Influence of Mining Activities in the Gold Ore Concentration Area in Western Henan on the Heavy Metals in Surrounding Farmland Soil
-
摘要:
矿业活动会促进重金属向生态系统扩散,并在周边农田土壤中累积而引发潜在生态风险。豫西金矿集区矿业生产历史悠久,但在长期的矿产资源开采、选冶、加工生产过程中,缺乏对矿区周边农田土壤重金属元素的累积、空间分布和生态风险的关注,矿业活动对环境的影响程度尚不清楚。为掌握该矿集区矿业活动对周边农田土壤重金属的影响程度,支撑服务矿集区生态修复和周边农业安全生产,本文在金矿集区周边农田采集375件土壤样品,采用冷蒸气原子荧光光谱法(CV-AFS)、氢化物发生原子荧光光谱法(HG-AFS)、电感耦合等离子体发射光谱/质谱法(ICP-OES/MS)检测了样品中Cu、Pb、Zn、Ni、As、Hg、Cd、Cr重金属元素含量。用地累积指数法和潜在生态风险指数法研究了矿集区周边农田土壤中重金属元素的累积特征、空间分布和生态风险,分析评价了矿集区矿业活动对周边农田土壤重金属的影响。研究结果表明:①矿集区周边农田土壤中Cu、Pb、Zn、Ni、As、Hg、Cd、Cr含量平均值都低于国家农田土壤重金属污染风险筛选值,但均高于背景值,分别是背景值的1.47、3.24、2.06、1.05、1.03、1.52、2.77、1.07倍,但都低于农田土壤重金属污染风险筛选值。②区内重金属元素空间变异系数(CV)顺序为:Pb(90.72%)>Hg(85.25%)>Cd(65.65%)>Zn(44.0%)>Cu(33.66%)>As(31.72%)>Ni(24.23%)>Cr(13.61%)。Pb、Hg、Cd具有相对较高的变异系数,且分布位置均在矿业活动场所周边,显示矿业活动等外缘因素是引起重金属元素累积的主导因素。③ 8种重金属地累积指数分别为-0.1、0.74、0.33、-0.56、-0.60、-0.29、0.62、-0.49,其中Cu、Ni、As、Hg、Cr元素未累积,Cd、Pb、Zn元素为中等累积。④ 8种重金属单因子潜在生态危害指数平均值介于2.06~83.62,综合潜在生态风险指数平均值为192.07,整体表现为中等潜在生态风险。本研究揭示:①长期的矿产资源开发是造成Cd、Pb、Zn局部累积的主要因素,Ni、Cr、Cu、As、Hg以自然背景因素为主。②虽然研究区农田土壤重金属污染程度目前尚不严重,但仍需加强源头防控,避免重金属元素在土壤中进一步累积。
要点(1) 研究区Cd累积程度最高,其次为Pb和Hg,而Cu、Zn、Ni、As、Cr不存在累积。
(2) 重金属元素空间变异性分析表明,矿业活动是研究区农田土壤产生潜在生态风险的重要因素。
(3) 研究区南部矿冶炼厂周边人口和农田分布集中区的综合潜在生态风险最高,应予以重点关注。
HIGHLIGHTS(1) The Geo-accumulation index revealed that Cd showed the highest accumulation degree, followed by Pb and Hg, and Cu, Zn, Ni, As and Cr showed no accumulation.
(2) The spatial variability analysis of heavy metal elements showed that mining activity was the important factor of potential ecological risk in farmland soil of the study area.
(3) The comprehensive potential ecological risk showed the highest in the population and farmland concentration areas around the molybdenum mine smelter south of the study area, which should be paid special attention.
Abstract:BACKGROUNDAs the significant factor of the accumulation of heavy metals in farmland soils, mineral activities such as mining, traffic and mineral processing and smelting allow heavy metals to spread into the surrounding environment by water or atmospheric deposition, and finally collected into the soil, causing heavy metal pollution in the surrounding farmland soil. Heavy metals pollution in soils especially in farmland soils around the mining area thus has received great attention in the field of environmental pollution. Located in the middle reaches of the Yellow River watershed, the gold mining area in western Henan is an extremely important gold deposit area with great prospecting potential in China for the strong late Yanshan acidic magmatic activity and the extremely favorable metallogenic geological conditions, in which more than 40 large, medium or small gold deposits have been discovered. Under the background of ecological protection and high-quality development in the Yellow River watershed, the western Henan gold mining area, with a long history of gold mining development, lacks more attention to the accumulation, spatial distribution and ecological risk of heavy metals in farmland soil around the mining area during the years of mining, beneficiation and processing. It is particularly necessary to study the heavy metal pollution in soil, find out the impact of mining activities on heavy metals in surrounding farmland soil, and provide a scientific basis for prevention and control of heavy metal pollution in farmland soil.
OBJECTIVESTo clearly understand the impact of mining activities in the western Henan mining area on heavy metals in the surrounding farmland soil, provide necessary basic data for supporting the safe production of key mineral resources, the surrounding agricultural safety, and prevent and control heavy metal pollution in farmland soil.
METHODS375 topsoil samples from the farmland around the western Henan gold mining area at a depth of 0-20cm were systematically investigated and analyzed with reference to Code of Practice for Soil Geochemical Survey (DZ/T 0145—2017). The contents and spatial distribution characteristics of Cd, Cu, Zn, Pb, Hg, As, Cr, Ni were analyzed. The heavy metal pollution and ecological risk were evaluated by the geo-accumulation index method and potential ecological risk index method.
RESULTS(1) The contents variation range of Cu, Pb, Zn, Ni, As, Hg, Cd, Cr are 1.00-71.72, 2.00-524.79, 8.00-320.37, 2.00-52.77, 2.29-24.64, 0.0067-0.268, 0.04-1.30, 28.20-107.93, respectively, and the average are 35.33, 74.43, 137.69, 31.60, 12.39, 0.064, 0.43, 76.27, respectively, showing significant differences between the 8 heavy metals. Compared with the soil background value in the middle reaches of the Yellow River, the average contents of Cu, Pb, Zn, Ni, As, Hg, Cd, Cr are 1.47, 3.24, 2.06, 1.05, 1.03, 1.52, 2.77 and 1.07 times of them, respectively, but lower than the value of risk screening values for soil contamination of agricultural land.
