Development of Certified Reference Materials of Polycyclic Aromatic Hydrocarbons, Organochlorine Pesticides and Polychlorinated Biphenyls in Sediments
-
摘要:
多环芳烃(PAHs)、有机氯农药(OCPs)和多氯联苯(PCBs)具有致畸、致癌、致突变效应,是优先控制的污染物。污染调查和治理对策的制定依赖于精准的分析测试数据,而标准物质是数据质量控制的重要保证,然而目前现有的相关标准物质无法满足实际需要。本文针对中国主要湖泊和河流分布特点,以及污染特征及沉积物调查现状,严格按照《国家一级标准物质技术规范》(JJF 1006—1994)和《地质分析标准物质的研制规范》(JJF 1646—2017),研制了适合中国环境监测和科学研究需求的多环芳烃、有机氯农药和多氯联苯分析沉积物标准物质4个。研制过程中,为解决有机化合物标准物质的稳定性技术难点,考察了60Co灭菌和温度对有机化合物稳定性的影响,评估了长期稳定性和短期稳定性,结果表明样品稳定性良好。针对沉积物样品基体复杂的特点,采用不同的提取和净化技术,建立合理的量值溯源链,利用传统的液相色谱法、气相色谱电子捕获器法、气相色谱-质谱法和气相色谱-同位素稀释质谱法等多种分析方法,完成了9家实验室的协作定值。定值指标包括16种多环芳烃、3种有机氯农药和3种多氯联苯,含量范围为8.0ng/g~5.7μg/g,可以满足多环芳烃、有机氯农药和多氯联苯同时分析的质量保证与质量控制的要求。该系列标准物质已被批准为国家一级标准物质(编号GBW07352~GBW07355),可用于分析方法验证、实验室质量控制、实验室分析能力考核等方面的需要。
要点(1) 研制了中国河流和湖泊不同水系沉积物标准物质,定值化合物种类多:16种多环芳烃、3种有机氯农药和3种多氯联苯;特性量值覆盖范围广(ng/g到μg/g水平),可以满足不同分析测试需求。
(2) 9家实验室采用涵盖高精准的同位素稀释质谱法等3种不同原理的分析方法进行协作定值,确保了定值准确。
(3) 定值方法、不确定评定、定值准确度等达到同类标准物质水平。
HIGHLIGHTS(1) The certified reference materials of sediments from different stream systems of rivers and lakes in China have been developed. This series of reference materials not only have three kinds of certified values: 16 PAHs, 3 OCPs and 3 PCBs, but also have a wide content range from ng/g to μg/g levels, which meet the needs of different analyses.
(2) Nine laboratories used three analytical methods for collaborative analysis, including high-precision isotope dilution mass spectrometry, which ensured the accuracy of the certified values.
(3) The method of certified values, accuracy and uncertainty have achieved the level of research and development of similar reference materials in the world.
Abstract:BACKGROUNDPolycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) have teratogenic, carcinogenic and mutagenic effects, which are priority pollutants. The formulation of pollution investigation and treatment measures depends on accurate analysis and test data, and certified reference materials (CRMs) are an important guarantee for data quality control. However, the existing relevant reference materials cannot meet the actual needs of pollution monitoring in China.
OBJECTIVESTo prepare four CRMs of sediments for analysis of PAHs, OCPs and PCBs, and to meet the needs of environmental monitoring and scientific research for the monitoring of priority pollutants in China.
METHODSIn this study, according to the specifications of certified reference materials (JJF 1006—1994, JJF1343—2012 and JJF 1646—2017), 4 CRMs of PAHs, OCPs and PCBs in different sediments (GBW07352-GBW07355) have been developed for Chinese environmental monitoring and scientific research. In the development process, in order to solve the technical difficulties of the stability of organic compound reference materials, the effects of 60Co sterilization and temperature on the stability of organic compounds were investigated. In view of the complex characteristics of the sediment sample matrix, different extraction and purification technologies were adopted to reduce or eliminate the influence of the complex matrix on the extraction solution and reduce the matrix effect of instrument measurement. Nine laboratories' collaborative analysis was carried out by using traditional methods including high performance liquid chromatography (HPLC), gas chromatography-electron capture detector (GC-ECD), gas chromatography-mass spectrometry (GC-MS) and new techniques of gas chromatography-isotope dilution mass spectrometry (GC-IDMS).
