辨率30米)、研究区行政区划图、研究区水样评价数据(野外调查实测)、研究区土壤评价数据(野外调查实测)、研究区自然、社会经济方面的文字资料等,利用ENVI、ArcGIS等空间数据处理软件,对遥感影像进行投影转换、几何校正、归一化植被指数计算;利用ArcGIS工具软件对研究区的DEM数据进行坡度计算,得到坡度图;利用ArcGIS、ENVI工具软件,通过人机交互解译、空间分析等方法,计算得到矿山开发占地等评价指标图层。

    通过几何重采样、分值量化处理等方法,将研究区采样设置为27118个100m×100m的单元,每个单元均具有12个量化指标,评价指标值均量化为1、2、3三个分值。对经过验证的、成熟的评价方法[49]进行优化,构建基于支持向量机的环境评价模型,将研究区划分为环境较差区、环境一般区、环境较好区、环境良好区四类区域(图 2)。评价结果中,环境较差区主要集中在矿区、矿区周边及尾矿库周边,环境较好区主要分布在远离矿区的、坡度较小、植被覆盖较高的区域。通过对已有先期经验的验证单元进行分类,判断分类评价模型的客观性和准确性。628个验证样本中,13个为环境较差区样本,48个为环境一般区样本,106个为环境较好区样本,461个为环境良好区样本。验证结果表明,除环境良好区单元中有19个环境良好区单元被误评价为环境较好区单元外,其余单元均被正确分类,总体准确率达到97.77%;尤其是针对环境较差区的判别,准确率达100%。由此可见该分类模型具有较高的准确性和客观性。基于支持向量机的定量评价模型应用与锂辉石矿区环境评价,将环境评价得分划分为4个级别,为当地资源开发与环境保护协调发展提供了一定证据与参考。

    图  2  川西甲基卡资源基地综合评价分级图
    Figure  2.  Comprehensive evaluation and grading map of Jiajika resource base, Western Sichuan Province

    针对当前能源金属锂绿色矿山建设行业标准与环境评价指标体系研究成果较少的现实问题,本文提出了适用于高原地区大型资源基地“绿色调查”的方法,即在资源基地环境扰动最小的前提下,实现了找矿部署最优化和生态环境保护最大化,通过创新方法[50],以地质背景与生态环境作为整体系统进行调查研究,通过跨学科综合调查成果来优化找矿部署。拓展并提出了相应的环境评价指标体系,各指标的评价结果以可量化的数据表达,并能有效地结合空间信息,便于矿产资源开发利用各阶段的管理及决策。对经过验证的、成熟的评价方法进行优化,运用Python语言编程建立了基于支持向量机的大型锂资源基地环境评价模型。

    将提出的环境评价指标体系及评价模型应用于甲基卡矿区,对研究区的环境现状作出了合理的分级,解决了以往以行政单元(市区县界)为单元的评价在矿区或大型基地尺度的应用壁垒,从技术上实现了大型资源基地环境现状的“像元级”的评价分级。研究结果表明本指标体和模型能够比较客观地反映甲基卡矿区及周边地质环境背景、资源开发环境问题与影响范围,回答了“能不能开发”以及“开发哪里”这两个实际问题,为当地资源开发与环境保护协调发展提供了一定证据与参考。研究成果有助于突破高原生态脆弱区找矿部署与环境保护瓶颈问题,具有较强的现实意义。

    致谢: 感谢同济大学海洋与地球科学学院马松阳硕士对本文撰写提供的指导和建议,同时感谢两位匿名审稿人提出的宝贵意见。
  • 图  1   Sr、Nd、U同位素联合分离流程示意图

    步骤1:对三根树脂柱分别进行预清洗,降低本底。步骤2:三柱串联,同步进行平衡树脂、上样、洗杂质。步骤3:三柱分离单独淋洗接取目标元素。

    Figure  1.   Schematic diagrams of the combined Sr, Nd, U isotopes separation procedure.