(2) The characteristics of coefficients of variation show that Pb(90.72%)>Hg(85.25%)>Cd(65.65%)>Zn(44.0%)>Cu(33.66%)>As(31.72%)>Ni(24.23%)>Cr(13.61%), the Pb, Hg, Cd are the primary factors causing the soil pollution as the external input by mineral activities for the high coefficients of variation and special relation with mining. The main ore-forming elements in the gold deposit area are Au and Mo, and the associated elements are Cu, Pb, Zn, Ni, As, Hg, Cd, which may diffuse into the surrounding environment during ore transportation, waste rock and slag piling along the river, and processing. Alongside the Daping River, the two gold mining areas and concentrators are distributed around the farmland, and the gold ore heap leaching site on the east side is located at the top of the hillside and hill. The heavy metals produced by mining activities can diffuse in the downstream agricultural areas through atmospheric deposition, rainwater leaching, river drainage, and can accumulate in the surrounding agricultural soil, causing heavy metal pollution in the agricultural soil around the mining area.
(3) The geo-accumulation index of 8 heavy metals is -0.1, 0.74, 0.33, -0.56, -0.60, -0.29, 0.62, -0.49 with the order Pb>Cd>Zn>Cu>Hg>Cr>Ni>As, in which Cu, Hg, Cr, Ni, As show no influence to the quality of soils for the average geo-accumulation index lower than 0, and Pb, Cd, Zn show moderate pollution for the average geo-accumulation index between 0-1. Among them, the proportion of samples with a Cd element of medium or higher impact grade is 20.27%, the proportion of samples with medium to strong impact grade is 7.73%, and the proportion of samples with strong impact grade is 1.07%. The proportion of samples with a Pb element above the moderate impact level is 18.93%, and the proportion of samples with moderate to strong impact level is 10.40%. Hg and Zn also have 7.46% and 13.33% of the samples reaching the moderate impact level, indicating that Hg, Cd and Pb in the soil at local sampling sites have different degrees of impact on farmland soil quality.
(4) The average value of the single-factor potential ecological risk index of eight heavy metals is between 2.06 and 83.62, among which the single-factor potential ecological risk index of As, Cr, Ni, Cu and Zn is a slight potential ecological risk. Pb is mainly subject to slight potential ecological risks for 92% of samples, moderate potential ecological risks for 7.47% of samples and strong potential ecological risks for 0.53% of samples. Cd is dominated by moderate potential ecological risks, with 46.14% of samples, and there are 25.33% and 10.93% of samples reaching strong and very strong potential ecological risks respectively. For the ecological risk index of Hg, there are 35.47%, 11.46%, 4.27% and 3.20% of the samples that reach moderate, strong, very strong and very strong degree. The comprehensive potential ecological risk index (RI) ranges from 51.66 to 689.64, with an average of 192.07. The proportion of samples with slight, moderate, strong and very strong impact degree is 46.40%, 41.07%, 11.20% and 1.33%, respectively. The overall comprehensive potential ecological risk index shows moderate potential ecological risks.
