Determination of Silicon Isotopic Compositions of Rock and Soil Reference Materials by MC-ICP-MS
-
摘要:
随着分析方法的进步和分析精度的提高,硅(Si)同位素被越来越多地应用于地球化学、宇宙化学和环境化学研究中,可以用于示踪壳幔物质循环、俯冲流体的来源, 以及制约月球和地外天体的起源与演化等。为确保不同类型样品中硅同位素测量的准确性和不同实验室间数据可以进行对比,需标定一系列标准物质的硅同位素组成。前人工作中已经标定一系列来自美国地质调查局(USGS)的标准物质的硅同位素,为硅同位素的研究奠定了坚实的基础。但由于这些标准物质已经售罄,今后继续开展硅同位素研究面临无标样可用的境况。为了能持续性地用高精度硅同位素数据对相关领域研究提供支持,急需对新的标准物质进行高精度的硅同位素的测量。本文采用氢氧化钠碱熔法消解样品,经化学纯化后,利用多接收电感耦合等离子体质谱法精确测量了30个国家标准物质的硅同位素组成,δ30Si值测试精度优于0.08‰。这些标准物质包括11个火成岩、2个变质岩、2个沉积岩、6个河流和海洋沉积物以及9个土壤,SiO2含量范围为32.69%~90.36%,覆盖了大部分自然样品的变化范围。在这些标准物质中,河流沉积物GBW07310具有最高的δ30Si值,为0.85‰±0.01‰,而受高度风化作用影响的黄红色土壤GBW07405和砖红壤GBW07407具有较低的δ30Si值,硅同位素组成分别为-0.68‰±0.03‰和-1.82‰±0.03‰,其余大部分标准物质的δ30Si值变化范围为-0.42‰~-0.07‰。本文对这些国家标准物质硅同位素组成的精确标定,丰富了硅同位素研究的标准样品数据库,为全球不同实验室的硅同位素测试提供了基础数据,为后续在多种领域开展硅同位素研究打下坚实的基础。
-
关键词:
- 硅同位素 /
- 国家标准物质 /
- 碱熔法 /
- 多接收电感耦合等离子体质谱法 /
- 高精度测试方法
要点(1) 采用碱熔法能有效分解硅酸岩、沉积物以及土壤样品,且实验处理简单安全。
(2) 利用MC-ICP-MS技术,实现了对国家标准物质高精度的硅同位素组成分析。
(3) 为不同类型样品的硅同位素测量和不同实验室间数据质量监测补充了标准物质数据库。
HIGHLIGHTS(1) Alkali fusion method is a simple and safe method, which can effectively decompose samples, including silicate rocks, sediments and soils, for Si isotope analysis.
(2) The Si isotopes of 30 GBW reference materials were analyzed using MC-ICP-MS with high-precision and accuracy.
(3) This study builds up a useful database for Si isotopes, which can be used for interlaboratory comparison.
Abstract:BACKGROUNDWith the analytical technique development, the precision of Si isotopes analysis increases rapidly.Silicon isotopes are widely used in geochemistry, cosmochemistry, environmental chemistry and so on, and can be used to trace the circulation of crust-mantle material, the source of subducting fluid, and constrain the origin and evolution of the moon and extraterrestrial materials.To compare the precision and accuracy of Si isotope analysis results in different laboratories, it is necessary to analyze Si isotopes of reference materials with published Si isotope data.As generally used USGS reference materials are currently unavailable, it is important to report Si isotopes of new reference materials.
OBJECTIVESIn order to continuously conduct research in various fields with high-precision silicon isotope data, by providing a supply of new reference materials.Silicon isotopes of 30 GBW reference materials with different compositions, including 11 igneous rocks, 2 sedimentary rocks, 2 metamorphic rocks, 6 river/marine sediments and 9 soils, were analyzed.The SiO2 content of these reference materials ranged from 32.69% to 90.36%, covering the variation range of most natural samples.
