• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

非水相液体污染场地源区自然消除研究进展

孙琳, 张敏, 郭彩娟, 宁卓, 张瑜, 秦骏, 张巍

孙琳, 张敏, 郭彩娟, 宁卓, 张瑜, 秦骏, 张巍. 非水相液体污染场地源区自然消除研究进展[J]. 岩矿测试, 2022, 41(5): 704-716. DOI: 10.15898/j.cnki.11-2131/td.202110110145
引用本文: 孙琳, 张敏, 郭彩娟, 宁卓, 张瑜, 秦骏, 张巍. 非水相液体污染场地源区自然消除研究进展[J]. 岩矿测试, 2022, 41(5): 704-716. DOI: 10.15898/j.cnki.11-2131/td.202110110145
SUN Lin, ZHANG Min, GUO Caijuan, NING Zhuo, ZHANG Yu, QIN Jun, ZHANG Wei. Review on the Research Progress of Natural Source Zone Depletion in LNAPL Contaminated Sites[J]. Rock and Mineral Analysis, 2022, 41(5): 704-716. DOI: 10.15898/j.cnki.11-2131/td.202110110145
Citation: SUN Lin, ZHANG Min, GUO Caijuan, NING Zhuo, ZHANG Yu, QIN Jun, ZHANG Wei. Review on the Research Progress of Natural Source Zone Depletion in LNAPL Contaminated Sites[J]. Rock and Mineral Analysis, 2022, 41(5): 704-716. DOI: 10.15898/j.cnki.11-2131/td.202110110145

非水相液体污染场地源区自然消除研究进展

基金项目: 

国家自然科学基金项目“低渗透透镜体中NAPLs残余的分形特征及形成机制研究” 42007171

国家重点研发计划课题“石化场地污染土壤环境风险评价与预警研究” 2018YFC1803302

详细信息
    作者简介:

    孙琳, 硕士, 工程师, 主要从事环境地质、工程地质及水文地质方面研究。E-mail: lin_sun166@163.com

    通讯作者:

    张巍, 博士, 副教授, 主要从事污染场地修复技术和政策研究。E-mail: zhw326@ruc.edu.cn

  • 中图分类号: X820.4

Review on the Research Progress of Natural Source Zone Depletion in LNAPL Contaminated Sites

  • 摘要:

    污染场地的健康风险和环境地质危害备受关注, 自然衰减被公认是优选修复技术。对存在非水相液体的场地, 源区非水相液体残余导致的“拖尾和反弹”问题对污染场地自然衰减技术提出了挑战。近年来源区自然消除技术的出现丰富深化了自然衰减修复的内涵, 展现了解决“拖尾和反弹”问题的巨大潜力。本文综述了轻非水相液体(LNAPL)污染场地源区自然消除的研究历程和最新成果, 研究显示: ①2000年至今, 自然衰减修复的相关研究逐渐从地下水污染羽衰减转向包气带源区自然消除; ②包气带自然消除过程被证实是源区自然消除的关键生物过程, 占LNAPL总质量损失的90%~99%;③LNAPL挥发过程中的生物降解是源区自然消除的主要研究对象。在以上研究过程中,建立的源区自然消除研究方法:①可分为LNAPL源区-羽识别、定性判断和定量估算三个部分; ②包气带定量评估常用浓度梯度、二氧化碳通量(动态密闭室和静态捕集)和热力学梯度是量化评估的三类方法。综合已有的研究进展和难点, 可以预见, 在未来研究中, 识别源区LNAPL的成分变化、明确源区自然消除的限速因子,以及开发恰当的气体脱气和气泡逃逸观测方法,是源区自然消除修复方法应用推广需解决的关键科学问题。

    要点

    (1) 自然衰减的研究重点,由饱水带污染羽电子受体介导生物降解,转向包气带源区产甲烷降解。

    (2) 包气带LNAPL的产甲烷和甲烷氧化过程是源区自然消除的关键过程。

    (3) 源区自然消除技术的研究需将概念模型具体化,改进监测方法,明确速率限速因子。

    HIGHLIGHTS

    (1) The focus of monitored natural attenuation (MNA) has shifted from electron receptor-mediated biodegradation of pollution plumes in saturated zones to methanogenic degradation in source areas of vadose zones.

    (2) Methanogenesis of light non-aqueous phase liquid (LNAPL) and methane oxidation in vadose zones are the key processes of natural source zone depletion (NSZD).

    (3) Further studies on NSZD include concretization of conceptual models, improvement of monitoring methods, and better understanding of rate limiting factors.