CONCLUSIONSCompared with the risk screening values for soil contamination of agricultural land, the contents of Cd, Cu, Zn, Pb, Cr, Ni, As, Hg are all lower than the standard, indicating low risk for the soil environment. There were different degrees of accumulation surrounding the intense mining area of Cd, Pb, and Zn by longtime mineral development. Cu, Ni, As, Hg, and Cr were influenced by the natural factor. The farmland area with strong and very strong comprehensive potential ecological risks is 349.4 hectares and 11.71 hectares, respectively. Cd and Hg are the main contributing elements, with higher risk to the soil ecology, which should be monitored and controlled from source to avoid the further accumulation of heavy metal elements in the soil.
-
石英岩质玉是显晶质石英质玉石的一种,粒度一般在0.01~0.6mm,其主要矿物为石英,含有少量的云母、赤铁矿、针铁矿等副矿物。不同的石英岩质玉具有不同的结构,大部分石英岩质玉质地细腻,少数质地略显粗糙。纯净的石英岩质玉为无色,当含有其他有色矿物时可呈现不同颜色。目前在世界范围内,西班牙、印度、俄罗斯、智利、中国等国均有石英岩质玉产出[1-6]。
石英岩质玉产状及成因较为多样,一般是以沉积石英砂岩为原岩经接触变质作用或区域变质作用形成的。其中接触变质作用是高温岩体入侵时产生的热源使周围岩体受到高温烘烤,发生变质结晶和重结晶从而成矿。而区域变质作用的热源则来源于强烈的岩浆活动和频繁的构造运动,在热源的激发下受变质作用影响的含水岩浆岩和基底原岩,释放出大量的水形成热液,这些含矿溶液受构造应力影响沿着韧性剪切带运移,由于温压条件的变化,热液中的SiO2过饱和析出从而逐渐富集成矿[7-12]。相比中国,国外学者的研究多着重于岩浆成因的隐晶质石英质玉[13-14],而显晶质的石英岩质玉则鲜被提及。湖南临武地区作为近年来石英岩质玉的新产地之一,前人对该矿区开展了一些研究,如李伟良等[15]、袁顺达等[16]、徐质彬等[17]通过对湖南香花岭地区的地质背景以及矿区产状的勘查与研究,对该地区成矿构造运动作了简要阐述,且对该地区石英岩质玉的成矿规律作了简单探讨。指出该地区石英岩质玉的分布与铁锂云母二长花岗岩体密切相关,矿体呈层状产出,围岩常发育硅化、绢云母化、高岭土化等蚀变现象,随矿体延伸可见部分黄铁矿、磁黄铁矿、毒砂等金属硫化物矿化[15-17]。
目前对于该地区石英岩质玉的研究主要集中于其产出的地质环境及矿区概述,而对于其矿物组成及成因探讨有待补充,具有很大的研究空间。本文通过常规宝石学测试、红外光谱测试、偏反光显微镜下观察、X射线粉晶衍射(XRD)、X射线荧光光谱(XRF)、电感耦合等离子体质谱(ICP-MS)等手段对样品进行测试,对其矿物组成进行系统分析,并讨论其成因,研究成果拟为该玉种进入市场及科学鉴定提供理论支持。
1. 研究区地质概况
湖南省彬州市临武县北部香花岭地区通天山附近,距临武县城区约20km,海拔近1600m,该地区三面环山,褶皱地质构造发育,地质环境较复杂为成矿提供了有利条件。研究区主要出露于寒武纪地层纪塔山群中[15-16],大地构造上位于华南新元古代—早古生代造山带中段北部,位于东北向郴(州)—临(武)深大断裂带与南北向断裂带交汇部位[17](图 1)。区域构造经历了地槽阶段、地台阶段、大陆边缘活动带三个构造发展阶段,构造运动较为复杂,岩浆活动频繁;印支期形成了以南北向为主的晚古生代沉积盖层褶皱带,燕山期进一步形成了北东向第二沉积盖层断陷盆地及大型断裂,频繁的地质活动形成研究区内三重构造叠加的构造形态。区内岩浆活动具有多期次、多阶段活动的特点,以燕山期活动最为强烈[15-17],这也为热液矿床的形成提供了条件。
2. 实验部分
2.1 样品
选取15件湖南临武地区黑色石英岩质玉样品进行测试,样品多为大小不一的原石,经后期切割抛磨后进行测试。样品颜色均为灰色-黑色,中-细粒粒状结构,结构较细腻,抛光面均呈现玻璃-沥青光泽,不透明;部分样品可见白色针状、点状矿物,黄色、白色斑晶;个别样品可见绿色围岩,局部位置有黄色铁质浸染,表面有白色碳酸盐矿物等。本文根据样品颜色深浅程度将其分为三组,其中第一组样品(编号:LS-1-1~LS-1-4)普遍为黑色,共4件;第二组样品(编号:LS-2-1~LS-2-5)为灰黑色,共5件;第三组样品(编号:LS-3-1~LS-3-5)为灰色,共5件。如图 2所示。
2.2 仪器及工作条件
2.2.1 宝石学常规测试
对样品的常规宝石学特征进行研究,采用折射仪、紫外荧光灯、硬度笔分别对样品的折射率、发光性、硬度进行测试。发光性测试时,为排除样品对紫外光的反射,每件样品均在不同方向进行三次测试;利用宝石显微镜对样品进行放大观察;密度使用净水称重法进行测量,并依照阿基米德定律将结果进行计算,排除较大异常数据后,每件样品均取三次测试结果的平均值。
2.2.2 红外光谱测试
利用红外KBr压片透射法测定宝石显微镜下观察到的绿色围岩矿物种属,并为后期矿物成分分析提供帮助。实验采用美国ThermoFisher公司IS5傅里叶变换红外光谱仪进行测试,波长范围为400~4000cm-1,扫描次数为32次,分辨率为4cm-1。
2.2.3 偏光显微镜观察
对样品的矿物组成、结构等物相特征进行初步研究,并为后期测试提供有力依据。将样品制成光学薄片后,采用德国Leica DW27009型偏光镜进行薄片镜下观察。
2.2.4 X射线粉晶衍射分析
对样品的物相进行研究,并进行物相半定量分析,结合偏光镜下特征为矿物成因的探讨提供有力证据。实验采用日本理学Smart Lab Rigaku仪器,铜靶(Cu)测试,发射、散射狭缝均为1°,接收狭缝0.3mm,工作电压48kV,电流1000mA,扫描速度6°(20)min,扫描范围2.6°~70°,将所得衍射结果利用Jade 9进行Rietveld全谱拟合后利用PDF 2016对其物相进行比对分析。
2.2.5 X射线荧光光谱分析
对样品的主量元素含量进行分析研究,并为其原岩类型探讨提供依据。实验采用日本岛津1800型X射线荧光光谱仪对样品主量元素进行分析。
2.2.6 电感耦合等离子体质谱分析
对样品的微量元素、稀土元素地球化学特征进行分析研究,并为其成矿环境探讨提供依据。实验采用iCAP Q电感耦合等离子体质谱仪(美国ThermoFisher公司)进行分析。
3. 结果与讨论
3.1 宝石学特征
常规宝石学测试结果表明, 该地区石英岩质玉的折射率均分布在1.53~1.54之间,符合国家标准《珠宝玉石鉴定》中石英岩质玉的折射率标准。紫外荧光测试表明,样品在长波364nm、短波253nm均无发光现象。硬度测试观测到样品硬度较低,大多为5.5,低于《珠宝玉石鉴定》中石英岩质玉的硬度,是由于其内部含有大量有机质所致。部分样品可见白、绿色围岩,硬度偏低,放大可见其结晶程度较差,经红外透射法检测,绿色围岩为绿泥石。
静水称重测试显示该地区石英岩质玉相对密度主要分布在2.65~2.82之间。其中第一组样品除LS-1-1外,由于内部含有大量铁质矿物密度较大为2.816外,其余4件样品相对密度较小,分布于2.65~2.70之间;第二组和第三组样品的相对密度相对较大,大多分布在2.71~2.82之间,结合偏光镜下观察可知,其密度范围变化是由于其变质程度所致。
3.2 红外谱学特征
通过红外光谱对样品绿色围岩部分进行了谱学测试,结果表明样品绿色围岩部分除明显的石英特征吸收峰外,还出现了740cm-1、895cm-1绿泥石特征吸收峰,以及2511cm-1处绿泥石OH与阳离子相连形成氢键所致伸缩振动特征吸收[18],由此可证,该样品绿色围岩部分为绿泥石。