RESULTSThe sediment candidates have good homogeneity and stability. The certified values and expanded uncertainty for 16 PAHs, 3 OCPs and 3 PCBs are given, and the concentrations range from 9.0ng/g to 5.7μg/g, which meets the requirements of quality assurance and quality control for analysis of PAHs, OCPs and PCBs.
CONCLUSIONSThis series of reference materials has been approved as a national first-class reference material, numbered from GBW07352 to GBW07355. This series of CRMs can be used in analytical method validation, laboratory quality control, laboratory analysis ability assessment.
-
致谢: 9家实验室:中国计量科学研究院、浙江省地质矿产研究所、安徽省地质实验研究所、南京地质矿产研究所、青岛海洋地质研究所、江苏地质调查研究院、中国农业科学院农业质量标准与检测技术研究所、浙江省农业科学院农产品质量标准研究所、中国科学院生态环境研究中心参加了该标准物质的协作定值或结果验证;标准物质的制备由中国地质科学院地球物理地球化学勘查研究所协助完成。在此一并表示感谢!
-
表 1 国内外研制的有关土壤/沉积物中PAHs、OCPs和PCBs分析标准物质
Table 1 CRMs of PAHs, OCPs and PCBs standard materials in soils/sediments
标准物质来源 标准物质个数 标准物质编号 定值组分 中国 12 GBW(E)081518、GBW(E)081519、GBW07474 土壤中7种PCBs GBW08307 土壤中14种PCBs GBW(E)081937 土壤中15种OCPs GBW07473 土壤中8种OCPs GBW07469、GBW07470 土壤中8种OCPs和2种PCBs GBW07471、GBW07472 土壤中8种OCPs和7种PCBs GBW(E)081938 底泥中16种PAHs GBW(E)082042 底泥中11种OCPs 美国国家标准与技术研究院(NIST) 2 SRM 1941b
SRM1944海洋沉积物中7种OCPs、29种PCBs、24种PAHs
港口积物中3种OCPs、29种PCBs、22种PAHs欧盟联合研究中心标准物质与测量研究所(IRMM) 5 ERM-CC007a
BCR-481
BAM-U019
BCR-535
BCR-536土壤中6种OCPs
土壤中13种PCBs
土壤中7种PCBs
淡水沉积物中7种PAHs
淡水沉积物中13种PCBs英国政府化学家实验室(LGC) 2 LGC6114
LGC6188港口沉积物中7种PCBs
河流沉积物中16种PAHs国际原子能机构(IAEA) 3 IAEA-408
IAEA-417
IAEA-383河口沉积物中5种OCPs、13种PAHs和14种PCBs
湖泊沉积物中4种OCPs、17种PAHs和24种PCBs
沉积物中1种OCPs、19种PAHs和18种PCBs日本国家计量研究院(NMIJ) 3 NMIJ CRM 7304-a、NMIJ CRM 7305-a
NMIJ CRM 7307-a沉积物中4种OCPs和14种PCBs
沉积物中16种PAHs表 2 候选物GSSO-7均匀性检验结果
Table 2 Homogeneity test for candidate material GSSO-7
参数 萘 苊烯 苊 芴 菲 蒽 荧蒽 芘 苯并[a]蒽 䓛 平均值(ng/g) 1258 228 268 308 5785 350 3725 3224 1012 1258 样品数量(件) 25 25 25 25 25 25 25 25 25 25 最小值(ng/g) 1068 189 224 256 4886 284 3239 2819 875 1038 最大值(ng/g) 1485 253 300 349 6748 414 4225 3691 1178 1595 RSD(%) 6.77 5.68 5.87 8.49 9.39 8.90 6.63 7.82 9.43 9.67 F实测值 1.594 1.545 1.703 1.542 1.367 1.444 1.425 1.256 1.587 1.670 Sbb(ng/g) 34.7 5.10 6.88 10.2 180 11.2 87.1 70.7 38.7 52.1 参数 苯并[b] 荧蒽 苯并[k] 荧蒽 苯并[a]芘 二苯并[a, h]蒽 苯并[g, h, i]苝 茚并[1, 2, 3-cd]芘 平均值(ng/g) 826 452 769 111 908 782 样品数量(件) 25 25 25 25 25 25 最小值(ng/g) 703 390 681 97.4 802 658 最大值(ng/g) 954 518 897 131 1039 874 RSD(%) 8.72 8.01 6.63 6.56 7.54 6.67 F实测值 1.593 1.682 1.688 1.373 1.506 1.665 Sbb(ng/g) 29.3 15.7 22.1 2.43 26.1 22.3 表 3 候选物GSSO-7长期稳定性检验结果
Table 3 Long stability tests for candidate material GSSO-7(-18℃)
化合物 含量平均值
(ng/g)RSD
