• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

镉同位素分馏及其在示踪土壤镉来源和迁移转化过程中的应用进展

万丹, 陈玖斌, 张婷, 安宇宸, 帅旺财

万丹, 陈玖斌, 张婷, 安宇宸, 帅旺财. 镉同位素分馏及其在示踪土壤镉来源和迁移转化过程中的应用进展[J]. 岩矿测试, 2022, 41(3): 341-352. DOI: 10.15898/j.cnki.11-2131/td.202110090142
引用本文: 万丹, 陈玖斌, 张婷, 安宇宸, 帅旺财. 镉同位素分馏及其在示踪土壤镉来源和迁移转化过程中的应用进展[J]. 岩矿测试, 2022, 41(3): 341-352. DOI: 10.15898/j.cnki.11-2131/td.202110090142
WAN Dan, CHEN Jiubin, ZHANG Ting, AN Yuchen, SHUAI Wangcai. Cadmium Isotope Fractionation and Its Applications in Tracing the Source and Fate of Cadmium in the Soil: A Review[J]. Rock and Mineral Analysis, 2022, 41(3): 341-352. DOI: 10.15898/j.cnki.11-2131/td.202110090142
Citation: WAN Dan, CHEN Jiubin, ZHANG Ting, AN Yuchen, SHUAI Wangcai. Cadmium Isotope Fractionation and Its Applications in Tracing the Source and Fate of Cadmium in the Soil: A Review[J]. Rock and Mineral Analysis, 2022, 41(3): 341-352. DOI: 10.15898/j.cnki.11-2131/td.202110090142

镉同位素分馏及其在示踪土壤镉来源和迁移转化过程中的应用进展

基金项目: 

国家重点研发计划项目 2019YFC1804401

国家自然科学基金项目 42003010

中国博士后基金项目 2021T140507

详细信息
    作者简介:

    万丹,博士,助理研究员,主要从事土壤镉同位素研究。E-mail: wandan@tju.edu.cn

    通讯作者:

    陈玖斌,博士,教授,主要从事同位素地球化学研究。E-mail:jbchen@tju.edu.cn

  • 中图分类号: O657.63

Cadmium Isotope Fractionation and Its Applications in Tracing the Source and Fate of Cadmium in the Soil: A Review

  • 摘要:

    土壤镉污染已成为危害人体健康的主要因素之一,要实现精准、快速和有效地防治土壤镉污染,首先必须厘清土壤中镉的来源及其迁移转化行为。近年来,随着镉同位素分析技术的进步及其分馏机制认识的深入,镉同位素在土壤镉示踪中展示出了巨大的应用潜力。本文在前人研究的基础上,归纳了土壤样品镉同位素分析前处理方法以及测试技术的研究进展。对于基质复杂的土壤样品,高温高压密闭消解和微波消解可以满足其镉同位素测试要求。在分离纯化镉回收率足够、干扰元素去除彻底的情况下,应用多接收电感耦合等离子体质谱(MC-ICP-MS)分析镉同位素并采用标准-样品匹配法、外标法或双稀释剂法进行质量歧视校正,均可获得较高精度的土壤镉同位素组成数据。同时,本文概括了土壤多个潜在镉源的镉同位素组成以及典型过程(风化淋滤、吸附、沉淀/共沉淀、络合)镉同位素分馏方向与程度。结合最新研究成果,总结了镉同位素在示踪土壤镉来源及其迁移转化过程中的应用。在未来的工作中,需进一步开发和优化高精度镉同位素分析方法,建立土壤镉同位素指纹图谱,揭示土壤多组分、多界面过程中的镉同位素分馏机制和特征。

    要点

    (1) 分离纯化技术和MC-ICP-MS的快速发展,实现了对土壤样品中微小镉同位素组成变化的精准测定。

    (2) 自然地质储库和各种人为污染源的镉同位素组成存在明显差异。

    (3) 风化淋滤、吸附、沉淀/共沉淀、络合等典型土壤过程会导致镉同位素分馏。

    镉同位素可以示踪土壤镉来源及其迁移转化过程。

    HIGHLIGHTS

    (1) With the development of chemical separation and MC-ICP-MS, high-precision cadmium isotope analysis has been achieved for soil samples.

    (2) Different natural and anthropogenic reservoirs have variable cadmium isotope compositions.

    (3) Typical soil processes such as weathering leaching, adsorption, precipitation/co-precipitation, and complexation lead to cadmium isotope fractionation.

    (4) Cadmium isotopes can be used to trace the source and fate of cadmium in the soil.

  • 华南地区是我国乃至全球大密度成矿区[1],粤东地区位于华南东南部,是我国东南沿海锡、钨、铜、铅锌矿产的重要产地,发育有大量的锡、钨、铜、银、金等多金属矿床(点)。该地区出露震旦系、寒武系、泥盆系、石炭系、二叠系、三叠系、侏罗系、白垩系及第四系[2]。区内岩浆活动以中生代火山岩和花岗岩为主[3-6],形成了遍及全区的火山-侵入杂岩,这些中生代岩浆活动与区内的钨、锡、铜、金、铅、锌等矿产有着密切的成因联系[3, 7-11]。区内断裂构造主要由北东向海丰—丰顺超岩石圈断裂带、莲花山断裂带、东西向佛冈—丰良断裂带和北西向绕平—大埔断裂带组成,这些断裂带的交汇部位以及与之相关的次级断裂系统控制着该地区中新生代岩体、盆地和矿产的空间展布。

    近年来随着国家对该地区资金的大力投入,发现了多处铜、锡、钨、银、金等找矿线索和矿产地。新寮岽铜多金属矿床就是近年来广东省地质局第二地质大队通过地质矿产调查工作新发现的一个矿床。该矿床处于预调查阶段,研究程度低,除了本课题组和王小雨等[11-12]对该地区成矿岩体进行了有限的研究外,未见关于铜同位素的研究报道。矿区与成矿关系密切的石英闪长岩成岩年龄为161±1 Ma,其成矿演化经历了热液期3个阶段和表生期,与黄铜矿关系密切的硫大多来自深部岩浆,有少量来自围岩沉积地层,矿床成因类型为斑岩型[11]。矿区深部已进行了多个钻孔验证,发现了多条铜矿体,但对铜矿体的空间产出特征等还处于未知,矿体中的成矿物质来源、铜同位素组成是否与岩浆热液有关等问题均为未知。