  • 重晶石是重要的含钡矿物,主要用于油气钻井中泥浆的加重剂,也是制备含钡化工产品的重要矿物原料[1]。硫酸钡是评价重晶石质量的主要指标,含量范围在46%~96%之间。重晶石常与石英、方解石、白云石、菱铁矿、菱锰矿、天青石、萤石、硫化矿物(黄铁矿、方铅矿、闪锌矿、黄铜矿)及其氧化物伴生,一般含二氧化硅、钙、锶、铅等。目前重晶石中硫酸钡的主要测定方法有:硫酸钡重量法、铬酸钡容量法。硫酸钡重量法以称重反应生成的硫酸钡的方式测定硫酸钡量;铬酸钡容量法通过滴定铬酸根离子间接测定硫酸钡量;两种方法检测流程均繁琐、复杂,且容量法分析条件不易控制,铅、锶在两种方法中都会与钡共沉淀,导致硫酸钡的测定结果偏高,样品中含锶时需要用其他方法测定锶进行差减校正。应用电感耦合等离子体发射光谱法(ICP-OES)测定硫酸钡含量的方法已有报道[2],分析流程需要两次高温熔样,两次过滤,流程仍较复杂。采用熔融制样X射线荧光光谱法(XRF)测定地质样品中的组分较为快速、简便[3-9],该法用于测定钡含量已有文献报道[10-13],例如仵利萍等[10]和曾小平等[11]以熔融制样XRF法测定重晶石中的主次量元素,可以快速测定总钡量,样品中碳酸钡的钡量会计入硫酸钡量,测定方法中未除去碳酸钡,不能准确测定其中的硫酸钡量。因此,采用XRF法测定重晶石中的硫酸钡时,样品需要进行酸处理以除去碳酸钡、铅等干扰,但样品经酸处理后不同样品的剩余量不同,造成熔剂与样品的比例不确定,仍然不能准确测定硫酸钡的含量。

    本文优化了样品前处理条件、XRF分析中熔片条件和仪器工作条件等因素,取一定量样品以10%的盐酸和10%的硝酸溶解过滤除去碳酸钡、硫酸钙及铜、铅、锌等有色金属元素,未溶解的样品在700℃下灼烧,灼烧后将样品量以氧化铝补充到初始取样量,以重晶石国家标准物质、岩石国家标准物质、高纯硫酸钡及人工混合的校准样品制作标准曲线,实现了XRF熔片法准确测定重晶石中的硫酸钡,对需要样品前处理XRF测定组分的分析方法提供了解决方案。

    Axios顺序扫描式波长色散X射线荧光光谱仪(荷兰PANalytical公司),陶瓷薄铍端窗(75 μm)超尖锐铑钯X射线管,SuperQ 4.0定量分析软件。

    已有文献对XRF法测定钡的分析参数作了系统的研究[10-13],本实验根据钡元素的性质,选择低电压,高电流;粗准直器;无滤光片;背景点选择在长波侧。重晶石中钡及主要元素的测量条件见表 1

    表  1  XRF仪器测量条件
    Table  1.  Measurement parameters of XRF instrument
    元素谱线晶体准直器
    (μm)
    探测器滤光片管电压
    (kV)
    管电流
    (mA)
    2θ(°)脉冲高度分析器测量时间(s)
    峰值背景LLPL峰值背景
    RhKα-CLiF 200150Scint.Al(200 μm)606018.4386-26782010
    SrLiF 200300Scint.Al(200 μm)606025.11900.660222782010
    BaLiF 200300FlowNone409087.17081.307033662010
    SGe 111300FlowNone30120110.69601.663235652010
    CaLiF 200300FlowNone30120113.1450-1.062632732010
    FeLiF 20015FlowNone606057.5264-0.971615682010
    TiLiF 200300FlowNone40908601904-1.191228712010
    下载: 导出CSV 
    | 显示表格

    SQP电子分析天平(赛多利斯科学仪器有限公司,北京)。

    HMS-Ⅱ-MXZ型高频熔样机(成都多林电器有限公司),可同时熔融2个样品,铂黄合金坩埚。

    盐酸、硝酸、氯化铵、三氧化二铁、氧化镁、氧化铝、硝酸铵、溴化锂、碘化铵(分析纯)。

    四硼酸锂+偏硼酸锂混合熔剂(分析纯,质量比67:33),600℃灼烧2 h,冷却后置于干燥器中备用。

    准确称取在105℃干燥2 h的样品0.2000 g,置于50 mL烧杯中,加10 mL 10%的盐酸、4 mL 10%的硝酸,盖上表面皿,于低温电热板上加热微沸30 min(随时加水控制体积10 mL),取下,用水吹洗表面皿及杯壁,冷却至室温,用慢速滤纸定量过滤,将全部未溶解的样品移至定量中速滤纸上,水洗至无氯离子,将沉淀连同滤纸一起置于50 mL瓷坩埚中,置于高温炉中低温烘干后升温灰化,于700℃灼烧30 min,取出,冷却至室温,转移到称量皿称量灼烧物质量,以氧化铝补加到0.2000 g,置于原坩埚中,称取6.0000 g四硼酸锂+偏硼酸锂混合熔剂(质量比67:33) 和0.5 g硝酸铵于坩埚中,搅匀,转移到铂黄合金坩埚中,加饱和溴化锂溶液0.4 mL,于高频熔样机上650℃预氧化3 min,1075℃熔融2 min,加碘化铵20 mg,摇动熔融4.5 min,再加碘化铵20 mg,摇动熔融1.5 min后倒入已预热的铂金合金模具中,冷却后倒出,1 h后置于XRF仪器进样交换器中测定。

    以7个重晶石国家标准物质GBW07811~GBW07817、2个岩石国家标准物质GBW07111和GBW07132、高纯硫酸钡以及人工配制的校准样品做标准系列,所选的标准物质不经酸处理,全样熔片,以标准物质中的全钡量换算为全硫酸钡量。