(%)b1 t0.05×S(b1) usl 萘 1288 4.91 -1.289 7.800 113 苊烯 209 4.59 -0.172 1.199 17.4 苊 240 4.53 0.065 1.407 20.2 芴 279 3.81 -0.319 1.224 17.6 菲 5652 4.59 -3.614 35.59 513 蒽 315 4.21 -0.543 1.347 19.4 荧蒽 4053 3.65 4.697 16.83 243 芘 3280 3.79 0.246 13.13 233 苯并[a]蒽 1007 4.73 -1.475 5.454 78.5 䓛 1396 3.85 -1.679 6.135 88.2 苯并[b]荧蒽 870 3.63 -0.427 4.007 57.7 苯并[k]荧蒽 474 3.04 -0.115 1.854 26.6 苯并[a]芘 812 4.61 -0.480 4.757 68.4 二苯并[a, h]蒽 110 4.71 -0.145 0.612 8.82 苯并[g, h, i]苝 939 5.07 -0.796 5.969 86.0 茚并[1, 2, 3-cd]芘 771 5.44 -0.738 5.238 75.3 表 4 候选物GSSO-7短期稳定性检验结果
Table 4 Short stability tests for candidate material GSSO-7(25℃)
化合物 含量平均值
(ng/g)RSD
(%)b1 t0.05×S(b1) uss 萘 1232 3.48 -4.261 17.74 55.9 苊烯 196 3.05 -0.625 2.438 7.67 苊 243 3.35 -1.185 2.965 9.33 芴 266 2.89 -0.237 3.45 10.9 菲 5393 3.82 -31.802 72.57 229 蒽 290 2.91 -1.115 3.221 10.2 荧蒽 4189 3.26 -17.31 52.90 167 芘 3128 5.06 -27.27 50.83 160 苯并[a]蒽 955 2.42 0.1402 10.46 32.9 䓛 1353 2.07 -1.224 12.20 38.4 苯并[b]荧蒽 856 3.24 -1.917 12.04 37.9 苯并[k]荧蒽 466 3.66 0.281 7.697 24.2 苯并[a]芘 812 3.30 -0.781 12.03 37.9 二苯并[a, h]蒽 103 3.76 0.0566 1.744 5.49 苯并[g, h, i]苝 906 3.03 0.441 12.39 39.0 茚并[1, 2, 3-cd]芘 745 2.92 0.128 9.839 31.0 表 5 九家协作定值实验室所用分析方法
Table 5 Analytical methods used in nine collaborative laboratories
协作实验室 样品前处理方法 目标物含量测定方法 本文项目组 ASE提取,SPE净化 GC-ECD,GC-MS,GC-IDMS,HPLC 浙江省地质矿产研究所 ASE提取,SPE净化 GC-ECD,HPLC,GC-MS 安徽省地质实验研究所 索氏提取,SPE净化 GC-ECD,HPLC,GC-MS 南京地质矿产研究所 ASE提取,SPE净化 GC-MS 青岛海洋地质研究所 ASE提取,SPE净化 GC-MS 中国农业科学院农业质量标准与检测技术研究所 ASE提取,GPC净化 GC-MS 浙江省农业科学院农产品质量标准研究所 ASE提取,SPE净化 GC-MS 江苏地质调查研究院 ASE提取,SPE净化 GC-ECD,HPLC,GC-MS 中国计量科学研究院 ASE提取,SPE净化 GC-IDMS 表 6 沉积物标准物质认定值及扩展不确定度
Table 6 Certified values and expanded uncertainties for sediments reference materials
特性量 特性量值及扩展不确定度 GBW07352
(μg/g)GBW07353
(ng/g)GBW07354
(ng/g)GBW07355
(ng/g)萘 1.31±0.29 (53) (23) (61) 苊烯 0.20±0.05 - - - 苊 0.25±0.06 - - - 芴 0.29±0.06 (12) (9) (13) 菲 5.7±1.3 (92) (66) (172) 蒽 0.30±0.06 (9) (8) (12) 荧蒽 4.10±0.66 80±13 71±13 159±27 芘 3.24±0.61 46±10 46±9 111±22 苯并[a]蒽 1.03±0.20 30±8 24±7 101±20 䓛 1.46±0.24 54±13 34±10 104±21 苯并[b]荧蒽 0.90±0.17 51±11 31±9 119±20 苯并[k]荧蒽 0.50±0.09 (18) 15±5 35±9 苯并[a]芘 0.84±0.18 25±6 18±6 40±9 二苯并[a, h]蒽 0.11±0.03 (12) (10) (15) 苯并[g, h, i]苝 0.95±0.21 43±11 24±7 83±18 茚并[1, 2, 3-cd]芘 0.77±0.18 34±8 20±6 56±12 p, p’-DDE - - 61±14 - 甲体六六六 - - 26±7 12±4 乙体六六六 - - 43±10 29±7 PCB 28 - - 39±9 - PCB 52 - - 46±11 - PCB 101 - - 43±11 - 注:括号内数据表示参考值;“-”表示该化合物未定值。 -
[1] Yang J, Qadeer A, Liu M, et al. Occurrence, source and partition of PAHs, PCBs and OCPs in the multiphase system of an urban lake, Shanghai[J]. Applied Geochemistry, 2019, 106: 17-25. doi: 10.1016/j.apgeochem.2019.04.023