    铜属于第四周期ⅠB族元素,在自然界中有2个稳定同位素:65Cu和63Cu,分别占自然界中铜元素的30.83%和69.17%[13]。由于当时分析测试手段的限制,铜同位素测试技术尚不成熟,对铜同位素的研究相对滞后,人们常用与铜地球化学性质类似的铅同位素间接示踪成矿金属Cu的来源。学者们不断通过更新铜同位素化学前处理、分析技术方法和仪器[14-20],特别是高精度仪器如MC-ICP-MS的出现[21-24],对铜锌的同位素组成的研究上取得了突破,可以直接测试含铜矿物的铜同位素,利用铜同位素特征示踪成矿物质的来源,同时也克服了铅同位素间接示踪的不确定性。随着高质量的铜同位素数据完善,越来越多的数据已经证实自然界铜同位素组成的变化较大[21-31]。铜同位素的分馏受岩浆-热液过程、流体混合等过程的影响,利用铜同位素的变化可以直接示踪金属铜的聚集、运移及沉淀过程[32-33]。近年来铜同位素的研究获得了较大的进展[34-37],主要应用于矿床学研究[32, 34-41]、找矿[32, 38, 42]和考古方面[43-44],这些进展也为本课题组开展新寮岽通多金属矿床的铜同位素研究提供了理论支持。本文拟通过新寮岽通多金属矿床的铜同位素研究,尝试探讨矿区含铜金属硫化物矿床的成矿物质来源、形成机理和矿床成因等。

    矿区位于粤东梅州市丰顺县与揭阳市揭东县交界处(图 1a),矿区大地构造位置位于南岭东西向构造岩浆带和中国东南沿海火成岩带的交汇部位[9-10],处于东南沿海火山岩成矿带(Ⅲ级成矿带)的南西段,受北东向莲花山断裂带和普宁—潮州断裂带控制(图 1b)。矿区出露地层主要为晚三叠世晚期—早侏罗世早期、早侏罗世早期和第四纪地层(图 1c),其中晚三叠世晚期—早侏罗世早期银瓶山组为铜矿体的赋矿围岩之一,岩性以长石石英砂岩、粉砂岩为主,夹含泥砾砂岩、粉砂岩、泥岩和炭质泥岩;早侏罗世早期上龙水组岩性以粉砂质泥岩、泥质粉砂岩与含炭质页岩和泥岩为主,夹少量细砂岩、含砾砂岩;第四纪地层岩性主要为砂砾、含砾砂和含砂黏土等,与下伏地层呈角度不整合接触。

    图  1  新寮岽铜多金属矿区地质简图(据文献[9]和作者实测资料修编)
    1—第四纪冲积层;2—早侏罗世上龙水组;3—三叠世—侏罗世银屏山组;4—晚侏罗世中粒斑状黑云母二长花岗岩;5—晚侏罗世中粒-粗粒斑状黑云母花岗岩;6—晚侏罗世花岗闪长斑岩;7—石英斑岩;8—采样钻孔位置及编号;9—同位素样位置及编号;10—地质界线;11—断层及裂隙。
    Figure  1.  Simplified geological map of the Xinliaodong copper-polymetallic ore district (Modified after Literature [9]; measured data by author)

    区内岩浆活动强烈,主要出露燕山期花岗岩类。晚侏罗世中粒斑状黑云母二长花岗岩和晚侏罗世中粒-粗粒斑状黑云母花岗岩主要出露在矿区东南角;晚侏罗世花岗闪长斑岩分布在矿区中部,出露面积较大,为区内铜矿体的赋矿围岩之一。此外,在矿区的中部见有几条晚期石英斑岩岩脉。根据钻孔中各个期次的岩浆侵入关系来看,深部均以黑云母花岗岩为主,上覆盖层为地层、石英闪长岩、花岗闪长斑岩和黑云母二长花岗岩,铜矿体多赋存在岩体与等围岩接触带、裂隙或破碎带中。

    矿区处于区域性北东向莲花山断裂构造带和普宁—潮州断裂带夹持部位,矿区以近东西向断裂为主,少量北东向和北西向断裂,其中近东西向断裂和北东向断裂是区内主要的矿化蚀变构造。

    矿区地表已发现11条规模较大的铜多金属矿化蚀变破碎带,受北东东压扭性断裂控制,呈脉状,近平行排列,出露长100~1000 m,宽0.4~7.5 m,走向NEE,倾向NNW,倾角75°~89°。

    深部发现的铜矿体有8条,矿化体6条,铜矿体多赋存在石英闪长岩等围岩的裂隙或破碎带中,矿体视厚度3.8~83.5 m,Cu品位0.44%~5.49%,Ag品位1.70~73.2 g/t。矿石为黄铜矿、黄铁矿碎裂岩、角砾岩,黄铜矿多呈细脉状、浸染状和团块状,赋矿围岩为石英闪长岩(图 2a)、泥岩(图 2b)、粉砂岩(图 2c)和石英脉(图 2d)。

    图  2  各类赋矿围岩中的黄铜矿
    a—石英闪长岩中黄铜矿;b—泥岩中黄铜矿;c—粉砂岩中黄铜矿;d—石英脉中黄铜矿。
    Figure  2.  Chalcopyrites in the all kinds of ore-bearing rocks

    区内围岩蚀变主要有硅化、绢云母化、绿泥石化、电气石化、黄铁矿化、褐铁矿化,局部见到云英岩化、绿帘石化、黄铜矿化和绢英岩化,硅化和绿泥石化最为强烈和普遍。其中绿泥石化与成矿关系密切,蚀变强的部位矿化亦较强[12]

    用于开展铜同位素测试的样品采自钻孔ZK2-1、ZK2-2、ZK4-2和ZK6-2中铜矿较为富集地段(图 1c)。样品均选自新鲜手标本,将采集的样品粉碎至粒度40~80目,在双目镜下挑选分离出黄铜矿,经X射线衍射进行矿物学研究确定最终矿物。样品的矿物围岩、取样位置等见表 1。除了ZK6-2-TW1和ZK6-2-TW2委托广州澳实分析监测有限公司完成测试外,其余铜同位素样品测试实验在美国亚利桑那大学完成。

    样品前处理:在超净实验室进行Cu的溶解、淋洗等化学处理。称量约0.5 g黄铜矿,用硝酸完全溶解后,置于加热板上低温烘干;转换为盐酸介质后,在阴离子交换树脂上用6 mol/L盐酸+0.001%双氧水作为淋洗液,将Cu淋洗出来。详细化学处理流程见文献[20, 45-46]。

    质谱测试:在Nu Plasma HR型多接收器电感耦合等离子体质谱仪(MC-ICP-MS)上进行测试。将待测样品用2%的超纯硝酸溶解作为进样介质,进样浓度为200 μg/L(EPA)。标准样品选择NIST 976,采用“标样-样品-标样”交叉法进行仪器质量歧视校正和同位素分馏校正。铜同位素的测定结果以样品相对于国际标准物质(NIST 976) 的千分偏差表示,即:

    ${\delta ^{65}}{\rm{Cu}}\left( {‰} \right) = \left[ {\frac{{{{{(^{65}}{\rm{Cu}}{/^{63}}{\rm{Cu}})}_{{\rm{sample}}}}}}{{{{{(^{65}}{\rm{Cu}}{/^{63}}{\rm{Cu}})}_{{\rm{NIST 976}}}}}} - 1} \right] \times 1000$

    测试精度为±0.15‰,详细测试方法可参考文献[45-46]。

    测试得到的14件样品的铜同位素组成见表 1。分析结果表明,新寮岽矿床不同类型的矿石中黄铜矿的δ65Cu值分布范围较宽。当赋矿围岩是泥岩时,黄铜矿的δ65Cu值偏高(+1.37‰);当围岩为石英闪长岩时,黄铜矿的δ65Cu值在+0.23‰~+0.50‰之间,粉砂岩中黄铜矿的δ65Cu值在+0.07‰~+0.29‰之间,而石英脉中黄铜矿的δ65Cu值均为负值(-0.34‰~-0.01‰)。

    表  1  新寮岽矿区不同赋矿围岩中黄铜矿的铜同位素组成
    Table  1.  Cu isotope composition of chalcopyrite in ore-bearing rocks from the Xinliaodong deposit region
    样品编号围岩采样位置(m)δ65Cu(‰)
    ZK2-1-TCU001石英闪长岩ZK2-1(深度227.50)0.40
    ZK2-2-TCU002石英闪长岩ZK2-2(深度247.01)0.23
    ZK2-2-TCU004石英闪长岩ZK2-2深度265.19)0.46
    ZK6-2-TW1石英闪长岩ZK6-2(深度208.10)0.47
    ZK6-2-TW2石英闪长岩ZK6-2(深度219.76)0.50
    ZK2-1-TCU002石英闪长岩、石英脉ZK2-1(深度337.06)-0.01
    ZK2-2-TCU001石英闪长岩、石英脉ZK2-2(深度244.90)-0.18
    ZK2-2-TCU003石英闪长岩、石英脉ZK2-2(深度251.54)-0.28
    ZK4-2-TCU002粉砂岩、石英脉ZK4-2(深度193.72)-0.34
    ZK4-2-TCU006石英脉ZK4-2(深度245.30)-0.02
    ZK4-2-TCU001粉砂岩ZK4-2(深度185.05)0.25
    ZK4-2-TCU003粉砂岩ZK4-2(深度220.80)0.29
    ZK4-2-TCU004粉砂岩ZK4-2(深度223.43)0.07
    ZK4-2-TCU005泥岩ZK4-2(深度229.35)1.37
    下载: 导出CSV 
    | 显示表格

    矿区黄铜矿的δ65Cu值范围为-0.34‰~+1.37‰,范围总体较宽且偏多正(表 1图 3图 4),与斑岩型矿床的δ65Cu值(-1.29‰~+2.98‰)[29, 31-32, 46-47]基本一致。泥岩中的黄铜矿具有相对高的δ65Cu值(+1.37‰);石英闪长岩中的黄铜矿的δ65Cu值为+0.23‰~+0.495‰;粉砂岩中的黄铜矿的δ65Cu值为+0.07‰~+0.29‰;石英脉中的黄铜矿的δ65Cu值为-0.34‰~-0.01‰,范围较窄,均为负值(表 1图 4)。矿区黄铜矿的δ65Cu值范围比驱龙斑岩型铜矿的δ65Cu值范围[32]更宽,大多与岩浆岩有关的高温热液黄铜矿[26]范围一致。与不同地质体的同位素组成的对比表明(图 3),矿区与花岗岩的铜同位素组成范围相同(约-0.5‰~+0.5‰)[25-27],落在花岗岩的同位素范围[48]之内,而与氧化矿石、海洋沉积物、生物和有机材料、沉积型矿床、低温热液矿床的铜同位素组成相差较大(图 3)。说明Cu部分来自深部岩浆。

    图  3  矿区黄铜矿和其他地质体的铜同位素组成对比
    数据来源于文献[24-30, 32, 47-54]。
    Figure  3.  Cu isotope ratio of chalcopyrite in Xinliaodong and other geological bodies
    图  4  新寮岽矿区不同围岩黄铜矿的铜同位素组成变化
    Figure  4.  Variety in Cu isotope ratio of chalcopyrite from various stages in Xinliaodong deposit region

    已有学者[55-56]对西藏驱龙斑岩型矿床研究后发现,含矿斑岩和矿石硫化物具有相近的硫同位素组成。新寮岽矿区ZK4-2钻孔185~245.3 m段内黄铜矿的δ34S值为-1.6‰~-0.7‰,均值为-1.18‰,全岩的δ34S值为-0.9‰~+0.6‰,均值为-0.16‰(数据据王小雨[11]统计),具有岩浆硫的组成特点,表明硫主要来自岩浆。ZK6-2钻孔218~220 m段内石英闪长岩中黄铜矿和黄铁δ34S值为+7.9‰和+4.9‰[11],也与岩浆相同,与ZK4-2略有不同。

    因此,本研究认为成矿金属Cu可能主要来自深部岩浆,能够证实推测的Cu的来源与实际地质相符,说明利用铜同位素组成是可以判断成矿金属来源的。由于该矿区深部探索刚刚开始,全区的铜同位素测试数据并不全面,受到数据量和当前铜同位素的研究程度限制,今后还得继续加强研究。

    影响铜同位素分馏可能的因素为气-液分离、多级平衡过程、氧化还原和生物作用等[23, 26-27, 29, 32, 57-58]。所有样品都位于钻孔深部(表 1),远离次生氧化带之下,采取的样品新鲜、未受后期氧化作用影响,因此氧化-还原作用基本无影响。根据本课题组研究结果显示,新寮岽矿区流体包裹体均一温度显示温度主要分布在250~420℃区间,其中ZK4-2钻孔186 m中见含子晶的包裹体,该包裹体的均一温度为291℃,盐度为12.96%NaCl,密度为0.86 g/cm3,具有中高温、中盐度、CH4含量较高等特征。

    成矿流体的早期出溶压力较高,出溶的流体主要为低密度的富气相[59],有些矿脉的形成与该压力下流体的卸载相关,新寮岽矿区估算的均一压力环境(60×106~100×106 Pa)与成矿流体的早期出溶压力环境相似。

    在有岩浆热液活动的地段,Cu明显呈现出负值,高温岩浆-热液过程中氧化-还原作用对铜同位素分馏的影响较大,氧化使得δ65Cu富集,还原导致δ65Cu亏损[27, 49, 51, 53, 60]。拉曼光谱分析显示,新寮岽矿区ZK4-2钻孔样品中的CH4含量较高,为还原环境,说明还原环境是导致65Cu亏损的主要原因。ZK4-2-TCU005钻孔样品的δ65Cu值突高,说明该处曾经经历了较强的氧化作用,可能是导致流体δ65Cu值增高的一个主要因素。