    重晶石矿石中除含有硫酸钡外,伴生矿物可能含有碳酸钡、硫酸钙、铅、锌等成分,影响硫酸钡的测定结果,毛香菊等[2]以10%的盐酸溶解样品、过滤除去干扰组分,ICP-OES法测定重晶石选矿样品中的硫酸钡,其结果与重量法一致。对于XRF法测定重晶石中的硫酸钡,应除去样品中的碳酸钡以及铜、铅、锌等对铂黄合金坩埚造成腐蚀的组分,熔融过程中预氧化难以消除其影响,样品前处理应考虑将这些组分尽量除去,以满足对样品熔融的要求。

    硫酸钡不溶于酸,选择盐酸、盐酸+氯化铵、盐酸+硝酸体系处理样品,以硫化物型重晶石标准物质GBW07816和多金属矿标准物质GSO-2考察样品的处理效果,以选定的处理方法溶解样品,过滤后的滤液定容、摇匀后以火焰原子吸收光谱法测定滤液中的铜、铅、锌,计算方法的溶出率,结果见表 2表 2结果表明:单独使用盐酸或盐酸+氯化铵、盐酸+硝酸均可以较好地溶解铅;盐酸、盐酸+氯化铵体系对铜、锌的溶解效果不佳,盐酸+硝酸体系对铜、铅、锌的溶出效果均较好。本法选择以10%盐酸10 mL+10%硝酸4 mL体系前处理样品。

    表  2  样品前处理方法及铜铅锌的溶出率
    Table  2.  Sample pretreatment methods and dissolution rate of Cu, Pb, Zn
    样品编号前处理方法溶出率(%)
    PbCuZn
    GBW0781610%盐酸10 mL97.56-40.96
    GSO-210%盐酸10 mL99.0840.9541.78
    GBW0781610%盐酸10 mL+0.5 g氯化铵99.76-67.82
    GSO-210%盐酸10 mL+0.5 g氯化铵100.041.940.14
    GBW0781610%盐酸10 mL+1 g氯化铵99.76-86.17
    GSO-210%盐酸10 mL+1 g氯化铵99.9629.5246.01
    GBW0781610%盐酸10 mL+10%硝酸2 mL99.94-96.01
    GSO-210%盐酸10 mL+10%硝酸2 mL100.089.5295.31
    GBW0781610%盐酸10 mL+10%硝酸4 mL99.92-99.73
    GSO-210%盐酸10 mL+10%硝酸4 mL100.091.4398.84
    注:“-”表示标准物质无标准值,未计算溶出率。
    下载: 导出CSV 
    | 显示表格

    样品的熔融程度是影响方法准确度的重要因素[14-15],样品充分熔融,方法的精密度、准确度高。仵利萍等[10]以样品与熔剂1:30的稀释比制作熔片测定重晶石中的总钡量,熔片效果较好。本文以样品与熔剂的稀释比为1:10、1:15、1:20、1:30、1:40,各稀释比制作6个玻璃样片进行实验,上机测定钡的谱线强度,计算标准偏差,结合熔片质量情况确定最佳稀释比。结果表明:样品与熔剂稀释比为1:30时样片清亮,熔融物流动性好,6个样片的钡强度标准偏差小,因此本实验选择样品与熔剂稀释比为1:30。

    样品经稀酸处理后,碳酸盐、硫化物等易溶于酸的物质被溶解分离除去,样品量减少,不同样品剩余量不同。剩余样品按原样品量与熔剂1:30的比例熔融后测定,标准物质硫酸钡的测定值偏高;剩余样品以熔剂补加到原取样量再按样品量与熔剂1:30的比例熔融测定,标准物质测定结果偏低。证明样品经酸处理后,不能直接加熔剂熔融后XRF法测定其中的组分,其原因为样品经处理后样品量减少,熔剂与样品比例不确定,导致分析结果出现较大偏差。

    研究以化学性质稳定的氧化物将剩余样品补充到样品的初始取样量。选取的氧化物在样品熔融过程中应无挥发,对钡的基体效应小,贮存过程中不发生吸水潮解、反应等现象。氧化铝、三氧化二铁、氧化镁是可选择的补加剂,过高的铁组分会增加熔融体的黏度,不宜单独使用,选择以三氧化二铁+氧化镁(质量比70:30) 混合物、氧化铝为补加剂,熔融制片测定,标准物质测定值见表 3。结果表明:将灼烧物量补加到初始取样量后,样品与熔剂比例一致,标准物质的检测结果基本满足规范要求。三氧化二铁是钡元素的基体校正组分,三氧化二铁+氧化镁(70:30) 混合物补加到不同样品中的量不同,硫酸钡测定结果的准确度较氧化铝为补加成分的结果略差,因此选择以氧化铝为补加成分。

    表  3  不同补加成分的标准物质中硫酸钡的测定值
    Table  3.  Analytical results of BaSO4 in standards materials adding different ingredients
    标准物质
    编号
    补加剂BaSO4含量
    标准值
    (%)
    测量值
    (%)
    相对误差
    (%)
    允许相对误差
    (%)
    GBW07811三氧化二铁+
    氧化镁(70:30)
    42.3242.23-0.211.37
    GBW07815三氧化二铁+
    氧化镁(70:30)
    67.0466.83-0.310.84
    GBW07816三氧化二铁+
    氧化镁(70:30)
    18.8718.66-1.112.39
    GBW07811氧化铝42.3242.410.211.37
    GBW07815氧化铝67.0466.91-0.190.84
    GBW07816氧化铝18.8719.020.792.39
    下载: 导出CSV 
    | 显示表格

