• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

淮北平原农用地土壤钼测定与分布特征及影响因素

李朋飞, 吴衡, 管后春, 徐锦龙, 王耀, 沈仕豪, 汪雅菲, 葛海影

李朋飞, 吴衡, 管后春, 徐锦龙, 王耀, 沈仕豪, 汪雅菲, 葛海影. 淮北平原农用地土壤钼测定与分布特征及影响因素[J]. 岩矿测试, 2023, 42(2): 361-370. DOI: 10.15898/j.cnki.11-2131/td.202202110020
引用本文: 李朋飞, 吴衡, 管后春, 徐锦龙, 王耀, 沈仕豪, 汪雅菲, 葛海影. 淮北平原农用地土壤钼测定与分布特征及影响因素[J]. 岩矿测试, 2023, 42(2): 361-370. DOI: 10.15898/j.cnki.11-2131/td.202202110020
LI Pengfei, WU Heng, GUAN Houchun, XU Jinlong, WANG Yao, SHEN Shihao, WANG Yafei, GE Haiying. Molybdenum Distribution Characteristics in Soil of Agricultural Land in Huaibei Plain of Anhui Province and Influencing Factors[J]. Rock and Mineral Analysis, 2023, 42(2): 361-370. DOI: 10.15898/j.cnki.11-2131/td.202202110020
Citation: LI Pengfei, WU Heng, GUAN Houchun, XU Jinlong, WANG Yao, SHEN Shihao, WANG Yafei, GE Haiying. Molybdenum Distribution Characteristics in Soil of Agricultural Land in Huaibei Plain of Anhui Province and Influencing Factors[J]. Rock and Mineral Analysis, 2023, 42(2): 361-370. DOI: 10.15898/j.cnki.11-2131/td.202202110020

淮北平原农用地土壤钼测定与分布特征及影响因素

基金项目: 

中国地质调查局地质调查项目“安徽淮北—亳州地区多目标地球化学调查” 12120113000300

安徽省公益性地质工作项目“1∶5万楚店集、高炉集、江集和望町集幅覆盖区综合地质调查” 2016-g-3-32

详细信息
    作者简介:

    李朋飞,高级工程师,主要从事环境地球化学调查及研究。E-mail: lipengfei1822@163.com

  • 中图分类号: S151.93;O657.63;O657.31

Molybdenum Distribution Characteristics in Soil of Agricultural Land in Huaibei Plain of Anhui Province and Influencing Factors

  • 摘要:

    钼作为植物固氮酶、硝酸还原酶与人体多种酶辅基的重要组成成分,对维持植物生长发育和人体健康具有重要作用。研究农用地土壤钼含量分布及其影响因素对土壤科学施肥、土壤钼有效性提升具有重要的现实意义。安徽省淮北平原位于中国华北平原缺钼土壤区,目前缺乏对该地区土壤钼含量及其驱动因素的系统研究。本文以淮北平原典型土壤区511km2为研究区域,按照1件样品/km2采集0~20cm深度表层土壤样品,采用电感耦合等离子体质谱(ICP-MS)、电感耦合等离子体发射光谱(ICP-OES)等方法测定表层土壤中全钼、有效钼、TFe2O3、Al2O3、SiO2、P、Mn及有机质含量与pH值等指标含量;利用统计学、相关性分析等方法系统研究土壤中全钼、有效钼含量和分布特征,并对制约土壤中全钼、有效钼分布特征的主要因素进行了探讨。结果表明:①砂姜黑土中全钼和有效钼含量以缺乏为主,全钼、有效钼缺乏土壤比例分别高达93.3%、87.3%;全钼含量主要受土壤pH值、Mn、TFe2O3、P及硅铝率(即土壤中氧化硅和氧化铝含量的比值)的影响,pH值、有机质为制约砂姜黑土有效钼含量较低的重要因素, pH值、有机质与有效钼之间的相关系数分别为-0.310、0.117;②潮土中全钼较缺乏、中等、较丰富土壤比例分别为31.2%、28.4%、21.1%,全钼含量主要受Mn、P、有机质的影响;有效钼缺乏土壤比例为86.2%,全钼含量低是有效钼含量缺乏的主控因素。综上所述,研究区土壤中有效钼含量总体缺乏,建议当地综合考虑土壤有效钼含量及其主要制约因素进行科学施肥,针对砂姜黑土应注重施用有机肥,潮土应合理施用钼肥。

    要点

    (1) 根据空间分布特征,结合相关性分析,揭示了研究区潮土和砂姜黑土有效钼含量缺乏的现象及其主要驱动因素。

    (2) 土壤全钼含量分布主要受成土母质制约,土壤有效钼含量受地质背景和土壤理化性质共同影响。

    (3) 土壤钼的生物有效性主要受土壤pH值、有机质、全钼的影响。

    HIGHLIGHTS

    (1) According to the spatial distribution characteristics of soil molybdenum, combined with element correlation analysis, the phenomenon of lack of available molybdenum content influvo-aquic soil and lime concretion black soil in the study area and its main driving factors were revealed.

    (2) The distribution of total molybdenum content in the soil is mainly restricted by the parent material of the soil, and the available molybdenum content in the soil is affected by both the geological background and the physical and chemical properties of the soil.

    (3) The bioavailability of soil molybdenum was mainly affected by pH value, organic matter, and total molybdenum.

  • 中国是稀土资源大国,占世界稀土矿产资源的80%,稀土元素对岩石形成过程、元素的迁移等研究都有一定的作用,提供了有价值的信息[1-3]。由于稀土元素的化学性质极其相似,因此采用传统化学法分析时需要冗长的分离富集过程[4],且只能测定稀土总量,而不能测定特定元素的含量[5]。样品中的稀土元素含量超过0.1%,对于这种通常概念上的微量元素,其实已转变为常量组分,大多采用电感耦合等离子体发射光谱法(ICP-OES)[6]测定,相对于应用X射线荧光光谱法(XRF)的前处理程序比较繁琐且试剂用量大。