    图  2   方案一中Sr-Nd-U在不同馏分中的回收率

    Figure  2.   Recoveries of Sr-Nd-U in different fractions in procedure Ⅰ. The Sr and U recoveries are over 90%, while the Nd recovery is only 43.6% and need further separation with Sm.

    图  3   方案二中Sr-Nd-U在不同馏分中的回收率

    Figure  3.   Recoveries of Sr-Nd-U in different fractions in procedure Ⅱ. The Sr and U recoveries are over 90%, while the Nd recovery is only 53.7% and need further separation with Sm.

    图  4   更新AG50W-X8树脂后Nd的回收率

    Figure  4.   Nd recovery using renewed AG50W-X8 resin. The updated recovery for Nd is increased to 82.1%.

    表  1   Sr、Nd、U同位素联合过柱分离流程

    Table  1   Procedure of combined Sr, Nd, U isotopes separation

    流程 分离步骤 树脂柱 淋洗试剂 试剂总体积
    (mL)
    馏分
    编号

    预清洗
    本底清洗 Sr特效树脂 3mol/L硝酸 6 -
    超纯水 6 -
    3mol/L硝酸 5 -
    超纯水 5 -
    3mol/L硝酸 5 -
    超纯水 5 -
    AG50W-X8
    树脂
    6mol/L盐酸 15 -
    超纯水 5 -
    UTEVA特效
    树脂
    3mol/L硝酸 4 -
    3mol/L盐酸 4 -
    3mol/L盐酸 4 -
    超纯水 4 -

    三柱串联
    平衡树脂 - 3mol/L硝酸 3 -
    上样 3mol/L硝酸 2 1
    洗杂质 3mol/L硝酸 6

    三柱分离
    洗杂质 Sr特效
    树脂
    3mol/L硝酸 9 2
    收集Sr 超纯水 4 3
    回收树脂 6mol/L盐酸+超纯水 11 4
    洗杂质 AG50W-X8
    树脂
    2.5mol/L盐酸 4 5
    收集REE 6mol/L盐酸 10 6
    回收树脂 6mol/L盐酸 5 7
    洗杂质 UTEVA特效
    树脂
    3mol/L盐酸 6 8
    收集U 1mol/L盐酸 4 9
    回收树脂 超纯水+3mol/L硝酸 +3mol/L盐酸 +1mol/L盐酸 20 10
    下载: 导出CSV
  • [1]

    Bourdon B, Henderson G M, Lundstrom C C, et al. Uranium- series geochemistry[M]. Washington D C: Publisher Mineralogical Society of America, 2003.

    [2]

    Li C, Francois R, Yang S, et al. Constraining the transport time of lithogenic sediments to the Okinawa Trough (East China Sea)[J]. Chemical Geology, 2016, 445: 199-207. doi: 10.1016/j.chemgeo.2016.04.010

    [3]

    Martin A N, Dosseto A, May J H, et al. Sediment residence times in catchments draining to the Gulf of Carpentaria, northern Australia, inferred by uranium comminution dating[J]. Geochimica et Cosmochimica Acta, 2019, 244: 264-291. doi: 10.1016/j.gca.2018.09.031

    [4]

    Li L, Liu X J, Li T, et al. Uranium comminution age tested by the eolian deposits on the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 2017, 467: 64-71. doi: 10.1016/j.epsl.2017.03.014

    [5]

    Cogez A, Herman F, Pelt É, et al. U-Th and 10Be con-straints on sediment recycling in proglacial settings, Lago Buenos Aires, Patagonia[J]. Earth Surface Dynamics, 2018, 6(1): 121-140. doi: 10.5194/esurf-6-121-2018

    [6]

    Banner J L. Radiogenic isotopes: Systematics and appli-cations to earth surface processes and chemical stratigraphy[J]. Earth-Science Reviews, 2004, 65(3-4): 141-194. doi: 10.1016/S0012-8252(03)00086-2

    [7]

    Tripathy G R, Singh S K, Krishnaswami S. Sr and Nd isotopes as tracers of chemical and physical erosion[M]//Handbook of environmental isotope geochemistry. Springer, 2012: 521-552.