    仵利萍等[10]于1050~1150℃、曾小平等[11]于1050℃熔融重晶石样品,熔片效果较好。熔片温度过低,熔融物流动性差,样片效果差,所制样片中有微小不熔颗粒,分析结果精密度差;熔片温度过高,熔融物挥发严重,黏度增大而粘连坩埚,造成不易脱埚。实验证明当温度为1075℃时,钡的谱线强度值相对稳定,测量值的标准偏差和相对标准偏差小且趋于稳定;当高于此温度,熔融物挥发量大,熔融物黏度高,不易脱埚。因此,本实验选择熔片温度为1075℃。

    样品中含有还原性物质会对坩埚造成腐蚀,加入氧化剂可以防止还原性物质对坩埚的损坏,由于取样量小,样品经过了稀酸处理、高温灼烧,样品中的还原性物质较少,氧化剂的加入量不必太多。以硝酸铵作氧化剂,过多的硝酸铵会增大熔融物的黏度,需提高碘化铵的加入量以利于脱模。实验选择加入0.25、0.50、0.75、1.0 g硝酸铵,根据熔片情况确定硝酸铵最佳加入量。实验结果表明:硝酸铵加入量小于0.50 g时熔融物的流动性较好;但加入量为0.25 g时熔好的样片脆性较大,冷却过程中部分样片会出现爆裂现象;加入量大于0.75 g时高温熔融物流动性差、黏度大、脱模剂需要量大,熔片效果变差。因此,本实验选择硝酸铵选择加入量为0.50 g。

    基体效应[16]是试样中元素间吸收、增强效应和物理化学效应对待测元素特征X射线强度的影响。经验系数法是目前XRF分析中准确定量分析的重要基体校正方法,本方法选择经验系数法进行校正。以Fe2O3、SiO2、CaO含量对钡含量进行校正后,硫酸钡的曲线离散度等参数明显改善,GBW07811的硫酸钡的测量误差<0.24%,故选择参与基体校正。

    根据XRF法检出限计算公式: $\frac{{3\sqrt 2 }}{m}\sqrt {\frac{{{I_{\rm{b}}}}}{{{t_{\rm{b}}}}}} $ (式中:m为单位含量的计数率,94.3642;Ib为背景计数率,1.5345;tb为峰值和背景总计数时间,60 s),计算得到硫酸钡检出限为72 μg/g,满足对重晶石中硫酸钡的检测要求。本法检出限略高于ICP-OES法,但远低于重晶石10%的边界品位,完全可以满足重晶石中硫酸钡的测定要求。

    按实验方法对标准物质GBW07815重复制备12个样片,按确定的测量方法测定硫酸钡,计算平均值为66.94%,相对标准偏差(RSD)为0.36%,与仵利萍等[10]采用熔融制样XRF法报道的氧化钡的精密度(RSD为0.36%)相近,优于毛香菊等[2]采用ICP-OES法的精密度(RSD为0.39%~4.1%)。这些对比表明本方法重现性较好,满足DZ/T 0130—2006《地质矿产实验室质量管理规范》的要求。

    选取不同硫酸钡含量的重晶石样品10件,以本法及硫酸钡重量法(由国土资源部保定矿产资源监督检测中心检测)测定,进行方法比对。测定结果(表 4)表明:本法与硫酸钡重量法结果相符,表明适用于重晶石中硫酸钡的测定。

    表  4  本方法与经典化学分析方法比较
    Table  4.  A comparison of analytical results by this method and traditional chemical methods
    样品
    编号
    重量法测定值
    (%)
    本法测定值
    (%)
    平均值
    (%)
    相对偏差
    (%)
    允许相对偏差
    (%)
    111.4011.2111.310.844.38
    259.1258.9759.050.131.39
    334.5835.6435.11-1.512.26
    467.4468.7068.07-0.931.16
    571.1671.5271.34-0.251.09
    651.8052.8452.32-0.991.59
    75.525.695.61-1.525.85
    844.2944.2844.290.011.87
    961.0260.7360.880.241.34
    1087.4987.3287.410.100.77
    下载: 导出CSV 
    | 显示表格

    采用XRF法分析重晶石中的硫酸钡时,样品需要前处理导致样品量减少,无法准确测定其中的待测组分。本研究提出了以对钡基体效应小的氧化铝补充到初始取样量的方法,较好地解决了问题,在样品处理过程中,以稀酸溶解过滤除去重晶石中的干扰组分,消除了锶、铅等元素的干扰,提高了XRF法的准确度。

    本方法在样品灰化后直接熔片即可进行XRF测定,而ICP-OES法在样品灰化后需要碱熔、过滤、酸溶解钡、上机测定,分析周期较长。总体上,较容量法、重量法、ICP-OES法的干扰少、分析流程短,提高了分析测试效率。

  • 图  1   LNAPL源区示意图

    Figure  1.   Schematic illustration of LNAPL source zone

    图  2   源区自然消除的基本过程

    Figure  2.   Basic processes of natural source zone depletion

    图  3   二氧化碳通量法监测原理:(a) 静态捕集法; (b) 动态密闭室法

    Figure  3.   Schematic illustration of CO2 monitoring method (a: CO2 trap method; b: dynamic closed chamber method)