[2] 张文博, 刘宾绪, 江涛, 等. 环渤海渔港沉积物多环芳烃的污染特征和生态风险评价[J]. 环境化学, 2022, 41(2): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202202015.htm Zhang W B, Liu B X, Jiang T. et al. Pollution characteristics and ecological risk assessment of polycyclic aromatic hydrocarbons in sediments from fishing ports along the coast of Bohai Sea[J]. Environmental Chemistry, 2022, 41(2): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202202015.htm
[3] 李玉芳, 潘萌, 顾涛, 等. 北京哺乳期女性及婴幼儿多环芳烃暴露风险变化特征[J]. 岩矿测试, 2020, 39(4): 578-586. doi: 10.15898/j.cnki.11-2131/td.201912040167 Li Y F, Pan M, Gu T, et al. Exposure of mother and infants to polycyclic aromatic hydrocarbons during lactation, Beijing[J]. Rock and Mineral Analysis, 2020, 39(4): 578-586. doi: 10.15898/j.cnki.11-2131/td.201912040167
[4] Hou J, Yin W J, Li P, et al. Joint effect of polycyclic aromatic hydrocarbons and phthalates exposure on telomere length and lung function[J]. Journal of Hazardous Materials, 2020, 386: 121663. doi: 10.1016/j.jhazmat.2019.121663
[5] Ye X Q, Pan W Y, Li C M, et al. Exposure to polycyclic aromatic hydrocarbons and risk for premature ovarian failure and reproductive hormones imbalance[J]. Journal of Environmental Sciences, 2020, 91: 1-9. doi: 10.1016/j.jes.2019.12.015
[6] Donat-Vargas C, Åkesson A, Berglund M, et al. Dietary exposure to polychlorinated biphenyls and risk of breast, endometrial and ovarian cancer in a prospective cohort[J]. British Journal of Cancer, 2016, 115: 1113-1121. doi: 10.1038/bjc.2016.282
[7] Abbassy M A, Khalifa M A, Nassar A M K, et al. Analysis of organochlorine pesticides residues in fish from Edko Lake (North of Egypt) using eco-friendly method and their health implications for humans[J]. Toxicology Research, 2021, 37: 495-503. doi: 10.1007/s43188-020-00085-8
[8] Yin S J, Sun Y, Yu J H, et al. Prenatal exposure to organochlorine pesticides is associated with increased risk for neural tube defects[J]. Science of the Total Environment, 2021, 770: 145284. doi: 10.1016/j.scitotenv.2021.145284
[9] 赵亚静, 邹立, 牛增元, 等. 液相色谱-高分辨质谱技术在沉积物和颗粒物中有机污染物分析的研究进展[J]. 分析测试学报, 2021, 40(9): 1396-1408. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST202109020.htm Zhao Y J, Zou L, Niu Z Y, et al. Advances in the analysis of organic contaminants in sediments and particulate matters by liquid chromatography-high resolution mass spectrometry[J]. Journal of Instrumental Analysis, 2021, 40(9): 1396-1408. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST202109020.htm