    [8]

    Anderson F S, Levine J, Whitaker T J. Rb-Sr resonance ionization geochronology of the Duluth Gabbro: A proof of concept for in situ dating on the Moon[J]. Rapid Communications in Mass Spectrometry, 2015, 29(16): 1457-1464. doi: 10.1002/rcm.7253

    [9]

    Cao J Y, Yang X Y, Lu Y Y, et al. Zircon U-Pb and Sm-Nd geochronology and geochemistry of the Sn-W deposits in the northern Guposhan ore field, Nanling Range, southern China[J]. Ore Geology Reviews, 2020, 118: 103323. doi: 10.1016/j.oregeorev.2020.103323

    [10]

    Xu Z K, Li T G, Clift P D, et al. Bathyal records of enhanced silicate erosion and weathering on the exposed Luzon shelf during glacial lowstands and their significance for atmospheric CO2 sink[J]. Chemical Geology, 2018, 476: 302-315. doi: 10.1016/j.chemgeo.2017.11.027

    [11]

    Dou Y G, Yang S Y, Shi X F, et al. Provenance weathering and erosion records in southern Okinawa Trough sediments since 28ka: Geochemical and Sr-Nd-Pb isotopic evidences[J]. Chemical Geology, 2016, 425: 93-109. doi: 10.1016/j.chemgeo.2016.01.029

    [12]

    Li J R, Liu S F, Shi X F, et al. Clay minerals and Sr-Nd isotopic composition of the Bay of Bengal sediments: Implications for sediment provenance and climate control since 40ka[J]. Quaternary International, 2018, 493: 50-58. doi: 10.1016/j.quaint.2018.06.044

    [13]

    Hu S Y, Zeng Z G, Fang X, et al. Increasing terrigenous sediment supply from Taiwan to the southern Okinawa Trough over the last 3000 years evidenced by Sr-Nd isotopes and geochemistry[J]. Sedimentary Geology, 2020, 406: 105725. doi: 10.1016/j.sedgeo.2020.105725

    [14]

    Li C, Yang S Y, Lian E G, et al. A review of com-minution age method and its potential application in the East China Sea to constrain the time scale of sediment source-to-sink process[J]. Journal of Ocean University of China, 2015, 14(3): 399-406. doi: 10.1007/s11802-015-2769-8

    [15]

    Li L, Chen J, Chen Y, et al. Uranium isotopic constraints on the provenance of dust on the Chinese Loess Plateau[J]. Geology, 2018, 46(9): 747-750. doi: 10.1130/G45130.1

    [16]

    Guéguen F, Stille P, Dietze V, et al. Chemical and isotopic properties and origin of coarse airborne particles collected by passive samplers in industrial, urban, and rural environments[J]. Atmospheric Environment, 2012, 62: 631-645. doi: 10.1016/j.atmosenv.2012.08.044

    [17] 刘文刚, 刘卉, 李国占, 等. 离子交换树脂在地质样品Sr-Nd同位素测定中的应用[J]. 地质学报, 2017, 91(11): 2584-2592. doi: 10.3969/j.issn.0001-5717.2017.11.013

    Liu W G, Liu H, Li G Z, et al. The application of ion exchange resins in Sr-Nd isotopic assay of geological samples[J]. Acta Geologica Sinica, 2017, 91(11): 2584-2592. doi: 10.3969/j.issn.0001-5717.2017.11.013

    [18] 何连花, 张俊, 高晶晶, 等. 地质样品Sr和Nd同位素的化学分离方法改进[J]. 海洋科学进展, 2014, 32(1): 78-83. doi: 10.3969/j.issn.1671-6647.2014.01.009

    He L H, Zhang J, Gao J J, et al. Improvement of the method for chemical separations of Sr and Nd in geological samples[J]. Advances in Marine Science, 2014, 32(1): 78-83. doi: 10.3969/j.issn.1671-6647.2014.01.009