    总体来说,新寮岽矿区成矿流体显示为中高温岩浆热液特征,Cu的分馏与岩浆热液活动关系密切,矿化与成矿流体的出溶关系密切。

    铜矿区的铜同位素组成在时空分布方面也具有分带性。时间上,从早期到晚期δ65Cu值呈增高的趋势[26, 31-32];空间上,也具有分带性。Maher等[61]对Grasberg矿区黄铜矿的δ65Cu值分带特征研究发现,随着与侵入体中心距离的增加,δ65Cu值表现出降低的趋势。根据表 1中可以看出,新寮岽矿区随深度增加,铜同位素呈现出逐渐增高的趋势,在热液流体石英脉出现的区域,铜矿体的δ65Cu值都低于0,当矿化发生在围岩为石英闪长岩、粉砂岩和泥岩的地段,δ65Cu值都较高,矿化强度也较大,均能形成规模矿体。这种特征可能与成矿流体遇到构造部位压力的突然释放有关,岩体接触带、石英闪长岩体、粉砂岩和泥岩围岩预示着深部主矿体的边缘或前锋。因此,δ65Cu值在空间上的变化可以直接指示热源的位置,特殊围岩、构造作用和岩体接触带可以作为该类矿床的直接找矿标志。

    新寮岽矿区的探索研究刚刚展开,铜同位素作为一种新方法,用来研究斑岩型铜矿成矿金属来源已被较多学者运用,本文采用该方法对新寮岽铜多金属矿进行了成矿特征和找矿预测研究,虽然目前还缺乏矿区系统的铜同位素数据,但结合流体包裹体和野外宏观地质事实仍然可以得出以下结论。

    (1) 新寮岽矿区黄铜矿的δ65Cu值为-0.34‰~+1.37‰,总体较宽且偏多正,δ65Cu值分布范围与斑岩型矿床的δ65Cu值一致,也与岩浆有关的高温热液黄铜矿相似,表明成矿物质Cu可能主要来源于深部岩浆,与前人研究成果一致。

    (2) 新寮岽矿区成矿流体显示为中高温岩浆热液特征,铜的分馏与岩浆热液活动关系密切,矿化与成矿流体的出溶有关。

    (3) 新寮岽矿区铜同位素组成随深度增加,铜有增高的趋势,形成规模矿体。

    (4) 铜同位素值的变化可以直接指示热源的位置,在热液流体石英脉出现的区域铜矿体δ65Cu值都低于0,热液接触带、特殊的赋矿围岩和构造作用部位铜同位素值均增高,预示着主矿体的边缘或前锋。热液接触带、特殊的赋矿围岩和构造作用部位也是最为明显的找矿标志。

  • 图  1   土壤典型地球化学过程中镉同位素分馏程度的最大值

    Figure  1.   Maximum values of Δ114/110Cd during the tipical geochemical process in the soil

    表  1   对镉同位素测试产生干扰的同质异位素(相对丰度单位%)和多原子离子

    Table  1   Isobaric and polyatomic interferences in the mass range used for Cd isotopic analysis (all values are % abundance)

    质量数 Cd 同质异位素干扰 多原子离子干扰[56]
    Pd Sn In M40Ar+ M16O+
    105 - 22.33 - - 65Cu - - -
    106 1.25 27.33 - - 66Zn - - -
    107 - - - - 67Zn - - -
    108 0.89 26.46 - - 68Zn - 92Mo -
    109 - - - - - 69Ga - -
    110 12.49 11.72 - - 70Zn 70Ge 94Mo -
    111 12.80 - - - - 71Ga 95Mo -
    112 24.13 - 0.97 - 72Ge - 96Mo 96Ru
    113 12.22 - - 4.3 73Ge - 97Mo -
    114 28.73 - 0.66 - 74Ge - 98Mo 98Ru
    115 - - 0.34 95.7 - 75As - 99Ru
    116 7.49 - 14.54 - 76Ge 76Se 100Mo 100Ru
    117 - - 7.68 - - 77Se - 101Ru
    118 - - 24.22 - 78Kr 78Se 102Pd 102Ru
    注:“-”表示不存在该质量数同位素或者干扰。
    下载: 导出CSV

    表  2   土壤镉分离纯化方法

    Table  2   Separation and purification methods of Cd in soil

    树脂类型 用量(mL) 淋洗酸种类 流程空白(ng) 镉回收率(%) 参考文献
    AG1-X8/ Eichrom TRU Spec 2.0/0.12 3.0/0.5/1.0/2.0/8.0mol/L盐酸,0.5mol/L硝酸-0.1mol/L氢溴酸(两次),2.0mol/L硝酸(两次);6.0mol/L盐酸 ≤0.02 - Cloquet等(2005)[58]
    AG MP-1 2.0 1.2/0.3/0.012/0.0012mol/L盐酸 < 0.20 >95.0 Cloquet等(2005)[59]
    AG MP-1M 3.0 2.0/0.3/0.012/0.06/0.0012mol/L盐酸 < 0.20 >90.0 Gao等(2008)[60]
    AG MP-1M 3.0 2.0/0.3/0.06/0.012/0.0012mol/L盐酸 - 99.8 张羽旭等(2010)[57]
    AG MP-1M 2.0 2.0/0.3/0.012/0.0012mol/L盐酸 0.14±0.09 >95.0 Pallavicini等(2014)[53]
    AG MP-1M 4.0 2.0/0.3/0.06/0.012/0.0012mol/L盐酸,两次 < 0.23 >90.0 杜晨(2015)[61]
    AG MP-1M 2.0 7.0mol/L盐酸;8.0mol/L氢氟酸-2.0mol/L盐酸;0.1mol/L氢溴酸-0.5mol/L硝酸;0.5mol/L硝酸 - >99.0 段桂玲等(2016)[62]
    AG MP-1M 2.5 2.0/0.3/0.06/0.012/0.0012mol/L盐酸 < 0.10 >97.8 Li等(2018)[34]
    AG MP-1 2.0 1.2/0.012/0.0012mol/L盐酸 - 94.8~99.3 Park等(2019)[51]
    AG1-X8 2.0 6.0/0.3mol/L盐酸;0.5mol/L硝酸-0.1mol/L氢溴酸 < 0.08 - Liu等(2020)[35]
    AG MP-1M 2.8 2.0/1.0/0.3/0.06/0.012/0.0012mol/L盐酸,两次 < 0.14 >90.0 Tan等(2020)[36]
    AG MP-1M 1.0 0.25mol/L氢溴酸;2.0/0.5/0.002mol/L盐酸 - 99.1 谢胜凯等(2020)[63]
    注:“-”表示原文献中没有报道该数据。
    下载: 导出CSV

