A Review of Progress in Microbeam Lu-Hf Isotopic Analysis on Minerals
-
摘要:
矿物微区Lu-Hf同位素分析技术为了解岩浆活动和变质反应的微观过程以及示踪沉积物源信息提供了重要手段,极大地促进了岩石地球化学等领域学科发展。本文评价了176Yb和176Lu同质异位素、稀土元素氧化物以及富Ta基体等对微区Hf同位素测量精度和准确度的影响方式、校正策略和应对方案,总结了针对锆石、斜锆石、钙钛锆石、钛锆钍矿、异性石、金红石、锡石和铌铁矿等富铪矿物的微区Lu-Hf同位素分析方法、适用对象以及相关标样特征。富镥矿物的微钻/微锯Lu-Hf同位素等时线定年具有高精度的特点,可精确限定多期造山作用和矿物生长持续时间等。利用激光剥蚀电感耦合等离子体三重四极杆串级质谱(LA-ICP-Q-MS/MS)可以实现对石榴石等富镥矿物微米尺度高空间分辨率的微区Lu-Hf单点/等时线定年。该方法依赖Hf与NH3的碰撞反应实现Lu和Hf的在线分离,达到同步测量176Lu/177Hf和176Hf/177Hf比值的目的。新一代带碰撞/反应池的多接收串级磁式质谱具有高稳定性和高灵敏度特性,可在消除多离子(团)干扰的同时实现高精度Hf同位素分析,是未来微区Lu-Hf同位素分析发展的重要方向。
-
关键词:
- Lu-Hf同位素 /
- LA-MC-ICPMS /
- 锆石 /
- 石榴石 /
- 微区分析
要点(1) 评述了消除微区Lu-Hf同位素分析离子(团)干扰和基体元素拖尾效应的策略。
(2) 归纳了通过外标和稳定同位素比值监控富铪矿物微区Lu-Hf同位素分析准确性的办法。
(3) 总结了依赖碰撞反应实现富镥矿物微区Lu-Hf同位素定年的方法及改进方向。
HIGHLIGHTS(1) The strategies to eliminate the interference of ions (clusters) and the tailing effect of matrix elements during microbeam Lu-Hf isotopic analysis are reviewed.
(2) Two ways to monitor the accuracy of microbeam Lu-Hf isotopic analysis on hafnium-rich minerals, including external standards and internal stable isotope ratios, are summarized.
(3) The collision reaction methods for microbeam Lu-Hf isotope dating on lutetium-rich minerals are introduced and new development directions are discussed.
Abstract:BACKGROUNDMircobeam Lu-Hf isotopic analysis on minerals provides an important means to understand the microscopic process of magmatic activity and metamorphic reaction and to trace provenance of sediment, which greatly promotes the development of petrogeochemistry. Many methods were provided to obtain accurate and precise microbeam Lu-Hf isotopic data, and many mineral standards for microbeam Lu-Hf isotopic analysis were developed.
OBJECTIVESTo review and understand the microbeam methods for Lu-Hf isotopic analysis.
METHODSSystematic compilations of published data of standards and discussion on the different methods for microbeam Lu-Hf isotopic analysis.
RESULTSThe development history of microbeam Lu-Hf isotopic analysis in the past 30 years is reviewed, and the influence of 176Yb and 176Lu isobars, REE oxides, and Ta-rich matrices on the precision and accuracy of Hf isotope measurement is systematically evaluated as well as the different correction strategies and programs provided in previous studies. In addition, a comprehensive compilation of the different Yb and Lu isotopic compositions reported in references and the different methods of microbeam Lu-Hf isotopic analyses on various Hf-rich minerals such as zircon, baddeleyite, zirconolite, zirkelite, calzirtite, eudialyte, rutile, cassiterite, and columbite-group minerals is made. The micro-drill/micro-saw sampling Lu-Hf isotopic analysis of Lu-rich minerals has played an important role in revealing the multi-stage orogenic process and the duration of mineral growth. The advent of laser ablation inductively coupled plasma triple quadrupole mass spectrometry (LA-ICP-Q-MS/MS) has increased the spatial resolution of Lu-Hf single-spot/isochron dating analysis of Lu-rich minerals to the micrometer scale. This method relies on the collision reaction of Hf and NH3 to realize the online separation of Hf from Lu, and achieves the purpose of synchronous measurement of 176Lu/177Hf and 176Hf/177Hf ratios, which is introduced in detail.
CONCLUSIONSThe new generation of tandem multi-collector sector field mass spectrometer with collision/reaction cell has high stability and sensitivity, which can be used to determine online separation of Hf from REEs, produce high-precision Hf isotope measurements for high Yb/Hf or Ta-rich minerals under high spatial resolution conditions, and significantly improve the precision and accuracy of microbeam Lu-Hf isotopic analysis. This deserves extensive attention in the future.
-
Keywords:
- Lu-Hf isotope /
- LA-MC-ICPMS /
- zircon /
- garnet /
- microbeam analysis
-
水资源是人类生存、经济和区域可持续发展的重要组成部分,水质安全日益成为国家可持续发展和保障国民健康面临的重要课题[1-2]。联合国开发计划署(UNDP)提出了17项全球可持续发展目标(SDGs),其中“清洁水源”是其重要目标。健康中国行动(2019—2030年)也将饮用水水质达标和持续改善作为环境健康促进行动的重要内容,对水质、水生态和水安全提出了更高要求[3]。金属类矿山开采容易导致矿体及尾矿中的有害元素释放[4],通过水循环进入生态系统,由饮用水途径进入人体[5],重金属元素在人体中的累积效应给区域人群健康带来了巨大的潜在风险[6-9]。
中国是世界稀土矿重要产地,赣南地区是全球离子型稀土矿发现地和首采地,近50年来的粗放式开采对流域水体产生了深刻的影响。已有研究表明中国南方离子型稀土矿集区范围内的赣江流域水体中存在明显的铅、锰、砷元素异常[6, 8, 10]。赣南离子型稀土矿山流域调查研究也发现,流域内存在氨氮、重金属元素含量异常,地表水中的Pb、As、Mn含量与氨氮浓度呈现良好的正相关性。模拟稀土矿开采的浸矿实验证实,浸矿过程中NH4+和H+取代黏土矿物吸附点上的重金属离子,导致重金属离子活化随多余的浸矿液迁移到水系中[11-12],因此,稀土矿山是所在流域水体中有害指标异常的重要来源[8, 12]。已有对矿集区及周边水体健康风险评价研究案例[13]为地方政府提供了科学的水质评价结果及准确的健康风险评估成果。然而,目前研究主要集中在矿区外围地表水水质分析和单一生态风险评估,对复垦后的稀土矿山所在流域水质缺乏系统调查,对地表水和地下水的人体健康风险缺乏全面评价。
均值法、单因子评价法和综合污染指数法、内梅罗指数法是常用的水质评价方法[7, 9]。相比较,水质指数法(Water Quality Index, WQI)综合考虑了不同污染指标的毒理学权重,较好地实现了对水质的科学评价[14-16]。基于人体健康的水体风险评价大多采用美国环保署推荐的经口摄入暴露剂量风险评估模型(ADD)[14, 17-19]。中国也在2021年出台了卫生评价规范《化学物质环境健康风险评估技术指南》(WS/T 777—2021),该指南从危害识别、反应评估、暴露评估和风险表征等方面提出更为系统全面的化学物质健康风险评价标准。本研究基于自然资源部定点帮扶赣州宁都县乡村振兴地质调查基础展开,通过对赣南北部黄陂河流域稀土矿区及周边地表水和地下水的系统调查,对水体中氨氮、锰等9种指标进行水质和健康风险评价,旨在:①刻画矿区所在流域地表水和地下水中9种指标的空间分布特征;②根据水质指数(WQI)科学评价地表水和地下水的水质特征;③通过摄入吸收模型(ADD)计算各指标的危害商(HQ)和致癌风险(CR),科学评价水体的健康风险。研究成果拟为地方促进水源地环境改善、优化村镇国土空间规划等提供决策参考和科学依据。
1. 研究区概况
研究区位于江西省赣州市宁都县(图 1)。研究区年均气温14~19℃,属亚热带季风气候区。北部以山区为主,南部以丘陵、河谷为主。主要土地利用类型为林地,河谷地带和丘陵缓坡为耕地和园地。黄陂河是赣江二级支流,发源于宁都县蔡江乡大坑村大坪坑,流经黄陂镇,在东山镇汇入赣江一级支流梅江,全长约60km。黄陂河流域岩石地层主要为震旦系老虎塘组变余砂岩夹千枚岩,西南部有大片混合岩、混合花岗岩分布。黄陂稀土矿地处黄陂河流域上游,黄陂镇以北5km的花岗岩区,各类规模矿点十余处,矿区面积约5.4km2。矿区周边的土地利用类型以农田和果园为主,农产品以水稻和脐橙为主。黄陂稀土矿于二十世纪末开始大规模的堆浸式开采,2005年达到顶峰,2016年至今矿山关停进入复垦治理时期。依照《赣州市地表水功能区划》(2010年),黄陂河是宁都县境内重要的饮用水取水区,河水水质直接关系着下游乡村饮用水的安全和人群健康。
2. 实验部分
2.1 样品采集
2019年6月项目组围绕黄陂稀土矿集区,在黄陂河流域自上游到下游开展实地调查。共采集23处水样,其中稀土矿集区及上游附近地表水水样16个,下游黄陂河干流地表水样品5个。依托矿区及下游的2口地下水监测井,采集地下水样品2个。为减少季节性水量变化对水质产生的影响,依照水样指标分析结果分别在矿区、矿区下游和远离矿区下游选取4个地表水采样点(GNSW-19009、GNSW-19010、GNSW-19014、GNSW-19016)进行监测,如图 1所示,在2020年8月和2021年2月作为流域丰水期和枯水期进行对比样品采集。
2.2 仪器和主要试剂
Optima 8300电感耦合等离子体发射光谱仪(美国PerkinElmer公司)。仪器工作条件为:等离子体功率1250W, 冷却气流速15.0L/min, 载气流速0.60L/min。
NexION 300Q电感耦合等离子体质谱仪(美国PerkinElmer公司)。仪器工作条件为:等离子体功率1000W,冷却气流速16.0L/min, 载气流速0.96L/min。
AFS 830原子荧光光谱仪(北京吉天仪器有限公司)。仪器工作条件为:负高压260mV, 灯电流30mA。WTWPH3210便携式pH计(德国赛莱默公司)。ICS5000+型高压离子色谱仪(美国ThermoFisher公司)。TR900氨氮快速测定仪(深圳同奥科技),测定范围为0~50mg/L,检测下限为0.05mg/L,测定误差 < ±5%,重复性 < ±5%。
硝酸(BVIII级,德国Merck公司)。50%硝酸用体积比为1∶1的水和硝酸配制而成。0.45μm微孔滤膜(Φ25mm,天津津腾实验设备有限公司)。
2.3 样品分析测试
所有采样设备(有机玻璃)取样前使用原水润洗三次后立即取样,装入100mL塑料瓶(PET)中。在24h内所有水样都需要通过0.45μm微孔滤膜过滤到30mL白色塑料瓶(聚乙烯)中,一瓶加入2mL浓度为50%的硝酸,另一瓶不做处理,均放入冰箱冷藏待测。
根据《生活饮用水标准检验方法金属指标》(GB/T 5750.6—2006)标准(本方法适用于生活饮用水、水源水的测试分析),使用电感耦合等离子体发射光谱法(ICP-OES)测定锰含量,选择Mn 257.61nm谱线为分析线;使用电感耦合等离子体质谱法(ICP-MS)测定镉、铜、镍、铅含量,选取114Cd、63Cu、60Ni、208Pb为分析物质量。使用原子荧光光谱法(AFS)测定砷含量。使用离子色谱法测定硝酸根(NO3-)、硫酸根(SO42-)含量。