    XRF法具有制样方法简单、分析速度快、重现性好等特点[7],熔融制样法能消除粒度效应,降低元素间的基体效应影响,使复杂的试样也能完全熔融[8],适合于多种固体样品中主量、次量多元素的同时测定。目前XRF法分析稀土矿石类样品,主要的应用有:混合稀土氧化物中稀土分量的测定[9-11];采用同步辐射XRF法测定稀土元素的最低浓度[12];利用粉末压片法制备样品,通过无标定量分析软件添加与待测组分相似样品来建立标签,从而实现稀土矿物中五氧化二磷的准确测定[13];以及在其他地质矿化类样品中测定主次量元素开展了大量的研究[5, 14-17]。但应用于测定稀土矿石、矿化样品中的主、次量元素的相关报道较少。对于稀土样品的分析,存在现有的稀土国家标准物质少、稀土元素含量较低、重稀土元素谱线重叠严重等问题,从而导致了应用XRF分析稀土矿石类样品中的主量元素和稀土元素仍存在一定的困难。

    鉴于此,本文通过现有的国家稀土标准样品和高纯稀土氧化物混合均匀制得的人工标准样品绘制工作曲线,扩大了自然界丰度较大的稀土元素镧、铈、钇的线性范围,应用熔融制样-波长色散XRF法测定样品,采用理论α系数的校准方法对主量元素进行校正的同时加入稀土元素的校正系数,其余元素用经验系数法来校正元素间的基体效应,对有谱线重叠的元素进行重叠干扰校正。通过对未知样品的检测和对标准样品的反测检验方法的可行性,证明了建立的测定方法可满足稀土矿化类样品分析的可靠性,可为地质评估提供满意的数据要求。

    Axios型X射线荧光光谱仪(荷兰帕纳科公司)。主要测量参数:X光管最大电压60 kV,最大电流125 mA,满功率4.0 kW,真空光路,视野光栏直径为32 mm,试样盒面罩直径32 mm。各待测元素的谱线选择和测量条件见表 1

    表  1  仪器分析条件
    Table  1.  Working conditions of the elements by XRF
    元素及谱线 分晶体 准直器
    (μm)
    探测器 电压
    (kV)
    电流
    (mA)
    2θ(°) PHD范围
    峰值 背景1 背景2
    Si Kα PE 002 550 FL 32 100 109.14 -2.3160 1.7938 26~76
    K Kα LiF 200 150 FL 32 100 136.73 -1.1730 2.2190 26~74
    Ti Kα LiF 200 150 FL 40 90 86.215 -0.6320 0.8640 26~75
    Mn Kα LiF 200 150 DUP 55 66 62.998 -0.7190 0.7868 13~72
    Na Kα PX1 550 FL 32 100 27.895 -1.8910 2.1214 22~82
    Mg Kα PX1 550 FL 32 100 23.077 -1.8760 2.1788 20~78
    Al Kα PE 002 550 FL 32 100 144.98 2.9372 -1.2490 21~76
    P Kα Ge 111 550 FL 32 100 141.02 -1.3960 2.8040 23~78
    S Kα Ge 111 550 FL 32 100 110.74 -1.5160 1.4708 16~74
    Ca Kα LiF 200 150 FL 32 100 113.16 -0.8730 1.6258 28~70
    Fe Kα LiF 200 150 DUP 55 66 57.530 -0.7130 0.8854 16~69
    Cr Kα LiF 200 150 DUP 55 66 69.365 -0.6450 0.7386 12~73
    Ni Kα LiF 200 150 DUP 55 66 48.658 -0.5890 0.8294 18~70
    Y Kα LiF 200 150 SC 55 66 23.767 0.7668 -0.7400 23~78
    Rb Kα LiF 200 150 SC 55 66 26.581 0.7720 -0.5110 22~78
    Sr Kα LiF 200 150 SC 55 66 25.121 -0.5610 0.7542 22~78
    Zr Kα LiF 200 150 SC 55 66 22.470 -0.7750 0.8758 24~78
    Nb Kα LiF 200 150 SC 55 66 21.372 -0.5870 0.4690 24~78
    Cu Kα LiF 200 150 DUP 55 66 45.010 -0.6960 0.9256 20~69
    Zn Kα LiF 200 150 SC 55 66 41.796 -0.7050 0.6534 15~78
    Ba Kα LiF 200 150 FL 40 90 87.204 0.6376 - 33~71
    Rh Kαc LiF 200 150 SC 55 66 18.447 - - 26~78
    V Kα LiF 200 150 DUP 40 90 76.929 -0.6230 - 15~74
    Br Kα LiF 200 150 SC 55 66 29.940 -0.6830 0.9706 20~78
    La Lα LiF 200 150 FL 40 90 82.938 -0.9010 24~78
    Ce Lα LiF 200 150 DUP 40 90 79.047 -0.8740 - 26~78
    Pr Lα LiF 200 150 DUP 55 66 75.379 -0.8580 - 15~74
    Nd Lα LiF 200 150 DUP 55 66 72.141 -0.9860 - 13~74
    Sm Lα LiF 200 150 DUP 55 66 66.237 0.9598 - 15~73
    Tb Lα LiF 200 150 DUP 55 66 58.800 0.3626 - 15~72
    Dy Lα LiF 200 150 DUP 55 66 56.600 -0.8020 - 15~71
    Ho Lα LiF 200 150 DUP 55 66 54.575 -0.6550 - 16~71
    Er Lα LiF 200 150 DUP 55 66 52.605 0.7728 - 17~71
    Yb Lα LiF 200 150 DUP 55 66 49.038 0.8474 - 18~70
    Lu Lα LiF 200 150 DUP 55 66 47.417 -0.4030 - 19~70
    Ta Lα LiF 200 150 DUP 55 66 44.403 0.9066 - 20~69
    Eu Lα LiF 200 150 DUP 55 66 63.591 0.4858 - 15~73
    Gd Lα LiF 200 150 DUP 55 66 61.115 -0.8880 - 15~72
    注: FL为流气式正比计数器, SC为闪烁计数器。DUP为流气式正比计数器和封闭式正比计数器串联使用,以提高探测效率。PHD为脉冲高度分析器。
    下载: 导出CSV 
    | 显示表格

    Front-1型电热式熔样机(国家地质实验测试中心研制)。

    铂金坩埚(95%铂+5%金)。石英表面皿:直径20 cm。

    偏硼酸锂+四硼酸锂混合熔剂[8](质量比22:12,购自张家港火炬仪器厂):将混合溶剂置于大表面皿中,于马弗炉中650℃灼烧2 h,待冷却转入试剂瓶,置于干燥器中保存备。