[10] 刘烨, 王玉洁, 汪福顺, 等. 多环芳烃在新安江河流-水库体系表层沉积物中的分布、来源及生态风险评估[J]. 上海大学学报(自然科学版), 2020, 26(1): 113-122. https://www.cnki.com.cn/Article/CJFDTOTAL-SDXZ202001011.htm Liu Y, Wang Y J, Wang F S, et al. Occurrence, sources and ecological risk assessment of polycyclic aromatic hydrocarbons in surface sediments from Xin'anjiang river-reservoir system[J]. Journal of Shanghai University (Natural Science Edition), 2020, 26(1): 113-122. https://www.cnki.com.cn/Article/CJFDTOTAL-SDXZ202001011.htm
[11] 许妍, 陈佳枫, 徐磊, 等. 白洋淀表层沉积物中有机氯农药和全多氯联苯的分布特征及风险评估[J]. 湖泊科学, 2020, 32(3): 654-664. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX202003006.htm Xu Y, Chen J F, Xu L, et al. Distribution and risk assessment of organochlorine pesticides and polychlori-nated biphenyls in surficial sediments from Lake Baiyangdian[J]. Lake Science, 2020, 32(3): 654-664. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX202003006.htm
[12] 范晨子, 刘永兵, 赵文博, 等. 云南安宁水系沉积污染物分布特征与风险评价[J]. 岩矿测试, 2021, 40(4): 570-582. doi: 10.15898/j.cnki.11-2131/td.202103080035 Fan C Z, Liu Y B, Zhao W B, et al. Pollution distribution characteristics and ecological risk assessment of heavy metals and polycyclic aromatic hydrocarbons in the river sediments in Anning, Yunnan Province[J]. Rock and Mineral Analysis, 2021, 40(4): 570-582. doi: 10.15898/j.cnki.11-2131/td.202103080035
[13] Li H X, Jiang W W, Pan Y L, et al. Occurrence and partition of organochlorine pesticides (OCPs) in water, sediment, and organisms from the eastern sea area of Shandong Peninsula, Yellow Sea, China[J]. Marine Pollution Bulletin, 2021, 162: 111906. doi: 10.1016/j.marpolbul.2020.111906
[14] Wang P, Shang H T, Li H H, et al. PBDEs, PCBs and PCDD/Fs in the sediments from seven major river basins in China: Occurrence, congener profile and spatial tendency[J]. Chemosphere, 2016, 144: 13-20. doi: 10.1016/j.chemosphere.2015.08.045
[15] 雷沛, 潘科, 张洪, 等. 水体沉积物中16种优控PAHs的快速萃取[J]. 环境化学, 2019, 38(3): 494-502. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201903006.htm Lei P, Pan K, Zhang H, et al. A device for the rapid extraction of 16 priority PAHs in aquatic sediments[J]. Environmental Chemistry, 2019, 38(3): 494-502. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201903006.htm
[16] Itoh N, Aoyagi Y, Takatsu A, et al. Certified reference material for quantification of polycyclic aromatic hydrocarbons in sediment from the National Metrology Institute of Japan[J]. Analytical and Bioanalytical Chemistry, 2009, 393: 2039-2049. doi: 10.1007/s00216-009-2675-2
[17] SRM (1941b) organics in marine sediment[R]. Gaithersburg: National Institute of Standards and Technology (NIST), 2015.