METHODSAlkali fusion method was used for sample digestion.Approximately 3-5mg of sample powder and 200mg of powdery NaOH were weighed in a 10mL silver crucible and heated.The Si purification was obtained using cation exchange resin AG50W-X12.6mol/L HNO3 and ultrapure water were used to clean the resin before sample loading.Silicon isotopes were measured by multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS, Neptune Plus) at the laboratory in the University of Science and Technology of China (USTC), and the instrument mass bias was corrected by standard-sample-standard method, with a bracketing standard of NBS-28.The long-term reproducibility (over two years) of Si isotope analysis of one in-house standard (USTC-Si) and one international rock reference material (BHVO-2) were represented, with the δ30Si values of USTC-Si and BHVO-2 of-0.07‰±0.06‰(n=117, 2SD) and-0.29‰±0.06‰(n=320, 2SD), respectively.During Si isotope analysis, two rock reference materials BHVO-2 and AGV-2 were also analyzed to ensure the precision and accuracy of the data.The Si isotopic compositions of BHVO-2 and AGV-2 were consistent with the reported data in the previous literature (Figure 3), demonstrating the reliability of this measurement.
RESULTSExcept one sediment and two soil samples, the δ30Si values of most reference materials analyzed in this study range from-0.42‰ to-0.07‰, within the range of upper continental crust.The drainage sediment GBW07310 has the highest δ30Si value (0.85‰±0.01‰), while the yellow-red soil GBW07405 and the latosol GBW07407 have the lowest δ30Si values of-0.68‰±0.03‰ and-1.82‰±0.03‰, respectively.
CONCLUSIONSThe high-precision Si isotope data of 30 GBW reference materials helps replenish the database for Si isotope analysis.The Si isotope data of these standard materials show that the river sediment GBW07310 has a very high δ30Si value of-1.82‰±0.03‰, indicating that it may be formed by dissolved silicon precipitation, which are enriched in heavy Si isotopes; while highly weathered yellow-red soil GBW07405 and the latosol GBW07407 have the lowest δ30Si values of-0.68‰±0.03‰ and-1.82‰±0.03‰, respectively, indicating that the weathering and desiliconization process may lead to the loss of heavy Si isotopes.The δ30Si values of most remaining reference materials analyzed in this study vary from-0.42‰ to-0.07‰, within the variation range of the upper continental