    表  1   自然衰减的研究范式

    Table  1   Research paradigm of natural attenuation

    项目 地下水污染羽自然衰减(1990—2000年) 非水相液体污染物(LNAPL)污染源区自然消除(2000年至今)
    管理重点 污染羽迁移多远 源区持续时间多长
    主要污染物 溶解的苯系物 所有LNAPL成分
    主要生物降解过程 电子受体介导的生物降解 产甲烷
    包气带关键生物降解过程 LNAPL挥发蒸汽好氧生物降解 LNAPL厌氧生物降解(产甲烷)和好氧甲烷氧化
    饱水带关键生物降解过程 溶解苯系物的厌氧生物降解 产甲烷脱气和冒泡, 厌氧生物降解LNAPL的研究
    关键指标 微生物降解能力 NSZD速率
    方法要点 上下游电子受体和降解产物的对比 二氧化碳通量; 包气带耗氧量梯度; 热通量
    典型衰减速率 苯系物的半衰期为2~4年 NSZD的速率约100~1000加仑/英亩/年
    下载: 导出CSV

    表  2   源区自然消除(NSZD)机制的机理过程

    Table  2   Mechanism and processes of NSZD

    机理过程 简要说明 机理过程 简要说明
    1. 挥发 LNAPL化合物转化为气相 12. 饱水带源区自然衰减 饱水带的分配、非生物和生物降解
    2. 溶解 LNAPL化合物转化为水相 13. 微生物迁移 微生物通过对流-弥散作用迁移
    3. 毛细作用 压差导致的浸润液体在细管里升高和不浸润液体在细管里降低 14. 生物膜生长/脱落 附着在土壤颗粒上的微生物菌落的增厚和脱落
    4. 多相流传输 各相流体的流动 15. 微生物营养物 基质或营养物质的微生物吸收活性
    5. LNAPL残余 形成不可移动的LNAPL 16. 抑制因子 基质利用或生物量形成的限制因素
    6. LNAPL成分的异质性 LNAPL成分的变化 17. 食物链 捕食者(如原生动物)和猎物(如细菌)的存在
    7. 阻滞作用 取决于毛细作用对浸出和浸入过程的影响 18. 微生物差异 微生物在底物利用特性方面的差异
    8. 介质的异质性 土壤性质的空间差异 19. 底物竞争 微生物同时消耗两种或两种以上底物
    9. 饱和度变异 包气带含水饱和度的时空变化 20. 同化作用 微生物菌落生长初始滞后期
    10.溶质传质 通过对流-弥散输送溶质 21. 气泡过程 生物降解使水相出现气泡
    11.包气带源区自然衰减 包气带的分配、非生物和生物降解
    下载: 导出CSV

    表  3   NSZD的定性判断所需数据

    Table  3   Data required for qualitative evaluation of NSZD

    NSZD过程 数据 用途
    源区LNAPL向下游地下水溶解 地下水监测井的静态水位 确定水力梯度和地下水流向(与浓度数据联合分析)
    源区上下游地下水中溶解相污染物浓度 相较上游井, 下游井中溶解相碳氢化合物浓度的增加, 表明发生了溶解过程
    渗透系数 估算饱和区污染物溶解和生物降解的损失率
    源区溶解于地下水中的污染物生物降解 源区上下游地下水中作为反应物的溶解电子受体(如O2, NO3-, SO42-)和产物(如Fe2+, Mn2+) 相较上游井, 下游井中作为反应物的溶解电子受体(如O2, NO3-, SO42-)降低、产物(如Fe2+, Mn2+)增加, 表明发生了生物降解过程
    源区上下游地下水中的溶解甲烷(CH4) 相较上游井, 下游井中的溶解甲烷(CH4)增加, 表明发生了产甲烷作用
    源区污染物向包气带挥发 土壤垂向剖面土壤气中碳氢化合物浓度 随着与源区距离的增加, 土壤气体中碳氢化合物的浓度降低, 表明发生了挥发作用
    土壤中总石油烃组成 土壤中碳氢化合物组成发生变化, 表明发生了NSZD过程, 改变化是质量损失过程的综合效应体现
    源区挥发至包气带的污染物生物降解 土壤垂向剖面呼吸和相关土壤气浓度(O2, CO2, CH4) 在源区, 随着深度的增加, 土壤气O2减少、CO2增加或CH4浓度增加, 表明发生NSZD过程(CH4也可能来自自然界, 可通过对比背景区的碳稳定同位素来区分)
    土壤中TPH的浓度随时间变化 需要大量样本, 较难长期监测
    有效扩散系数: 实测或经验公式估算(土壤湿度、总孔隙度) 估算挥发和生物降解造成的损失率(氧气输送或甲烷产生率)
    下载: 导出CSV

    表  4   碳氢化合物的化学计量系数表(以C10H22计)

    Table  4   Conversion coefficients of hydrocarbons (calculated by C10H22)

    微生物降解过程 电子受体/代谢产物 化学计量系数(Si)
    好氧降解 O2 0.29kg-HC/kg-O2
    硝酸盐还原 NO3- 0.19kg-HC/kg-NO3-
    铁还原 Fe2+ 0.041kg-HC/kg-Fe2+
    硫酸盐还原 SO42- 0.19kg-HC/kg-SO42-
    锰还原 Mn2+ 0.083kg-HC/kg-Mn2+
    产甲烷 CH4 1.1kg-HC/kg-CH4
    下载: 导出CSV
  • [1]