    碘化锂[18](脱模剂):优级纯,浓度为40 g/L。配制方法:称取40.0 g碘化锂溶于100 mL棕色试剂瓶中,待用。

    硝酸铵(氧化剂):分析纯。

    氧化镧、氧化钇、氧化铈:均为分析纯, 纯度99.99%。

    样品及熔剂的称量:精确称取灼烧后的混合溶剂5.8500±0.0002 g于30 mL瓷坩埚中,精确称取0.6500±0.0002 g样品置于瓷坩埚中[16],用玻璃棒充分搅匀(样品的要求:样品的粒径需小于200目,分取样品于纸质样品袋置于烘箱中,在105℃温度下烘样2 h。于干燥器内保存[16])。

    熔样机条件设定:熔样温度1150℃,预熔2 min,上举1.5 min,摆平0.5 min,往复4次,熔样时间约为10 min;先粗略称取0.100 g硝酸铵[8]试剂平铺于铂金坩埚中,将称量好的试剂及样品倒入铂金坩埚中,滴两滴碘化锂溶液[18],当熔样机温度到达1150℃后,用坩埚钳将装有试样的铂金坩埚放入熔样机,启动熔样机开始熔样。待熔样机提示熔样完成后,将铂金坩埚取出,此时样品为玻璃熔融状态。观察试样底部是否有气泡,如有气泡可手动将气泡摇出[16],将铂金坩埚置于水平冷却台待样品底部与铂金坩埚分离后吹风冷却约3 min, 此时在玻璃样片上贴上标签,倒出样片置于干燥器中保存, 待测。

    制备样片时,将稀土矿石标准物质(GBW07187、GBW07158、GBW07159、GBW07160、GBW07161)和人工配制标准样品(HC-XT-1~HC-XT-8)分别制备两套重复样片,一套用于建立标准曲线,另一套用作样品测量,检测方法的可行性。GBW07188、HC-XT-8分别重复制备10个,用于精密度的分析。岩石国家一级标准物质(GBW07122、GBW07123、GBW07124、GBW07125、GBW07104~GBW07106),碳酸盐岩石标准物质(GBW07127~GBW07136)和超基性岩石样品(DZΣ1、DZΣ2)各制备一个用于建立标准曲线。

    在自然界中,镧、铈、钇的丰度较大,日常样品检测中这三个元素矿化的样品最为常见,因此本文重点通过人工标准物质来解决镧、铈、钇高含量样品的定量问题。在不同的稀土矿石国家标准物质(GBW07187、GBW07188、GBW07158、GBW07159、GBW07160、GBW07161)中加入不等量高纯的稀土氧化物(La2O3、CeO2、Y2O3)扩大稀土的含量范围,既使各人工标准基体存在差异,镧、铈、钇含量又有一定梯度。制备人工标准样片时,各高纯稀土氧化物成分的质量和各标准物质称样量见表 2所示。

    表  2  人工标准样品的配制
    Table  2.  Preparation of artificial standard samples
    人工标准样品编号 La2O3加入量
    (g)
    CeO2加入量
    (g)
    Y2O3加入量
    (g)
    国家标准物质编号 标准物质称样量
    (g)
    HC-XT-1 0.0400 0.0500 - GBW07159 0.5600
    HC-XT-2 0.0300 0.0400 - GBW07160 0.5800
    HC-XT-3 0.0200 0.0300 - GBW07187 0.6000
    HC-XT-4 0.0100 0.0200 - GBW07158 0.6200
    HC-XT-5 - 0.0100 - GBW07188 0.6400
    HC-XT-6 - - - GBW07187 0.3250
    HC-XT-7 - - 0.0200 GBW07188 0.3250
    HC-XT-8 0.0050 0.0050 - GBW07161 0.6300
    GBW07188 0.6400
    下载: 导出CSV 
    | 显示表格

    为满足不同类型稀土样品的测试要求,又要满足日常普通硅酸盐、碳酸盐样品的测试要求,本实验采用稀土矿石标准物质(GBW07187、GBW07188、GBW07158、GBW07159、GBW07160、GBW07161),岩石国家一级标准物质(GBW07122、GBW07123、GBW07124、GBW07125、GBW07104~GBW07106),碳酸盐岩石标准物质(GBW07127~GBW07136),DZΣ1、DZΣ2和人工配制标准样品(HC-XT-1~HC-XT-8)共33个样片作为标准样品制备标准曲线。

    各元素工作曲线范围列于表 3

    表  3  各元素工作曲线浓度范围
    Table  3.  Working range of elements concentration
    主量元素 含量范围(%) 稀土元素 含量范围(μg/g)
    SiO2 0.3~74.55 Pr6O11 5.43~890
    Al2O3 0.1~19.04 Sm2O3 13.53~2000
    TFe2O3 0.07~3.49 Eu2O3 0.31~75
    FeO 0.007~0.49 Gd2O3 27.91~2500
    TiO2 0.003~0.537 Tb4O7 5.15~550
    CaO 0.0224~55.49 Dy2O3 26.04~3700
    Na2O 0.014~0.66 Tm2O3 2.29~310
    MnO 0.004~0.1 Yb2O3 13.45~2100
    P2O5 0.0022~0.124 La2O3* 0.002~6.16
    MgO 0.066~20.15 CeO2* 0.0022~7.69
    K2O 0.01~5.52 Y2O3* 0.017~3.2
    Nd2O3* 0.0024~0.4
    Lu2O3 1.91~300
    Ho2O3 5.44~640
    Er2O3 15.26~2000
    Σ RExOy* 0.085~13.92
    注:标记“*”的元素含量单位为%。
    下载: 导出CSV 
    | 显示表格

    对主量元素采用消去烧失量的理论α系数法, 其余元素用经验系数法来校正元素间的基体效应,其中NiO、Rb2O、SrO、Y2O3、ZrO2、Nb2O5、Sm2O3、CeO2、Tb4O7、Ho2O3、Er2O3、Lu2O3采用Rh Kα线康普顿散射强度作内标校正基体效应[19]。采用帕纳科公司SuperQ3.0软件所用的综合数学校正公式(1),通过回归,同时求出校准曲线的基体校正系数和谱线重叠干扰校正系数。

    $ \begin{align} &{{C}_{\text{i}}}=\text{ }{{D}_{\text{i}}}-\sum {{L}_{\text{im}}}{{Z}_{\text{m}}}+{{E}_{\text{i}}}{{R}_{\text{i}}}(1+\sum\limits_{j\ne 1}^{N}{{{\alpha }_{\text{ij}}}\cdot {{Z}_{\text{j}}}+} \\ &\ \ \ \ \ \sum\limits_{j=1}^{N}{\frac{{{\beta }_{\text{ij}}}}{1+{{\delta }_{\text{ij}}}\cdot {{C}_{\text{j}}}}\cdot {{Z}_{\text{j}}}+\sum\limits_{j=1}^{N}{\sum\limits_{k=1}^{N}{{{\gamma }_{\text{ij}}}\cdot {{Z}_{\text{j}}}\cdot {{Z}_{\text{k}}}}})} \\ \end{align} $