crust.There is no obvious correlation between δ30Si values and SiO2 contents of the 11 igneous rock reference materials, revealing that their Si isotopes were not controlled by partial melting or mineral crystallization processes, and there may be other processes which would affect the Si isotopic composition of these standards.In the case that generally used USGS reference materials have been sold out, these high-precision Si isotope data of GBW reference materials will supplement basic data for Si isotope testing in different laboratories and lay solid isotope research in various fields.
-
氦在整个宇宙中是含量仅次于氢的气体,按质量计达23%,但氦在地球中含量极少,空气中氦的含量约为5.2×10-6。氦气是六种稀有气体之一,其特殊的物理化学性质,尤其是在低温下成为液体的特性和化学性质惰性,使氦气在国防工业、航天工业、核工业、临床医学、化学工业等高科技领域都有广泛应用,是一种不可或缺的稀有战略性物资[1-4]。当前氦气资源全球分布严重不均,从富氦天然气中提取是目前唯一获取氦气的方法[1]。天然气中的非烃气体通常包括CO2、N2、H2、H2S、Hg、He和Ar等,这类气体一般以微量组分存在于其他烃类气藏中。非烃气体在一定地质条件下也可聚集形成具有开发价值的非烃气藏[5-7]。罐顶气采样是油气化探领域中分析土壤解析气的一种样品采集方法,详见油气地球化学勘探试样测定方法(GB/T 29173—2012),该方法主要用于油气田轻烃、氦(氖/氢)等稀有气体的检测,其中氦气样品采集的方法有顶空气采样、瓶装土采样、游离气采样和井中气采样。顶空气采样是在野外采集新鲜的土壤样品,迅速装入已有100 mL饱和食盐水的顶空气瓶中,留取一定空间,待平衡后测定顶空气体[8]。
在氦气顶空气采样中,影响氦气含量的因素有储存容器、液体介质、保存温度和保存时间。本研究重点探讨顶空气采样,采用氦气标准气体,以不同方法保存处理,用气相色谱仪检测分析结果,以期筛选出合适的氦气保存方法,并进一步探讨在该采样和保存方法条件下氦罐顶气的有效保存时间,拟为土壤氦气资源调查的氦气样品采集方法提供实验依据和理论指导。
1. 实验部分
1.1 仪器及工作条件
GC-2014气相色谱仪(日本岛津公司),工作条件为[9-12]:热导检测器(TCD)温度150℃;PQ填充柱,13x分子筛色谱柱,柱温箱温度为40℃;载气为高纯氮(99.999%),载气流速22 mL/min;采用2 mL定量环进样,反吹电磁十通转换阀的切换时间为0.80 min。
1.2 实验材料
氦气标准气体(购自中国计量科学院化学计量与分析科学研究所):5.1×10-6 mol/mol,10.3×10-6 mol/mol,19.8×10-6 mol/mol,30.4×10-6 mol/mol,50.0×10-6 mol/mol。
500 mL罐顶气瓶(塑料材质),500 mL罐顶气瓶(玻璃材质)。
氯化钠(分析纯),自来水,纯净水(“娃哈哈”品牌,1.5 L纯净水)。
1.3 实验方法
1.3.1 氦罐顶气的储存容器选择实验
选用市场上常见的塑料和玻璃两种材质的罐顶气瓶进行实验。在罐顶气瓶中注满饱和食盐水,封闭瓶口;再采用排水法分别加入50.0×10-6 mol/mol标准气体50 mL,密封、倒置、常温保存,每种处理5个重复;然后在1个月后检测不同罐顶气瓶中的氦气含量。
1.3.2 氦罐顶气的保存介质选择实验
分别采用自来水、纯净水、饱和食盐水为保存介质进行实验。统一采用玻璃材质罐顶气瓶,依次采用排水法在罐顶气瓶中加入50.0×10-6 mol/mol标准气体50 mL,密封倒置常温保存1个月,每种处理5个重复,然后检测罐顶气瓶中的氦气含量。
1.3.3 氦罐顶气的储存环境温度影响实验
采用常温保存和冰柜冷藏(4℃)保存这两种方式进行实验。统一采用玻璃材质罐顶气瓶和饱和食盐水为保存介质,用排水法在罐顶气瓶中加入50.0×10-6 mol/mol标准气体50 mL,在不同的温度下(常温、冰柜)保存1个月,每种处理5个重复,然后检测罐顶气瓶中的氦气含量。
1.3.4 氦罐顶气的保存期限实验
在实际应用中,样品的采集和储存不可能一直处于低温环境下,因此采用常温保存和冰柜冷藏(4℃)保存这两种方式来研究氦罐顶气的保存期限。实验中统一采用玻璃材质罐顶气瓶和饱和食盐水为保存介质,用排水法在罐顶气瓶中加入标准气体100 mL。标准气体采用10.3×10-6 mol/mol、50.0×10-6 mol/mol两个浓度。在不同的温度下(常温、冰柜)保存,每种处理5个重复,测量初始值,然后检测保存7天、15天、21天、30天、60天、90天、120天和150天时每一个罐顶气瓶中不同时间的氦气含量。
1.4 标准曲线与精密度
1.4.1 标准曲线