    Geel P, Sykes J F. Laboratory and model simulations of a LNAPL spill in a variably-saturated sand, 1. Laboratory experiment and image analysis techniques[J]. Journal of Contaminant Hydrology, 1994, 17(1): 1-25. doi: 10.1016/0169-7722(94)90075-2

    [2]

    Cheng Y, Zhu J. Significance of mass-concentration relation on the contaminant source depletion in the nonaqueous phase liquid (NAPL) contaminated zone[J]. Transport in Porous Media, 2021, 137(2): 399-416. doi: 10.1007/s11242-021-01567-5

    [3]

    Fontenot M M. Study of transport and dissolution of a non-aqueous phase liquid in porous media: Effects of low-frequency pulsations and surfactants[D]. Iowa State University, 2001.

    [4]

    Wiedemeier T H, Wilson J T, Kampbell D H, et al. Technical protocol for implementing intrinsic remediation with long-term monitoring for natural attenuation of fuel contamination dissolved in groundwater[R]. Prsons Engineering Science Inc Denver Co., 1995.

    [5]

    Wiedemeier T H, Swanson M A, Moutoux D E, et al. Technical protocol forevaluating natural attenuation of chlorinated solvents in groundwater[R]. San Antonio, TX: US Air Force Center for Environmental Excellence 1996.

    [6]

    Newell C J, Adamson D T, Kulkarni P R, et al. Monitored natural attenuation to manage PFAS impacts to groundwater: Scientific basis[J]. Groundwater Monitoring & Remediation, 2021, 41(4): 76-89.

    [7] 张敏, 张巍, 郭彩娟. 污染场地自然衰减修复的原理与实践[M]. 北京: 科学出版社, 2019.

    Zhang M, Zhang W, Guo C J. Remediation by natural attenuation at contaminated sites: Principles and practice[M]. Beijing: Science Press, 2019.

    [8] 李元杰, 王森杰, 张敏, 等. 土壤和地下水污染的监控自然衰减修复技术研究进展[J]. 中国环境科学, 2018, 38(3): 1185-1193. doi: 10.19674/j.cnki.issn1000-6923.2018.0141

    Li Y J, Wang S J, Zhang M, et al. Research progress of monitored natural attenuation remediation technology for soil and groundwater pollution[J]. China Environmental Science, 2018, 38(3): 1185-1193. doi: 10.19674/j.cnki.issn1000-6923.2018.0141

    [9]

    Pardieck D L, Guarnaccia J. Natural attenuation of groundwater plume source zones: A definition[J]. Journal of Soil Contamination, 1999, 8(1): 9-15. doi: 10.1080/10588339991339171

    [10]

    MacDonald J A. Evaluating natural attenuation for groundwater cleanup: The national research council has issued the first comprehensive assessment of when natural attenuation works[J]. Environmental Science & Technology, 2000, 34(15): 346A-353A.

    [11]

    Rittmann B E. Definition, objectives, and evaluation of natural attenuation[J]. Biodegradation, 2004, 15(6): 349-357. doi: 10.1023/B:BIOD.0000044587.05189.99

    [12]

    Office of Solid Waste and Emergency Response, United States Environmental Protection Agency. Use of monitored natural attenuation at Superfund, RCRA corrective action, and underground storage tank sites[R]. 1997.

    [13]

    Mcdade J M, Mcguire T M, Newell C J. Analysis of DNAPL source-depletion costs at 36 field sites[J]. Remediation Journal, 2005, 15(2): 9-18. doi: 10.1002/rem.20039

    [14]

    Carey G R, McBean E A, Feenstra S. DNAPL source depletion: 2. Attainable goals and cost-benefit analyses[J]. Remediation Journal, 2014, 24(4): 79-106. doi: 10.1002/rem.21406

    [15]

    Ekre R, Johnson P C, Rittmann B, et al. Assessment of the natural attenuation of NAPL source zones and post-treatment NAPL source zone residuals[R]. Tampe: Arizona State University Tempe, 2013.

    [16]

    Kueper B H, Stroo H F, Vogel C M, et al. Chlorinated solvent source zone remediation[M]. New York: Springer, 2014.

    [17]

    Verginelli I, Baciocchi R. Refinement of the gradient method for the estimation of natural source zone depletion at petroleum contaminated sites[J]. Journal of Contaminant Hydrology, 2021, 241: 103807. doi: 10.1016/j.jconhyd.2021.103807

    [18]

    Wozney A, Clark I D, Mayer K U. Quantifying natural source zone depletion at petroleum hydrocarbon contaminated sites: A comparison of 14C methods[J]. Journal of Contaminant Hydrology, 2021, 240: 103795. doi: 10.1016/j.jconhyd.2021.103795

    [19]

    ITRC. Evaluating natural source zone depletion at sites with LNAPL[R]. Washington DC: Interstate Technology and Regulatory Council, 2009.