    表  3   土壤镉同位素的主要测试方法及精度

    Table  3   Major analysis method and precision of soil Cd isotope studies

    MC-ICP-MS仪器型号 质量歧视校正方法 精度(‰) (±2SD, δ114/110Cd) 参考文献
    IsoProbe SSB 0.12 Cloquet等(2005)[59]
    IsoProbe SSB 0.11 Gao等(2008)[60]
    Neptune plus Ag normalization 0.10 Pallavicini等(2014)[53]
    Neptune plus SSB 0.12 杜晨(2015)[61]
    Nu SSB 0.08 Wen等(2015)[68]
    Neptune plus SSB 0.09 Li等(2018)[34]
    NuⅡ 111Cd-113Cd DS 0.09 Li等(2018)[34]
    Neptune plus 111Cd-113Cd DS 0.05 Liu等(2020)[35]
    Neptune plus 111Cd-113Cd DS 0.03 Tan等(2020)[36]
    NuⅡ/Ⅲ 111Cd-113Cd DS 0.06/0.03 Tan等(2020)[36]
    Neptune Plus 111Cd-113Cd DS 0.06 Lu等(2021)[69]
    NuⅡ 111Cd-113Cd DS < 0.09 Peng等(2021)[70]
    下载: 导出CSV
  • [1]

    Bolan N, Kunhikrishnan A, Thangarajan R, et al. Remediation of heavy metal(loid)s contaminated soils-to mobilize or to immobilize?[J]. Journal of Hazardous Materials, 2014, 266: 141-166. doi: 10.1016/j.jhazmat.2013.12.018

    [2]

    Grant C, Flaten D, Tenuta M, et al. The effect of rate and Cd concentration of repeated phosphate fertilizer applications on seed Cd concentration varies with crop type and environment[J]. Plant and Soil, 2013, 372(1): 221-233.

    [3]

    Teng Y, Wu J, Lu S, et al. Soil and soil environmental quality monitoring in China: A review[J]. Environment International, 2014, 69: 177-199. doi: 10.1016/j.envint.2014.04.014

    [4]

    Wan D, Zhang N, Chen W, et al. Organic matter facilitates the binding of Pb to iron oxides in a subtropical contaminated soil[J]. Environmental Science and Pollution Research, 2018, 25(32): 32130-32139. doi: 10.1007/s11356-018-3173-x

    [5]

    Zhao F J, Ma Y, Zhu Y G, et al. Soil contamination in China: Current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49(2): 750-759.

    [6] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[J]. 中国环保产业, 2014, 36(5): 10-11. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201408001.htm

    Ministry of Environmental Protection, Ministry of Land and Resources. National bulletin of soil pollution survey China[J]. Environmental Protection Industry, 2014, 36(5): 10-11. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201408001.htm

    [7]

    Liu X, Zhong L, Meng J, et al. A multi-medium chain modeling approach to estimate the cumulative effects of cadmium pollution on human health[J]. Environmental Pollution, 2018, 239: 308-317. doi: 10.1016/j.envpol.2018.04.033

    [8]

    Wang P, Chen H, Kopittke P M, et al. Cadmium contam-ination in agricultural soils of China and the impact on food safety[J]. Environmental Pollution, 2019, 249: 1038-1048. doi: 10.1016/j.envpol.2019.03.063

    [9]

    Yang S, Zhao J, Chang S X, et al. Status assessment and probabilistic health risk modeling of metals accumulation in agriculture soils across China: A synthesis[J]. Environment International, 2019, 128: 165-174. doi: 10.1016/j.envint.2019.04.044

    [10]

    Zhao F J, Wang P. Arsenic and cadmium accumulation in rice and mitigation strategies[J]. Plant and Soil, 2020, 446(1): 1-21.

    [11] 郭志娟, 周亚龙, 王乔林, 等. 雄安新区土壤重金属污染特征及健康风险[J]. 中国环境科学, 2021, 41(1): 431-441. doi: 10.3969/j.issn.1000-6923.2021.01.049

    Guo Z J, Zhou Y L, Wang Q L, et al. Characteristics of soil heavy metal pollution and health risk in Xiong'an New District[J]. China Environmental Science, 2021, 41(1): 431-441. doi: 10.3969/j.issn.1000-6923.2021.01.049

    [12]

    Huang H, Chen H P, Kopittke P M, et al. The voltaic effect as a novel mechanism controlling the remobilization of cadmium in paddy soils during drainage[J]. Environmental Science & Technology, 2021, 55(3): 1750-1758.

    [13]

    Qu C, Chen W, Hu X, et al. Heavy metal behaviour at mineral-organo interfaces: Mechanisms, modelling and influence factors[J]. Environment International, 2019, 131: 104995. doi: 10.1016/j.envint.2019.104995

    [14] 赵其国, 骆永明. 论我国土壤保护宏观战略[J]. 中国科学院院刊, 2015, 30(4): 452-458. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201504004.htm

    Zhao Q G, Luo Y M. The macro strategy of soil protection in China[J]. Bulletin of Chinese Academy of Sciences, 2015, 30(4): 452-458. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYX201504004.htm

    [15] 陈卫平, 杨阳, 谢天, 等. 中国农田土壤重金属污染防治挑战与对策[J]. 土壤学报, 2018, 55(2): 261-272. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201802001.htm

    Chen W P, Yang Y, Xie T, et al. Challenges and countermeasures for heavy metal pollution control in farmlands of China[J]. Acta Pedologica Sinica, 2018, 55(2): 261-272. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201802001.htm

    [16] 党志, 姚谦, 李晓飞, 等. 矿区土壤中重金属形态分布的地球化学机制[J]. 矿物岩石地球化学通报, 2020, 39(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202001004.htm

    Dang Z, Yao Q, Li X F, et al. Geochemical constraints on heavy metal speciation and distribution in contaminated soils of mining areas[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202001004.htm

    [17] 韦刚健, 黄方, 马金龙, 等. 近十年我国非传统稳定同位素地球化学研究进展[J]. 矿物岩石地球化学通报, 2022, 41(1): 1-44, 223. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202201001.htm

    Wei G J, Huang F, Ma J L, et al. Progress of non-traditional stable isotope geochemistry of the past decade in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022, 41(1): 1-44, 223. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202201001.htm

    [18]

    Teng F Z, Dauphas N, Watkins J M. Non-traditional stable isotopes: Retrospective and prospective[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 1-26. doi: 10.2138/rmg.2017.82.1

    [19]

    Wang L, Jin Y, Weiss D J, et al. Possible application of stable isotope compositions for the identification of metal sources in soil[J]. Journal of Hazardous Materials, 2021, 407: 124812. doi: 10.1016/j.jhazmat.2020.124812

    [20]

    Wiederhold J G. Metal stable isotope signatures as tracers in environmental geochemistry[J]. Environmental Science & Technology, 2015, 49(5): 2606-2624.