    式中:Ci为校准样品中分析元素i的含量(在未知样品分析中,Ci为基体校正后分析元素i的含量;Di为分析元素i的校准曲线的截距;Lim为干扰元素m对分析元素i的谱线重叠干扰校正系数;Zm为干扰元素m的含量或计数率;Ei为分析元素i校准曲线的斜率;Ri为分析元素i的计数率(或与内标线的强度比值);ZjZk为共存元素的含量;Cj为共存元素j的含量;N为共存元素的数目;αβδγ为校正基体效应的因子。

    根据快速扫描的结果,对有谱线重叠干扰的元素进行谱线重叠干扰校正,表 4列出了各稀土元素所校正的元素。

    表  4  稀土元素的重叠谱线和影响元素
    Table  4.  Overlapping spectral lines and influencing elements of rare earth elements
    待测元素 重叠谱线 校正基体元素
    Y Rb Kβ1 Al,Si,Ba,Sr,Ni,Cr,Fe,Ca
    La Cs Lβ1 Si,Fe,Nd
    Nd Ce Lβ1 La,Sm,Al
    Ce Ba Lβ2 -
    Sm Ce Lβ2 -
    Tb Sm Lβ1 La,Ce
    Ho Gd Lβ1 Er,Yb
    Er Tb Lβ1,Co Kα La,Ce,Fe
    Yb Ni Kα Y
    Lu Dy Lβ2,Ni Kβ1 La
    Pr La Lβ1 La,Ce
    Eu - La,Ce
    Gd Ce Lγ1 La,Nd,Dy
    P Y Lβ1 -
    下载: 导出CSV 
    | 显示表格

    按照检出限的公式计算出各元素的检出限:

    $ \text{LOD}=\frac{3\sqrt{2}}{m}\sqrt{\frac{{{I}_{\text{b}}}}{t}} $

    式中:m为计数率;Ib为背景计数率;t为峰值及背景的测量时间。

    采用较低的标准物质重复测定12次计算的检出限结果见表 5。因本方法考虑测定的是稀土矿化类样品中的主量元素,而稀土元素检出限均在60 μg/g以下,因此对于高含量稀土元素能够满足定量分析要求。

    表  5  分析元素的检出限
    Table  5.  Detection limits of elements
    元素 方法检出限
    (μg/g)
    Na2O 56.44
    MgO 44.34
    Al2O3 15.82
    SiO2 96.03
    P2O5 18.59
    K2O 25.36
    CaO 30.37
    TiO2 20.04
    MnO 8.32
    Fe2O3 6.69
    Y2O3 4.52
    La2O3 42.6
    Nd2O3 52.85
    Sm2O3 42.74
    CeO2 38.11
    Tb4O7 44.83
    Dy2O3 39.23
    Ho2O3 8.86
    Er2O3 27.19
    Yb2O3 30.10
    Lu2O3 13.41
    Pr6O11 58.19
    Eu2O3 6.14
    Gd2O3 29.25
    下载: 导出CSV 
    | 显示表格

    按照所建立的方法对国家标准物质GBW07188和人工标准样品HC-XT-8分别重复制作13个样片,以表 1所选测量条件测定,计算的相对标准偏差(RSD)和相对误差等测量结果列于表 6,其中绝大多数主量元素的RSD均小于1.5%,稀土元素的RSD在7%以下,个别含量较低元素的精密度较差,例如HC-XT-8号样品的CaO标准值为0.026%,测定平均值为0.021%,RSD为16.3%。而对于其他高含量CaO样品能够实现准确定量,例如GBW07188的CaO标准值为0.29,测定平均值同样为0.29,RSD为1.4%。对于Tb4O7、Lu2O3、Pr6O11等存在相同情况。表 6中的低含量结果仅作为参考数据,在此不作讨论。

    表  6  方法准确度和精密度
    Table  6.  Accuracy and precision tests of the method
    元素 GBW07188 HC-XT-8
    测定平均值
    (%)
    标准值
    (%)
    相对误差
    (%)
    RSD
    (%)
    测定平均值
    (%)
    标准值
    (%)
    相对误差
    (%)
    RSD
    (%)
    Na2O 0.62 0.66 5.30 2.35 0.121 0.156 3.54 5.45
    MgO 0.13 0.11 11.82 4.07 0.074 0.076 25.0 4.37
    Al2O3 13.8 14.26 2.52 0.27 14.51 14.47 2.14 0.213
    SiO2 66.8 66.9 0.01 0.19 73.5 73.4 0.15 0.17
    K2O 5.56 5.52 1.09 0.32 4.861 4.9 0.86 0.27
    CaO 0.29 0.29 0.69 1.40 0.021 0.026 2.80 16.3
    TiO2 0.18 0.17 4.12 1.09 0.034 0.022 3.59 7.07
    MnO 0.05 0.052 7.69 1.40 0.017 0.017 7.84 2.89
    Fe2O3 2.28 2.24 2.05 0.30 1.13 1.13 1.90 0.14
    Y2O3 2.14 2.16 0.93 0.71 0.054 0.056 1.78 0.98
    La2O3 0.21 0.23 7.83 1.64 0.768 0.771 8.85 0.49
    Nd2O3 0.41 0.4 2.50 0.88 0.003 0.003 5.57 69.5
    Sm2O3* 2006 2000 0.05 2.92 30 15.5 3.40 34.7
    CeO2 0.0619 0.053 26.42 5.39 0.728 0.771 2.26 2.30
    Tb4O7* 652 550 16.55 6.94 7.93 8.07 24.17 46.2
    Dy2O3* 3645 3700 2.38 0.69 未检出 55.4 6.64 -
    Ho2O3* 655 640 5.16 2.05 10.8 11.8 7.30 26.9
    Er2O3* 1989 2000 1.95 1.94 25.45 35.8 13.71 38.8
    Lu2O3* 306 300 5.60 4.13 2.57 5.4 1.02 48.1
    Pr6O11* 863 890 8.58 5.40 99.5 6.2 18.49 55.2
    Yb2O3* 2063 2100 2.72 0.79 13.55 36 8.95 33.0
    Gd2O3* 2536 2500 0.80 1.16 111.9 31.9 7.47 13.4
    加和 99.8 - - 0.12 99.6 - - 0.14
    注:标记“*”的元素含量单位为μg/g。
    下载: 导出CSV 
    | 显示表格