使用德国WTWPH3210便携式pH计野外现场测定pH值。根据《水质氨氮的测定纳氏试剂分光光度法》(HJ 535—2009)标准(本方法适用于地表水和地下水氨氮测定),使用TR900便携式多参数水质测定仪现场测定氨氮(NH3-N)含量。
2.4 水样水质状况评价方法
采用水质指数(Water Quality Index, WQI)对水样水质进行评价,其计算如公式(1)。
$$ W Q I=\Sigma\left[w_{\mathrm{i}} \times\left(\frac{C_{\mathrm{i}}}{S_{\mathrm{i}}}\right) \times 100\right] $$ (1) 式中:wi代表目标元素权重[20-21]。按照元素对水质产生的影响程度,将权重分为5级,其中Cd、Cr、Mn、Pb、NH3-N、NO3-、SO42-的权重为5,pH、Fe的权重为4,Al、Ba、Cu的权重为2,Co、Ni、Zn的权重为1[13];Ci是测定的微量元素浓度;Si是中国饮用水的标准;数字100表示常数。
WQI分为五级:WQI < 50,表示水质极好;50≤WQI < 100,水质好;100≤WQI < 200,水质差;200≤WQI < 300,水质极差,WQI≥ 300,水质不可饮用。
2.5 人体健康风险评价方法
经口摄入是人类主要的环境暴露途径之一[13, 22]。本文采用美国环保署(2004年)推荐的暴露剂量风险评估模型(Average Daily Dose,ADD)对水体进行健康风险评价,其计算如公式(2)。
$$ A D D=\frac{C_{\mathrm{w}} \times I R \times E F \times E D}{B W \times A T} $$ (2) 式中:ADD表示平均每日摄入剂量;Cw为水样中微量元素的平均浓度(μg/L);IR为摄入量,成人为2.0L/天,儿童为0.64L/天; EF为暴露频率(350天/年);ED为暴露时间,成人为30年,儿童为6年;BW为平均体重,成人70kg,儿童15kg;AT是平均时间(用于非致癌物),AT=ED×365天/年;对于致癌物AT=365天/年×70年)。
潜在非致癌风险评估采用危害商(Hazard Quotient,HQ)进行计算,主要评估水中Cu、Ni、Mn等非致癌物的健康风险,其计算如公式(3)。
$$ H Q=\frac{A D D}{R f D} $$ (3) 式中:HQ是通过摄入的危害商(无量纲);ADD表示平均每日摄入剂量;RfD是特定口服毒性金属参考剂量。当HQ>1时,可能会对人类健康产生不良影响;当HQ < 1时,表明对人类健康没有不良影响。
水中Cr、As等致癌性化学污染物引起的潜在人体致癌风险水平计算如公式(4)。
$$ CR=ADD×SF $$ (4) 式中:CR为致癌风险;ADD表示平均每日摄入剂量;SF为口腔癌斜率因子(mg/kg/day)-1。当CR < 10-6时,表明致癌风险可忽略不计;当CR>10-4时,对人类致癌的风险较高;如果10-4 < CR < 10-6,则对人类存在可接受的风险。
3. 结果与讨论
3.1 地表水和地下水水质参数统计特征
黄陂河流域稀土矿集区的地表水和地下水水质参数统计特征如表 1。地表水pH值分布范围为6.43~7.03,平均值为6.85;地下水pH值分布范围为6.96~7.43,平均值为7.19,略高于地表水。河水总体呈中性偏酸性,地下水的pH标准偏差略高于地表水。水体中的微量元素含量可分为:低丰度(< 1μg/L),中丰度(1~100μg/L),高丰度(>100μg/L)[23-24]。研究区地表水样品中的As、Cd、Ni平均浓度低于1μg/L,为低丰度元素;Cu和Pb平均浓度在1~100μg/L范围内,为中丰度元素。Mn浓度大于100μg/L,属高丰度元素。SO42-、NO3-、NH3-N的浓度则超过1000μg/L。地下水中各指标呈现出与地表水类似的分布。地表水中指标平均值排序为:NO3->SO42->NH3-N>Mn>Pb>Cu>Ni>As>Cd;地下水中指标平均值排序为:NH3-N>SO42->Mn>NO3->Ni>Pb>As>Cu>Cd。地表水中NO3-、As、Cu、Pb的平均值高于地下水,表明地表水中该类指标的污染相对于地下水较为严重。然而,对于Mn、NH3-N、SO42-等指标,地下水的平均值高于地表水,表明地下水中这些指标的污染相对于地表水较为严重。与赣江流域其他稀土矿区水质相比,黄陂河流域的地表水和地下水水质相对良好,其中地表水各指标含量平均值除Mn外比赣江龙迳河流域的平均值低[8],地下水NH3-N、NO3-、Pb平均含量远低于赣州南部的足洞稀土矿集区[6]。
表 1 黄陂河流域地表水、地下水化学统计参数和WQI参数Table 1. Parameters of chemical statistics and WQI obtained from surface water and groundwater in Huangpi River Basin指标 地表水 地下水 WQI参数 最小值
(μg/L)最大值
(μg/L)平均值
(μg/L)标准差
(μg/L)最小值
(μg/L)最大值
(μg/L)平均值
(μg/L)标准差
(μg/L)水质
标准a权重
(wi)相对权重
(Wi)pH 6.43 7.03 6.85 0.14 6.96 7.43 7.19 0.23 6.5~8.5a 4 0.095 NH3(以N计) 134 1517 750 386 727 8338 4533 3805 500a 5 0.119 SO42- 457 4222 1940 869 3257 4783 4020 762 250000b 5 0.119 NO3- 0.00 10890 2721 2401 50.00 4329 2189 2139 50000b 5 0.119 As 0.22 0.84 0.58 0.18 0.33 0.44 0.38 0.06 10a 5 0.119 Cd 0.02 0.10 0.05 0.02 0.04 0.25 0.14 0.11 5a 5 0.119 Cu 0.86 10.20 3.61 2.56 0.12 0.59 0.35 0.23 1000a 2 0.048 Mn 42.0 659 207 155 782 7236 4009 3227 100a 5 0.119 Ni 0.45 1.02 0.70 0.18 1.73 8.30 5.01 3.28 20a 1 0.024 Pb 1.06 24.12 8.13 5.50 1.77 2.50 2.14 0.36 10a 5 0.119 注:a为中国《生活饮用水卫生标准》(GB 5749—2006);b为世界卫生组织(WHO)标准(2011)。 3.2 水体水质评价
本研究中,通过WQI值对黄陂河流域的水体质量情况是否能够达到饮用水的标准进行评价。WQI值的计算涉及Mn、NH3-N、Pb等9项指标。黄陂河流域矿集区地表水体水质WQI最大值为132.8,最小值为24.5,平均值为62.63,整体水平为“好”,85.7%的地表水适宜饮用。上述结果表明经过矿山复垦治理,稀土矿山周边地区水质处于较好状态,这与林圣玉等[25]的生态修复工程成效评估报告结果相一致。但矿区中也存在部分水样点WQI值处于“差”水平,其中Mn、NH3-N、Pb三个指标是造成水样WQI值较高的主要原因。
3.2.1 异常WQI值空间分析
氨氮是稀土矿山开采的主要污染物,稀土开采过程中主要使用硫酸铵作为浸矿剂,而铵根离子会取代黏土矿物吸附点上的稀土元素,残留在矿区土壤表面及其间隙中的氨氮在降雨的淋浸下,通过浓度差作用进入水体[23-24, 26],这与本次调查研究发现稀土矿山附近氨氮严重超标的情况类似。根据对稀土矿山地区土壤重金属的赋存形态研究发现,重金属主要以残渣态存在[27],但是有研究表明,长期酸性条件下,H+会加速矿物风化,破坏硅酸盐、次生矿物、氧化物的晶格,造成晶格内重金属元素(残渣态)的迁移[28-30]。根据对停止开采后的稀土矿区土壤等介质调查研究发现,存在Pb含量较高的现象[27, 31]。此次调查发现矿山附近水样点有明显的Pb超标现象,这表明稀土矿区即使停止开采后依然存在重金属缓慢释放的现象,对矿区下游居民的饮用水安全及农田环境质量存在较大的威胁。根据陈能汪等[32]的研究发现,Mn元素的活化与释放主要与水体中酸碱度的降低有关,长期的稀土矿开采造成土壤酸化[33],使大量的Mn元素释放到环境中,造成水体中Mn元素异常分布。
中国南方丘陵山丘居民分散式饮水主要依赖地下水,约70%人群饮水以地下水为主要来源[34]。此次对矿区及下游地区地下水监测评价发现,矿区地下水监测井样品WQI>300,属不可饮用级别,但下游地区监测井的WQI值较矿山附近的低,随样品离稀土矿区距离的增加,地下水水质呈逐渐变好的趋势。通过对WQI值的权重分析、污染物浓度及标准分析发现,Mn、NH3-N是造成地下水水质极差的主要原因,其中地下水Mn元素的平均值是地表水的20倍。对于Mn元素在土壤中的赋存形态以及如何迁移到水体中的研究现在还较少。陈能汪等[32]研究了福建省九龙江流域的Mn元素来源和迁移,发现Mn元素的迁移主要与高pH值的含Mn颗粒流失以及河流pH值降低有关。卢陈彬等[35]对赣南稀土矿区的Mn元素形态学和矿物学分析表明,Mn主要富集在含锰矿物中,仅少量以分散相形式吸附在黏土矿物表面,具有较高的潜在迁移能力。
3.2.2 WQI值季节分析
通过对黄陂河流域地表水的枯水期和丰水期监测,发现枯水期的WQI值都比丰水期的大(表 2),主要是由于枯水期降雨少,指标浓度相对较高所致。
表 2 地表水监测点枯水期和丰水期WQI值比较Table 2. Comparison of WQI values of surface water monitoring points in dry season and wet season黄陂河流域 监测站位WQI值 GNSW-19009 GNSW-19010 GNSW-19014 GMSW-19016) 丰水期 48.46 12.12 35.80 14.14 枯水期 67.83 25.77 47.38 27.01 3.3 地下水和地表水健康风险评价
本研究采用美国环保署(EPA)推荐的健康风险评估模型对研究区地表水和地下水健康风险进行评价,由于硫酸根离子单独未被美国纳入US EPA综合风险信息查询系统中,因此本评价不包括硫酸根。而儿童和成人剂量效应不同,因此分别进行计算更符合人体健康评价标准。评价得到的黄陂河流域地表水和地下水中NH3(以N计)、NO3-、As、Cd、Cu、Mn、Ni、Pb的危害商(HQ)和致癌风险(CR)如表 3所示。
表 3 黄陂河流域地表水和地下水危害商和致癌风险Table 3. HQ and CR values of surface water and groundwater in Huangpi River Basin地表水中的元素 危害商(HQ) 致癌风险(CR) 成人 儿童 成人 儿童 NH3(以N计) 1.03×10-1 1.54×10-1 - - NO3- 4.66×10-2 6.96×10-2 - - As 4.66×10-2 6.96×10-2 2.39×10-5 3.56×10-5 Cd 2.85×10-3 4.26×10-3 - - Cu 3.57×10-5 5.33×10-5 - - Mn 2.37×10-1 3.54×10-1 - - Ni 9.54×10-4 1.42×10-3 - - Pb 1.59×10-1 2.38×10-1 - - 地下水中的元素 危害商(HQ) 致癌风险(CR) 成人 儿童 成人 儿童 NH3(以N计) 6.21×10-1 9.27×10-1 - - NO3- 3.75×10-2 5.60×10-2 - - As 3.49×10-2 5.21×10-2 1.57×10-5 2.34×10-5 Cd 7.84×10-3 1.17×10-2 - - Cu 2.42×10-4 3.61×10-4 - - Mn 4.58 6.84 - - Ni 6.87×10-3 1.03×10-2 - - Pb 4.18×10-2 6.25×10-2 - - 注:“-”表示无对应数值。 3.3.1 非致癌健康风险评价
地表水和地下水的危害商(HQ)如图 2所示。在地表水中,儿童和成人所选指标的HQ平均值均小于1,说明对人类健康没有不良影响和潜在的非致癌风险。对于地下水,儿童和成人Mn元素的HQ值均在1以上,表明可能对人类健康产生非致癌风险,而儿童和成人的其他元素HQ值均在1以下则属于在安全范围内。此外,儿童HQ值与成人相比具有更高数值,这意味着儿童比成人相比健康风险更大, Gao等[13]和Xiao等[22]研究证实了这一点。研究结果表明,在有稀土矿集区存在的黄陂河流域,地下水中Mn可能对人类健康产生非致癌风险,且儿童的非致癌风险性更高。
过度摄入或长期接触重金属元素可能会引起毒性作用,如长期暴露于低剂量镉与肾毒性、骨质疏松症和神经毒性相关。此外,Cd元素可能通过破坏雄激素受体在前列腺癌中发挥作用[36-37]。Pb暴露可导致肾病、情感性障碍、智力、记忆和认知缺陷下降,尤其是儿童暴露后神经损伤更严重[38]。在对比数据中,两类水体中多数HQ值低于1,表明对人类健康无非致癌风险,但儿童风险明显高于成人。且两类水体中Mn的HQ值均大于1,表明对人体有较高的非致癌性风险。
3.3.2 致癌健康风险评价
本研究计算了影响人体健康的重要因素——As的致癌风险(表 3)。根据美国环境保护署推荐的CR分类,儿童和成人通过地表水和地下水所摄入致癌风险物质As的CR值范围如图 3所示。
由图 3可见,地表水中儿童CR值为1.32×10-5~5.14×10-5,成人为8.86×10-6~3.45×10-5; 地下水中儿童CR值为2.00×10-5~2.68×10-5,成人为1.34×10-5~1.79×10-5,儿童组可能会有较高的致癌风险。地表水区As的平均致癌风险高于地下水区,儿童组的平均致癌风险高于成人,可能与成人比儿童需要更多饮用水相关,这与Tong等[15]的研究一致。与以往研究[10]不同的是,本调查研究未发现黄陂河流域稀土矿区存在人体致癌性风险。
考虑到As元素的浓度平均值、成人及儿童体重、每日摄入量等涉及不同区域的风险评估计算存在差异,这些因素构成的潜在风险具有一定的不确定性。尽管微量元素如As的生物有效性、与价态相关的毒性会影响到最终的健康风险评价,但在目前条件下,本研究采用的元素浓度评价方式为人体健康评价提供了相对可靠的科学参考。
4. 结论
基于《生活饮用水卫生标准》(GB 5749—2006),利用水质指数法和暴露剂量风险评估模型相结合对江西省赣南黄陂河流域复垦后的水质及健康风险进行系统性调查评价。水质指数(WQI)评价结果表明,地表水和地下水中氨氮、Mn属于异常指标,应予以重视。依据暴露剂量风险评估模型,首先通过危害商(HQ)来进行非致癌健康风险评价,评价结果显示黄陂河流域稀土矿区及周边乡村除Mn元素以外7种指标对儿童和成人无不良影响和潜在的非致癌风险。其次,致癌健康风险评价表明As的致癌风险(CR)在可接受范围之内。
综合以上评价结果,对于村庄和人口密集型分布的此类稀土矿山,建议关注水体氨氮及重金属元素含量的状况,加强对所在流域水体Mn元素的协同监测,完善修复治理及效果评估方法。
-
表 1 不同文献报道的自然界Yb-Lu同位素组成