[18] SRM (1944) certificate of analysis. New York/New Jersey waterway sediment[R]. Gaithersburg: National Institute of Standards and Technology (NIST), 2017.
[19] Wise S A, Poster D L, Schantz M M, et al. Two new marine sediment standard reference materials (SRMs) for the determination of organic-contaminants[J]. Analytical and Bioanalytical Chemistry, 2004, 378: 1251-1264. doi: 10.1007/s00216-003-2431-y
[20] Wegener J W M, Cofino W P, Maier E A, et al. The preparation, testing andvertification of two freshwater sediment reference materials for polycyclic aromatic hydrocarbons and polychlorinated biphenyls: BCR CRM535 and CRM536[J]. Trends in Analytical Chemistry, 1999, 18(1): 14-25. doi: 10.1016/S0165-9936(98)00087-9
[21] Wegener J W M, Maier E A, Kramer G N, et al. The certification of the contents (mass fractions) of polycyclic aromatic hydrocarbons: Pyrene, benz[a]anthracene, benzo[a] pyrene, benzo[e]pyrene, benzo[b]fluoranthene and indeno[1, 2, 3-cd]pyrenein freshwater harbour sediment CRM 535, EUR 17795EN[R]. Commission of the European Communities: Community Bureau of Reference, 1997.
[22] LGC 6188. Statement of measurement. River sediment-PAHs (Latest Amendment)[R]. Laboratory of the Government Chemist (LGC), 2020.
[23] Tolosa1 I, Cassi1 R, Huertas D. A new marine sediment certified reference material (CRM) for the determination of persistent organic contaminants: IAEA-459[J]. Environmental Science and Pollution Research, 2019, 26: 7347-7355. doi: 10.1007/s11356-018-1895-4
[24] 田芹, 吴淑琪, 佟玲, 等. 中国典型类型土壤中有机氯农药和多氯联苯成分分析标准物质研制[J]. 岩矿测试, 2015, 34(2): 238-244. doi: 10.15898/j.cnki.11-2131/td.2015.02.015 Tian Q, Wu S Q, Tong L, et al. Preparation of certified reference materials of organochlorine pesticides and polychlorinatedbipenyl in Chinese typical soils[J]. Rock and Mineral Analysis, 2015, 34(2): 238-244. doi: 10.15898/j.cnki.11-2131/td.2015.02.015
[25] 全国标准物质管理委员会. 标准物质目录[M]. 北京: 中国质检出版社, 中国标准出版社, 2017. National Administrative Committee for Certified Reference Materials. List of standard substances[M]. Beijing: Quality Inspection of China Press, Standards Press of China, 2017.
[26] 房丽萍, 吴忠祥, 王伟, 等. 河流沉积物多环芳烃标准样品的制备与定值[J]. 岩矿测试, 2013, 32(5): 767-774. doi: 10.3969/j.issn.0254-5357.2013.05.015 Fang L P, Wu Z X, Wang W, et al. Preparation and certification of river sediment reference material for polycyclic aromatic hydrocarbons[J]. Rock and Mineral Analysis, 2013, 32(5): 767-774. doi: 10.3969/j.issn.0254-5357.2013.05.015
[27] 全国标准物质管理委员会. 标准物质的研制管理与应用[M]. 北京: 中国计量出版社, 2010. National Administrative Committee for Certified Reference Materials. Preparation, management and application of reference materials[M]. Beijing: China Metrology Publishing House, 2010.