采用外标法定量,在选定的气相色谱工作条件下,通过注射器将不同浓度梯度的氦气标准气体5.1、10.3、19.8、30.4、50.0(×10-6 mol/mol)依次进样,测定出峰面积依次为1.83、3.76、7.31、11.64、18.26(×25 μV·S),根据氦气标准气体浓度(y)和出峰面积(x)绘制标准曲线。最后得到氦气标准曲线为y=0.3697x,相关系数R2=0.9991。
1.4.2 精密度
用绘制的标准曲线对50.0×10-6 mol/mol氦气标准气进行10次检测,检测结果(×10-6 mol/mol)依次为50.4、49.9、49.3、50.7、49.5、49.4、50.6、49.6、49.1、49.8。10次测量的平均值为49.83×10-6 mol/mol,标准偏差为0.56×10-6 mol/mol,相对标准偏差为1.12%。由此可以看出,气相色谱标准曲线的检测数据分散程度较小,精密度很高,可以保证氦气测量结果的准确性。
2. 结果与讨论
2.1 氦罐顶气在不同储存容器的保存效果
通过塑料瓶和玻璃瓶保存氦气的实验数据见表 1。由表 1可以看出:塑料瓶保存的氦气在1个月后平均含量下降10.6%,玻璃瓶保存的氦气在1个月后平均含量下降3.7%。实际采样分析中,氦罐顶气在野外采样后再送到实验室检测需要一定时间,本研究认为在这段保存时间内样品的含量变化应在10%以内,以减少储存过程对样品检测数据的影响。因此罐顶气瓶应选用玻璃材质的储气瓶进行采样保存,这与周强等[12]和范树全[13]的研究结果一致。
表 1 不同储存容器处理的氦罐顶气瓶中氦气测量结果Table 1. Analytical results of helium headspace gas in different storage conditions储存条件 初始的氦气平均值(×10-6 mol/mol) 保存后的氦气测量平均值(×10-6 mol/mol) 保存前后氦气变化率(%) 塑料瓶 44.23 39.55 -10.6 玻璃瓶 44.29 42.64 -3.7 自来水 40.99 35.32 -13.8 纯净水 42.09 37.65 -10.5 饱和食盐水 44.29 41.80 -5.6 常温 44.29 41.80 -5.6 4℃冰柜 44.21 44.75 1.2 2.2 氦罐顶气在不同储存介质中保存效果
通过自来水、纯净水、饱和食盐水的氦气保存对比实验数据(表 1)可以看出:自来水对氦气样品初始值的影响最大,饱和食盐水的影响最小;氦气样品在这三种介质中保存一个月后,氦气的平均含量依次下降13.8%、10.5%和5.6%,饱和食盐水对难溶于水的氦气储存影响最小。饱和食盐水对氦气储存影响小的原因,可能是饱和食盐水中含有大量的Na+、Cl-,填充了H2O分子间隙,从而减少了氦气在水中的溶解度。这符合亨利定律的原理,He在高盐度下(4 mol/L)亨利系数急剧增大,溶解度显著降低[4, 14]。因此,对氦气样品保存的影响最小的饱和食盐水,是最适合作为氦罐顶气的保存介质。
2.3 氦罐顶气在不同储存环境温度下的保存效果
通过在常温和冰柜这两种不同温度下的氦气保存实验,由表 1数据可以看出:采用常温和冰柜保存的氦罐顶气在保存1个月后,常温保存的氦气平均值下降5.6%,而冰柜保存的氦气含量基本未见变化。可见低温保存的效果明显优于常温保存,因而在日常氦罐顶气样品的保存中应尽量采用低温保存的方法。
2.4 氦罐顶气的保存期实验结果
实验采用玻璃瓶、饱和食盐水的氦气保存方法,测定氦气在常温和冷藏环境下的保存期,氦气含量的测量数据列于表 2。由表 2数据可知:低浓度和高浓度的氦气在常温或冷藏保存的变化趋势基本保持一致。现以高浓度氦气的保存结果为例:常温保存下的氦罐顶气在一周内氦气的含量基本不变;保存三周后氦气含量下降1.7%;保存30天、60天、90天后氦气含量依次下降5.6%、7.8%和15.7%;而保存120天和150天后氦气含量下降为46.2%和55.8%,氦气损失几近一半。冷藏保存下的氦罐顶气在30天内氦气的含量基本不变,保存60天、90天后氦气含量依次下降2.1%和2.9%,保存120天和150天后氦气含量分别下降19.6%和41.3%。
表 2 氦罐顶气在常温和冷藏保存不同时间的氦气含量Table 2. Helium gas content of helium tank at different time in normal temperature or cold storage温度条件 保存不同时间的氦气含量(×10-6) 初始值 7天 15天 21天 30天 60天 90天 120天 150天 常温 44.29 44.02 43.26 43.55 41.8 40.82 37.34 23.79 19.56 9.40 9.39 9.09 9.04 9.07 8.79 7.36 6.16 5.62 冷藏 44.21 44.74 43.37 43.2 44.75 43.27 42.91 35.53 25.97 9.43 9.47 9.45 9.37 9.28 9.21 9.04 7.45 6.53 图 1为氦罐顶气在常温和冷藏条件下保存不同时间的氦气含量平均值折线图。从图中可以看出:在常温下保存21天后氦气含量开始下降,在保存2个月后氦气含量开始迅速下降;在低温冷藏下保存3个月内氦气含量稳定,3个月后开始迅速下降;氦罐顶气在冷藏保存时要比常温下稳定,保存3个月的效果优于常温保存1个月的效果。
因此,在日常实际采样检测中,应该确保氦罐顶气在采集后及时送往实验室检测;在常温保存的情况下,尽量在1个月内完成检测,最迟也不能超过2个月,而冷藏保存的氦罐顶气也必须在3个月内完成检测,以确保检测数据的准确性。
3. 结论