Table 1 Natural Yb and Lu isotopic compositions reported in different references
测量方式 172Yb/171Yb 173Yb/171Yb 174Yb/171Yb 176Yb/171Yb 176Yb/172Yb 176Yb/173Yb 173Yb/172Yb 174Yb/172Yb 176Lu/175Lu 文献来源 TIMS 1.526374 1.124778 2.216312 0.885860 0.580369 0.787586 0.736896 1.452011 - [67] TIMS+MC-ICPMS 1.526400 1.124800 2.216300 0.885900 0.580385 0.787607 0.736897 1.451979 0.02656 [6] TIMS 1.532075 1.132685 2.242466 0.901821 0.588627 0.796180 0.739314 1.463679 0.02655 [61] MC-ICPMS 1.532227 1.132685 2.242716 0.901864 0.588597 0.796218 0.739241 1.463697 - [61] MC-ICPMS 1.530570 1.130172 2.235486 0.897145 0.586151 0.793813 0.738400 1.460558 - [66] TIMS - - - - - 0.795200 - - 0.02656 [68] TIMS 1.525914 1.123456 2.215594 0.884110 0.579397 0.786956 0.736251 1.451979 0.02645 [63] MC-ICPMS 1.526049 1.123575 2.215790 0.884081 0.579327 0.786847 0.736264 1.451979 0.02645 [63] TIMS 1.529607 1.129197 2.232678 0.895504 0.585447 0.793045 0.738227 1.459642 0.02655 [65] TIMS 1.531736 1.132338 2.241970 0.901691 0.588673 0.796310 0.739251 1.463679 0.02655 [65] TIMS 1.532105 1.132554 2.242509 0.901976 0.588717 0.796409 0.739215 1.463679 - [69] MC-ICPMS 1.530245 1.131999 2.238963 0.900121 0.588220 0.795161 0.739750 1.463140 - [70] MC-ICPMS - - - - 0.587150 - - 1.461820 - [62] MC-ICPMS - 1.132685 - - - 0.796390 - - - [71] 注:“-”代表无数据。 表 2 主要富铪矿物标样的REE-Hf同位素组成特征
Table 2 REE-Hf isotopic compositions of Hf-rich mineral standards
标准溶液 年龄(Ma) 年龄类型 160Gd/177Hf 161Dy/177Hf 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf Hf (μg/g) σ 参考文献 JMC475 - - - - - - 0.282160 - - [4, 83-84] 锆石 年龄(Ma) 年龄类型 160Gd/177Hf 161Dy/177Hf 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf Hf (μg/g) σ 参考文献 Zr 2-1 0 - 0.000001 0.000005 0.000002 0.000000 0.282209±9 6105 330 [85] Zr 3-1 0 - 0.000001 0.000006 0.001997 0.000504 0.282213±8 6819 382 [85] Zr 3-2 0 - 0.000001 0.000005 0.002283 0.000568 0.282210±10 7598 304 [85] Zr 4-1 0 - 0.000012 0.000003 0.001426 0.000356 0.282230±7 10011 300 [85] Zr 4-2 0 - 0.000010 0.000004 0.002033 0.000524 0.282234±8 8648 796 [85] MUNZirc 0 0 - - - 0.000130±65 0.000007±4 0.282135±7 - - [58] MUNZirc 1 0 - 0.000534 0.004097 0.029±13 0.00147±67 0.282135±7 8933 - [58] MUNZirc 2 0 - 0.000282 0.002999 0.078±37 0.0029±12 0.282135±7 10415 - [58] MUNZirc 3 0 - 0.001090 0.010273 0.109±29 0.0044±15 0.282135±7 9232 751 [58] MUNZirc 4 0 - 0.005968 0.037853 0.321±64 0.0127±24 0.282135±7 11790 601 [58] FM0411 1.2±0.1L 206Pb/238U 0.0006 0.0027 0.0058±13 0.00017±2 0.282983±4 9323 422 [20, 86-87] 61.308A 2.488±0.004 206Pb/238U - - 0.030697 0.00186 0.282977±14 5780 - [88] 61.308B 2.508±0.002 206Pb/238U - - 0.030772 0.00228 0.282977±6 5537 - [88] Penglai 4.4±0.1 206Pb/238U 0.0019 0.0059 0.0140±80 0.00038±20 0.282906±10 5152 355 [86, 89-90] FCT 28.402±0.023 206Pb/238U 0.0036 0.0109 0.055±11 0.00210±43 0.282538±16 10773 1055 [91-92] SK10-2 32.10±0.49L 206Pb/238U - - - - 0.282752±53 - - [44, 93-94] GHR1 48.106±0.023 206Pb/238U - - 0.048±30 0.0019±12 0.283050±17 - - [95] Monastery 90.1±0.5 206Pb/238U - - 0.00061±16 0.000009 0.282738±8 - - [45, 96-99] KIM-5 90±3S 206Pb/238U 0.0001 0.0004 0.000430 0.000015±4 0.282660±24 9114 192 [100-102] Jilin 117.63±0.04 206Pb/238U 0.0054 0.0140 0.0310±14 0.00082±35 0.282926±14 9135 510 [103] Qinghu 159.38±0.12 206Pb/238U 0.0019 0.0063 0.026±13 0.00068±21 0.283002±4 11750 802 [104-105] LV-11 ~290 206Pb/238U - - 0.166±11 0.0026±2 0.282837±28 - - [106] Plesovice 337.13±0.37 206Pb/238U 0.0018 0.0061 0.005107 0.000125 0.282482±12 11167 - [98-99, 107] TEMORA-1 416.75±0.24 206Pb/238U 0.0039 0.0173 0.032±15 0.00110±30 0.282685±11 7801 - [20, 38, 51, 108-110] TEMORA-2 418.37±0.14
416.78±0.33206Pb/238U 0.0020 0.0078 0.035±14 0.00109 0.282686±8 9362 239 [97-98, 109, 111-112] R33 419.26±0.39
420.53±0.16206Pb/238U 0.0047 0.0184 0.070±29 0.001990±87 0.282764±14 9764 1373 [50-51, 98, 109, 111] M127 524.36±0.16 206Pb/238U 0.0017 0.0060 0.0177±14 0.000654±64 0.282396±4 12400 500 [113] GZ7 530.26±0.05 206Pb/238U 0.0020 0.0059 0.012528 0.00049 0.281666±4 10060 290 [114] SA01 535.08±0.32 206Pb/238U 0.0031 0.0055 0.0127±87 0.00045±28 0.282293±7 9797 563 [115] SA02 535.10±0.24 206Pb/238U 0.0148 0.0205 0.0203±62 0.00064±17 0.282287±16 8976 507 [116] GZ8 543.92±0.06 206Pb/238U 0.0010 0.0036 0.006325 0.00024 0.281662±5 11600 240 [114] BB12 557.4±6.8 206Pb/238U 0.0005 0.0011 0.007068 0.000062 0.281677±11 6177 - [117] BR266
Z6266559.0±0.2
559.27±0.11206Pb/238U 0.0007 0.0025 0.004910 0.000217 0.281630±10 8778 258 [97, 118-121] BB17 559.2±6.0 206Pb/238U 0.0013 0.0032 0.010624 0.000141 0.281677±6 8085.5 - [117] BB9 560.2±4.7 206Pb/238U 0.0005 0.0011 0.006797 0.000052 0.281675±14 6008 - [117] M257 561.3±0.3 206Pb/238U 0.0005 0.0013 0.002986 0.000096 0.281518±11
0.281544±1810610 - [35, 49, 110, 122] BB16 562±3L 206Pb/238U 0.0002 0.0006 0.00134±47 0.000050±17 0.281669±12 8807 - [123-124] CZ3 563.9±1.3 206Pb/238U 0.0001 0.0004 0.00098±1 0.000034±1 0.281732±7 12980 250 [20, 34, 121, 125-126] Peixe 564±4 206Pb/238U 0.0016 0.0069 0.022229 0.000835 0.281944±29 4958 201 [50, 127-128] Tanz 566.16±0.78 206Pb/238U - - - - 0.281820±7 - - [129] SL7 569±3S 206Pb/238U - - - - 0.281620±30 - - [13] LKZ-1 570.0±2.5 206Pb/238U 0.0003 0.0011 0.00358±35 0.000104±1 0.281794±16 7740 310 [130] GJ-1 601.86±0.37 206Pb/238U 0.0013 0.0033 0.00590±42 0.000238±5 0.282000±5 6681 57 [51, 131-134] Mud tank 731.65±0.49 206Pb/238U 0.0011 0.0034 0.003204 0.000093 0.282507±6 11800 - [97-98, 100, 132, 135] WJS810 816.88±0.49 206Pb/238U - - 0.017655 0.000779 0.282534±6 9671 - [136] 91500 1065.4±0.3
1066.4±0.3
1066.01±0.61207Pb/206Pb 0.0005 0.0023 0.00739±45 0.00031±14 0.282308±6 5900 300 [20, 38, 51, 88, 119, 132, 137-138] FC-1
AS3
AS571099±0.6
1099.1±0.5
1098.6±0.3
1098.47±0.16
1098.70±0.16
1099.96±0.58207Pb/206Pb 0.0054 0.0201 0.0450±19 0.001262 0.282184±16 11031 1222 [97-99, 111, 119, 139-144] CN92-1UQ-Z1 1142.8±0.8 207Pb/206Pb - - 0.020±10 0.00080±12 0.282172±16 - - [20, 145] LH94-15 1830.3±1.9 207Pb/206Pb - - - - 0.281730±6 - - [146-147] QGNG 1851.6±0.6
1851.5±0.3207Pb/206Pb - - 0.0181±48 0.000731 0.281612±4 - - [51, 97-99, 119, 148] Phalaborwa 2052.2±0.8 207Pb/206Pb - - 0.014±11 0.0004±3 0.281234±11 - - [20, 149] KV01 EKC02-51 3227.2±0.2 207Pb/206Pb 0.0019 0.0066 0.0149±42 0.00068±17 0.280810±13 10410 675 [119, 150] OG1 3465.4±0.6
3466.09±0.33207Pb/206Pb 0.0037 0.0096 0.033±13 0.00119±26 0.280633±34 9346 641 [99, 151-153] 斜锆石 年龄(Ma) 年龄类型 160Gd/177Hf 161Dy/177Hf 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf Hf (μg/g) σ 参考文献 SK10-2 32.9±0.5S 206Pb/238U - - 0.0063±13
0.0206±950.00023±4 0.282739±13 - - [20, 64, 154] Kovdor 378.54±0.23