    以本文所建立的方法测量6个国家一级稀土标准物质、8个人工标准样品及8个未知的稀土样品,分析结果列于表 7,样品中主量元素、稀土元素和烧失量的加和结果均在99.41%~100.63%之间,所建分析方法能够满足全分析加和的要求,符合DZ/T0130—2006《地质矿产实验室测试质量管理规范》规定的一级标准。

    表  7  全分析加和结果
    Table  7.  Analytical results of sam additivity
    标准物质和样品编号 烧失量
    主量元素和稀土元素测定值(%) 加和
    (%)
    GBW07187 5.42 94.51 99.93
    GBW07188 5.53 94.36 99.89
    GBW07158 6.73 93.00 99.73
    GBW07159 3.70 96.39 100.09
    GBW07160 3.77 96.08 99.85
    GBW07161 6.80 92.61 99.41
    HC-XT-1 3.19 96.58 99.77
    HC-XT-2 3.36 96.18 99.55
    HC-XT-3 5.00 94.90 99.90
    HC-XT-4 6.42 93.21 99.63
    HC-XT-5 5.35 94.52 99.87
    HC-XT-6 5.43 94.70 100.13
    HC-XT-7 6.59 93.00 99.59
    HC-XT-8 3.64 95.93 99.57
    GX-TC-F2 7.48 93.15 100.63
    GX-TC-F4 5.38 94.76 100.14
    GX-DB-F1 5.85 94.27 100.12
    GX-DB-F2 6.02 94.59 100.61
    GX-DB-F3 3.55 96.55 100.10
    GX-DB-F4 3.57 96.29 99.86
    GX-DB-F5 3.65 96.53 100.18
    XF-WX-F3 7.13 93.28 100.41
    下载: 导出CSV 
    | 显示表格

    通过配制人工标准样品,解决了现有国家标准物质不能满足稀土矿样品等复杂类型样品中主量元素和稀土元素的定量问题。通过加入高纯氧化镧、氧化铈和氧化钇与碳酸盐标准样品混合,配制人工标准样品扩大了La、Ce和Y的定量范围。对稀土标准物质、人工标准样品和未知稀土样品进行反测,测定结果未采用归一化处理,元素的精密度和全分析加和结果都比较理想。本方法有效地扩大了XRF方法的适用范围。

  • 图  1   研究区地理位置及采样点位图

    Figure  1.   Geographical location and soil sampling sites in the study area.

    图  2   研究区土壤全钼、有效钼空间分布

    Figure  2.   Spatial distribution characteristics of total molybdenum and available molybdenum in soil of the study area.

    图  3   (a) 潮土与(b)砂姜黑土全钼、有效钼丰缺比例

    Figure  3.   Proportion of rich and deficient soil area of total molybdenum and available molybdenum in (a) fluvo-aquic soil and (b) lime concretion black soil.

    表  1   土壤中全钼、有效钼等指标分析测试的检出限

    Table  1   Detection limit of total molybdenum, available molybdenum and other indicators in soil

    分析指标 检出限 分析指标 检出限
    全钼 0.2mg/kg SiO2 0.05%
    有效钼 0.005mg/kg P 8mg/kg
    TFe2O3 0.05% Mn 5mg/kg
    Al2O3 0.05% pH 0.1
    下载: 导出CSV

    表  2   研究区土壤全钼、有效钼及其相关理化指标含量参数

    Table  2   Contents of the total molybdenum and available molybdenum and its related physical and chemical indicators in soil of the study area

    成土母质 土壤类型 参数 全钼
    (mg/kg)
    有效钼
    (mg/kg)
    钼有效度
    (%)
    相关土壤理化性状指标
    P
    (mg/kg)
    TFe2O3
    (mg/kg)
    Mn
    (mg/kg)
    有机质
    (%)
    pH值 硅铝率
    全区
    (N=511)
    最小值 0.33 0.025 3.68 352 4.11 301 0.43 4.90 3.76
    最大值 0.99 0.680 88.25 1591 6.20 1096 3.24 8.51 5.70
    算术平均值 0.46 0.072 15.94 741 4.81 634 1.76 - 4.88
    中位数 0.43 0.061 13.64 699 4.69 624 1.76 7.31 4.97
    标准离差 0.09 0.05 8.81 211.96 0.45 134.57 0.39 1.04 0.41
    变异系数 0.21 0.64 0.55 0.29 0.09 0.21 0.22 0.15 0.08
    黄土母质
    (N=402)
    砂姜黑土 最小值 0.33 0.026 5.06 352 4.11 301 0.48 4.90 4.34
    最大值 0.87 0.680 88.25 1276 5.40 1096 3.24 8.51 5.70
    算术平均值 0.42 0.070 16.51 671 4.65 592 1.72 - 5.03
    中位数 0.42 0.057 13.64 648 4.60 600 1.71 6.81 5.04
    标准离差 0.05 0.05 9.56 156.14 0.26 108.85 0.39 1.00 0.27
    变异系数 0.12 0.71 0.58 0.23 0.06 0.18 0.23 0.15 0.05
    河流冲积物
    (N=109)
    潮土 最小值 0.34 0.025 3.68 612 4.73 511 0.43 7.04 3.76
    最大值 0.99 0.151 26.84 1591 6.20 974 2.59 8.45 4.98
    算术平均值 0.57 0.077 13.84 998 5.42 786 1.90 - 4.35
    中位数 0.56 0.074 13.59 989 5.38 800 1.90 8.15 4.34
    标准离差 0.12 0.02 4.61 191.97 0.49 108.87 0.38 0.16 0.38
    变异系数 0.21 0.31 0.33 0.19 0.09 0.14 0.20 0.02 0.09
    注:硅铝率为w(SiO2)/w(Al2O3),钼的有效度指土壤中有效钼占全钼含量的比例。
    下载: 导出CSV

    表  3   土壤中全钼、有效钼等指标含量的相关系数

    Table  3   Correlation coefficients between total molybdenum, available molybdenum and other physical and chemical indexes in soil