本实验利用气相色谱仪分析检测氦罐顶气样品,确定了氦气顶空气采样中的采样瓶应该选用玻璃瓶,饱和食盐水为最佳封存介质,低温冷藏保存效果优于常温保存。在常温下保存,氦罐顶气的保存期约为2个月;在低温冷藏下保存,氦罐顶气的保存期为3个月,保存期限比常温保存多1个月。
本实验确定了氦罐顶气的采集和保存方法,初步得到了氦罐顶气样品的保存期限,对氦气罐顶气的实际采样分析工作具有良好的指导意义。
-
表 1 硅的化学纯化流程
Table 1 Chemical purification method of silicon
淋洗液 使用体积
(mL)实验目的 6mol/L硝酸 3 清洗树脂 6mol/L硝酸 3 清洗树脂 6mol/L硝酸 3 清洗树脂 二次超纯水 2 清洗树脂,调节pH值 二次超纯水 3 清洗树脂,调节pH值 二次超纯水 3 检验滤出液pH值为中性 样品母液 1 上样接硅 二次超纯水 3 接硅 二次超纯水 3 接硅 表 2 MC-ICP-MS仪器测试Si同位素的主要工作条件
Table 2 Operating conditions for Si isotopic determination of MC-ICP-MS instrument
工作参数 实验条件 工作参数 实验条件 射频功率 1200W 锥 H截取锥和Ni Jet样品锥 冷却气流速 ~16L/min 雾化器 PFA雾化器(50μL/min) 辅助气流速 ~0.8L/min 雾室 双路气旋式石英雾室 样品气流速 ~1.0L/min 杯结构 L3 (28Si),C (29Si),H3 (30Si) 灵敏度 28Si为~5V/(μg/g) 分辨率 高分辨(>6000) 表 3 国际标准物质的硅同位素组成测量结果
Table 3 Silicon isotopic compositions of reference materials with different laboratories and our data
标准物质
编号δ29Si
(‰)2SD
(‰)δ30Si
(‰)2SD
(‰)n 来源文献 AGV-2
(安山岩)-0.08 0.04 -0.19 0.07 9 本文研究 -0.10 0.03 -0.21 0.07 11 Savage等[23](2011) -0.07 0.05 -0.15 0.06 6 Zambardi等[24](2011) -0.09 0.06 -0.21 0.07 3 Yu等[25](2018) BHVO-2
(玄武岩)-0.14 0.05 -0.29 0.05 27 本文研究 -0.14 0.05 -0.27 0.10 192 Savage等[12](2010) -0.14 0.05 -0.27 0.08 42 Zambardi等[24](2011) -0.15 0.03 -0.30 0.05 24 Yu等[25](2018) 注:2SD为一份溶液测量n次的标准偏差的2倍。 表 4 30个国家标准物质(GBW)的硅同位素组成
Table 4 Silicon isotopic composition of thirty Chinese geological reference materials (GBW)
样品类型 标准物质编号 岩石类型 δ29Si
(‰)2SD
(‰)δ30Si
(‰)2SD
(‰)n SiO2含量
(%)火成岩序列 GBW07101 超基性岩(Ultramafic) -0.16 0.08 -0.37 0.06 3 34.34 GBW07102 超基性岩(Ultramafic) -0.11 0.09 -0.29 0.03 3 37.75 GBW07103 花岗岩(Granite) -0.07 0.03 -0.23 0.06 3 72.83 GBW07104 安山岩(Andesite) -0.05 0.04 -0.15 0.05 3 60.62 GBW07105 玄武岩(Basalt) -0.13 0.05 -0.20 0.06 3 44.64 GBW07109 霓石正长岩(Ijolite syenite) -0.10 0.03 -0.29 0.02 3 54.48 GBW07110 粗面安山岩(Trachyte andesite) -0.01 0.09 -0.07 0.01 3 63.06 GBW07111 花岗闪长岩(Granodiorite) -0.15 0.04 -0.31 0.06 3 59.68 GBW07112 辉长岩(Gabbro) -0.09 0.01 -0.19 0.04 3 35.69 GBW07113 流纹岩(Rhyolite) -0.09 0.05 -0.21 0.08 3 72.78 GBW07113R 流纹岩(Rhyolite) -0.07 0.08 -0.18 0.04 3 72.78 GBW07123 辉绿岩(Diabase) -0.17 0.04 -0.28 0.06 3 49.88 变质岩序列 GBW07121 花岗片麻岩(Granite gneiss) -0.07 0.07 -0.19 0.06 3 66.27 GBW07122 角闪岩(Amphibolite) -0.15 0.01 -0.27 0.05 3 49.62 沉积岩序列 GBW07106 石英砂岩(Quartz sandstone) -0.15 0.01 -0.27 0.05 3 90.36 GBW07107 页岩(Shale) -0.08 0.02 -0.16 0.04 3 59.23 河水/海洋沉积物系列 GBW07301a 河流沉积物(Stream sediment) -0.12 0.01 -0.20 0.04 3 59.07 GBW07301aR 河流沉积物(Stream sediment) -0.11 