378.5±1.4206Pb/238U 0.0003 0.0005 0.000772 0.000025 0.282767±5 7806 319 [64, 155-157] OG-1 411.91±0.25 206Pb/238U - - 0.0036±13 0.000067±11 0.282694±7 - - [64] Karlshamn 954.2±1.1 207Pb/206Pb - - - 0.000113 0.282228±5 - - [1] FC-1
FC-4b1101.41±0.50
1099.6±1.5207Pb/206Pb - - 0.0073±23 0.000109±28 0.282167±5 - - [64, 144, 156] SA003 1256.2±1.4 207Pb/206Pb - - 0.049±17 0.00067±14 0.282167±5 - - [64] Sorkka 1256.2±1.4 207Pb/206Pb - - 0.056±36 0.00066 0.282149±10 - - [1, 64] Phalaborwa 2059.60±0.35 207Pb/206Pb 0.0002 0.0002 0.000078±33
0.000102±120.0000027±8
0.00000467±1
0.0000033±60.281229±11
0.281206±19
0.281187±1413224 450 [2, 20, 158] 钛锆钍矿 年龄(Ma) 年龄类型 160Gd/177Hf 161Dy/177Hf 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf Hf (μg/g) σ 参考文献 Phala-ZrkA 1937±32S 207Pb/206Pb 0.5824 0.3145 0.024362 0.000424±9 0.281296±5 4364 - [159] 异性石 年龄(Ma) 年龄类型 160Gd/177Hf 161Dy/177Hf 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf Hf (μg/g) σ 参考文献 LV01 376±6L 206Pb/238U - - 0.092430 0.00277 0.282761±18 2986 - [160] 金红石 年龄(Ma) 年龄类型 160Gd/177Hf 161Dy/177Hf 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf Hf (μg/g) σ 参考文献 SR-1 0 - - - - - 0.281879±8 42500 710 [161] SR-2 0 - - - - - 0.281888±7 3990 280 [161] SR-2B 0 - - - - - 0.281874±9 2790 81 [161] SR-3 0 - - - - - 0.281877±23 388 45 [161] SR-3A 0 - - - - - 0.281882±26 416 45 [161] R19 489.4±3.3 206Pb/238U - - - 0.002089 0.282163±17 8.645 - [162-163] JDX 509±8S 206Pb/238U - - 0.00020±15 0.000018±4 0.281795±15 50.1 0.7 [164-165] R10/R10b 1090±5
1089.23±0.96207Pb/206Pb - - 0.00038±48 0.000026±81 0.282178±12 38.8 1.5 [162, 165-166] Sugluk-4 1720.8±4.7 207Pb/206Pb - - 0.00008±39 0.000003±16 0.281172±107 51.3 9.3 [165-166] RMJG 1751.5±4.3 207Pb/206Pb - - 0.000017 0.000001 0.281652±6 103 17 [167] PCA-S207 1865.0±7.5 207Pb/206Pb - - 0.0006±17 0.000019±49 0.281246±146 37 13 [165-166] Diss - - - - - - 0.283258±17 5.081 0.049 [162] R1 - - - - - 0.000013 0.283097±8 49 9 [161] 铌铁矿族矿物 年龄(Ma) 年龄类型 160Gd/177Hf 161Dy/177Hf 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf Hf (μg/g) σ 参考文献 713-79 218±2L 206Pb/238U - - 0.000017 0.000001 0.282749±28 712 - [74, 168] NP-2 380.3±2.4 206Pb/238U - - 0.005372 0.000239 0.282169±32 211 - [74, 169] Coltan139 505.4±1.0 206Pb/238U - - 0.147949 0.003503 0.281991±3 454 - [74, 170] U-3 966±12L 206Pb/238U - - 0.000040 0.000002 0.281703±26 1430 - [74] U-1 971±12L 206Pb/238U - - 0.000725 0.000021 0.281845±38 469 - [74] 注:上标L代表LA-ICPMS,上标S代表SIMS,“-”代表暂无数据。 -
[1] Söderlund U, Patchett P J, Vervoort J D, et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 2004, 219(3-4): 311-324. doi: 10.1016/S0012-821X(04)00012-3
[2] Scherer E, Munker C, Mezger K. Calibration of the lutetium-hafnium clock[J]. Science, 2001, 293(5530): 683-687. doi: 10.1126/science.1061372
[3] Vockenhuber C, Oberli F, Bichler M, et al. New half-life measurement of 182Hf: Improved chronometer for the early Solar system[J]. Physical Review Letters, 2004, 93(17): 172501. doi: 10.1103/PhysRevLett.93.172501
[4] Patchett P J, Tatsumoto M. A routine high-precision method for Lu-Hf isotope geochemistry and chronology[J]. Contributions to Mineralogy and Petrology, 1980, 75(3): 263-267.
[5] Vervoort J D, Blichert-Toft J. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time[J]. Geochimica et Cosmochimica Acta, 1999, 63(3-4): 533-556. doi: 10.1016/S0016-7037(98)00274-9
[6] Blichert-Toft J, Chauvel C, Albarede F. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector multiple collector ICP-MS[J]. Contributions to Mineralogy and Petrology, 1997, 127(3): 248-260. doi: 10.1007/s004100050278
[7] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm Wu F Y, Li X H, Zheng Y F, et al. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 2007, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
[8] Cheng H, Liu X C, Vervoort J D, et al. Micro-sampling Lu-Hf geochronology reveals episodic garnet growth and multiple high-P metamorphic events[J]. Journal of Metamorphic Geology, 2016, 34(4): 363-377. doi: 10.1111/jmg.12185
[9] Cheng H, Zhou Y, Du K, et al. Microsampling Lu-Hf geochronology on mm-sized garnet in eclogites constrains early garnet growth and timing of tectonometamorphism in the North Qilian orogenic belt[J]. Journal of Metamorphic Geology, 2018, 36(8): 987-1008. doi: 10.1111/jmg.12424
[10] Barfod G H, Otero O, Albarède F. Phosphate Lu-Hf geochronology[J]. Chemical Geology, 2003, 200(3): 241-253.
[11] Herwartz D, Nagel T J, Muenker C, et al. Tracing two orogenic cycles in one eclogite sample by Lu-Hf garnet chronometry[J]. Nature Geoscience, 2011, 4(3): 178-183. doi: 10.1038/ngeo1060
[12] Blichert-Toft J, Arndt N T, Wilson A, et al. Hf and Nd isotope systematics of early Archean komatiites from surface sampling and ICDP drilling in the Barberton Greenstone Belt, South Africa[J]. American Mineralogist, 2015, 100(11-12): 2396-2411. doi: 10.2138/am-2015-5325
[13] Kinny P D, Compston W, Williams I S. A reconnaissance ion-probe study of hafnium isotopes in zircons[J]. Geochimica et Cosmochimica Acta, 1991, 55(3): 849-859. doi: 10.1016/0016-7037(91)90346-7
[14] Walder A J, Abell I D, Platzner I, et al. Lead isotope ratio measurement of NIST610 glass by laser ablation inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 1993, 48(3): 397-402. doi: 10.1016/0584-8547(93)80044-U
[15] Thirlwall M F, Walder A J. In situ hafnium isotope ratio analysis of zircon by inductively coupled plasma multiple collector mass spectrometry[J]. Chemical Geology, 1995, 122(1): 241-247.
[16] Halliday A N, Lee D C, Christensen J N, et al. Recent developments in inductively coupled plasma magnetic sector multiple collector mass spectrometry[J]. International Journal of Mass Spectrometry and Ion Processes, 1995, 146-147: 21-33. doi: 10.1016/0168-1176(95)04200-5
[17] Woodhead J, Hergt J, Shelley M, et al. Zircon Hf- isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation[J]. Chemical Geology, 2004, 209(1): 121-135.
[18] Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147. doi: 10.1016/S0016-7037(99)00343-9
[19] Iizuka T, Hirata T. Improvements of precision and accuracy in in situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique[J]. Chemical Geology, 2005, 220(1): 121-137.
[20] Wu F Y, Yang Y H, Xie L W, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chemical Geology, 2006, 234(1-2): 105-126. doi: 10.1016/j.chemgeo.2006.05.003
[21] Yang J H, Wu F Y, Wilde S A, et al. Tracing magma mixing in granite genesis: In situ U-Pb dating and Hf-isotope analysis of zircons[J]. Contributions to Mineralogy and Petrology, 2007, 153(2): 177-190.