[28] 全国标准物质管理委员会. 标准物质定值原则和统计学原理[M]. 北京: 中国质检出版社, 2011. National Administrative Committee for Certified Reference Materials. Reference material general and statistical principles for certification[M]. Beijing: Quality Inspection of China Press, 2011.
-
期刊类型引用(31)
1. 谢心怡,罗玉霞,邱慧,王健行,赵学付,王春英. 离子型稀土矿中残留氨氮的淋洗去除及动力学研究. 有色金属科学与工程. 2025(01): 143-151 . 百度学术
2. 轩诗垚,王占刚. 结合风场的土壤重金属污染扩散过程模拟. 计算机应用与软件. 2024(02): 68-72+151 . 百度学术
3. 韦春妙,章艳红,唐玉红,刘斌. 江西某退役焦化厂土壤重金属赋存形态分析及生物有效性评价. 土壤通报. 2024(03): 810-818 . 百度学术
4. 张振国,王月,陈军典,高倩,邢杰,骆念岗,田释梦,代佳浩. 冀东代表性铁尾矿库表层重金属含量特征及生态风险评价. 金属矿山. 2024(07): 231-240 . 百度学术
5. 张永康,曹耀华,冯乃琦,刘岩,张耀,王庆,刘佳. 某废弃煤矿区土壤重金属污染风险评价. 煤炭学报. 2024(07): 3188-3198 . 百度学术
6. 迟崇哲,刘影,王超,张大勇,王春慧. 有色金属矿山尾矿土壤化生态修复技术研究进展. 黄金. 2024(12): 8-12+138 . 百度学术
7. 汪媛媛,廖启林,李文博,徐宏婷,崔晓丹,刘玮晶,李文婷,周强. 江苏典型农田土壤重金属形态分布初步研究. 土壤. 2024(06): 1326-1338 . 百度学术
8. 魏光普,于晓燕,康瑜,宋宇辰. 稀土矿山“菌根-油松-耐性蚯蚓”修复土壤效应评价. 稀土. 2023(02): 120-129 . 百度学术
9. 吴灿萍,周罕,陈安,徐继刘,付俊. 某铜选冶场地土壤重金属污染特征及风险评价. 西南农业学报. 2023(02): 402-408 . 百度学术
10. 魏洪斌,罗明,向垒,查理思,杨慧丽. 矿业废弃地重金属形态分布特征与迁移转化影响机制分析. 环境科学. 2023(06): 3573-3584 . 百度学术
11. 杨洋,高慧敏,陶红,张秋灯. 重金属复合污染河道底泥淋洗动力学特征. 净水技术. 2023(06): 152-160+175 . 百度学术
12. 张永康,冯乃琦,刘岩,徐志强,张耀,王庆. 江西某铅锌矿区土壤重金属形态分析及风险评价. 矿产综合利用. 2023(03): 199-204+210 . 百度学术
13. 陈丹利,刘冠男,行正松,刘伟,潘飞飞,徐建军,赵元艺. 河南栾川钼铅锌多金属矿集区土壤重金属累积及源解析. 岩矿测试. 2023(04): 839-851 . 本站查看
14. 黄方昱,明光艳,谢玮琛,吴道铭,陈燕明. 稀土矿迹地周边农田土壤重金属生态风险评价. 世界有色金属. 2023(14): 178-181 . 百度学术
15. 林小淳,刘晓瑜,袁欣,张隆隆,刘斯文,冯亚鑫,赵晓倩,黄园英. 碱改性沸石吸附铅和氨氮性能及对稀土矿山土壤的修复作用. 岩矿测试. 2023(06): 1177-1188 . 本站查看