    [21]

    Rosman K J R, de Laeter J R. Isotopic fractionation in meteoritic cadmium[J]. Nature, 1976, 261(5557): 216-218. doi: 10.1038/261216a0

    [22]

    Rosman K J R, de Laeter J R, Gorton M P. Cadmium isotope fractionation in fractions of two H3 chondrites[J]. Earth and Planetary Science Letters, 1980, 48(1): 166-170. doi: 10.1016/0012-821X(80)90179-X

    [23]

    Schediwy S, Rosman K J R, de Laeter J R. Isotope fractionation of cadmium in lunar material[J]. Earth and Planetary Science Letters, 2006, 243(3): 326-335.

    [24]

    Wombacher F, Rehkämper M, Mezger K, et al. Cadmium stable isotope cosmochemistry[J]. Geochimica et Cosmochimica Acta, 2008, 72(2): 646-667. doi: 10.1016/j.gca.2007.10.024

    [25]

    Schmitt A D, Galer S J G, Abouchami W. Mass-dependent cadmium isotopic variations in nature with emphasis on the marine environment[J]. Earth and Planetary Science Letters, 2009, 277(1): 262-272.

    [26]

    Zhong Q, Zhou Y, Tsang D C W, et al. Cadmium isotopes as tracers in environmental studies: A review[J]. Science of the Total Environment, 2020, 736: 139585. doi: 10.1016/j.scitotenv.2020.139585

    [27] 王丹妮, 靳兰兰, 陈斌, 等. 镉同位素体系及其在地球科学和环境科学中的应用[J]. 岩矿测试, 2013, 32(2): 181-191. doi: 10.3969/j.issn.0254-5357.2013.02.002

    Wang D N, Jin L L, Chen B, et al. A review of the isotope system of cadmium and its applications in geosciences and environmental sciences[J]. Rock and Mineral Analysis, 2013, 32(2): 181-191. doi: 10.3969/j.issn.0254-5357.2013.02.002

    [28] 李海涛, 杨鑫, 雷华基, 等. 镉稳定同位素研究进展[J]. 岩矿测试, 2021, 40(1): 1-15. doi: 10.15898/j.cnki.11-2131/td.202012090160

    Li H T, Yang X, Lei H J, et al. Research progress of cadmium stable isotopes[J]. Rock and Mineral Analysis, 2021, 40(1): 1-15. doi: 10.15898/j.cnki.11-2131/td.202012090160

    [29]

    Zhong Q, Yin M, Zhang Q, et al. Cadmium isotopic fractionation in lead-zinc smelting process and signatures in fluvial sediments[J]. Journal of Hazardous Materials, 2021, 411: 125015. doi: 10.1016/j.jhazmat.2020.125015

    [30]

    Xie X, Luo J, Guan L, et al. Cadmium isotope fractionation during leaching with nitrilotriacetic acid[J]. Chemical Geology, 2021, 584: 120523. doi: 10.1016/j.chemgeo.2021.120523

    [31]

    He H T, Xing L C, Qin S J, et al. Equilibrium Cd isotopic fractionation between Cd(OH)2(S), apatite, adsorbed Cd2+, and Cd(aq)2+: Potential application of δ114Cd in evaluating the effectiveness of Cd-contamination remediation[J]. Geochemical Journal, 2020, 54(5): 289-297. doi: 10.2343/geochemj.2.0599

    [32]

    Zhang S N, Gu Y, Zhu Z L, et al. Stable isotope fractionation of cadmium in the soil-rice-human continuum[J]. Science of the Total Environment, 2021, 761: 143262. doi: 10.1016/j.scitotenv.2020.143262

    [33]

    Borovic ˇka J, Ackerman L, Rejšek J. Cadmium isotopic composition of biogenic certified reference materials determined by thermal ionization mass spectrometry with double spike correction[J]. Talanta, 2021, 221: 121389. doi: 10.1016/j.talanta.2020.121389

    [34]

    Li D, Li M L, Liu W R, et al. Cadmium isotope ratios of standard solutions and geological reference materials measured by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2018, 42(4): 593-605. doi: 10.1111/ggr.12236

    [35]

    Liu M S, Zhang Q, Zhang Y, et al. High-precision Cd isotope measurements of soil and rock reference materials by MC-ICP-MS with double spike correction[J]. Geostandards and Geoanalytical Research, 2020, 44(1): 169-182. doi: 10.1111/ggr.12291

    [36]

    Tan D, Zhu J M, Wang X, et al. High-sensitivity determination of Cd isotopes in low-Cd geological samples by double spike MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(4): 713-727. doi: 10.1039/C9JA00397E

    [37]

    Yan X, Zhu M, Li W, et al. Cadmium isotope fractionation during adsorption and substitution with iron (oxyhydr)oxides[J]. Environmental Science & Technology, 2021, 55(17): 11601-11611.

    [38]

    Ratié G, Chrastny V, Guinoiseau D, et al. Cadmium isotope fractionation during complexation with humic acid[J]. Environmental Science & Technology, 2021, 55(11): 7430-7444.

    [39]

    Yang J, Li Y, Liu S, et al. Theoretical calculations of Cd isotope fractionation in hydrothermal fluids[J]. Chemical Geology, 2015, 391: 74-82. doi: 10.1016/j.chemgeo.2014.10.029

    [40]

    Wasylenki L E, Swihart J W, Romaniello S J. Cadmium isotope fractionation during adsorption to Mn oxyhydroxide at low and high ionic strength[J]. Geochimica et Cosmochimica Acta, 2014, 140: 212-226. doi: 10.1016/j.gca.2014.05.007

    [41]

    Zhang Y, Wen H, Zhu C, et al. Cd isotope fractionation during simulated and natural weathering[J]. Environmental Pollution, 2016, 216: 9-17. doi: 10.1016/j.envpol.2016.04.060

    [42]

    Xie X, Yan L, Li J, et al. Cadmium isotope fractionation during Cd-calcite coprecipitation: Insight from batch experiment[J]. Science of the Total Environment, 2021, 760: 143330. doi: 10.1016/j.scitotenv.2020.143330

    [43]

    Guinoiseau D, Galer S J G, Abouchami W. Effect of cadmium sulphide precipitation on the partitioning of Cd isotopes: Implications for the oceanic Cd cycle[J]. Earth and Planetary Science Letters, 2018, 498: 300-308. doi: 10.1016/j.epsl.2018.06.039

    [44]

    Horner T J, Rickaby R E M, Henderson G M. Isotopic fractionation of cadmium into calcite[J]. Earth and Planetary Science Letters, 2011, 312(1): 243-253.