[22] Zheng Y F, Wu Y B, Zhao Z F, et al. Metamorphic effect on zircon Lu-Hf and U-Pb isotope systems in ultrahigh-pressure eclogite-facies metagranite and metabasite[J]. Earth and Planetary Science Letters, 2005, 240(2): 378-400. doi: 10.1016/j.epsl.2005.09.025
[23] Wang H, Wu Y B, Gao S, et al. Continental growth through accreted oceanic arc: Zircon Hf-O isotope evidence for granitoids from the Qinling orogen[J]. Geochimica et Cosmochimica Acta, 2016, 182: 109-130. doi: 10.1016/j.gca.2016.03.016
[24] Wang H, Wu Y B, Gao S, et al. Eclogite origin and timings in the North Qinling terrane, and their bearing on the amalgamation of the South and North China Blocks[J]. Journal of Metamorphic Geology, 2011, 29(9): 1019-1031. doi: 10.1111/j.1525-1314.2011.00955.x
[25] Boudin A, Deutsch S. Geochronology: Recent development in the lutetium-176/hafnium-176 dating method[J]. Science, 1970, 168(3936): 1219-1220. doi: 10.1126/science.168.3936.1219
[26] Patchett P J. Importance of the Lu-Hf isotopic system in studies of planetary chronology and chemical evolution[J]. Geochimica et Cosmochimica Acta, 1983, 47(1): 81-91. doi: 10.1016/0016-7037(83)90092-3
[27] 杨岳衡, 张宏福, 谢烈文, 等. 地质样品中镥-铪同位素体系的化学分离与质谱测试新进展[J]. 岩矿测试, 2006, 25(2): 151-158. doi: 10.3969/j.issn.0254-5357.2006.02.013 Yang Y H, Zhang H F, Xie L W, et al. Progresses in chemical separation and mass spectrometric measure-ment for Lu-Hf isotopic system in natural geological samples[J]. Rock and Mineral Analysis, 2006, 25(2): 151-158. doi: 10.3969/j.issn.0254-5357.2006.02.013
[28] Blichert-Toft J. On the Lu-Hf isotope geochemistry of silicate rocks[J]. Geostandards Newsletter, 2001, 25(1): 41-56. doi: 10.1111/j.1751-908X.2001.tb00786.x
[29] Walder A J, Freedman P A. Communication. Isotopic ratio measurement using a double focusing magnetic sector mass analyser with an inductively coupled plasma as an ion source[J]. Journal of Analytical Atomic Spectrometry, 1992, 7(3): 571-575. doi: 10.1039/ja9920700571
[30] Walder A J, Platzner I, Freedman P A. Isotope ratio measurement of lead, neodymium and neodymium-samarium mixtures, hafnium and hafnium-lutetium mixtures with a double focusing multiple collector inductively coupled plasma mass spectrometer[J]. Journal of Analytical Atomic Spectrometry, 1993, 8(1): 19-23. doi: 10.1039/JA9930800019
[31] Zheng J P, Griffin W L, O'Reilly S Y, et al. 3.6Ga lower crust in central China: New evidence on the assembly of the North China craton[J]. Geology, 2004, 32(3): 229-232. doi: 10.1130/G20133.1
[32] Wang X, Griffin W L, Wang Z C, et al. Hf isotope composition of zircons and implication for the petrogenesis of Yajiangqiao granite, Hunan Province, China[J]. Chinese Science Bulletin, 2003, 48(10): 995-998. doi: 10.1007/BF03184214
[33] Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61(3-4): 237-269. doi: 10.1016/S0024-4937(02)00082-8
[34] Kemp A I S, Foster G L, Scherstén A, et al. Concurrent Pb-Hf isotope analysis of zircon by laser ablation multi-collector ICP-MS, with implications for the crustal evolution of Greenland and the Himalayas[J]. Chemical Geology, 2009, 261(3): 244-260.
[35] Hu Z C, Liu Y S, Gao S, et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2012, 27(9): 1391-1399. doi: 10.1039/c2ja30078h
[36] Kemp A I S, Wormald R J, Whitehouse M J, et al. Hf isotopes in zircon reveal contrasting sources and crystallization histories for alkaline to peralkaline granites of Temora, southeastern Australia[J]. Geology, 2005, 33(10): 797-800. doi: 10.1130/G21706.1
[37] Hawkesworth C J, Kemp A I S. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution[J]. Chemical Geology, 2006, 226(3): 144-162.
[38] Harrison T M, Blichert-Toft J, Muller W, et al. Heterogeneous Hadean hafnium: Evidence of continental crust at 4.4 to 4.5Ga[J]. Science, 2005, 310(5756): 1947-1950. doi: 10.1126/science.1117926
[39] Gerdes A, Zeh A. Combined U-Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in central Germany[J]. Earth and Planetary Science Letters, 2006, 249(1): 47-61.
[40] 李献华, 梁细荣, 韦刚健, 等. 锆石Hf同位素组成的LAM-MC-ICPMS精确测定[J]. 地球化学, 2003, 32(1): 86-90. doi: 10.3321/j.issn:0379-1726.2003.01.012 Li X H, Liang X R, Wei G J, et al. Precise analysis of zircon Hf isotopes by LAM-MC-ICPMS[J]. Geochimica, 2003, 32(1): 86-90. doi: 10.3321/j.issn:0379-1726.2003.01.012
[41] Xu P, Wu F Y, Xie L W, et al. Hf isotopic compositions of the standard zircons for U-Pb dating[J]. Chinese Science Bulletin, 2004, 49(15): 1642-1648. doi: 10.1007/BF03184136
[42] Yang J H, Wu F Y, Chung S L, et al. Petrogenesis of Early Cretaceous intrusions in the Sulu ultrahigh-pressure orogenic belt, East China and their relationship to lithospheric thinning[J]. Chemical Geology, 2005, 222(3-4): 200-231. doi: 10.1016/j.chemgeo.2005.07.006
[43] Hou K J, Li Y H, Zou T R, et al. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications[J]. Acta Petrologica Sinica, 2007, 23(10): 2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025
[44] Xie L W, Zhang Y B, Zhang H H, et al. In situ simultaneous determination of trace elements, U-Pb and Lu-Hf isotopes in zircon and baddeleyite[J]. Chinese Science Bulletin, 2008, 53(10): 1565-1573.
[45] Yuan H L, Gao S, Dai M N, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J]. Chemical Geology, 2008, 247(1-2): 100-118. doi: 10.1016/j.chemgeo.2007.10.003
[46] 耿建珍, 李怀坤, 张健, 等. 锆石Hf同位素组成的LA-MC-ICP-MS测定[J]. 地质通报, 2011, 30(10): 1508-1513. doi: 10.3969/j.issn.1671-2552.2011.10.004 Geng J Z, Li H K, Zhang J, et al. Zircon Hf isotope analysis by means of LA-MC-ICP-MS[J]. Geological Bulletin of China, 2011, 30(10): 1508-1513. doi: 10.3969/j.issn.1671-2552.2011.10.004
[47] Xia X P, Sun M, Geng H Y, et al. Quasi-simultaneous determination of U-Pb and Hf isotope compositions of zircon by excimer laser-ablation multiple-collector ICPMS[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(9): 1868-1871. doi: 10.1039/c1ja10116a
[48] Gu H, Sun H, Wang F, et al. A new practical isobaric interference correction model for the in situ Hf isotopic analysis using laser ablation-multi-collector-ICP-mass spectrometry of zircons with high Yb/Hf ratios[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(6): 1223-1232. doi: 10.1039/C9JA00024K
[49] Tollstrup D L, Xie L, Wimpenny J B, et al. A trio of laser ablation in concert with two ICP-MSs: Simultaneous, pulse-by-pulse determination of U-Pb discordant ages and a single spot Hf isotope ratio analysis in complex zircons from petrographic thin sections[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(3): Q3017, 10-1029.
[50] Kylander-Clark A R C, Hacker B R, Cottle J M. Laser-ablation split-stream ICP petrochronology[J]. Chemical Geology, 2013, 345: 99-112. doi: 10.1016/j.chemgeo.2013.02.019
[51] Fisher C M, Vervoort J D, Dufrane S A. Accurate Hf isotope determinations of complex zircons using the "laser ablation split stream" method[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(1): 121-139. doi: 10.1002/2013GC004962
[52] 李献华, 祁昌实, 刘颖, 等. 岩石样品快速Hf分离与MC-ICPMS同位素分析: 一个改进的单柱提取色谱方法[J]. 地球化学, 2005, 34(2): 109-114. doi: 10.3321/j.issn:0379-1726.2005.02.002 Li X H, Qi C S, Liu Y, et al. Rapid separation of Hf from rock samples for isotope analysis by MC-ICPMS: A modified single-column extraction chromatography method[J]. Geochimica, 2005, 34(2): 109-114. doi: 10.3321/j.issn:0379-1726.2005.02.002
[53] 杨岳衡, 张宏福, 刘颖, 等. 地质样品的一次阴离子色谱法Hf分离及其MC-ICP-MS分析[J]. 岩石学报, 2007, 23(2): 227-232. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702004.htm Yang Y H, Zhang H F, Liu Y, et al. One column procedure for Hf purification in geological samples using anion exchange chromatography and its isotopic analyses by MC-ICP-MS[J]. Acta Petrologica Sinica, 23(2): 227-232. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702004.htm
[54] 李津, 唐索寒, 马健雄, 等. 金属同位素质谱中分析样品处理的基本原则与方法[J]. 岩矿测试, 2021, 40(5): 627-636. doi: 10.15898/j.cnki.11-2131/td.202012150166 Li J, Tang S H, Ma J X, et al. Principles and treatment methods for metal isotopes analysis[J]. Rock and Mineral Analysis, 2021, 40(5): 627-636. doi: 10.15898/j.cnki.11-2131/td.202012150166
[55] Zhang W, Hu Z. A critical review of isotopic fractionation and interference correction methods for isotope ratio measurements by laser ablation multi-collector inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2020, 171: 105929. doi: 10.1016/j.sab.2020.105929
[56] Russell W A, Papanastassiou D A, Tombrello T A. Ca isotope fractionation on the Earth and other Solar system materials[J]. Geochimica et Cosmochimica Acta, 1978, 42(8): 1075-1090. doi: 10.1016/0016-7037(78)90105-9
[57] Rudnick R L, Gao S. Composition of the continental crust[M]//Holland H D, Turekian K K. Treatise on geochemistry. Oxford: Pergamon, 2003: 1-64.
[58] Fisher C M, Hanchar J M, Samson S D, et al. Synthetic zircon doped with hafnium and rare earth elements: A reference material for in situ hafnium isotope analysis[J]. Chemical Geology, 2011, 286(1): 32-47.
[59] Debievre P, Taylor P D P. Table of the isotopic com-positions of the elements[J]. International Journal of Mass Spectrometry and Ion Processes, 1993, 123(2): 149-166. doi: 10.1016/0168-1176(93)87009-H
[60] Machado N, Simonetti A. U-Pb dating and Hf isotopic composition of zircon by laser-ablation-MC-ICP-MS[M]//Laser ablation-ICPMS in the Earth sciences: Principles and applications, 2001: 121-146.
[61] Chu N C, Taylor R N, Chavagnac V, et al. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference corrections[J]. Journal of Analytical Atomic Spectrometry, 2002, 17(12): 1567-1574. doi: 10.1039/b206707b
[62] Elburg M A, Andersen T, Bons P D, et al. New constraints on Phanerozoic magmatic and hydrothermal events in the Mt Painter Province, South Australia[J]. Gondwana Research, 2013, 24(2): 700-712. doi: 10.1016/j.gr.2012.12.017
[63] Thirlwall M F, Anczkiewicz R. Multidynamic isotope ratio analysis using MC-ICP-MS and the causes of secular drift in Hf, Nd and Pb isotope ratios[J]. International Journal of Mass Spectrometry, 2004, 235(1): 59-81. doi: 10.1016/j.ijms.2004.04.002
[64] Ibanez-Mejia M, Gehrels G E, Ruiz J, et al. Small-volume baddeleyite (ZrO2) U-Pb geochronology and Lu-Hf isotope geochemistry by LA-ICP-MS: Techniques and applications[J]. Chemical Geology, 2014, 384: 149-167. doi: 10.1016/j.chemgeo.2014.07.011
[65] Vervoort J D, Patchett P J, Soderlund U, et al. Isotopic composition of Yb and the determination of Lu concentrations and Lu/Hf ratios by isotope dilution using MC-ICPMS[J]. Geochemistry, Geophysics, Geosystems, 2004, 5: Q11002, 10-1029.
[66] Segal I, Halicz L, Platzner I T. Accurate isotope ratio measurements of ytterbium by multiple collection inductively coupled plasma mass spectrometry applying erbium and hafnium in an improved double external normalization procedure[J]. Journal of Analytical Atomic Spectrometry, 2003, 18(10): 1217-1223. doi: 10.1039/b307016f
[67] Mcculloch M T, Rosman K J R, de Laeter J R. The isotopic and elemental abundance of ytterbium in meteorites and terrestrial samples[J]. Geochimica et Cosmochimica Acta, 1977, 41(12): 1703-1707. doi: 10.1016/0016-7037(77)90202-2
[68] Lapen T J, Mahlen N J, Johnson C M, et al. High precision Lu and Hf isotope analyses of both spiked and unspiked samples: A new approach[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(1): Q1010.