    [19]

    Rovan L, Štrok M. Optimization of the sample preparation and measurement protocol for the analysis of uranium isotopes by MC-ICP-MS without spike addition[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(9): 1882-1891. doi: 10.1039/C9JA00144A

    [20]

    Granet M, Chabaux F, Stille P, et al. U-series disequilibria in suspended river sediments and implication for sediment transfer time in alluvial plains: The case of the Himalayan Rivers[J]. Geochimica et Cosmochimica Acta, 2010, 74(10): 2851-2865. doi: 10.1016/j.gca.2010.02.016

    [21] 廖泽波, 邵庆丰, 李春华, 等. MC-ICP-MS标样-样品交叉测试法测定石笋样品的230Th/U年龄[J]. 质谱学报, 2018, 39(3): 295-309. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB201803005.htm

    Liao Z B, Shao Q F, Li C H, et al. Measurement of U/Th isotopic compositions in stalagmites for 230Th/U geochro-nology using MC-ICP-MS by standard-sample bracketing method[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(3): 295-309. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPXB201803005.htm

    [22]

    Pin C, Gannoun A, Dupont A. Rapid, simultaneous separation of Sr, Pb, and Nd by extraction chromatography prior to isotope ratios determination by TIMS and MC-ICP-MS[J]. Journal of Analytical and Atomic Spectrometry, 2014, 29(10): 1858-1870. doi: 10.1039/C4JA00169A

    [23]

    Bast R, Scherer E, Sprung P, et al. A rapid and efficient ion-exchange chromatography for Lu-Hf, Sm-Nd, and Rb-Sr geochronology and the routine isotope analysis of sub-ng amounts of Hf by MC-ICP-MS[J]. Journal of Analytical and Atomic Spectrometry, 2015, 30(11): 2323-2333. doi: 10.1039/C5JA00283D

    [24]

    Li C F, Wang X C, Guo J H, et al. Rapid separation scheme of Sr, Nd, Pb, and Hf from a single rock digest using a tandem chromatography column prior to isotope ratio measurements by mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(5): 1150-1159. doi: 10.1039/C5JA00477B

    [25]

    Moragues-Quiroga C, Juilleret J, Gourdol L, et al. Ge-nesis and evolution of regoliths: Evidence from trace and major elements and Sr-Nd-Pb-U isotopes[J]. Catena, 2017, 149: 185-198. doi: 10.1016/j.catena.2016.09.015

    [26]

    Aciego S M, Bourdon B, Lupker M, et al. A new proce-dure for separating and measuring radiogenic isotopes (U, Th, Pa, Ra, Sr, Nd, Hf) in ice cores[J]. Chemical Geology, 2009, 266(3-4): 194-204. doi: 10.1016/j.chemgeo.2009.06.003

    [27] 韦刚健, 刘颖, 涂湘林, 等. 利用选择性特效树脂富集分离岩石样品中的锶钐和钕[J]. 岩矿测试, 2004, 23(1): 11-14. doi: 10.3969/j.issn.0254-5357.2004.01.003

    Wei G J, Liu Y, Tu X L, et al. Separation of Sr, Sm and Nd in mineral and rock samples using selective specific resins[J]. Rock and Mineral Analysis, 2004, 23(1): 11-14. doi: 10.3969/j.issn.0254-5357.2004.01.003

    [28]

    Wang R M, You C F. Precise determination of U isotopic compositions in low concentration carbonate samples by MC-ICP-MS[J]. Talanta, 2013, 107: 67-73. doi: 10.1016/j.talanta.2012.12.044

    [29]

    Shao Q F, Pons Branchu E, Zhu Q P, et al. High precision U/Th dating of the rock paintings at Mt. Huashan, Guangxi, southern China[J]. Quaternary Research, 2017, 88(1): 1-13. doi: 10.1017/qua.2017.24