    土壤类型 指标 全钼 有效钼 钼的有效度 P TFe2O3 Mn 有机质 硅铝率 pH
    潮土
    (N=109)
    全钼 1.000
    有效钼 0.166** 1.000
    钼的有效度 -0.478** 0.751** 1.000
    P 0.330** 0.090 -0.184 1.000
    TFe2O3 0.031 -0.123 -0.157 -0.096 1.000
    Mn 0.611** -0.160 -0.549** 0.245* 0.415** 1.000
    有机质 0.205* -0.104 -0.223* 0.450** 0.237* 0.450** 1.000
    硅铝率 -0.082 0.090 0.164 0.046 -0.984** -0.431** -0.239* 1.000
    pH 0.194* 0.000 -0.234* -0.023 0.125 0.074 -0.303** -0.169 1.000
    砂姜黑土
    (N=402)
    全钼 1.000
    有效钼 0.067 1.000
    钼的有效度 -0.128* 0.965** 1.000
    P 0.153** -0.075 -0.075 1.000
    TFe2O3 0.189** -0.058 -0.095 0.372** 1.000
    Mn 0.213** -0.031 -0.058 0.360** 0.172** 1.000
    有机质 0.084 0.117* 0.135** 0.478** 0.082 -0.013 1.000
    硅铝率 -0.199** 0.060 0.099* -0.338** -0.962** -0.087 -0.112* 1.000
    pH 0.268** -0.310** -0.373** 0.247** 0.407** 0.353** -0.382** -0.382** 1.000
    注:“**”表示在0.01水平(双侧)上显著相关,“*”表示在0.05水平(双侧)上显著相关。
    下载: 导出CSV
  • [1] 毛香菊, 刘璐, 程新涛, 等. 河南新密典型富硒区土壤Se元素地球化学特征及空间分布规律[J]. 地质通报, 2021, 40(10): 1664-1670. doi: 10.12097/j.issn.1671-2552.2021.10.008

    Mao X J, Liu L, Cheng X T, et al. Geochemistry and spatial distribution of Se element in soils of typical Se-rich areas in Xinmi, Henan Province[J]. Geological Bulletin of China, 2021, 40(10): 1664-1670. doi: 10.12097/j.issn.1671-2552.2021.10.008

    [2] 周国华. 富硒土地资源研究进展与评价方法[J]. 岩矿测试, 2020, 39(3): 319-336. doi: 10.15898/j.cnki.11-2131/td.201911140158

    Zhou G H. Research progress of selenium-enriched land resources and evaluation methods[J]. Rock and Mineral Analysis, 2020, 39(3): 319-336. doi: 10.15898/j.cnki.11-2131/td.201911140158

    [3] 成晓梦, 孙彬彬, 贺灵, 等. 四川省沐川县西部地区土壤硒含量特征及影响因素[J]. 岩矿测试, 2021, 40(6): 808-819. doi: 10.15898/j.cnki.11-2131/td.202106080072

    Cheng X M, Sun B B, He L, et al. Content characteristics and influencing factors of soil selenium in western Muchuan County, Sichuan Province[J]. Rock and Mineral Analysis, 2021, 40(6): 808-819. doi: 10.15898/j.cnki.11-2131/td.202106080072

    [4] 廖启林, 崔晓丹, 黄顺生, 等. 江苏富硒土壤元素地球化学特征及主要来源[J]. 中国地质, 2020, 47(6): 1813-1825. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202006018.htm

    Liao Q L, Cui X D, Huang S S, et al. Elemental geochemistry of selenium-enriched soil and its main origin in Jiangsu Province[J]. China Geology, 2020, 47(6): 1813-1825. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202006018.htm

    [5] 刘冰权, 沙珉, 谢长瑜, 等. 江西赣县清溪地区土壤硒地球化学特征和水稻根系土硒生物有效性影响因素[J]. 岩矿测试, 2021, 40(5): 740-750. doi: 10.15898/j.cnki.11-2131/td.202107230082

    Liu B Q, Sha M, Xie C Y, et al. Geochemical characteristics of soil selenium and influencing factors of selenium bioavailability in rice root soils in Qingxi area, Ganxian County, Jiangxi Province[J]. Rock and Mineral Analysis, 2021, 40(5): 740-750. doi: 10.15898/j.cnki.11-2131/td.202107230082

    [6] 李春霞. 锰、铁和钼肥处理种子与叶面喷施对小麦生长与吸收的影响及其机制[D]. 杨凌: 西北农林科技大学, 2019.

    Li C X. Effects and mechanism of seed soaking and foliar spraying of manganese, iron and molybdenum on growth and absorb of wheat[D]. Yangling: Northwest A&F University, 2019.

    [7] Syaifudin M. 不同钼源对油菜和冬小麦光合作用和花粉发育的影响[D]. 武汉: 华中农业大学, 2020.

    Syaifudin M. Effect of different sources of molybdenum on photosynthesis and pollen development of oilrape and winter wheat[D]. Wuhan: Huazhong Agricultural University, 2020.

    [8] 徐守俊. 大豆钼高效品种筛选及其高效吸收利用钼的机制研究[D]. 武汉: 华中农业大学, 2018.

    Xu S J. Screening of molybdenum-efficiencient soybean(Glycine max)cultivar and its mechanism on high efficiency of Mo uptake and utilization[D]. Wuhan: Huazhong Agricultural University, 2018.

    [9] 张俊, 郝西, 刘娟, 等. 钼肥拌种量对旱薄地花生发育及氮素积累的影响[J]. 河南农业科学, 2021, 50(3): 59-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HNNY202103009.htm

    Zhang J, Hao X, Liu J, et al. Effect of seed dressing with ammonium molybdate on development and nitrogen accumulation of peanut in poor dry land[J]. Journal of Henan Agricultural Sciences, 2021, 50(3): 59-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HNNY202103009.htm

    [10] 王佳炜, 程楠, 王训. 微量元素钼的生理作用及其对机体功能的影响研究进展[J]. 医学综述, 2013, 19(19): 3460-3462. doi: 10.3969/j.issn.1006-2084.2013.19.002

    Wang J W, Cheng N, Wang X, et al. Research progress in physiological role of trace elements molybdenum and its influence on human body[J]. Medical Recapitulate, 2013, 19(19): 3460-3462. doi: 10.3969/j.issn.1006-2084.2013.19.002

    [11] 熊燕, 宁增平, 刘意章, 等. 西南燃煤型地方病区煤炭和土壤中氟、钼的地球化学行为[J]. 地球与环境, 2021, 49(5): 570-577. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ202105012.htm

    Xiong Y, Ning Z P, Liu Y Z, et al. Geochemical behavior of fluorine and molybdenum in coals and soils in coal-burning related endemic area in southwest China[J]. Earth and Environment, 2021, 49(5): 570-577. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ202105012.htm

    [12] 刘春奎. 钼锌配施对冬小麦的作用及其机制研究[D]. 武汉: 华中农业大学, 2019.

