• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

再生水入渗区典型抗生素分布特征与地下水微生物群落影响因素研究

Distribution Characteristics of Typical Antibiotics in Reclaimed Water Infiltration Area and Influencing Factors of Groundwater Microbial Community

  • 摘要: 再生水入渗携带的抗生素污染是地下水污染的来源之一,已经成为城市地下水资源的安全中不可忽视的问题。抗生素对复杂和脆弱地下水环境中的微生物群落及其功能的影响值得关注。本研究基于利用16S rRNA基因高通量测序方法,对3月和9月两个月份再生水渗入区城市地下水中微生物群落结构进行分析。结合现场调查测试和室内分析,测得样品中离子(K+、Na+、Ca2+、Mg2+、NH4+、F-、Cl-、SO42-、NO3-、NO2-、HCO3-、CO32-)浓度,并采用超高效液相色谱-串联质谱技术测得主要的抗生素浓度(环丙沙星、诺氟沙星、氧氟沙星、莫西沙星、磺胺吡啶和磺胺醋酰),对研究区地下水环境中微生物群落结构及与环境因子的响应规律进行探讨。结果表明:①研究区内3月份地下水中抗生素浓度要高于9月份整体抗生素浓度,以磺胺醋酰和环丙沙星为主,此外除了季节因素外,人类活动可能是影响抗生素分布的又一因素;②微生物群落主要由变形菌门(Proteobacteria,81.04%),其次是拟杆菌门(Bacteroidota,7.60%)、厚壁菌门(Firmicutes,4.21%)等组成。三氮(NH4+、NO3-、NO2-、)和抗生素是影响研究区内微生物群落结构的重要影响因素,不同抗生素对微生物群落影响存在差异,其中磺胺吡啶、诺氟沙星、氧氟沙星和莫西沙星对微生物的影响最大,环丙沙星和磺胺醋酰的影响程度较小;③共现性网络分析发现有占据优势的两个功能群与抗生素有较高的连结度,即抗生素对该研究区内主要的微生物功能群及其功能存在潜在的影响。本研究可为认识抗生素对地下水微生物群落的影响机制以及生态风险提供帮助。

     

    Abstract:
    BACKGROUND Antibiotic pollution carried by reclaimed water infiltration is one of the sources of groundwater pollution, which has become a problem that cannot be ignored in the safety of urban groundwater resources. The effects of antibiotics on microbial communities and their functions in complex and fragile groundwater environments deserve attention.
    OBJECTIVES To explore the differences of groundwater environmental factors in different seasons and the distribution characteristics of antibiotic pollution, and to explore the influence mechanism of antibiotics on a microbial community.
    METHODS Based on the high-throughput sequencing method of 16S rRNA gene, the microbial community structure in urban groundwater in the infiltration area of reclaimed water in March and September was studied. Combined with field investigation and indoor analysis, the ion (K+, Na+, Ca2+, Mg2+, NH4+, F-, Cl-, SO42-, NO3-, NO2-, HCO3-, CO32-) concentration in the sample was measured, and the main antibiotic (ciprofloxacin, norfloxacin, ofloxacin, moxifloxacin, sulfapyridine, sulfacetamide) concentration was measured by ultra-high performance liquid chromatography-tandem mass spectrometry.
    RESULTS (1) In the study area, the concentration of antibiotics in groundwater in March was higher than that in September, mainly sulfacetamide and ciprofloxacin. In addition to seasonal factors, human activities may be another factor affecting the distribution of antibiotics. (2) The microbial community was mainly composed of Proteobacteria (81.04%), Bacteroidota (7.60%), and Firmicutes (4.21%). 3-nitrogen (NH4+, NO3-, NO2-) and antibiotics were important factors affecting the microbial community structure in the study area. Different antibiotics had different effects on the microbial community. Among them, sulfapyridine, norfloxacin, ofloxacin and moxifloxacin had the greatest impact on microorganisms, while ciprofloxacin and sulfacetamide had less impact. (3) Co-occurrence network analysis found that the two dominant functional groups had a high degree of connection with antibiotics, namely, antibiotics had a potential impact on the main microbial functional groups and their functions in the study area.
    CONCLUSIONS The study provides support for understanding the impact mechanism of antibiotics on a groundwater microbial community and the ecological risk.

     

/

返回文章
返回