0.01 -0.18 0.02 3 59.07 GBW07309 河流沉积物(Stream sediment) -0.12 0.12 -0.22 0.06 3 64.89 GBW07310 排水沉积物(Drainage sediment) 0.47 0.07 0.85 0.01 3 88.89 GBW07312 河流沉积物(Stream sediment) -0.12 0.11 -0.22 0.02 3 77.29 GBW07314 近岸海洋沉积物(Offshore marine sediment) -0.11 0.08 -0.29 0.05 3 61.91 GBW07333 海洋沉积物(Marine sediment) -0.21 0.10 -0.42 0.06 3 54.00 土壤序列 GBW07402 栗色土壤(Chestnut soil) -0.07 0.06 -0.18 0.05 3 73.35 GBW07405 黄红色土壤(Yellow-red soil) -0.33 0.04 -0.68 0.03 3 52.57 GBW07407 砖红壤(Latosol) -0.95 0.01 -1.82 0.03 3 32.69 GBW07408 黄土(Loess) -0.09 0.02 -0.19 0.03 3 58.61 GBW07423 湖成沉积土壤(Lacustrine deposit) -0.14 0.02 -0.29 0.04 3 61.69 GBW07425 土壤(Soil) -0.12 0.05 -0.23 0.05 3 69.42 GBW07426 来自上覆地区的土壤(Soil from overburden region) -0.06 0.03 -0.22 0.07 3 60.01 GBW07427 土壤(Soil) -0.08 0.02 -0.22 0.05 3 64.88 GBW07446 砂壤(Sandy soil) -0.08 0.07 -0.14 0.04 3 78.30 注:GBW07113R和GBW07113、GBW07301a和GBW07301aR是单独称样的一对重复样。 -
[1] MacDonad R. Silicon in igneous and metamorphic rocks[M]//Aston S R. Silicon geochemistry and biogeochemistry. London: Pergamon Press Inc, 1983: 248.
[2] McDonough W F. Compositional model for the Earth's core[J]. Treatise on Geochemistry, 2003, 2: 547-568.
[3] Poitrasson F. Silicon isotope geochemistry[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 289-344. doi: 10.2138/rmg.2017.82.8
[4] Nelson D M D, Tréguer P, Brzezinski M A, et al. Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation[J]. Global Biogeochemical Cycles, 1995, 9(3): 359-372. doi: 10.1029/95GB01070
[5] Barnes I L, Moore L J, Machlan L A, et al. Absolute isotopic ratios and atomic weight of a reference sample of silicon[J]. Journal of Research of the National Bureau of Standards, 1975, 79: 727-735.
[6] Reynolds J H, Verhoogen J. Natural variations in the isotopic constitution of silicon[J]. Geochimica et Cosmochimica Acta, 1953, 3(5): 224-234. doi: 10.1016/0016-7037(53)90041-6
[7] Douthitt C B. The geochemistry of the stable isotopes of silicon[J]. Geochimica et Cosmochimica Acta, 1982, 46(8): 1449-1458. doi: 10.1016/0016-7037(82)90278-2
[8] Moliniv-elsko C, Mayeda T K, Clayton R N. Isotopic composition of silicon in meteorites[J]. Geochimica et Cosmochimica Acta, 1986, 50(12): 2719-2726. doi: 10.1016/0016-7037(86)90221-8
[9] Ding T P. Analytical methods for silicon isotope deter-minations[M]//de Groot P A. Handbook of stable isotope analytical techniques. Elsevier B V, 2004: 523-537.