3.3 偏光镜下特征
通过偏光显微镜对湖南临武黑色石英岩质玉部分具有典型、代表性特征的样品(LS-1-1、LS-1-2、LS-1-4,LS-2-1、LS-2-2、LS-2-3、LS-2-4,LS-3-1、LS-3-2、LS-3-5)进行切片观察,主要观察样品的矿物组成及结构特征。
该地区黑色石英岩质玉的主要矿物组分为石英,次要矿物有白云母、金云母、长石、红柱石(空晶石)、铁铝榴石、黄铁矿等[19],部分位置可见极微量的金红石、钛铁矿。部分薄片显示出典型的变质作用结构特征,铁铝榴石呈变斑晶状分布于由金云母、黑云母混合形成的基质中,基质中出现少部分片状白云母无方向性分布,形成斑状片状显微粒状变晶结构(图 3a);红柱石(空晶石)晶体为变斑晶无方向性分布于碳质基质中,呈典型斑状变晶结构(图 3b),以及大量石英碎屑斑团分布于由碳质、云母组成的基质中,组成斑点状构造(图 3c)[20]。
部分样品薄片呈现沉积岩结构特性,放大观察可见白云母、石英、长石等矿物出现由变质作用所致的变形现象[21],以及少量的红柱石等变质矿物。垂直层理方向观察,大量碳质定向分布形成层理,呈现细粒片状、粒状变晶结构,板状、千枚状构造(图 3d),平行层理方向观察,主要由大量石英、长石、白云母以及黏土矿物组成,具变余泥质结构。此外,薄片中还观察到大量的片状、鳞片状石墨充填于矿物间隙中,单偏光下不透光(图 3e)[20]。各别样品有少量黄铁矿呈变斑晶出现,形成斑状变晶结构,黄铁矿晶型较完整(图 3f);基质中放大可见石英、云母、长石等均呈现他形片状、粒状,其中白云母变形作用最为明显,多呈现出柱状、针状,为泥质岩浅变质作用特点[18-19]。
3.4 矿物相特征
对其中6件样品进行X射线粉晶衍射测试,测试结果见表 1,样品主要矿物为石英,次要矿物为云母、长石及少量的红柱石、石榴石、黄铁矿等。样品的石英含量均在41.2%~47.5%之间,云母含量低于其他泥质变质岩,为15.7%~22.4%,长石相对较少,黏土矿物以绿泥石和高岭石为主,各别样品高岭石衍射峰值面积较小,故分析时将所有黏土矿物进行了统一量化。此外,利用Jade 9进行物相检索时发现了极弱的白云石衍射峰,由于衍射强度较低且衍射峰较少,半定量时未作考虑。据前人研究,区域变质岩中的常见特征矿物有石英、硬绿泥石、红柱石、石榴子石、十字石等,且常见片状、鳞片状或粒状变晶结构以及各种变余结构,石榴子石等矿物呈变斑晶产出时,可见斑状变晶结构。综合X射线粉晶衍射半定量分析结果与薄片镜下观察特征,可知样品的矿物组分含量和结构构造特征基本符合区域变质岩特征,可初步判断该地区黑色石英岩质玉属于区域变质岩[20-22]。
表 1 湖南临武地区黑色石英岩质玉的矿物相半定量分析结果Table 1. Semi-quantitative analysis of mineral phases of the black quartzite jade in Linwu District, Hunan Province样品编号 矿物含量(%) 石英 云母 长石 红柱石 石榴石 黄铁矿 钛铁矿 磷灰石 黏土矿物 LS-1-1 47.1 22.4 9.8 2.2 3.8 2.6 1.1 0.9 10.1 LS-1-2 41.2 15.7 12.2 7.1 2.7 1.1 2.0 1.4 16.6 LS-1-4 43.2 20.3 15.3 1.9 / 2.8 1.3 2.0 13.2 LS-2-3 43.5 17.4 9.8 4.6 6.3 1.2 3.5 2.2 10.5 LS-3-1 45.6 18.4 16.1 1.0 1.1 2.1 1.8 1.5 12.4 LS-3-2 47.5 20.3 8.2 5.3 1.1 2.3 1.3 0.5 13.5 平均值 44.7 19.1 11.9 3.7 3.0 2.0 1.8 1.4 12.7 3.5 地球化学特征
3.5.1 主量元素特征
样品X射线荧光光谱仪检测结果见表 2。结果表明,该地区石英岩质玉的主要成分为SiO2(59.49%~70.45%),以及少量的Al2O3(14.90~24.68%),Fe2O3相对较少(4.02%~7.19%),此外含有少量的K2O(2.38%~3.10%)、CaO(0.39%~1.33%)、TiO2(0.58%~1.00%)、Na2O(0.32%~0.91%)、MgO(约0.56%~0.79%)、MnO(0.14%~0.17%)、Cr2O3(0.01%)。
表 2 湖南临武地区黑色石英岩质玉的主量元素测试结果及变质岩原岩性质判别函数(DF值)计算结果Table 2. Analytical results of major elements and DF values of the black quartzite jade in Linwu District, Hunan Province样品编号 含量(%) DF值 SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO CaO Na2O K2O 总量 LS-1-1 70.45 0.58 14.90 0.01 4.02 0.60 0.17 1.33 0.91 2.38 95.35 -2.82 LS-1-2 59.49 0.86 24.68 0.01 7.19 0.56 0.14 0.39 0.32 3.10 96.74 -1.95 LS-1-3 65.47 1.00 22.97 0.01 4.89 0.79 0.16 0.49 0.60 2.67 99.05 -3.07 3.5.2 微量元素特征
对三个有典型代表性特征的样品(LS-1-1、LS-2-4、LS-3-1)采用电感耦合等离子体质谱法进行了微量元素测试(表 3),将测试结果与原始地幔数据进行标准化处理后进行投图(图 4a)。可见大离子亲石元素(Sr、Ba)轻微亏损,U较为富集,三个样品的富集亏损程度较为相似。除此之外,三个样品均显示出较强烈的Ti元素亏损,平均值仅为1.227μg/g;Zr、Hf富集程度在三个样品中有轻微差异。
表 3 湖南临武地区黑色石英岩质玉的地球化学特征Table 3. Geochemical characteristics of the black quartzite jades in Linwu District, Hunan Province微量元素 微量元素含量测定值(μg/g) LS-1-1 LS-2-4 LS-3-1 Rb 122 170 147 Ba 306 485 346 Th 15.7 18.6 21.6 U 5.41 5.47 7.33 Ta 1.92 2.05 2.21 Nb 23.6 20.8 21.4 La 42.4 46.7 52.0 Ce 82.0 97.1 102 Sr 150 96.4 82.8 Nd 37.1 39.0 43.4 Zr 119 98.0 291 Hf 3.16 2.63 7.91 Sm 6.96 7.18 8.22 Ti 1.37 1.18 1.13 Y 22.8 18.0 32.9 Yb 2.88 2.22 4.51 Lu 0.50 0.38 0.75 稀土元素 稀土元素含量测定值(μg/g)及相关参数 LS-1-1 LS-2-4 LS-3-1 La 42.4 46.7 52.0 Ce 82.0 97.1 102 Pr 9.34 9.10 10.3 Nd 37.1 39.0 43.4 Sm 6.96 7.18 8.22 Eu 1.64 1.41 1.11 Gd 5.93 5.76 6.60 Tb 0.63 0.79 1.02 Dy 5.05 3.96 6.20 Ho 0.93 0.70 1.27 Er 2.71 2.10 3.96 Tm 0.43 0.33 0.68 Yb 2.88 2.22 4.51 Lu 0.50 0.38 0.75 Y 22.8 18.0 32.9 ΣREE 198 216 242 LREE 179 200 217 HREE 19.0 16.2 25.0 LREE/HREE 9.41 12.4 8.69 LaN/YbN 10.6 15.1 8.26 δEu 0.76 0.65 0.44 δCe 0.97 1.08 1.02 3.5.3 稀土元素特征