    Liu C K. Study on effect of molybdenum and zinc combination on winter wheat and its mechanism[J]. Wuhan: Huazhong Agricultural University, 2019.

    [13] 王佳炜, 王训, 程楠. 微量元素钼的代谢与人体健康[J]. 中华临床营养杂志, 2013, 21(4): 241-245. doi: 10.3760/cma.j.issn.1674-635X.2013.04.009

    Wang J W, Wang X, Cheng N. Metabolism of molybdenum and its role in human health[J]. Chinese Journal of Clinical Nutrition, 2013, 21(4): 241-245. doi: 10.3760/cma.j.issn.1674-635X.2013.04.009

    [14] 马彦平, 石磊, 何源. 微量元素铁、锰、硼、锌、铜、钼营养与人体健康[J]. 肥料与健康, 2020, 47(5): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-KDHL202005004.htm

    Ma Y P, Shi L, He Y. Trace elements iron, manganese, boron, zinc, copper, molybdenum and human health[J]. Fertilizer & Health, 2020, 47(5): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-KDHL202005004.htm

    [15] 孙健慧. 钼与人体健康[J]. 中国钼业, 2007, 31(3): 52-53. doi: 10.3969/j.issn.1006-2602.2007.03.015

    Sun J H. Relationship between molybdenum in food and human health[J]. China Molybdenum Industry, 2007, 31(3): 52-53. doi: 10.3969/j.issn.1006-2602.2007.03.015

    [16] 刘铮, 朱其清, 徐俊祥, 等. 中国土壤中钼的含量与分布规律[J]. 环境科学学报, 1990, 10(2): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX199002001.htm

    Liu Z, Zhu Q Q, Xu J X, et al. Content and distribution of molybdenum in soils of China[J]. Acta Scientiae Circumstantiae, 1990, 10(2): 132-137. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX199002001.htm

    [17] 彭月月, 余雪莲, 李启权, 等. 川西南高海拔烟区土壤微量元素空间分布特征及影响因素[J]. 中国烟草科学, 2018, 39(3): 39-47. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYV201803006.htm

    Peng Y Y, Yu X L, Li Q Q, et al. Spatial distribution and influencing factors of soil available microelements in high altitude tobacco planting areas in southwest Sichuan[J]. Chinese Tobacco Science, 2018, 39(3): 39-47. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYV201803006.htm

    [18] 胡瑞文, 刘勇军, 唐春闺, 等. 稻作烟区土壤硼钼养分垂直分布及与有机质的关系[J]. 中国烟草科学, 2020, 41(3): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYV202003002.htm

    Hu R W, Liu Y J, Tang C G, et al. Vertical distribution of boron and molybdenum in soil and their relationship with organic matter in paddy-tobacco growing areas[J]. Chinese Tobacco Science, 2020, 41(3): 9-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYV202003002.htm

    [19]

    Yang P T, Wang S L. Sorption and speciation of moly-bdate in soils: Implications for molybdenum mobility and availability[J]. Journal of Hazardous Materials, 2021, 408: 124934.

    [20] 温心怡, 李良木, 高云, 等. 曲靖市植烟土壤有效钼含量状况及与土壤因素的关系分析[J]. 土壤通报, 2019, 50(3): 691-697. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201903026.htm

    Wen X Y, Li L M, Gao Y, et al. Distribution of soil available molybdenum and its relationship with soil factors in the tobacco planting areas of Qujing[J]. Chinese Journal of Soil Science, 2019, 50(3): 691-697. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201903026.htm

    [21] 朱宇通. 承德中部土壤Zn、Mo、B养分元素分布特征及影响因素研究[D]. 北京: 中国地质大学(北京), 2021.

    Zhu Y T. Study on the distribution characteristics and influencing factors of Zn, Mo and B nutrient elements in central Chengde soils[D]. Beijing: China University of Geosciences (Beijing), 2021.

    [22] 刘鹏, 杨玉爱. 土壤中的钼及其植物效应的研究进展[J]. 农业环境保护, 2001, 24(4): 280-282. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200104027.htm

    Liu P, Yang Y A. Research development of molybdenum in soil and its effects on vegetation[J]. Agro-Environmental Protection, 2001, 24(4): 280-282. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200104027.htm

    [23] 夏炎, 宋延斌, 侯进凯, 等. 河南洛阳市土壤和农作物中钼分布规律与影响因素研究[J]. 岩矿测试, 2021, 40(6): 820-832. doi: 10.15898/j.cnki.11-2131/td.202104130052

    Xia Y, Song Y B, Hou J K, et al. Distribution law and influencing factors of molybdenum in soils and crops in Luoyang, Henan Province[J]. Rock and Mineral Analysis, 2021, 40(6): 820-832. doi: 10.15898/j.cnki.11-2131/td.202104130052

    [24] 张继榛. 影响安徽省土壤中有效Mo含量的因素研究[J]. 土壤学报, 1994, 31(2): 153-159. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB402.005.htm

    Zhang J Z. Study on factors affecting the content of available Mo in soils in Anhui Province[J]. Acta Pedologica Sinica, 1994, 31(2): 153-159. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB402.005.htm

    [25] 陈兴仁, 陈富荣, 贾十军, 等. 安徽省江淮流域土壤地球化学基准值与背景值研究[J]. 中国地质, 2012, 39(2): 302-310. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201202003.htm

    Chen X R, Chen F R, Jia S J, et al. Soil geochemical baseline and background in Yangtze River—Huaihe River Basin of Anhui Province[J]. China Geology, 2012, 39(2): 302-310. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201202003.htm

    [26] 奚小环, 侯青叶, 杨忠芳, 等. 基于大数据的中国土壤背景值与基准值及其变化特征研究——写在《中国土壤地球化学参数》出版之际[J]. 物探与化探, 2021, 45(5): 1095-1108. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202105001.htm

    Xi X H, Hou Q Y, Yang Z F, et al. Big data based studies of the variation features of Chinese soil's background value versus reference value: A paper written on the occasion of <Soil Geochemical Parameters> of China's publication[J]. Geophysical and Geochemical Exploration, 2021, 45(5): 1095-1108. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202105001.htm

    [27] 徐宏林, 付豪, 叶岛, 等. 仙桃市西南部耕层土壤中养分元素有效量和有效度研究[J]. 资源环境与工程, 2017, 3(3): 278-283. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201703009.htm

    Xu H L, Fu H, Ye D, et al. Research on available content and availability of topsoil nutrient elements in southwest Xiantao City[J]. Resources Environment & Engineering, 2017, 3(3): 278-283. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDK201703009.htm

    [28]

    Wang Z Q, Hong C, Xing Y, et al. Spatial distribution and sources of heavy metals in natural pasture soil around copper-molybdenum mine in northeast China[J]. Ecotoxicology and Environmental Safety, 2018, 154: 329-336.