[10] Basile-Doelsch I, Meunier J D, Parron C. Another continental pool in the terrestrial silicon cycle[J]. Nature, 2005, 433(7024): 399-402. doi: 10.1038/nature03217
[11] Georg R B, Reynolds B C, Frank M, et al. New sample preparation techniques for the determination of Si isotopic compositions using MC-ICPMS[J]. Chemical Geology, 2006, 235(1-2): 95-104. doi: 10.1016/j.chemgeo.2006.06.006
[12] Savage P S, Georg R B, Armytage R M G, et al. Silicon isotope homogeneity in the mantle[J]. Earth and Planetary Science Letters, 2010, 295(1-2): 139-146. doi: 10.1016/j.epsl.2010.03.035
[13] Yuan H L, Cheng C, Chen K Y, et al. Standard-sample bracketing calibration method combined with Mg as an internal standard for silicon isotopic compositions using multi-collector inductively coupled plasma mass spectro-metry[J]. Acta Geochimica, 2016, 35(4): 421-427. doi: 10.1007/s11631-016-0105-7
[14] 程琤, 陈开运, 包志安, 等. 大型多接收等离子体质谱测定地质样品的硅同位素[J]. 矿物岩石地球化学通报, 2016, 35(3): 454-457. doi: 10.3969/j.issn.1007-2802.2016.03.007 Cheng C, Chen K Y, Bao Z A, et al. Determination of Si isotopic compositions of geological samples using high resolution multi-collector inductively coupled plasma mass spectrometry[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(3): 454-457. doi: 10.3969/j.issn.1007-2802.2016.03.007
[15] 王俊霖, 王微, 魏海珍. 高精度硅同位素分析方法研究进展[J]. 高校地质学报, 2021, 27(3): 275-288. doi: 10.16108/j.issn1006-7493.2021033 Wang J L, Wang W, Wei H Z. Progress in high precision analytical approaches of silicon isotope[J]. Geological Journal of China Universities, 2021, 27(3): 275-288. doi: 10.16108/j.issn1006-7493.2021033
[16] Armytage R M G, Georg R B, Savage P S, et al. Silicon isotopes in meteorites and planetary core formation[J]. Geochimica et Cosmochimica Acta, 2011, 75(13): 3662-3676. doi: 10.1016/j.gca.2011.03.044
[17] Zambardi T, Poitrasson F, Corgne A, et al. Silicon isotope variations in the inner Solar system: Implications for planetary formation, differentiation and composition[J]. Geochimica et Cosmochimica Acta, 2013, 121: 67-83. doi: 10.1016/j.gca.2013.06.040
[18] Chen A X, Li Y H, Chen Y, et al. Silicon isotope composition of subduction zone fluids as recorded by jadeitites from Myanmar[J]. Contributions to Mineralogy and Petrology, 2020, 175: 6. doi: 10.1007/s00410-019-1645-8
[19] 王学求, 张勤, 白金峰, 等. 地球化学基准与环境监测实验室分析指标对比与建议[J]. 岩矿测试, 2020, 39(1): 1-14. doi: 10.15898/j.cnki.11-2131/td.201906050080 Wang X Q, Zhang Q, Bai J F, et al. Comparison of laboratory analysis parameters and guidelines for global geochemical baselines and environmental monitoring[J]. Rock and Mineral Analysis, 2020, 39(1): 1-14. doi: 10.15898/j.cnki.11-2131/td.201906050080
[20] 李津, 唐索寒, 马健雄, 等. 金属同位素质谱中分析样品处理的基本原则和方法[J]. 岩矿测试, 2021, 40(5): 627-636. doi: 10.15898/j.cnki.11-2131/td.202012150166 Li J, Tang S H, Ma J X, et al. Principles and treatment methods for metal isotopes analysis[J]. Rock and Mineral Analysis, 2021, 40(5): 627-636. doi: 10.15898/j.cnki.11-2131/td.202012150166
[21] 李超, 王登红, 屈文俊, 等. 关键金属元素分析测试技术方法应用进展[J]. 岩矿测试, 2020, 39(5): 658-669. doi: 10.15898/j.cnki.11-2131/td.201907310115 Li C, Wang D H, Qu W J, et al. A review and perspective on analytical methods of critical metal elements[J]. Rock and Mineral Analysis, 2020, 39(5): 658-669. doi: 10.15898/j.cnki.11-2131/td.201907310115