[69] Amelin Y, Davis W J. Geochemical test for branching decay of 176Lu[J]. Geochimica et Cosmochimica Acta, 2005, 69(2): 465-473. doi: 10.1016/j.gca.2004.04.028
[70] Wang J, Ren T, Lu H, et al. The absolute isotopic composition and atomic weight of ytterbium using multi-collector inductively coupled plasma mass spectrometry and development of an SI-traceable ytterbium isotopic certified reference material[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(6): 1377-1385. doi: 10.1039/C5JA00054H
[71] Fisher C M, Vervoort J D, Hanchar J M. Guidelines for reporting zircon Hf isotopic data by LA-MC-ICPMS and potential pitfalls in the interpretation of these data[J]. Chemical Geology, 2014, 363: 125-133. doi: 10.1016/j.chemgeo.2013.10.019
[72] Payne J L, Pearson N J, Grant K J, et al. Reassessment of relative oxide formation rates and molecular interfer-ences on in situ lutetium-hafnium analysis with laser ablation MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(7): 1068-1079. doi: 10.1039/c3ja50090j
[73] Bauer A M, Horstwood M S A. Small-volume Lu-Hf and U-Pb isotope determination of complex zircons by solution and laser ablation MC-ICP-MS[J]. Chemical Geology, 2018, 476: 85-99. doi: 10.1016/j.chemgeo.2017.11.007
[74] Tang Z, Che X, Yang Y, et al. Precise and accurate Lu-Hf isotope analysis of columbite-group minerals by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(8): 1643-1656. doi: 10.1039/D1JA00125F
[75] 杨明, 王浩, 吴石头, 等. 钨矿床地球化学研究进展: 以黑钨矿U-Pb、Sm-Nd、Lu-Hf同位素年代学与微量元素为例[J]. 高校地质学报, 2021, 27(3): 249-263. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202103003.htm Yang M, Wang H, Wu S T, et al. Research progress of geochemistry in tungsten deposit: Based on the wolframite U-Pb, Sm-Nd, Lu-Hf isotope geochronlogy and trace element characterics[J]. Geological Journal of China Universities, 2021, 27(3): 249-263. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202103003.htm
[76] Wu Y B, Zheng Y F. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin, 2004, 49(15): 1554-1569. doi: 10.1007/BF03184122
[77] Wang H, Wu Y B, Yang J H, et al. Crustal basement controls granitoid magmatism, and implications for generation of continental crust in subduction zones: A Sr-Nd-Hf-O isotopic study from the Paleozoic Tongbai orogen, central China[J]. Lithos, 2017, 282-283: 298-315. doi: 10.1016/j.lithos.2017.03.014
[78] 叶亚康, 周家云, 周雄. 川西塔公松林口岩体LA-ICP-MS锆石U-Pb年龄与地球化学特征[J]. 岩矿测试, 2020, 39(6): 921-933. doi: 10.15898/j.cnki.11-2131/td.202005060008 Ye Y K, Zhou J Y, Zhou X. Zircon LA-ICP-MS U-Pb age and geochemical features of the Songlinkou pluton, western Sichuan[J]. Rock and Mineral Analysis, 2020, 39(6): 921-933. doi: 10.15898/j.cnki.11-2131/td.202005060008
[79] Wang H, Yang J H, Kröner A, et al. Non-subduction origin for 3.2Ga high-pressure metamorphic rocks in the Barberton granitoid-greenstone terrane, South Africa[J]. Terra Nova, 2019, 31(4): 373-380.
[80] Wang H, Yang J H, Kröner A, et al. Extensive magmatism and metamorphism at ca. 3.2Ga in the eastern Kaapvaal Craton[J]. Precambrian Research, 2020, 351: 105952. doi: 10.1016/j.precamres.2020.105952
[81] Liu X C, Wu Y B, Fisher C M, et al. Tracing crustal evolution by U-Th-Pb, Sm-Nd, and Lu-Hf isotopes in detrital monazite and zircon from modern rivers[J]. Geology, 2017, 45(2): 103-106. doi: 10.1130/G38720.1
[82] Wang H, Yang J H, Zhu Y S, et al. Archean crustal growth and reworking revealed by combined U-Pb-Hf-O isotope and trace element data of detrital zircons from ancient and modern river sediments of the eastern Kaapvaal Craton[J]. Geochimica et Cosmochimica Acta, 2022, 320: 79-104. doi: 10.1016/j.gca.2021.12.025
[83] Stevenson R K, Patchett P J. Implications for the evo-lution of continental crust from Hf isotope systematics of Archean detrital zircons[J]. Geochimica et Cosmochimica Acta, 1990, 54(6): 1683-1697. doi: 10.1016/0016-7037(90)90400-F
[84] Weis D, Kieffer B, Hanano D, et al. Hf isotope compositions of U.S. Geological Survey reference materials[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(6): Q6006.
[85] 陈开运, 袁洪林, 包志安, 等. 人工合成锆石Lu-Hf同位素标样方法研究[J]. 岩石矿物学杂志, 2012, 31(2): 279-288. doi: 10.3969/j.issn.1000-6524.2012.02.016 Chen K Y, Yuan H L, Bao Z A, et al. A preliminary study of the method for synthetic zircon Lu-Hf isotopic standard[J]. Acta Petrologica et Mineralogica, 2012, 31(2): 279-288. doi: 10.3969/j.issn.1000-6524.2012.02.016
[86] Yu Y, Xu X, Chen X. Genesis of zircon megacrysts in Cenozoic alkali basalts and the heterogeneity of subcontinental lithospheric mantle, eastern China[J]. Mineralogy and Petrology, 2010, 100(1): 75-94. doi: 10.3969/j.issn.1001-6872.2010.01.013
[87] Yang Y, Wu F, Wilde S A, et al. A straightforward protocol for Hf purification by single step anion-exchange chromatography and isotopic analysis by MC-ICP-MS applied to geological reference materials and zircon standards[J]. International Journal of Mass Spectrometry, 2011, 299(1): 47-52. doi: 10.1016/j.ijms.2010.09.016
[88] Wiedenbeck M, Alle P, Corfu F, et al. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards Newsletter, 1995, 19(1): 1-23. doi: 10.1111/j.1751-908X.1995.tb00147.x
[89] Li X H, Long W G, Li Q L, et al. Penglai zircon megacrysts: A potential new working reference material for microbeam determination of Hf-O isotopes and U-Pb age[J]. Geostandards and Geoanalytical Research, 2010, 34(2): 117-134. doi: 10.1111/j.1751-908X.2010.00036.x
[90] Yu S, Sun J, Evans N J, et al. Further evaluation of Penglai zircon megacrysts as a reference material for (U-Th)/He dating[J]. Geostandards and Geoanalytical Research, 2020, 44(4): 763-783. doi: 10.1111/ggr.12331
[91] Schmitz M D, Bowring S A. U-Pb zircon and titanite systematics of the Fish Canyon Tuff: An assessment of high-precision U-Pb geochronology and its appli-cation to young volcanic rocks[J]. Geochimica et Cosmochimica Acta, 2001, 65(15): 2571-2587. doi: 10.1016/S0016-7037(01)00616-0
[92] Wotzlaw J, Schaltegger U, Frick D A, et al. Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption[J]. Geology, 2013, 41(8): 867-870. doi: 10.1130/G34366.1
[93] Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3): 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x
[94] Liu X M, Gao S, Diwu C R, et al. Simultaneous in-situ determination of U-Pb age and trace elements in zircon by LA-ICP-MS in 20μm spot size[J]. Chinese Science Bulletin, 2007, 52(9): 1257-1264. doi: 10.1007/s11434-007-0160-x
[95] Eddy M P, Ibañez-Mejia M, Burgess S D, et al. GHR1 zircon—A new Eocene natural reference material for microbeam U-Pb geochronology and Hf isotopic analysis of zircon[J]. Geostandards and Geoanalytical Research, 2019, 43(1): 113-132. doi: 10.1111/ggr.12246
[96] Zartman R E, Richardson S H, Gurney J J, et al. U-Th-Pb age of megacrysts zircon from the Monastery kimberlite, free state, South Africa[C]// Proceedings of International Kimberlite Conference: Extended Abstracts, 1998, 7(1): 989-991.
[97] Woodhead J D, Hergt J M. A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination[J]. Geostandards and Geoanalytical Research, 2005, 29(2): 183-195. doi: 10.1111/j.1751-908X.2005.tb00891.x
[98] Ali S A, Ismail S A, Nutman A P, et al. The intra-oceanic Cretaceous (~108Ma) Kata-Rash arc fragment in the Kurdistan segment of Iraqi Zagros suture zone: Implications for Neotethys evolution and closure[J]. Lithos, 2016, 260: 154-163. doi: 10.1016/j.lithos.2016.05.027
[99] Ávila J N, Ireland T R, Holden P, et al. High-precision, high-accuracy oxygen isotope measurements of zircon reference materials with the SHRIMP-SI[J]. Geostandards and Geoanalytical Research, 2020, 44(1): 85-102. doi: 10.1111/ggr.12298
[100] Valley J W. Oxygen isotopes in zircon[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 343-385. doi: 10.2113/0530343
[101] Cavosie A J, Valley J W, Wilde S A, et al. Magmatic δ18O in 4400-3900Ma detrital zircons: A record of the alteration and recycling of crust in the Early Archean[J]. Earth and Planetary Science Letters, 2005, 235(3): 663-681.
[102] Fu B, Valley J W, Kita N T, et al. Multiple origins of zircons in jadeitite[J]. Contributions to Mineralogy and Petrology, 2010, 159(6): 769-780. doi: 10.1007/s00410-009-0453-y
[103] Luo T, Li Q, Ling X, et al. Jilin zircon—A new natural reference material for microbeam U-Pb geochronology and Hf-O isotopic analysis[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(10): 2216-2226. doi: 10.1039/D1JA00258A
[104] Li X H, Liu Y, Li Q L, et al. Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization[J]. Geochemistry, Geophysics, Geosystems, 2009, 10: Q4010, 10-1029.
[105] Li X H, Tang G Q, Gong B, et al. Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes[J]. Chinese Science Bulletin, 2013, 58(36): 4647-4654. doi: 10.1007/s11434-013-5932-x
[106] Heinonen A P, Andersen T, Rämö O T. Re-evaluation of rapakivi petrogenesis: Source constraints from the Hf isotope composition of zircon in the rapakivi granites and associated mafic rocks of southern Finland[J]. Journal of Petrology, 2010, 51(8): 1687-1709. doi: 10.1093/petrology/egq035
[107] Slama J, Kosler J, Condon D J, et al. Plesovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249(1-2): 1-35. doi: 10.1016/j.chemgeo.2007.11.005
[108] Black L P, Kamo S L, Allen C M, et al. TEMORA 1: A new zircon standard for Phanerozoic U-Pb geochronology[J]. Chemical Geology, 2003, 200(1-2): 155-170. doi: 10.1016/S0009-2541(03)00165-7
[109] Black L P, Kamo S L, Allen C M, et al. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards[J]. Chemical Geology, 2004, 205(1-2): 115-140. doi: 10.1016/j.chemgeo.2004.01.003
[110] Liu Y, Li Q, Tang G, et al. Concurrent determination of U-Pb age and REE mass fractions of zircon by high mass resolution SIMS[J]. Geostandards and Geoanalytical Research, 2020, 44(3): 421-437. doi: 10.1111/ggr.12344
[111] Mattinson J M. Analysis of the relative decay constants of 235U and 238U by multi-step CA-TIMS measurements of closed-system natural zircon samples[J]. Chemical Geology, 2010, 275(3-4): 186-198. doi: 10.1016/j.chemgeo.2010.05.007
[112] Buret Y, von Quadt A, Heinrich C, et al. From a long-lived upper-crustal magma chamber to rapid porphyry copper emplacement: Reading the geochemistry of zircon crystals at Bajo de la Alumbrera (NW Argentina)[J]. Earth and Planetary Science Letters, 2016, 450: 120-131. doi: 10.1016/j.epsl.2016.06.017
[113] Nasdala L, Corfu F, Valley J W, et al. Zircon M127—A homogeneous reference material for SIMS U-Pb geochronology combined with hafnium, oxygen and, potentially, lithium isotope analysis[J]. Geostandards and Geoanalytical Research, 2016, 40(4): 457-475. doi: 10.1111/ggr.12123
[114] Nasdala L, Corfu F, Schoene B, et al. GZ7 and GZ8—Two zircon reference materials for SIMS U-Pb geochronology[J]. Geostandards and Geoanalytical Research, 2018, 42(4): 431-457. doi: 10.1111/ggr.12239
[115] Huang C, Wang H, Yang J, et al. SA01—A proposed zircon reference material for microbeam U-Pb age and Hf-O isotopic determination[J]. Geostandards and Geoanalytical Research, 2020, 44(1): 103-123. doi: 10.1111/ggr.12307
[116] Huang C, Wang H, Yang J H, et al. Characterization of the potential reference material SA02 for micro-beam U-Pb geochronology and Hf-O isotopic composition analysis of zircon[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(2): 368-374. doi: 10.1039/D0JA00409J
[117] Santos M M, Lana C, Scholz R, et al. A new appraisal of Sri Lankan BB zircon as a reference material for LA-ICP-MS U-Pb geochronology and Lu-Hf isotope tracing[J]. Geostandards and Geoanalytical Research, 2017, 41(3): 335-358. doi: 10.1111/ggr.12167
[118] Stern R A, Amelin Y. Assessment of errors in SIMS zircon U-Pb geochronology using a natural zircon standard and NIST SRM610 glass[J]. Chemical Geology, 2003, 197(1): 111-142.