    [30] 马松阳, 李超, 王晨羽, 等. 两种硅酸盐碎屑组分234U/238U测试前处理方法的比较及启示[J]. 矿物岩石地球化学通报, 2022, 41(1): 127-134. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202201008.htm

    Ma S Y, Li C, Wang C Y, et al. The comparison of two pre-treatment methods for the 234U/238U measurement of silicate detrital fractions and its enlightment significance[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022, 41(1): 127-134. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202201008.htm

    [31]

    Deng K, Yang S Y, Bi L, et al. Small dynamic moun-tainous rivers in Taiwan exhibit large sedimentary geochemical and provenance heterogeneity over multi-spatial scales[J]. Earth and Planetary Science Letters, 2019, 505: 96-109. doi: 10.1016/j.epsl.2018.10.012

    [32]

    Xu J, Yang S Y, Yang Y H, et al. Determination of stable strontium isotopic compositions by MC-ICP-MS[J]. Atomic Spectroscopy, 2020, 41(2): 64-73. doi: 10.46770/AS.2020.02.003

    [33]

    Misawa K, Yamazaki F, Ihira N, et al. Separation of rare earth elements and strontium from chondritic meteorites by miniaturized extraction chromatography for elemental and isotopic analyses[J]. Geochemical Journal, 2000, 34(1): 11-21. doi: 10.2343/geochemj.34.11

    [34]

    Deniel C, Pin C. Single-stage method for the simultaneous isolation of lead and strontium from silicate samples for isotopic measurements[J]. Analytica Chimica Acta, 2001, 426(1): 95-103. doi: 10.1016/S0003-2670(00)01185-5

    [35] 尹鹏, 何倩, 何会军, 等. 离子交换树脂法分离沉积物中锶和钕的影响因素研究[J]. 岩矿测试, 2018, 37(4): 379-387. doi: 10.15898/j.cnki.11-2131/td.201804170046

    Yin P, He Q, He H J, et al. Study on the factors influencing the separation of Sr and Nd in sediments by ion exchange resin[J]. Rock and Mineral Analysis, 2018, 37(4): 379-387. doi: 10.15898/j.cnki.11-2131/td.201804170046

    [36] 宗春蕾, 袁洪林, 戴梦宁. 一次溶样分离地质样品中Pb-Sr-Nd方法的可行性研究[J]. 岩矿测试, 2012, 31(6): 945-949. doi: 10.3969/j.issn.0254-5357.2012.06.005

    Zong C L, Yuan H L, Dai M N. A feasibility study on chemical separation of Pb, Sr and Nd from the same single dissolution of geological sample[J]. Rock and Mineral Analysis, 2012, 31(6): 945-949. doi: 10.3969/j.issn.0254-5357.2012.06.005

    [37] 刘婉, 李丹丹, 刘盛遨. 多接收器电感耦合等离子体质谱法测定土壤标准物质铜同位素组成[J]. 岩矿测试, 2021, 40(4): 561-569. doi: 10.15898/j.cnki.11-2131/td.202012130163

    Liu W, Li D D, Liu S A. Determination of copper isotope composition of soil reference materials by MC-ICP-MS[J]. Rock and Mineral Analysis, 2021, 40(4): 561-569. doi: 10.15898/j.cnki.11-2131/td.202012130163

    [38]

    Pin C, Gannoun A. A triple tandem columns extraction chromatography method for isolation of highly purified neodymium prior to 143Nd/144Nd and 142Nd/144Nd isotope ratios determinations[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(2): 310-318. doi: 10.1039/C8JA00360B

    [39] 朱志勇, 潘辰旭, 朱祥坤. 利用套柱法快速分离提纯Sr和Nd元素[J]. 岩矿测试, 2020, 39(4): 515-524. doi: 10.15898/j.cnki.11-2131/td.201908120126

    Zhu Z Y, Pan C X, Zhu X K. Rapid purification of Sr and Nd for isotope analysis with multiple-column method[J]. Rock and Mineral Analysis, 2020, 39(4): 515-524. doi: 10.15898/j.cnki.11-2131/td.201908120126