[22] Young E D, Galy A, Nagahara H. Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance[J]. Geochimica et Cosmochimica Acta, 2002, 66(6): 1095-1104. doi: 10.1016/S0016-7037(01)00832-8
[23] Savage P S, Georg R B, Williams H M, et al. Silicon isotope fractionation during magmatic differentiation[J]. Geochimica et Cosmochimica Acta, 2011, 75(20): 6124-6139. doi: 10.1016/j.gca.2011.07.043
[24] Zambardi T, Poitrasson F. Precise determination of silicon isotopes in silicate rock reference materials by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2011, 35(1): 89-99. doi: 10.1111/j.1751-908X.2010.00067.x
[25] Yu H M, Li Y H, Gao Y J, et al. Silicon isotopic com-positions of altered oceanic crust: Implications for Si isotope heterogeneity in the mantle[J]. Chemical Geology, 2018, 479: 1-9. doi: 10.1016/j.chemgeo.2017.12.013
[26] An Y J, Li X, Zhang Z F. Barium isotopic compositions in thirty-four geological reference materials analysed by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2020, 44(1): 183-199. doi: 10.1111/ggr.12299
[27] Savage P S, Georg R B, Williams H M, et al. The silicon isotope composition of the upper continental crust[J]. Geochimica et Cosmochimica Acta, 2013, 109: 384-399. doi: 10.1016/j.gca.2013.02.004
[28] Savage P S, Georg R B, Williams H M, et al. The silicon isotope composition of granites[J]. Geochimica et Cosmochimica Acta, 2012, 92: 184-202. doi: 10.1016/j.gca.2012.06.017
[29] Liu X C, Li X H, Liu Y, et al. Insights into the origin of purely sediment-derived Himalayan leucogranites: Si-O isotopic constraints[J]. Science Bulletin, 2018, 63(19): 1243-1245.
[30] André L, Cardinal D, Alleman L Y, et al. Silicon isotopes in ~3.8Ga West Greenland rocks as clues to the Eoarchaean supracrustal Si cycle[J]. Earth and Planetary Science Letters, 2006, 245(1-2): 162-173.
[31] Savage P S, Georg R B, Williams H M, et al. Silicon isotopes in granulite xenoliths: Insights into isotopic fractionation during igneous processes and the composition of the deep continental crust[J]. Earth and Planetary Science Letters, 2013b, 365: 221-231.
[32] Frings P J, Rocha C D L, Struyf E, et al. Tracing silicon cycling in the Okavango Delta, a sub-tropical flood-pulse wetland using silicon isotopes[J]. Geochimica et Cosmochimica Acta, 2014, 142: 132-148.
[33] Zeng Z, Sun Y F, Tang H Y, et al. Silicon isotope com-positions of reference materials for soils and sediments determined by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2021, 46(1): 117-127.
[34] Delvigne C, Guihou A, Schuessler J A, et al. Silicon isotope analyses of soil and plant reference materials: An inter-comparison of seven laboratories[J]. Geostandards and Geoanalytical Research, 2021, 45(3): 525-538.
[35] Pogge von Strandmann P A P, Opfergelt S, Lai Y L, et al. Lithium, magnesium and silicon isotope behaviour accompanying weathering in a basaltic soil and pore water profile in Iceland[J]. Earth and Planetary Science Letters, 2012, 339: 11-23.
[36] Cornelis J T, Weis D, Opfergelt S, et al. Past and current geochemical conditions influence silicon isotope signatures of pedogenic clay minerals at the soil profile scale, Ethiopia[J]. Chemical Geology, 2019, 524: 174-183.
-
期刊类型引用(1)
1. 孙琳,张敏,郭彩娟,宁卓,张瑜,秦骏,张巍. 非水相液体污染场地源区自然消除研究进展. 岩矿测试. 2022(05): 704-716 . 本站查看
其他类型引用(3)