利用球粒陨石元素丰度对样品的稀土元素测试结果(表 3)进行标准化处理(图 4b),LREE相对HREE富集,La相对Yb富集。样品稀土元素蛛网图模式曲线呈现W型右缓倾,总体呈现出Eu负异常,总体观察除LS-1-1呈现Tb负异常外,三个样品模式曲线呈现特征基本相同。
4. 矿物成因讨论
4.1 样品原岩性质分析
根据X射线荧光光谱测试结果可知,样品中SiO2含量均在53.5%以上。根据变质岩变质岩的函数式——DF判别式进行变质岩原岩性质判别:
DF=10.44-0.21SiO2-0.32Fe2O3-0.98MgO+0.55CaO+1.46Na2O+0.54K2O[23]
研究表明当DF>0时样品为正变质岩,原岩为岩浆岩;当DF < 0时则为副变质岩,原岩为沉积岩[23-24]。计算结果表明该地区黑色石英岩质玉的DF < 0(表 2),可知研究区样品为副变质岩,原岩为沉积岩。
前人研究表明,岩石中的Al2O3/TiO2比值对于原岩性质判定具有指示性作用,当该比值小于14时物源可能为铁镁质沉积物,当比值介于19~29时物源则可能为长英质岩石沉积物[25-26]。计算结果表明三个样品的Al2O3/TiO2比值分别为25.69、28.70、22.97,均在长英质岩石沉积物范围之内。此外,样品薄片观察可见大量变余泥质结构、千枚状构造,均为泥岩浅变质常见结构构造类型,且样品含有一定量的红柱石、铁铝榴石等变质矿物[20],均可证明样品原岩为富铝的泥质、泥沙质沉积岩。综上所述,样品物质来源主要为沉积来源,属富铝泥质沉积岩系列,原岩为富铝的泥质、泥砂质以石英、长石为主要组成矿物的沉积岩。
4.2 样品成矿环境分析
研究区在区域构造上属于燕山构造带[15],变质作用与区域构造关系密切,前人研究表明,沉积岩的Al2O3/(Al2O3+Fe2O3)比值对岩石生成的构造环境有指示性作用[27-28]。该比值为0.1~0.4的沉积岩构造环境多为洋脊海岭环境;该比值为0.4~0.7的沉积岩构造环境多为远洋深海环境;该比值为0.7~0.9的沉积岩构造环境多为大陆边缘环境[28-29]。经计算,本研究样品该比值分别为0.79、0.77、0.82,均在大陆边缘环境范围。另外,区域变质岩的成矿条件主要分为两种:一种是随着温度升高,原岩中的矿物经过脱水、再结晶作用成矿;另一种则是热液交代[30-32],结合偏光镜下观察结果,样品中石英、云母等矿物多呈他形粒状、片状,符合热液交代变质作用特征,可证样品成矿方式属于后者[31-34]。
5. 结论
本文利用偏反光显微镜观察、X射线粉晶衍射、X射线荧光光谱、电感耦合等离子体质谱法等技术手段对湖南临武地区黑色石英岩质玉矿物组成进行系统分析,并对其成因作了探讨。结果表明,该地区矿物组成较为复杂,除主要矿物石英外,还有较多的金云母、白云母、长石等次要矿物,以及少量的铁铝榴石、红柱石、黄铁矿、钛铁矿、磷灰石、黏土矿物、有机碳等。部分样品可见较明显的区域变质岩结构特征及完整的变斑晶矿物,同时存在沉积岩结构特征,放大后可见矿物变形,为典型的泥岩浅变质证据。依据主量和微量元素分析结果并结合前人研究,可证样品为副变质岩系列的区域变质岩,原岩主要为富铝的泥质、砂质且富含石英、长石的沉积岩,经过热液交代型区域变质作用后富集成矿,构造环境主要为大陆边缘。
本研究明确了该地区石英岩质玉的宝石学特征、矿物组成,初步探讨其矿物成因,为该产地石英岩质玉的科学鉴定及进入市场提供了理论支持。石英岩质玉的产地较多,不同产地石英岩质玉在矿物组成及成矿特征上会有差异,今后可进一步对其他产地的石英岩质玉进行系统性分析研究,完善石英岩质玉的商业规范。
-
表 1 各指标分析测试检出限
Table 1 Detection limit of analyzed indicators
元素 检出限
(μg/g)元素 检出限
(μg/g)Hg 0.005 Ni 0.2 As 0.2 Zn 0.03 Cr 0.2 Cd 0.021 Cu 0.5 Pb 0.5 表 2 地累积指数(Igeo)评价指标体系
Table 2 Index of geo-accumulation and classification of the influence effect degree
Igeo
(Forstner)级别 污染程度 Igeo
(Anon)级别 污染程度 <0 1 无影响 <0 1 无影响~轻度影响 0~1 2 无影响~中度影响 0~1 2 中度影响 1~2 3 中度影响 1~3 3 中度影响~强影响 2~3 4 中度影响~强影响 3~5 4 强影响 3~4 5 强影响 >5 5 极强影响 4~5 6 强影响~极强影响 >5 7 极强影响 表 3 风险因子、潜在生态危害系数及生态风险程度等级
Table 3 Risk factor (Eri), potential ecological risk index (RI)and the ecological risk degree
Eri RI 生态危害程度 <40 <150 轻微 40~80 150~300 中等 80~160 300~600 强 160~320 ≥600 很强 ≥320 - 极强 表 4 研究区农田土壤重金属含量特征
Table 4 Heavy metal content characteristics of farmland soils in the study area
参数 pH Cu Pb Zn Ni As Hg Cd Cr 样品数量(件) 87 375 373 375 375 375 375 375 375 最小值(mg/kg) 5.11 1.00 2.00 8.00 2.00 2.29 0.0067 0.04 28.20 最大值(mg/kg) 8.75 71.72 524.79 320.37 52.77 24.64 0.268 1.30 107.93 平均值(mg/kg) 7.74 35.33 74.43 137.69 31.60 12.39 0.064 0.43 76.27 标准差(mg/kg) 0.74 11.89 67.52 60.58 7.66 3.90 0.055 0.29 10.38 变异系数(CV,%) 9.52 33.66 90.72 44.00 24.23 31.72 85.25 66.65 13.61 黄河中游土壤背景值(mg/kg) - 24 23 67 30 12.0 0.042 0.155 71 表层土壤筛选值(mg/kg) - 100 170 300 190 25 3.4 0.6 250 表 5 研究区农田土壤重金属元素地累积指数(Igeo)及影响程度分级比例
Table 5 Ground accumulation index of heavy metals in farmland soils and the ratio of different influence degree in the study area
元素 重金属元素地累积指数(Igeo) 各级样品数所占比例(%) 最小值 最大值 平均值 0级 1级 2级 3级 4级 5级 6级 Cu -5.17 2.45 -0.10 65.33 31.47 2.93 0.27 0 0 0 Pb -4.11 10.29 0.74 28.00 40.00 18.93 10.40 1.87 0.27 0.53 Zn -3.65 2.33 0.33 33.87 51.73 13.33 1.07 0 0 0 Ni -4.49 0.93 -0.56 97.07 2.93 0 0 0 0 0 As -2.97 2.92 -0.60 96.27 2.93 0.27 0.53 0 0 0 Hg -3.23 6.31 -0.29 71.47 16.80 7.46 2.66 0.80 0.53 0.27 Cd -2.54 3.53 0.62 28.00 42.93 20.27 7.73 1.07 0 0 Cr -1.92 2.02 -0.49 98.93 0.80 0 0.27 0 0 0 表 6 研究区农田土壤重金属潜在生态风险指数及危害程度等级比例