[119] Schoene B, Crowley J L, Condon D J, et al. Reassessing the uranium decay constants for geochronology using ID-TIMS U-Pb data[J]. Geochimica et Cosmochimica Acta, 2006, 70(2): 426-445. doi: 10.1016/j.gca.2005.09.007
[120] Zi J, Cawood P A, Fan W, et al. Generation of Early Indosinian enriched mantle-derived granitoid pluton in the Sanjiang Orogen (SW China) in response to closure of the Paleo-Tethys[J]. Lithos, 2012, 140: 166-182.
[121] Coble M A, Vazquez J A, Barth A P, et al. Trace element characterisation of MAD-559 zircon reference material for ion microprobe analysis[J]. Geostandards and Geoanalytical Research, 2018, 42(4): 481-497. doi: 10.1111/ggr.12238
[122] Nasdala L, Hofmeister W, Norberg N, et al. Zircon M257— A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon[J]. Geostandards and Geoanalytical Research, 2008, 32(3): 247-265. doi: 10.1111/j.1751-908X.2008.00914.x
[123] Lana C, Farina F, Gerdes A, et al. Characterization of zircon reference materials via high precision U-Pb LA-MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(10): 2011-2023. doi: 10.1039/C7JA00167C
[124] Huang C, Wang H, Yang J, et al. Further characterization of the BB Zircon via SIMS and MC-ICP-MS for Li, O, and Hf isotopic compositions[J]. Minerals, 2019, 9(12): 774, 10-3390. doi: 10.3390/min9120774
[125] Nasdala L, Reiners P W, Garver J I, et al. Incomplete retention of radiation damage in zircon from Sri Lanka[J]. American Mineralogist, 2004, 89(1): 219-231. doi: 10.2138/am-2004-0126
[126] Cavosie A J, Valley J W, Kita N T, et al. The origin of high δ18O zircons: Marbles, megacrysts, and metamorphism[J]. Contributions to Mineralogy and Petrology, 2011, 162(5): 961-974. doi: 10.1007/s00410-011-0634-3
[127] Chang Z, Vervoort J D, Mcclelland W C, et al. U-Pb dating of zircon by LA-ICP-MS[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(5): Q5009.
[128] Bahlburg H, Vervoort J D, Du Frane S A, et al. Timing of crust formation and recycling in accretionary orogens: Insights learned from the western margin of South America[J]. Earth-Science Reviews, 2009, 97(1): 215-241.
[129] Hu Z C, Li X H, Luo T, et al. Tanz zircon megacrysts: A new zircon reference material for the microbeam determination of U-Pb ages and Zr-O isotopes[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(12): 2715-2734. doi: 10.1039/D1JA00311A
[130] Cheong A C, Jeong Y, Lee S, et al. LKZ-1: A new zircon working standard for the in situ determination of U-Pb age, O-Hf isotopes, and trace element composition[J]. Minerals, 2019, 9(325): 10-3390.
[131] Morel M L A, Nebel O, Nebel-Jacobsen Y J, et al. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS[J]. Chemical Geology, 2008, 255(1-2): 231-235. doi: 10.1016/j.chemgeo.2008.06.040
[132] Horstwood M S A, Košler J, Gehrels G, et al. Community -derived standards for LA-ICP-MS U-(Th-)Pb geochronology—Uncertainty propagation, age interpretation and data reporting[J]. Geostandards and Geoanalytical Research, 2016, 40(3): 311-332. doi: 10.1111/j.1751-908X.2016.00379.x
[133] Piazolo S, Belousova E, la Fontaine A, et al. Trace element homogeneity from micron- to atomic scale: Implication for the suitability of the zircon GJ-1 as a trace element reference material[J]. Chemical Geology, 2017, 456: 10-18. doi: 10.1016/j.chemgeo.2017.03.001
[134] Xia X, Cui Z, Li W, et al. Zircon water content: Reference material development and simultaneous measurement of oxygen isotopes by SIMS[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(6): 1088-1097. doi: 10.1039/C9JA00073A
[135] Gain S E M, Gréau Y, Henry H, et al. Mud Tank zircon: Long-term evaluation of a reference material for U-Pb dating, Hf-isotope analysis and trace element analysis[J]. Geostandards and Geoanalytical Research, 2019, 43(3): 339-354. doi: 10.1111/ggr.12265
[136] 周红英, 李怀坤, 耿建珍, 等. 一件可能的Hf同位素测定标准锆石[J]. 地质学报, 2013, 87(4): 554-564. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201304010.htm Zhou H Y, Li H K, Geng J Z, et al. A potential standard zircon for Hf isotopic analysis[J]. Acta Geological Sinica, 2013, 87(4): 554-564. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201304010.htm
[137] Wiedenbeck M, Hanchar J M, Peck W H, et al. Further characterisation of the 91500 zircon crystal[J]. Geostandards and Geoanalytical Research, 2004, 28(1): 9-39. doi: 10.1111/j.1751-908X.2004.tb01041.x
[138] Blichert-Toft J. The Hf isotopic composition of zircon reference material 91500[J]. Chemical Geology, 2008, 253(3): 252-257.
[139] Paces J B, Miller J D. Precise U-Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1Ga Midcontinent rift system[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B8): 13997-14013. doi: 10.1029/93JB01159
[140] Schmitz M D, Bowring S A, Ireland T R. Evaluation of Duluth Complex anorthositic series (AS3) zircon as a U-Pb geochronological standard: New high-precision isotope dilution thermal ionization mass spectrometry results[J]. Geochimica et Cosmochimica Acta, 2003, 67(19): 3665-3672. doi: 10.1016/S0016-7037(03)00200-X
[141] Booth A L, Kolodny Y, Chamberlain C P, et al. Oxygen isotopic composition and U-Pb discordance in zircon[J]. Geochimica et Cosmochimica Acta, 2005, 69(20): 4895-4905. doi: 10.1016/j.gca.2005.05.013
[142] Trail D, Mojzsis S J, Harrison T M, et al. Constraints on Hadean zircon protoliths from oxygen isotopes, Ti-thermometry, and rare earth elements[J]. Geochemistry, Geophysics, Geosystems, 2007, 8: Q6014.
[143] Takehara M, Horie K, Hokada T, et al. New insight into disturbance of U-Pb and trace-element systems in hydrothermally altered zircon via SHRIMP analyses of zircon from the Duluth Gabbro[J]. Chemical Geology, 2018, 484: 168-178. doi: 10.1016/j.chemgeo.2018.01.028
[144] Ibañez-Mejia M, Tissot F L H. Extreme Zr stable isotope fractionation during magmatic fractional crystallization[J]. Science Advances, 2019, 5(12): x8648. doi: 10.1126/sciadv.aax8648
[145] Machado N, Gauthier G. Determination of 207Pb/206Pb ages on zircon and monazite by laser-ablation ICPMS and application to a study of sedimentary provenance and metamorphism in southeastern Brazil[J]. Geochimica et Cosmochimica Acta, 1996, 60(24): 5063-5073. doi: 10.1016/S0016-7037(96)00287-6
[146] Ashton K E, Heaman L M, Lewry J F, et al. Age and origin of the Jan Lake Complex: A glimpse at the buried Archean craton of the Trans-Hudson Orogen[J]. Canadian Journal of Earth Sciences, 1999, 36(2): 185-208. doi: 10.1139/e98-038
[147] Silva A J C A, Simões L S A, Dufrane S A, et al. U-Pb ages of detrital zircon grains for the Canastra Group and Passos Nappe units and U-Pb and Lu-Hf isotope analyses from orthogneisses: Provenance and tectonic implications, southern Brasília Belt, Brazil[J]. Precambrian Research, 2020, 346: 105771. doi: 10.1016/j.precamres.2020.105771
[148] Black L P, Kamo S L, Williams I S, et al. The application of SHRIMP to Phanerozoic geochronology; a critical appraisal of four zircon standards[J]. Chemical Geology, 2003, 200(1-2): 171-188. doi: 10.1016/S0009-2541(03)00166-9
[149] Kröner A, Willner A P. Time of formation and peak of Variscan HP-HT metamorphism of quartz-feldspar rocks in the central Erzgebirge, Saxony, Germany[J]. Contributions to Mineralogy and Petrology, 1998, 132(1): 1-20. doi: 10.1007/s004100050401
[150] Wei Q D, Wang H, Yang Y H, et al. KV01 zircon— A potential new Archean reference material for microbeam U-Pb age and Hf-O isotope determinations[J]. Science China Earth Sciences, 2020, 63(11): 1780-1790. doi: 10.1007/s11430-019-9638-y
[151] Stern R A, Bodorkos S, Kamo S L, et al. Measurement of SIMS instrumental mass fractionation of Pb isotopes during zircon dating[J]. Geostandards and Geoanalytical Research, 2009, 33(2): 145-168. doi: 10.1111/j.1751-908X.2009.00023.x
[152] Kemp A I S, Vervoort J D, Bjorkman K E, et al. Hafnium isotope characteristics of Palaeoarchaean zircon OG1/OGC from the Owens Gully diorite, Pilbara Craton, western Australia[J]. Geostandards and Geoanalytical Research, 2017, 41(4): 659-673. doi: 10.1111/ggr.12182
[153] Laurent O, Björnsen J, Wotzlaw J, et al. Earth's earliest granitoids are crystal-rich magma reservoirs tapped by silicic eruptions[J]. Nature Geoscience, 2020, 13(2): 163-169. doi: 10.1038/s41561-019-0520-6
[154] Li Q L, Li X H, Liu Y, et al. Precise U-Pb and Pb-Pb dating of Phanerozoic baddeleyite by SIMS with oxygen flooding technique[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(7): 1107-1113. doi: 10.1039/b923444f
[155] Amelin Y, Zaitsev A N. Precise geochronology of pho-scorites and carbonatites: The critical role of U-series disequilibrium in age interpretations[J]. Geochimica et Cosmochimica Acta, 2002, 66(13): 2399-2419. doi: 10.1016/S0016-7037(02)00831-1
[156] Schmitt A K, Chamberlain K R, Swapp S M, et al. In situ U-Pb dating of micro-baddeleyite by secondary ion mass spectrometry[J]. Chemical Geology, 2010, 269(3): 386-395.
[157] Rodionov N V, Belyatsky B V, Antonov A V, et al. Comparative in-situ U-Th-Pb geochronology and trace element composition of baddeleyite and low-U zircon from carbonatites of the Palaeozoic Kovdor alkaline-ultramafic complex, Kola Peninsula, Russia[J]. Gondwana Research, 2012, 21(4): 728-744. doi: 10.1016/j.gr.2011.10.005
[158] Heaman L M. The application of U-Pb geochronology to mafic, ultramafic and alkaline rocks: An evaluation of three mineral standards[J]. Chemical Geology, 2009, 261(1-2): 42-51.