16. 杨士,刘祖文,龙焙,毕永顺,林苑,左华伟. 生物炭负载氧化石墨烯对离子型稀土矿区土壤中重金属的阻控效应. 环境科学. 2022(03): 1567-1576 . 百度学术
17. 陈陵康,陈海霞,金雄伟,张恋,刘金辉,柳传毅,徐狮,吴开兴,何书,孙涛,刘卫明. 离子型稀土矿粒度、粘土矿物、盐基离子迁移及重金属释放研究及展望. 中国稀土学报. 2022(02): 194-215 . 百度学术
18. 刘斯文,黄园英,赵文博,魏吉鑫,徐春丽,马嘉宝,刘久臣,黄采文. 赣南北部黄陂河流域离子型稀土矿地区水质与健康风险评价. 岩矿测试. 2022(03): 488-498 . 本站查看
19. 范晨子,袁继海,刘成海,郭威,孙冬阳,刘崴,赵九江,胡俊栋,赵令浩. 云南省安宁地区土壤重金属等元素生态地球化学调查与评价. 物探与化探. 2022(03): 761-771 . 百度学术
20. 彭红丽,谭海霞,王颖,魏建梅,冯阳. 不同种植模式下土壤重金属形态分布差异与生态风险评价. 生态环境学报. 2022(06): 1235-1243 . 百度学术
21. 鲍丽萍,陈芸,杨海博,董学林,孙勇,周佳,周新. 鄂西北稀土矿区粮食与蔬菜中重金属污染风险评价. 食品安全质量检测学报. 2022(15): 5062-5069 . 百度学术
22. 白宇明,李永利,周文辉,胡浩远,卢震,边鹏. 典型工业城市土壤重金属元素形态特征及生态风险评估. 岩矿测试. 2022(04): 632-641 . 本站查看
23. 张笑辰,刘煜,张兴绘,孙小艳. 江西省主要城市土壤重金属污染及风险评价. 环境科学与技术. 2022(08): 206-217 . 百度学术
24. 杨贤房,郑林,万智巍,王远东,孟丽红,俞大杰. 酸性矿山5种植被恢复措施下土壤碱性磷酸酶基因细菌群落特征及其与重金属关系. 环境科学学报. 2022(12): 251-261 . 百度学术
25. 范晨子,郭威,袁继海,郝乃轩,赵九江,刘成海. 西南地区典型工矿业城市土壤—作物系统中重金属和硒元素特征及评价. 西南农业学报. 2022(08): 1909-1919 . 百度学术
26. 王毛兰,何昶,赵茜宇. 江西某养殖场废水灌溉土壤重金属污染特征及健康风险评价. 岩矿测试. 2022(06): 1072-1081 . 本站查看
27. 谭启海,赵永红,黄璐,万臣,杨智,周丹. 硫酸铵对离子型稀土矿区土壤重金属的释放和形态转化影响. 有色金属科学与工程. 2022(06): 134-144 . 百度学术
28. 陈月茹,曾敏静,程媛媛,龙焙,张斌超,曾玉,林树涛,易名儒,黄思浓. 温度对好氧颗粒污泥硝化-反硝化耦合脱氮性能影响. 环境科技. 2021(03): 7-12 . 百度学术
29. 范晨子,刘永兵,赵文博,刘成海,袁继海,郭威,郝乃轩. 云南安宁水系沉积污染物分布特征与风险评价. 岩矿测试. 2021(04): 570-582 . 本站查看
30. 徐春丽,刘斯文,魏吉鑫,黄园英,马嘉宝,曾普胜,李旭光. 离子型稀土矿区及周边土壤中稀土、重金属元素的地球化学特征. 矿产保护与利用. 2021(04): 1-11 . 百度学术
31. 高娟琴,于扬,李以科,李瑞萍,柯昌辉,王登红,于沨,张塞,王雪磊. 内蒙白云鄂博稀土矿土壤-植物稀土元素及重金属分布特征. 岩矿测试. 2021(06): 871-882 . 本站查看
其他类型引用(19)
计量
- 文章访问数: 268
- HTML全文浏览量: 55
- PDF下载量: 29
- 被引次数: 50