Table 6 Potential ecological risk index of heavy metals in farmland soils and the ratio of different hazard degree in the study area
评价指标 元素 毒性系数 最小值 最大值 平均值 各级样品数所占比例(%) 轻微 中度 强 很强 极强 Eri Cu 5 0.21 15.85 7.37 100 0 0 0 0 Pb 5 0.43 114.08 16.18 92 7.47 0.53 0 0 Zn 1 0.12 4.88 2.06 100 0 0 0 0 Ni 5 0.33 8.79 5.27 100 0 0 0 0 As 10 1.91 23.38 10.35 100 0 0 0 0 Hg 40 6.38 476.81 65.09 45.60 35.47 11.46 4.27 3.20 Cd 30 7.74 260.86 83.62 17.6 46.14 25.33 10.93 0 Cr 2 0.79 2.15 3.25 100 0 0 0 0 RI - - 51.66 689.64 192.07 46.40 41.07 11.20 1.33 0 -
[1] Zhang Y M, Li S, Chen Z, et al. A systemic ecological risk assessment based on spatial distribution and source apportionment in the abandoned lead acid battery plant zone, China[J]. Journal of Hazardous Materials, 2018, 354: 170-179. doi: 10.1016/j.jhazmat.2018.04.054
[2] Huang D W, Gui H R, Lin M L, et al. Chemical speciation distribution characteristics and ecological risk assessment of heavy metals in soil from Sunan mining area, Anhui Province, China[J]. Human and Ecological Risk Assessment: An International Journal, 2018, 24(6): 1694-1079. doi: 10.1080/10807039.2017.1422973
[3] Chileshe M N, Syampungani S, Festin E S, et al. Physico-chemical characteristics and heavy metal concentrations of copper mine wastes in Zambia: Implications for pollution risk and restoration[J]. Journal of Forestry Research, 2020, 31(4): 1283-1293. doi: 10.1007/s11676-019-00921-0
[4] 姚春卉, 张春荣, 李少勇, 等. 胶州湾沿岸土壤重金属元素分布特征及其生态风险评价[J]. 中国科技论文, 2021, 16(1): 112-120. doi: 10.3969/j.issn.2095-2783.2021.01.017 Yao C H, Zhang C R, Li S Y, et al. Spatial distribution and ecological risk assessment of heavy metals in soils along the coast of Jiaozhou Bay[J]. Chinese Scientific Papers, 2021, 16(1): 112-120. doi: 10.3969/j.issn.2095-2783.2021.01.017
[5] 况琴, 黄庭, 向京, 等. 鄂西北某农田保护区土壤重金属分布特征及生态风险评价[J]. 环境工程, 2019, 37(5): 45-49, 55. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201905009.htm Kuang Q, Huang T, Xiang J, et al. Distribution characteristics and ecological risk assessment of heavy metals in the soil of a farmland protection area in northwest Hubei[J]. Environmental Engineering, 2019, 37(5): 45-49, 55. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201905009.htm
[6] 邵啸. 浅析土壤重金属污染的现状与治理[J]. 资源节约与环保, 2020(10): 105-106. doi: 10.3969/j.issn.1673-2251.2020.10.061 Shao X. Current situation and treatment of heavy metal pollution in soil[J]. Resource Conservation and Environmental Protection, 2020(10): 105-106. doi: 10.3969/j.issn.1673-2251.2020.10.061
[7] 杨国栋, 张梦竹, 冯涛, 等. 土壤重金属污染修复技术研究现状及展望[J]. 现代化工, 2020, 40(12): 50-54, 58. doi: 10.16606/j.cnki.issn0253-4320.2020.12.010 Yang G D, Zhang M Z, Feng T, et al. Research status and prospect of remediation technology for heavy metal pollution in soil[J]. Modern Chemical Industry, 2020, 40(12): 50-54, 58. doi: 10.16606/j.cnki.issn0253-4320.2020.12.010
[8] 赵沁娜, 杨凯. 发达国家污染土地置换开发管理实践及对我国的启示[J]. 环境污染与防治, 2006(7): 540-544. doi: 10.3969/j.issn.1001-3865.2006.07.016 Zhao Q N, Yang K. Contaminated redevelopment management of developed countries and the inspirations to China[J]. Environmental Pollution and Prevention, 2006(7): 540-544. doi: 10.3969/j.issn.1001-3865.2006.07.016