    [45]

    Zhao Y, Li Y, Wiggenhauser M, et al. Theoretical isotope fractionation of cadmium during complexation with organic ligands[J]. Chemical Geology, 2021, 571: 120178. doi: 10.1016/j.chemgeo.2021.120178

    [46]

    Wang P, Li Z, Liu J, et al. Apportionment of sources of heavy metals to agricultural soils using isotope fingerprints and multivariate statistical analyses[J]. Environmental Pollution, 2019, 249: 208-216. doi: 10.1016/j.envpol.2019.03.034

    [47] 刘意章, 肖唐付, 朱建明. 镉同位素及其环境示踪[J]. 地球与环境, 2015, 43(6): 687-696. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201506013.htm

    Liu Y Z, Xiao T F, Zhu J M. Cadmium isotopes and environmetal tracing[J]. Earth and Environment, 2015, 43(6): 687-696. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201506013.htm

    [48]

    Komárek M, Ratié G, Vaňková Z, et al. Metal isotope complexation with environmentally relevant surfaces: Opening the isotope fractionation black box[J]. Critical Reviews in Environmental Science and Technology, 2021, https://doi.org/10.1080/10643389.2021.1955601. doi: 10.1080/10643389.2021.1955601

    [49] 苗鑫, 陈林捷, 周飞杨, 等. 高精度镉同位素分析样品消解方法对比研究[J]. 分析测试学报, 2021, 40(6): 947-953. doi: 10.3969/j.issn.1004-4957.2021.06.022

    Miao X, Chen L J, Zhou F Y, et al. Comparison of sample digestion methods for high precision cadmium isotope analysis[J]. Journal of Instrumental Analysis, 2021, 40(6): 947-953. doi: 10.3969/j.issn.1004-4957.2021.06.022

    [50]

    Fedyunina N N, Seregina I F, Bolshov M A, et al. Investi-gation of the efficiency of the sample pretreatment stage for the determination of the rare earth elements in rock samples by inductively coupled plasma mass spectrometry technique[J]. Analytica Chimica Acta, 2012, 713: 97-102. doi: 10.1016/j.aca.2011.11.035

    [51]

    Park J, Kim J Y, Lee K, et al. Comparison of acid extra-ction and total digestion methods for measuring Cd isotope ratios of environmental samples[J]. Environmental Monitoring and Assessment, 2019, 192(1): 41.

    [52]

    Wei R, Guo Q, Wen H, et al. An analytical method for precise determination of the cadmium isotopic composition in plant samples using multiple collector inductively coupled plasma mass spectrometry[J]. Analytical Methods, 2015, 7(6): 2479-2487. doi: 10.1039/C4AY02435D

    [53]

    Pallavicini N, Engström E, Baxter D C, et al. Cadmium isotope ratio measurements in environmental matrices by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(9): 1570-1584. doi: 10.1039/C4JA00125G

    [54]

    Lv W X, Yin H M, Liu M S, et al. Effect of the dry ashing method on cadmium isotope measurements in soil and plant samples[J]. Geostandards and Geoanalytical Research, 2021, 45(1): 245-256. doi: 10.1111/ggr.12357

    [55] 李津, 唐索寒, 马健雄, 等. 金属同位素质谱中分析样品处理的基本原则与方法[J]. 岩矿测试, 2021, 40(5): 627-636. doi: 10.15898/j.cnki.11-2131/td.202012150166

    Li J, Tang S H, Ma J X, et al. Principles and treatment methods for metal isotopes analysis[J]. Rock and Mineral Analysis, 2021, 40(5): 627-636. doi: 10.15898/j.cnki.11-2131/td.202012150166

    [56]

    Gault-Ringold M. The marine biogeochemisty of cadmium: Studies of cadmium isotopic variations in the Southern Ocean[D]. Dunedin: University of Otago, 2011.

    [57] 张羽旭, 温汉捷, 樊海峰, 等. Cd同位素地质样品的预处理方法研究[J]. 分析测试学报, 2010, 29(6): 633-637. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST201006023.htm

    Zhang Y X, Wen H J, Fan H F, et al. Chemical pre-treatment methods for measurement of Cd isotopic ratio on geological sample[J]. Journal of Instrumental Analysis, 2010, 29(6): 633-637. https://www.cnki.com.cn/Article/CJFDTOTAL-TEST201006023.htm

    [58]

    Wombacher F, Rehkämper M, Mezger K, et al. Stable isotope compositions of cadmium in geological materials and meteorites determined by multiple-collector ICPMS[J]. Geochimica et Cosmochimica Acta, 2003, 67(23): 4639-4654. doi: 10.1016/S0016-7037(03)00389-2

    [59]

    Cloquet C, Rouxel O, Carignan J, et al. Natural cadmium isotopic variations in eight geological reference materials (NIST SRM 2711, BCR 176, GSS-1, GXR-1, GXR-2, GSD-12, NOD-P-1, NOD-A-1) and anthropogenic samples, measured by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2005, 29(1): 95-106. doi: 10.1111/j.1751-908X.2005.tb00658.x

    [60]

    Gao B, Liu Y, Sun K, et al. Precise determination of cadmium and lead isotopic compositions in river sediments[J]. Analytica Chimica Acta, 2008, 612(1): 114-120. doi: 10.1016/j.aca.2008.02.020

    [61] 杜晨. 镉同位素分析及其古海洋环境指示意义[D]. 武汉: 中国地质大学(武汉), 2015.

    Du C. Cadmium isotope analytical method and its paleo-ocean environmental sugnificance[D]. Wuhan: China University of Geosciences (Wuhan), 2015.

    [62] 段桂玲, 段瑞春, 谭娟娟, 等. 土壤样品镉同位素分析中Cd与Sn有效分离方法的改进[J]. 岩矿测试, 2016, 35(1): 10-16. doi: 10.15898/j.cnki.11-2131/td.2016.01.003

    Duan G L, Duan R C, Tan J J, et al. Improvement on effective separation between cadmium and tin in soil samples for the determination of cadmium isotopic composition[J]. Rock and Mineral Analysis, 2016, 35(1): 10-16. doi: 10.15898/j.cnki.11-2131/td.2016.01.003

    [63] 谢胜凯, 曾远, 刘瑞萍, 等. AG-MP-1M在氢溴酸体系中分离镉的方法[J]. 核化学与放射化学, 2020, 42(4): 256-261. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFS202004007.htm

    Xie S K, Zeng Y, Liu R P, et al. Separation of cadmium in hydrobromic acid by anion resin AG-MP-1M[J]. Journal of Nuclear and Radiochemistry, 2020, 42(4): 256-261. https://www.cnki.com.cn/Article/CJFDTOTAL-HXFS202004007.htm

    [64]

