• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

大样本量(large-n)碎屑锆石U-Pb年代学分析技术研究进展

A Review of Research Progress on the Analytical Method of Large-n Detrital Zircon U-Pb Geochronology

  • 摘要: 碎屑锆石U-Pb年代学是识别沉积物来源和确定地层最大沉积年龄的重要工具。利用激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)进行物源分析的碎屑锆石测试数量为60~120颗,在这个范围内,年龄组分通常不能从样本中识别出来。近年来,为提高物源分析的可靠性,LA-ICP-MS测试要求有更多数量的锆石颗粒(n≥300),甚至大于1000颗的大样本量(large-n)试验。大样本量碎屑锆石U-Pb年代学的出现对数据测试方法、处理和评估都提出了挑战。本文通过对国内外大样本量文献进行梳理,总结了大样本量碎屑锆石U-Pb年代学在测试方法、数据处理以及数据评估方面的进展。首先,单颗粒测试需要对U、Pb同位素信号进行快速获取,这可以通过改进气溶胶传输效率实现,“峰值”信号模式代替“平顶”信号接收也可实现快速测试。其次,大样本量产生的数据,需要高效的数据处理协议和强大的软件(如Iolite)进行处理,以减少实验室间比较的误差;针对U-Pb数据处理流程,介绍了同位素分馏校正以及不确定度传播等方面的方法优化;此外,还引入了累积计数法和线性回归校正法两种处理方法专门处理“峰形”信号。在数据评估方面,新的U-Pb和Pb-Pb年龄不谐和度计算方法的提出,如采用Aitchison谐和距离,使数据过滤更加合理。基于上述新进展,对仪器和处理软件的选取进行了讨论,并对未来大样本量碎屑锆石U-Pb年代学分析的自动化、规范化提出了展望。基于已有研究,未来大样本量碎屑锆石U-Pb年代学的发展具有广阔前景,在物源示踪及确定地层年代等研究中将发挥更大的作用。

     

    Abstract:
    BACKGROUND Detrital zircon U-Pb geochronology is an important tool for identifying sedimentary provenance and determining the maximum depositional age. The numbers of grains for detrital zircon provenance investigations using laser-ablation inductively coupled-plasma mass spectrometer (LA-ICP-MS) typically range from 60 to 120. In this range, age components are commonly not identified from the sample aliquot. In order to improve the reliability of provenance investigation, analysis of more grains (n≥300) or even the large-n aliquot with more than 1000 grains (n > 1000) are required. The emergence of large-n detrital zircon U-Pb geochronology is challenging the methods of data measurement, reduction and evaluation.
    OBJECTIVES To summarize the progress of measurement, data reduction and data evaluation of large-n detrital zircon U-Pb geochronology.
    METHODS By summarizing the method innovation of domestic and foreign literature.
    RESULTS Firstly, each measurement requires rapid acquisition of U and Pb isotope signals, which can be conducted by improving the transmission efficiency of aerosol. The "flat" signal acquisition time can be shortened or transformed to a "peak" signal mode for rapid measurement. Secondly, large-n data require efficient data reduction protocol or powerful software (e.g. iolite) to improve visualization and reduce the variability between inter-laboratory comparisons. For U-Pb data processing flow, several optimized methods are introduced for fractionation correction and propagating uncertainty. In addition, total integrated counts and linear regression correction are introduced to specially process "peak" signals. Thirdly, the new calculation method of U-Pb and Pb-Pb age discordance, such as using Aitchison concordia distance, makes data filtering more reasonable. Based on recent research progress, the future of automation and standardization of large-n detrital zircon U-Pb geochronology is discussed and advice on the selection of instruments and reduction software is provided.
    CONCLUSIONS In the future, the development of large-n detrital zircon U-Pb geochronology has great prospects, and will play a greater role in the study of provenance tracing and stratigraphic dating.

     

/

返回文章
返回