[159] Wu F, Yang Y, Mitchell R H, et al. In situ U-Pb and Nd-Hf-(Sr) isotopic investigations of zirconolite and calzirtite[J]. Chemical Geology, 2010, 277(1): 178-195.
[160] Wu F, Yang Y, Marks M A W, et al. In situ U-Pb, Sr, Nd and Hf isotopic analysis of eudialyte by LA-(MC)-ICP-MS[J]. Chemical Geology, 2010, 273(1): 8-34.
[161] Ewing T A, Rubatto D, Eggins S M, et al. In situ measurement of hafnium isotopes in rutile by LA-MC-ICPMS: Protocol and applications[J]. Chemical Geology, 2011, 281(1): 72-82.
[162] Luvizotto G L, Zack T, Meyer H P, et al. Rutile crystals as potential trace element and isotope mineral standards for microanalysis[J]. Chemical Geology, 2009, 261(3): 346-369.
[163] Zack T, Stockli D F, Luvizotto G L, et al. In situ U-Pb rutile dating by LA-ICP-MS: 208Pb correction and prospects for geological applications[J]. Contributions to Mineralogy and Petrology, 2011, 162(3): 515-530. doi: 10.1007/s00410-011-0609-4
[164] Li Q, Lin W, Su W, et al. SIMS U-Pb rutile age of low-temperature eclogites from southwestern Chinese Tianshan, NW China[J]. Lithos, 2011, 122(1): 76-86.
[165] Li Y, Yang Y, Jiao S, et al. In situ determination of hafnium isotopes from rutile using LA-MC-ICP-MS[J]. Science China: Earth Sciences, 2015, 58(12): 2134-2144. doi: 10.1007/s11430-015-5215-2
[166] Bracciali L, Parrish R R, Horstwood M S A, et al. U-Pb LA-(MC)-ICP-MS dating of rutile: New reference materials and applications to sedimentary provenance[J]. Chemical Geology, 2013, 347: 82-101. doi: 10.1016/j.chemgeo.2013.03.013
[167] Zhang L, Wu J, Tu J, et al. RMJG Rutile: A new natural reference material for microbeam U-Pb dating and Hf isotopic analysis[J]. Geostandards and Geoanalytical Research, 2020, 44(1): 133-145. doi: 10.1111/ggr.12304
[168] Che X, Wu F, Wang R, et al. In situ U-Pb isotopic dating of columbite-tantalite by LA-ICP-MS[J]. Ore Geology Reviews, 2015, 65: 979-989. doi: 10.1016/j.oregeorev.2014.07.008
[169] Legros H, Mercadier J, Villeneuve J, et al. U-Pb isotopic dating of columbite-tantalite minerals: Development of reference materials and in situ applications by ion microprobe[J]. Chemical Geology, 2019, 512: 69-84. doi: 10.1016/j.chemgeo.2019.03.001
[170] Melcher F, Graupner T, Gäbler H, et al. Tantalum-(niobium-tin) mineralisation in African pegmatites and rare metal granites: Constraints from Ta-Nb oxide mineralogy, geochemistry and U-Pb geochronology[J]. Ore Geology Reviews, 2015, 64: 667-719. doi: 10.1016/j.oregeorev.2013.09.003
[171] Kamenov G D, Mueller P A, Mazdab F K. Using synthetic zircons to test the reliability of the Lu-Yb isobaric interference correction of Hf isotopic measurements during laser ablation MC-ICP-MS analyses[C]. 2008.
[172] Taylor D J, Mckeegan K D, Harrison T M, et al. LA-MC-ICPMS Lu-Hf isotopes in lunar zircons: Reliability of peak stripping protocol[C]. 2008.
[173] Zhou G, Wu Y, Fu B, et al. Genesis of baddeleyite and high δ 18O zircon in impure marble from the Tongbai orogen, central China: Insights from petrochronology and Hf-O isotope compositions[J]. Contributions to Mineralogy and Petrology, 2020, 175(8): 75. doi: 10.1007/s00410-020-01714-z
[174] Zhu Y S, Yang J H, Wang H, et al. Mesoproterozoic (~1.32Ga) modification of lithospheric mantle beneath the North China craton caused by break-up of the Columbia supercontinent[J]. Precambrian Research, 2020, 342: 105674. doi: 10.1016/j.precamres.2020.105674
[175] Williams C T, Gieré R. Zirconolite: A review of localities worldwide, and a compilation of its chemical compositions[J]. Bulletin of the Natural History Museum London, 1996, 52(1): 1.
[176] Schilling J, Wu F Y, Mccammon C, et al. The composi-tional variability of eudialyte-group minerals[J]. Mineralogical Magazine, 2011, 75(1): 87-115. doi: 10.1180/minmag.2011.075.1.87
[177] Busche F D, Prinz M, Keil K, et al. Lunar zirkelite: A uranium-bearing phase[J]. Earth and Planetary Science Letters, 1972, 14(3): 313-321. doi: 10.1016/0012-821X(72)90130-6
[178] Rasmussen B, Fletcher I R. Zirconolite: A new U-Pb chronometer for mafic igneous rocks[J]. Geology, 2004, 32(9): 785-788. doi: 10.1130/G20658.1
[179] Kogarko L N, Lahaye Y, Brey G P. Plume-related mantle source of super-large rare metal deposits from the Lovozero and Khibina massifs on the Kola Peninsula, eastern part of Baltic Shield: Sr, Nd and Hf isotope systematics[J]. Mineralogy and Petrology, 2010, 98(1): 197-208.
[180] Huang C, Yang Y, Yang J, et al. In situ simultaneous measurement of Rb-Sr/Sm-Nd or Sm-Nd/Lu-Hf isotopes in natural minerals using laser ablation multi-collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(4): 994-1000. doi: 10.1039/C4JA00449C
[181] Axelsson E, Pape J, Berndt J, et al. Rutile R632—A new natural reference material for U-Pb and Zr determination[J]. Geostandards and Geoanalytical Research, 2018, 42(3): 319-338. doi: 10.1111/ggr.12213
[182] Choukroun M, O'Reilly S Y, Griffin W L, et al. Hf iso-topes of MARID (mica-amphibole-rutile-ilmenite-diopside) rutile trace metasomatic processes in the lithospheric mantle[J]. Geology, 2005, 33(1): 45-48. doi: 10.1130/G21084.1
[183] Aulbach S O, Reilly S Y, Griffin W L, et al. Subcon-tinental lithospheric mantle origin of high niobium/tantalum ratios in eclogites[J]. Nature Geoscience, 2008, 1(7): 468-472. doi: 10.1038/ngeo226
[184] Yuan S, Peng J, Hao S, et al. In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin-polymetallic mineralization[J]. Ore Geology Reviews, 2011, 43(1): 235-242. doi: 10.1016/j.oregeorev.2011.08.002
[185] Kendall-Langley L A, Kemp A I S, Grigson J L, et al. U-Pb and reconnaissance Lu-Hf isotope analysis of cassiterite and columbite group minerals from Archean Li-Cs-Ta type pegmatites of western Australia[J]. Lithos, 2020, 352-353: 105231. doi: 10.1016/j.lithos.2019.105231
[186] Linnen R L, van Lichtervelde M, Cerny P. Granitic pegmatites as sources of strategic metals[J]. Elements, 2012, 8(4): 275-280. doi: 10.2113/gselements.8.4.275
[187] Smith S R, Foster G L, Romer R L, et al. U-Pb columbite-tantalite chronology of rare-element pegmatites using TIMS and laser ablation-multi collector-ICP-MS[J]. Contributions to Mineralogy and Petrology, 2004, 147(5): 549-564. doi: 10.1007/s00410-003-0538-y
[188] 贾玉衡, 钱建平. 电子探针-电感耦合等离子体质谱法研究不同种类石榴石的稀土元素配分和矿物学特征[J]. 岩矿测试, 2020, 39(6): 886-895. doi: 10.15898/j.cnki.11-2131/td.202005060007 Jia Y H, Qian J P. Study on REE distribution and mineralogical characteristics of different garnets by electron probe and inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(6): 886-895. doi: 10.15898/j.cnki.11-2131/td.202005060007
[189] Mulcahy S R, King R L, Vervoort J D. Lawsonite Lu-Hf geochronology: A new geochronometer for subduction zone processes[J]. Geology, 2009, 37(11): 987-990. doi: 10.1130/G30292A.1
[190] Scherer E E, Cameron K L, Blichert-Toft J. Lu-Hf garnet geochronology: Closure temperature relative to the Sm-Nd system and the effects of trace mineral inclusions[J]. Geochimica et Cosmochimica Acta, 2000, 64(19): 3413-3432. doi: 10.1016/S0016-7037(00)00440-3
[191] Schmidt A, Pourteau A, Candan O, et al. Lu-Hf geochro-nology on cm-sized garnets using microsampling: New constraints on garnet growth rates and duration of metamorphism during continental collision (Menderes Massif, Turkey)[J]. Earth and Planetary Science Letters, 2015, 432: 24-35. doi: 10.1016/j.epsl.2015.09.015
[192] Nesheim T O, Vervoort J D, Mcclelland W C, et al. Mesoproterozoic syntectonic garnet within belt super-group metamorphic tectonites: Evidence of Grenville-age metamorphism and deformation along northwest Laurentia[J]. Lithos, 2012, 134-135: 91-107. doi: 10.1016/j.lithos.2011.12.008
[193] Ma Q, Yang M, Zhao H, et al. Accurate and precise determination of Lu and Hf contents and Hf isotopic composition at the sub-nanogram level in geological samples using MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(6): 1256-1262. doi: 10.1039/C9JA00034H
[194] Woods G. Resolution of 176Yb and 176Lu interferences on 176Hf to enable accurate 176Hf/177Hf isotope ratio analysis using an Agilent 8800 ICP-QQQ with MS/MS[R]. Agilent Application Note, 2016.
[195] Zack T, Hogmalm K J. Laser ablation Rb/Sr dating by online chemical separation of Rb and Sr in an oxygen-filled reaction cell[J]. Chemical Geology, 2016, 437: 120-133. doi: 10.1016/j.chemgeo.2016.05.027
[196] Hogmalm K J, Zack T, Karlsson A K O, et al. In situ Rb-Sr and K-Ca dating by LA-ICP-MS/MS: An evaluation of N2O and SF6 as reaction gases[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(2): 305-313. doi: 10.1039/C6JA00362A
[197] Hogmalm K J, Dahlgren I, Fridolfsson I, et al. First in situ Re-Os dating of molybdenite by LA-ICP-MS/MS[J]. Mineralium Deposita, 2019, 54(6): 821-828. doi: 10.1007/s00126-019-00889-1
[198] Tamblyn R, Hand M, Simpson A, et al. In situ laser ablation Lu-Hf geochronology of garnet across the western Gneiss Region: Campaign-style dating of metamorphism[J]. Journal of the Geological Society, 2022(4): 179.
[199] Simpson A, Gilbert S, Tamblyn R, et al. In-situ Lu-Hf geochronology of garnet, apatite and xenotime by LA ICP MS/MS[J]. Chemical Geology, 2021, 577: 120299. doi: 10.1016/j.chemgeo.2021.120299
[200] Craig G, Managh A J, Stremtan C, et al. Doubling sensitivity in multicollector ICPMS using high-efficiency, rapid response laser ablation technology[J]. Analytical Chemistry, 2018, 90(19): 11564-11571. doi: 10.1021/acs.analchem.8b02896
-
期刊类型引用(3)
1. 安彩秀,赫彦涛,冉卓,李然,刘淑红. 石油烃红外分光光度法与气相色谱法(C_(10)~C_(40))测定结果比对研究. 应用化工. 2023(08): 2423-2426 . 百度学术
2. 张鹏辉,司升玲,向蕾,罗婷婷,张蒙,杨嘉伟. 四氯乙烯中石油类溶液标准物质制备. 化学分析计量. 2023(10): 1-6 . 百度学术
3. 李媛,段小燕,施玉格,李刚. 振荡提取-荧光分光光度法分析土壤样品中石油类物质. 岩矿测试. 2023(06): 1240-1247 . 本站查看
其他类型引用(2)