[9] 郭朝晖, 涂卫佳, 彭驰, 等. 典型铅锌矿区河流沿岸农田土壤重金属分布特征及潜在生态风险评价[J]. 农业环境科学学报, 2017, 36(10): 2029-2938. doi: 10.11654/jaes.2017-0386 Guo Z H, Tu W J, Peng C, et al. Distribution characteristics and potential ecological risk assessment of heavy metals in farmland soil along river banks in typical lead-zinc mining areas[J]. Journal of Agricultural and Environmental Sciences, 2017, 36(10): 2029-2038. doi: 10.11654/jaes.2017-0386
[10] Rai S, Gupta S, Mittal P C. dietary intakes and health risk of toxic and essential heavy metals through the food chain in agricultural, industrial, and coal mining areas of Northern India[J]. Human and Ecological Risk Assessment: An International Journal, 2015, 21(4): 913-933. doi: 10.1080/10807039.2014.946337
[11] 于沨, 王伟, 于扬, 等. 川西九龙地区锂铍矿区土壤重金属分布特征及生态风险评价[J]. 岩矿测试, 2021, 40(3): 408-424. doi: 10.15898/j.cnki.11-2131/td.202011300154 Yu F, Wang W, Yu Y, et al. Distribution characteristics ecological risk assessment of heavy metals in soils from Jiulong Li-Be mining area, western Sichuan Province, China[J]. Rock and Mineral Analysis, 2021, 40(3): 408-424. doi: 10.15898/j.cnki.11-2131/td.202011300154
[12] Yang Y, Li H L, Peng L, et al. Assessment of Pb and Cd in seed oils and meals and methodology of their extraction[J]. Food Chemistry, 2015, 197(Part A): 482-488.
[13] 张江华, 徐友宁, 陈华清, 等. 小秦岭金矿区土壤-小麦重金属累积效应对比研究[J]. 西北地质, 2020, 53(3): 284-294. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI202003029.htm Zhang J H, Xu Y N, Chen H Q, et al. Comparative study of the accumulated effect of heavy metals on soil and wheat in Xiaoqinling gold mining area[J]. Northwest Geology, 2020, 53(3): 284-294. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI202003029.htm
[14] 林荩, 梁文静, 焦旸, 等. 陕西潼关县金矿矿区周边农田土壤重金属生态健康风险评价[J]. 中国地质, 2021, 48(3): 749-763. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202103007.htm Lin J, Liang W J, Jiao Y, et al. Ecolcgical and health risk assessment of heavy metals in farmland soil around the gold mining area in Tongguan of Shanxi Province[J]. Geology in China, 2021, 48(3): 749-763. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202103007.htm
[15] 曹见飞, 段欣荣, 吴泉源, 等. 金矿区周边农田土壤重金属源解析研究——以焦家金矿为例[J]. 环境污染与防治, 2021, 43(5): 546-552. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR202105003.htm Cao J F, Duan X R, Wu Q Y, et al. Source apportionment of soil heavy metals in surrounding farmland of gold mining: A case study of Jiaojia gold mine[J]. Environmental Pollution and Prevention, 2021, 43(5): 546-552. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR202105003.htm
[16] 刘子赫, 孟瑞红, 代辉祥, 等. 基于改进地累积指数法的沉积物重金属污染评价[J]. 农业环境科学学报, 2019, 38(9): 2157-2164. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201909019.htm Liu Z H, Meng R H, Dai H X, et al. Evaluation of heavy metals pollution in surface sediments using an improved geo-accumulation index method[J]. Journal of Agro-Environment Science, 2019, 38(9): 2157-2164. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201909019.htm
[17] Hakanson L. An ecological risk index for aquatic pollution control. A sedimentological approach[J]. Water Research, 1980, 14: 975-1001. doi: 10.1016/0043-1354(80)90143-8
[18] Loska K, Wiechula D, Korus I. Metal contamination of farming soils affected by industry[J]. Environment International, 2004, 30(2): 159-165. doi: 10.1016/S0160-4120(03)00157-0
[19] 侯叶青, 杨忠芳, 余涛, 等. 中国土壤地球化学参数[M]. 北京: 地质出版社, 2020. Hou Y Q, Yang Z F, Yu T, et al. Soil geochemical parameters in China[M]. Beijing: Geological Publishing House, 2020.
[20] Forstner U. Lecture notes in earth sciences (contaminated sediments)[M]. Berlin: Springer Verlag, 1989: 107-109.