    [20]

    Molins S, Mayer K U, Amos R T, et al. Vadose zone attenuation of organic compounds at a crude oil spill site—Interactions between biogeochemical reactions and multicomponent gas transport[J]. Journal of Contaminant Hydrology, 2010, 112(1-4): 15-29. doi: 10.1016/j.jconhyd.2009.09.002

    [21]

    Sihota N J, Singurindy O, Mayer K U. CO2-efflux measurements for evaluating source zone natural attenuation rates in a petroleum hydrocarbon contaminated aquifer[J]. Environmental Science & Technology, 2011, 45(2): 482-488.

    [22]

    McCoy K M. Resolving natural losses of LNAPL using carbon dioxide traps[D]. Colorado: Colorado State University, 2012.

    [23]

    McCoy K, Zimbron J, Sale T, et al. Measurement of natural losses of LNAPL using CO2 traps[J]. Groundwater, 2015, 53(4): 658-667. doi: 10.1111/gwat.12240

    [24]

    Tracy M K. Method comparison for analysis of LNAPL natural source zone depletion using CO2 fluxes[D]. Colorado: Colorado State University, 2015.

    [25]

    Sihota N J, Trost J J, Bekins B A, et al. Seasonal variability in vadose zone biodegradation at a crude oil pipeline rupture site[J]. Vadose Zone Journal, 2016, 15(5): 1-14. doi: 10.2136/vzj2015.10.0134

    [26]

    Garg S, Newell C J, Kulkarni P R, et al. Overview of natural source zone depletion: Processes, controlling factors, and composition change[J]. Groundwater Monitoring & Remediation, 2017, 37(3): 62-81.

    [27]

    Ririe G T, Sweeney R E. Rapid approach to evaluate NSZD at LNAPL sites[C]//Tenth International Conference on Remediation of Chlorinated and Recalcitrant Compounds. 2018.

    [28]

    Askarani K K, Stockwell E B, Piontek K R, et al. Thermal monitoring of natural source zone depletion[J]. Groundwater Monitoring & Remediation, 2018, 38(3): 43-52.

    [29]

    Lari K S, Davis G B, Rayner J L, et al. Natural source zone depletion of LNAPL: A critical review supporting modelling approaches[J]. Water Research, 2019, 157: 630-646. doi: 10.1016/j.watres.2019.04.001

    [30]

    Kulkarni P R, Newell C J, King D C, et al. Application of four measurement techniques to understand natural source zone depletion processes at an LNAPL site[J]. Groundwater Monitoring & Remediation, 2020, 40(3): 75-88.

    [31]

    Askarani K K, Sale T C. Thermal estimation of natural source zone depletion rates without background correction[J]. Water Research, 2020, 169: 115245. doi: 10.1016/j.watres.2019.115245

    [32] 李忠煜, 赵江华, 何峻, 等. 油气化探样品酸解气中甲烷与氢气的相关性研究[J]. 岩矿测试, 2018, 37(3): 313-319. doi: 10.15898/j.cnki.11-2131/td.201710240170

    Li Z Y, Zhao J H, He J, et al. Research on the correlation between methane and hydrogen in acid-hydrolyzed gases for geochemical exploration samples[J]. Rock and Mineral Analysis, 2018, 37(3): 313-319. doi: 10.15898/j.cnki.11-2131/td.201710240170

    [33]

    Smith J J, Benede E, Beuthe B, et al. A comparison of three methods to assess natural source zone depletion at paved fuel retail sites[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2021, DOI: 10.1144/qjegh2021-005.

    [34]

    Robbins G A, Deyo B G, Temple M R, et al. Soil-gas surveying for subsurface gasoline contamination using total organic vapor detection instruments. Part Ⅰ. Theory and laboratory experimentation[J]. Groundwater Monitoring & Remediation, 1990, 10(3): 122-131.

    [35]

    Robbins G A, Deyo B G, Temple M R, et al. Soil-gas surveying for subsurface gasoline contamination using total organic vapor detection instruments. Part Ⅱ. Field experimentation[J]. Ground Water Monitoring Review, 1990, 10(4): 110-117.

    [36]

    Deyo B G, Robbins G A, Binkhorst G K. Use of portable oxygen and carbon dioxide detectors to screen soil gas for subsurface gasoline contamination[J]. Groundwater, 1993, 31(4): 598-604. doi: 10.1111/j.1745-6584.1993.tb00593.x

    [37]

    Robbins G A, McAninch B E, Gavas F M, et al. An evaluation of soil-gas surveying for H2S for locating subsurface hydrocarbon contamination[J]. Groundwater Monitoring & Remediation, 1995, 15(1): 124-132.

    [38]

    Aelion C M, Shaw J N, Ray R P, et al. Simplified methods for monitoring petroleum-contaminated ground water and soil vapor[J]. Soil and Sediment Contamination, 1996, 5(3): 225-241. doi: 10.1080/15320389609383527

    [39]

    Tassi F, Venturi S, Cabassi J, et al. Biodegradation of CO2, CH4 and volatile organic compounds (VOCs) in soil gas from the Vicano-Cimino hydrothermal system (central Italy)[J]. Organic Geochemistry, 2015, 86: 81-93. doi: 10.1016/j.orggeochem.2015.06.004

    [40]

    ClarkⅡ C J. Field detector evaluation of organic clay soils contaminated with diesel fuel[J]. Environmental Forensics, 2003, 4(3): 167-173. doi: 10.1080/713848506

    [41]

    Liang K F, Kuo M C T. A new leak detection system for long-distance pipelines utilizing soil-gas techniques[J]. Groundwater Monitoring & Remediation, 2006, 26(3): 53-59.