    [29] 张璐, 蔡泽江, 王慧颖, 等. 中国稻田土壤有效态中量和微量元素含量分布特征[J]. 农业工程学报, 2020, 36(16): 62-70. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU202016008.htm

    Zhang L, Cai Z J, Wang H Y, et al. Distribution characteristics of effective medium and micronutrient element contents in paddy soils of China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(16): 62-70. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU202016008.htm

    [30] 董国政, 刘德辉, 姜月华, 等. 湖州市土壤微量元素含量与有效性评价[J]. 土壤通报, 2004, 35(4): 474-478. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB200404018.htm

    Dong G Z, Liu D H, Jiang Y H, et al. Contents of the soil available trace elements and their availability evaluation in Huzhou City of Zhejiang Province[J]. Chinese Journal of Soil Science, 2004, 35(4): 474-478. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB200404018.htm

    [31] 袁余洋, 刘属灵, 雒昆利, 等. 四川盆地典型农业区土壤中铜、钴、钼和锌的空间分异及其影响因素[J]. 高校地质学报, 2022, 28(4): 506-515. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202204005.htm

    Yuan Y Y, Liu S L, Luo K L, et al. Study on the spatial variation and driving factors of copper, cobalt, molybdenum and zinc in top soil of typical agricultural region in Sichuan Basin[J]. Geological Journal of China Universities, 2022, 28(4): 506-515. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202204005.htm

    [32] 余慧敏, 朱青, 傅聪颖, 等. 江西鄱阳湖平原区农田土壤微量元素空间分异特征及其影响因素[J]. 植物营养与肥料学报, 2020, 26(1): 172-184. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF202001017.htm

    Yu H M, Zhu Q, Fu C Y, et al. Spatial variability characteristics and impacting factors of soil trace elements in Poyang Lake Plain, Jiangxi of China[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(1): 172-184. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF202001017.htm

    [33] 邓小玉, 谢振翅. 湖北省土壤钼的含量分布及应用效果[J]. 土壤肥料, 1994(5): 18-24. https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL405.004.htm

    Deng X Y, Xie Z C. Content distribution and application effect of molybdenum in soil in Hubei Province[J]. Soil and Fertilizer Sciences, 1994(5): 18-24. https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL405.004.htm

    [34]

    Sun W G, Selim H M. Molybdenum-phosphate retention and transport in soils[J]. Geoderma, 2017, 308(15): 60-68.

    [35] 程素贞, 张继榛. 不同磷(P)水平对土壤中钼(Mo)有效性的影响[J]. 安徽农业科学, 1989(1): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY198901007.htm

    Cheng S Z, Zhang J Z. Effect of different P-levels to availability of molybdenum in soil[J]. Journal of Anhui Agricultural Sciences, 1989(1): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-AHNY198901007.htm

    [36] 汪新民. 土壤对钼的吸附与土壤供钼能力[J]. 安徽农学院学报, 1990, 19(4): 280-287. https://www.cnki.com.cn/Article/CJFDTOTAL-ANHU199004006.htm

    Wang X M. Study on soil adsorption of molybdenum and molybdenum supply ability of soil[J]. Journal of Anhui Agricultural College, 1990, 19(4): 280-287. https://www.cnki.com.cn/Article/CJFDTOTAL-ANHU199004006.htm

    [37] 李朋飞, 杜国强, 刘超, 等. 安徽淮北平原农田土壤酸碱度特征及酸化趋势研究[J]. 华东地质, 2019, 40(3): 234-240. https://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ201903009.htm

    Li P F, Du G Q, Liu C, et al. Acidity and basicity characteristics and acidification trend of the farmland soil in Huaibei Plain, Anhui Province[J]. East China Geology, 2019, 40(3): 234-240. https://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ201903009.htm

  • 期刊类型引用(6)

    1. 孙成阳,陆太进,宋中华,何明跃,邓怡. 津巴布韦金刚石中石墨包裹体及金刚石异常双折射特征分析. 岩矿测试. 2022(02): 199-210 . 本站查看
    2. 赵畅,王海阔,刘迎新. 一种高温高压合成钻石原石的宝石学及谱学特征研究. 中国宝玉石. 2022(06): 2-14 . 百度学术
    3. 宋中华,陆太进,唐诗,高博,苏隽,柯捷. 高温高压改色处理Ⅰa型褐色钻石的光谱鉴定特征. 岩矿测试. 2020(01): 85-91 . 本站查看
    4. 罗跃平,陈晶晶. 紫外-可见光谱具480 nm吸收的黄色钻石的宝石学特征. 宝石和宝石学杂志(中英文). 2020(05): 39-43 . 百度学术
    5. 周宏,金绪广,黄文清,王磊. 钻石的红外光谱表征及其鉴定意义. 超硬材料工程. 2020(05): 18-25 . 百度学术
    6. 唐诗,苏隽,陆太进,马永旺,柯捷,宋中华,张钧,张晓玉,代会茹,李海波,张健,吴旭旭,刘厚祥. 化学气相沉积法再生钻石的实验室检测特征研究. 岩矿测试. 2019(01): 62-70 . 本站查看

    其他类型引用(6)

图(3)  /  表(3)
计量
  • 文章访问数:  172
  • HTML全文浏览量:  45
  • PDF下载量:  26
  • 被引次数: 12
出版历程
  • 收稿日期:  2022-02-10
  • 修回日期:  2022-02-22
  • 录用日期:  2022-03-25
  • 网络出版日期:  2022-12-13
  • 刊出日期:  2023-03-27

目录

/

返回文章
返回