[21] 胡艳霞, 周连第, 魏长山, 等. 北京水源保护地土壤重金属空间变异及污染特征[J]. 土壤通报, 2013, 44(6): 1483-1490. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201306036.htm Hu Y X, Zhou L D, Wei C S, et al. Study on spatial variability of soil heavy metals environments and its pollution characteristics in Beijing water protective area[J]. Chinese Journal of Soil Science, 2013, 44(6): 1483-1490. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201306036.htm
[22] 徐争启, 倪军师, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, 31(2): 112-115. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS200802029.htm Xu Z Q, Ni J S, Tuo X G, et al. Calculation of toxicity coefficient of heavy metals in potential ecological hazard index evaluation[J]. Environment Science and Technology, 2008, 31(2): 112-115. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS200802029.htm
[23] Tang Z E, Deng R J, Zhang J, et al. Regional distribution characteristics and ecological risk assessment of heavy metal pollution of different land use in an antimony mining area—Xikuangshan, China[J]. Human and Ecological Risk Assessment: An International Journal, 2020, 26(7): 1779-1794. doi: 10.1080/10807039.2019.1608423
[24] 周骏驰, 刘孝利, 雷鸣, 等. 湖南典型矿区耕地土壤重金属空间特征研究[J]. 地理空间信息, 2018, 16(8): 90-94. https://www.cnki.com.cn/Article/CJFDTOTAL-DXKJ201808030.htm Zhou J C, Liu X L, Lei M, et al. Spatial characteristics of heavy metals in cultivated soils of typical mining areas in Hunan Province[J]. Geospatial Information, 2018, 16(8): 90-94. https://www.cnki.com.cn/Article/CJFDTOTAL-DXKJ201808030.htm
[25] 毛朝明, 蒋灵华. 松阳县毛竹林地土壤养分空间变异特征分析[J]. 浙江林业科技, 2020, 40(2): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJLK202002010.htm Mao Z M, Jiang L H. Spatial variability of soil nutrient content in phyllostachys edulis stands in Songyang County[J]. Zhejiang Forestry Technology, 2020, 40(2): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJLK202002010.htm
[26] 刘政, 赵文廷, 王爱军. 盂县煤矿区及周边农田土壤重金属溯源分析[J]. 煤炭学报, 2018, 43(S2): 532-545. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2018S2023.htm Liu Z, Zhao W T, Wang A J. Traceability analysis of heavy metals in soil of coal mining area and surrounding farmland in Yuxian County[J]. Journal of China Coal Society, 2018, 43(S2): 532-545. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2018S2023.htm
[27] 李传章, 欧小辉, 张超兰, 等. 环江沿岸农田土壤重金属污染与空间变异性分析[J]. 江西农业大学学报, 2018, 40(6): 1348-1356. https://www.cnki.com.cn/Article/CJFDTOTAL-JXND201806030.htm Li C Z, Ou X H, Zhang C L, et al. Analysis of heavy metal pollution and spatial variability in farmland soil along the Huanjiang River[J]. Acta Agriculturae Universitatis Jiangxiensis, 2018, 40(6): 1348-1356. https://www.cnki.com.cn/Article/CJFDTOTAL-JXND201806030.htm
[28] 王全九, 毕磊, 张继红. 新疆包头湖灌溉区农田土壤水盐热特性空间变异特征[J]. 环境科学学报, 2018, 34(18): 138-145. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201818017.htm Wang Q J, Bi L, Zhang J H. Spatial variability analysis of large-scale soil water, salt and heat characteristics in Baotou Lake irrigation area of Xinjiang[J]. Journal of Environmental Science, 2018, 34(18): 138-145. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201818017.htm
[29] 孙天河, 刘伟, 靳立杰, 等. 基于多元统计的土壤主要重金属影响因素分析——以济南市平阴县城区及附近区域为例[J]. 安全与环境学报, 2021, 21(2): 834-840. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202102055.htm Sun T H, Liu W, Jin L J, et al. Assessment of the heavy metal influential factors based on the multivariate statistical analysis—A case study of the urban and nearby areas of Pinyin County of Jinan, China[J]. Journal of Safety and Environment, 2021, 21(2): 834-840. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202102055.htm
[30] 宋绵, 龚磊, 王艳, 等. 河北阜平县表层土壤重金属对人体健康的风险评估[J]. 岩矿测试, 2022, 41(1): 133-144. doi: 10.15898/j.cnki.11-2131/td.202109290135 Song M, Gong L, Wang Y, et al. Risk assessment of heavy metals in topsoil on human health in Fuping County, Hebei Province[J]. Rock and Mineral Analysis, 2022, 41(1): 133-144. doi: 10.15898/j.cnki.11-2131/td.202109290135
[31] 刘春跃, 王辉, 白明月, 等. 沈阳市老城区表层土壤重金属分布特征及风险评价[J]. 环境工程, 2020, 38(1): 167-171. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC202001027.htm Liu C Y, Wang H, Bai M Y, et al. Distribution characteristics and risk assessment of heavy metals in topsoil of old urban area of Shenyang[J]. Environmental Engineering, 2020, 38(1): 167-171. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC202001027.htm
[32] 牛真茹, 祁硕, 吴庭雯, 等. 某有色冶炼场地浅层土壤重金属空间变异规律与分布特征[J]. 土壤通报, 2016, 47(3): 738-745. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201603035.htm Niu Z R, Qi S, Wu T W, et al. Spatial variability and distribution of heavy metals in the shallow soil around non-ferrous metal smelting site[J]. Chinese Journal of Soil Science, 2016, 47(3): 738-745. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201603035.htm
[33] 贺灵, 吴超, 曾道明, 等. 中国西南典型地质背景区土壤重金属分布及生态风险特征[J]. 岩矿测试, 2021, 40(3): 395-407. doi: 10.15898/j.cnki.11-2131/td.202101260016 He L, Wu C, Zeng D M, et al. Distribution of heavy metals and ecological risk of soil in the typical geological back ground region of southwest China[J]. Rock and Mineral Analysis, 2021, 40(3): 395-407. doi: 10.15898/j.cnki.11-2131/td.202101260016
[34] 余涛, 蒋天宇, 刘旭, 等 土壤重金属污染现状及检测分析技术研究进展[J]. 中国地质, 2021, 48(2): 460-476. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202102009.htm Yu T, Jiang T Y, Liu X, et a. Research progress in current status of soil heavy metal pollution and analysis technology[J]. Geology in China, 2021, 48(2): 460-476. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202102009.htm