    [42]

    Amos R T, Bekins B A, Delin G N, et al. Methane oxidation in a crude oil contaminated aquifer: Delineation of aerobic reactions at the plume fringes[J]. Journal of Contaminant Hydrology, 2011, 125: 13-25. doi: 10.1016/j.jconhyd.2011.04.003

    [43] 陈宇峰, 郑秀丽, 李晶, 等. 渤海沉积物中甲烷氧化速率及同位素分馏规律研究[J]. 岩矿测试, 2018, 37(2): 164-174. doi: 10.15898/j.cnki.11-2131/td.201707100117

    Chen Y F, Zheng X L, Li J, et al. Study on oxidation ratean disotope fractionation of methane in Bohai Sea sediments[J]. Rock and Mineral Analysis, 2018, 37(2): 164-174. doi: 10.15898/j.cnki.11-2131/td.201707100117

    [44]

    Ng G H C, Bekins B A, Cozzarelli I M, et al. A mass balance approach to investigating geochemical controls on secondary water quality impacts at a crude oil spill site near Bemidji, MN[J]. Journal of Contaminant Hydrology, 2014, 164: 1-15. doi: 10.1016/j.jconhyd.2014.04.006

    [45]

    Suthersan S, Koons B, Schnobrich M. Contemporary management of sites with petroleum LNAPL presence[J]. Groundwater Monitoring & Remediation, 2015, 35(1): 23-29.

    [46]

    Ng G H C, Bekins B A, Cozzarelli I M, et al. Reactive transport modeling of geochemical controls on secondary water quality impacts at a crude oil spill site near Bemidji, MN[J]. Water Resources Research, 2015, 51(6): 4156-4183.

    [47]

    Irianni-Renno M, Akhbari D, Olson M R, et al. Comparison of bacterial and archaeal communities in depth-resolved zones in an LNAPL body[J]. Applied Microbiology and Biotechnology, 2016, 100(7): 3347-3360.

    [48]

    Bruckberger M C, Gleeson D B, Bastow T P, et al. Unravelling microbial communities associated with different light non-aqueous phase liquid types undergoing natural source zone depletion processes at a legacy petroleum site[J]. Water, 2021, 13(7): 898.

    [49]

    Kirkman A, Zimbron J. Comments in response to peer reviewed technical note "Application of four measurement techniques to understand natural source zone depletion processes at fouran lnapl site"[J]. Groundwater Monitoring & Remediation, 2021, 41(1): 6-7.

    [50]

    Guo Q, Shi X, Kang X, et al. Evaluation of the benefits of improved permeability estimation on high-resolution characterization of DNAPL distribution in aquifers with low-permeability lenses[J]. Journal of Hydrology, 2021, 603: 126955.

    [51]

    Engelmann C, Lari K S, Schmidt L, et al. Towards predicting DNAPL source zone formation to improve plume assessment: Using robust laboratory and numerical experiments to evaluate the relevance of retention curve characteristics[J]. Journal of Hazardous Materials, 2021, 407: 124741.

    [52]

    Van De Ven C J C, Scully K H, Frame M A, et al. Impacts of water table fluctuations on actual and perceived natural source zone depletion rates[J]. Journal of Contaminant Hydrology, 2021, 238: 103771.

    [53]

    Guo Q, Shi X, Kang X, et al. Integrating hydraulic tomography, electrical resistivity tomography, and partitioning interwell tracer test datasets to improve identification of pool-dominated DNAPL source zone architecture[J]. Journal of Contaminant Hydrology, 2021, 241: 103809.

    [54]

    Askarani K K. Thermal monitoring of natural source zone depletion[D]. Colorado: Colorado State University, 2019.

  • 期刊类型引用(5)

    1. 符招弟,张晓娟,杨林. 伟晶岩型锂矿石中锂的化学物相分析方法研究. 岩矿测试. 2024(03): 432-439 . 本站查看
    2. 彭晶晶,林锴. 锂矿成矿规律研究的知识图谱分析. 中国矿业. 2024(09): 228-235 . 百度学术
    3. 王成辉,王登红,刘善宝,张永生,王春连,王九一,周雄,代鸿章,于扬,孙艳,邢恩袁. 战略新兴矿产调查工程进展与主要成果. 中国地质调查. 2022(05): 1-14 . 百度学术
    4. 郭晓剑,胡欢,刘亦晴,梁雁茹. 基于CiteSpace的我国绿色矿山研究可视化分析. 黄金科学技术. 2020(02): 203-212 . 百度学术
    5. 叶亚康,周家云,周雄. 川西塔公松林口岩体LA-ICP-MS锆石U -Pb年龄与地球化学特征. 岩矿测试. 2020(06): 921-933 . 本站查看

    其他类型引用(4)

图(3)  /  表(4)
计量
  • 文章访问数:  179
  • HTML全文浏览量:  35
  • PDF下载量:  21
  • 被引次数: 9
出版历程
  • 收稿日期:  2021-10-10
  • 修回日期:  2021-11-23
  • 录用日期:  2021-12-07
  • 网络出版日期:  2022-11-10
  • 刊出日期:  2022-09-28

目录

/

返回文章
返回