    Zhou F Y, He D, Miao X, et al. Development of an automatic column chromatography separation device for metal isotope analysis based on droplet counting[J]. Analytical Chemistry, 2021, 93(19): 7196-7203. doi: 10.1021/acs.analchem.1c00145

    [65] 朱志勇, 朱祥坤, 杨涛. 自动分离提纯系统的研制及其在同位素分析测试中的应用[J]. 岩矿测试, 2020, 39(3): 384-390. doi: 10.15898/j.cnki.11-2131/td.201908120123

    Zhu Z Y, Zhu X K, Yang T. A fully automated chemical separation and purification system and its application to isotope analysis[J]. Rock and Mineral Analysis, 2020, 39(3): 384-390. doi: 10.15898/j.cnki.11-2131/td.201908120123

    [66]

    Böhlke J K, Laeter J R D, Bièvre P D, et al. Isotopic compositions of the elements, 2001[J]. Journal of Physical and Chemical Reference Data, 2005, 34(1): 57-67. doi: 10.1063/1.1836764

    [67]

    Abouchami W, Galer S J G, de Baar H J W, et al. Biogeo-chemical cycling of cadmium isotopes in the Southern Ocean along the zero meridian[J]. Geochimica et Cosmochimica Acta, 2014, 127: 348-367. doi: 10.1016/j.gca.2013.10.022

    [68]

    Wen H, Zhang Y, Cloquet C, et al. Tracing sources of pollution in soils from the Jinding Pb-Zn mining district in China using cadmium and lead isotopes[J]. Applied Geochemistry, 2015, 52: 147-154. doi: 10.1016/j.apgeochem.2014.11.025

    [69]

    Lu Z, Zhu J M, Tan D, et al. δ114/110Cd values of a suite of different reference materials[J]. Geostandards and Geoanalytical Research, 2021, 45(3): 565-581. doi: 10.1111/ggr.12380

    [70]

    Peng H, He D, Guo R, et al. High precision cadmium isotope analysis of geological reference materials by double spike MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(2): 390-398. doi: 10.1039/D0JA00424C

    [71]

    Chrastny V, adková E, Vaněk A, et al. Cadmium isotope fractionation within the soil profile complicates source identification in relation to Pb-Zn mining and smelting processes[J]. Chemical Geology, 2015, 405: 1-9. doi: 10.1016/j.chemgeo.2015.04.002

    [72]

    Zhu C, Wen H, Zhang Y, et al. Characteristics of Cd isotopic compositions and their genetic significance in the lead-zinc deposits of SW China[J]. Science China Earth Sciences, 2013, 56(12): 2056-2065. doi: 10.1007/s11430-013-4668-4

    [73]

    Shiel A E, Weis D, Orians K J. Evaluation of zinc, cadmium and lead isotope fractionation during smelting and refining[J]. Science of the Total Environment, 2010, 408(11): 2357-2368. doi: 10.1016/j.scitotenv.2010.02.016

    [74]

    Martinková E, Chrastny V, Francová M, et al. Cadmium isotope fractionation of materials derived from various industrial processes[J]. Journal of Hazardous Materials, 2016, 302: 114-119. doi: 10.1016/j.jhazmat.2015.09.039

    [75]

    Wombacher F, Rehkämper M, Mezger K. Determination of the mass-dependence of cadmium isotope fractiona-tion during evaporation[J]. Geochimica et Cosmochimica Acta, 2004, 68(10): 2349-2357. doi: 10.1016/j.gca.2003.12.013

    [76]

    Cloquet C, Carignan J, Libourel G, et al. Tracing source pollution in soils using cadmium and lead isotopes[J]. Environmental Science & Technology, 2006, 40(8): 2525-2530.

    [77]

    Imseng M, Wiggenhauser M, Keller A, et al. Fate of Cd in agricultural soils: A stable isotope approach to anthropogenic impact, soil formation, and soil-plant cycling[J]. Environmental Science & Technology, 2018, 52(4): 1919-1928.

    [78]

    Salmanzadeh M, Hartland A, Stirling C H, et al. Isotope tracing of long-term cadmium fluxes in an agricultural soil[J]. Environmental Science & Technology, 2017, 51(13): 7369-7377.

    [79]

    Barraza F, Moore R E T, Rehkämper M, et al. Cadmium isotope fractionation in the soil -cacao systems of ecuador: A pilot field study[J]. RSC Advances, 2019, 9(58): 34011-34022. doi: 10.1039/C9RA05516A

    [80]

    Gou W, Li W, Ji J, et al. Zinc isotope fractionation during sorption onto Al oxides: Atomic level understanding from EXAFS[J]. Environmental Science & Technology, 2018, 52(16): 9087-9096.

    [81] 李霞, 张慧鸣, 徐震, 等. 农田Cd和Hg污染的来源解析与风险评价研究[J]. 农业环境科学学报, 2016, 35(7): 1314-1320. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201607013.htm

    Li X, Zhang H M, Xu Z, et al. Source apportionment and risk assessmet of Cd and Hg pollution in farmland[J]. Journal of Agro-Environment Science, 2016, 35(7): 1314-1320. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201607013.htm

    [82]

    Wiggenhauser M, Bigalke M, Imseng M, et al. Using isotopes to trace freshly applied cadmium through mineral phosphorus fertilization in soil-fertilizer-plant systems[J]. Science of the Total Environment, 2019, 648: 779-786. doi: 10.1016/j.scitotenv.2018.08.127

  • 期刊类型引用(4)

    1. 张小连. 广东徐闻土壤中硒元素含量的空间分布特征及其影响因素. 中国煤炭地质. 2024(02): 74-78+53 . 百度学术
    2. 多吉卫色,索朗次仁,平措朗杰,达娃拉姆,洛桑旺堆,俞乐. 西藏自治区隆子县土壤硒地球化学特征及影响因素. 岩矿测试. 2023(01): 177-191 . 本站查看
    3. 王金龙,李杰,欧阳鑫东,陆康运. 广西典型煤系地层分布区土壤硒元素的分布特征与影响因素. 贵州农业科学. 2023(05): 35-43 . 百度学术
    4. 岳晴晴,周卫军,龙立长,丁庭康,商贵铎,崔浩杰. 洪江市耕地土壤硒含量分布特征及其影响因素. 长江流域资源与环境. 2023(05): 1080-1089 . 百度学术

    其他类型引用(1)

图(2)  /  表(3)
计量
  • 文章访问数:  929
  • HTML全文浏览量:  137
  • PDF下载量:  114
  • 被引次数: 5
出版历程
  • 收稿日期:  2021-10-08
  • 修回日期:  2021-11-28
  • 录用日期:  2022-03-13
  • 网络出版日期:  2022-07-28
  • 发布日期:  2021-10-08
  • 刊出日期:  2022-05-27

目录

/

返回文章
返回