    [40] 杨岳衡, 张宏福, 谢烈文, 等. 多接收器电感耦合等离子质谱精确测定钕同位素组成[J]. 分析化学, 2007, 35(1): 71-74. doi: 10.3321/j.issn:0253-3820.2007.01.013

    Yang Y H, Zhang H F, Xie L W, et al. Accurate measurement of neodymium isotopic composition using neptune multiple collector inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2007, 35(1): 71-74. doi: 10.3321/j.issn:0253-3820.2007.01.013

    [41]

    Li C F, Chu Z Y, Guo J H, et al. A rapid single column separation scheme for high-precision Sr-Nd-Pb isotopic analysis in geological samples using thermal ionization mass spectrometry[J]. Analytical Methods, 2015, 7(11): 4793-4802. doi: 10.1039/C4AY02896A

    [42]

    Lin J, Liu Y S, Yang Y H, et al. Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios[J]. Solid Earth Sciences, 2016, 1(1): 5-27. doi: 10.1016/j.sesci.2016.04.002

    [43]

    Pin C, Briot D, Bassin C, et al. Concomitant separation of strontium and samarium-neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography[J]. Analytica Chimica Acta, 1994, 298(2): 209-217. doi: 10.1016/0003-2670(94)00274-6

    [44] 袁永海, 杨锋, 余红霞, 等. 微波消解-多接收电感耦合等离子体质谱高精度测定锶钕同位素组成[J]. 岩矿测试, 2018, 37(4): 356-363. doi: 10.15898/j.cnki.11-2131/td.201707290122

    Yuan Y H, Yang F, Yu H X, et al. High-precision measurement of strontium and neodymium isotopic composition by multi-collector inductively coupled plasma-mass spectrometry with microwave digestion[J]. Rock and Mineral Analysis, 2018, 37(4): 356-363. doi: 10.15898/j.cnki.11-2131/td.201707290122

    [45]

    Zhu J M, Wu G L, Wang X L, et al. An improved method of Cr purification for high precision measurement of Cr isotopes by double spike MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(5): 809-821.

    [46]

    Li X Q, Han G L, Zhang Q, et al. An optimal separation method for high-precision K isotope analysis by using MC-ICP-MS with a dummy bucket[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(7): 1330-1339.

    [47]

    Zhang Z Y, Ma J L, Zhang L, et al. Rubidium purification via a single chemical column and its isotope measurement on geological standard materials by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(2): 322-328.

  • 期刊类型引用(5)

    1. 符招弟,张晓娟,杨林. 伟晶岩型锂矿石中锂的化学物相分析方法研究. 岩矿测试. 2024(03): 432-439 . 本站查看
    2. 彭晶晶,林锴. 锂矿成矿规律研究的知识图谱分析. 中国矿业. 2024(09): 228-235 . 百度学术
    3. 王成辉,王登红,刘善宝,张永生,王春连,王九一,周雄,代鸿章,于扬,孙艳,邢恩袁. 战略新兴矿产调查工程进展与主要成果. 中国地质调查. 2022(05): 1-14 . 百度学术
    4. 郭晓剑,胡欢,刘亦晴,梁雁茹. 基于CiteSpace的我国绿色矿山研究可视化分析. 黄金科学技术. 2020(02): 203-212 . 百度学术
    5. 叶亚康,周家云,周雄. 川西塔公松林口岩体LA-ICP-MS锆石U -Pb年龄与地球化学特征. 岩矿测试. 2020(06): 921-933 . 本站查看

    其他类型引用(4)

图(4)  /  表(1)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  54
  • PDF下载量:  31
  • 被引次数: 9
出版历程
  • 收稿日期:  2022-04-05
  • 修回日期:  2022-05-16
  • 录用日期:  2022-05-22
  • 网络出版日期:  2022-12-13
  • 刊出日期:  2023-01-27

目录

/

返回文章
返回