• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

河北阜平县表层土壤重金属对人体健康的风险评估

Risk Assessment of Heavy Metals in Topsoil on Human Health in Fuping County, Hebei Province

  • 摘要: 河北省阜平县矿产资源丰富,矿产开发会产生大量重金属污染物,近年来大力发展果农业,也会对表层土壤造成一定影响,目前该县表层土壤重金属现状尚不清晰。为评估阜平县农业重点区表层土壤重金属污染特征和对人体健康的影响,本文按照1:5万土地质量调查规范要求,布设标准网格在该县农业重点区采集表层土壤样品647组,采用原子荧光光谱、电感耦合等离子体质谱、X射线荧光光谱等方法,测定Hg、As、Cd、Cu、Pb、Zn、Ni、Cr等8种重金属含量;运用地累积指数、内梅罗污染指数和富集因子法等方法,识别表层土壤重金属的污染特征和来源;利用中国人体健康土壤环境基准制定技术指南的健康风险评估标准,评估重金属污染对人体健康的风险。结果表明:①研究区表层土壤中Hg、Pb、Cu、Zn、Cd、Cr、Ni存在一定程度的富集,但含量均未超过农用地管控值,98.6%的样品土壤重金属对农产品质量安全、农作物生长或土壤生态环境风险低;②As的来源主要为自然源,Hg、Pb局部受到人类活动影响,Cu、Zn、Cd、Cr、Ni受到人类活动和天然地质背景共同影响;③对表层土壤中重金属的非致癌和致癌风险评估显示,成人和儿童的非致癌风险指数小于1,均不存在非致癌风险,处于可接受水平。As和Cd超过可接受致癌风险水平(As为10-5,Cd为10-6),具有一定的致癌风险,经口吸入是造成人体健康风险的主要暴露途径,儿童受到的影响远高于成人。由此认为,研究区土壤存在轻微污染,且As和Cd对人体健康有一定影响,应加强对土壤重金属的监测,掌握其变化动态,防范土壤污染加重。

     

    Abstract:
    BACKGROUNDPolycyclic aromatic hydrocarbons (PAHs), as a typical persistent organic pollutant, widely exist in the environment and have high stability. Studying of the content distribution and source analysis of PAHs in soil will provide a technical basis for PAHs pollution prevention and control, ecological environment improvement and environmental protection policy-making.
    OBJECTIVESIn order to investigate the content, composition and source of PAHs in the soil environment of different functional areas in Beijing City.
    METHODSA large-scale sampling was carried out in the core area of Beijing City. At the same time, regional sampling was carried out for different functional areas such as industrial areas, agricultural planting areas, water source protection areas and residential areas. A total of 459 topsoil samples were collected, and the monomer contents of 16 PAHs were analyzed by gas chromatography-mass spectrometry (GC-MS).
    RESULTSThe average values of the total contents of 16 PAHs (∑16PAHs) in topsoil of the three subregions in the core area (southeast, center and northwest) were 153.7, 333.2 and 142.9μg/kg, respectively. The average values of ∑16PAHs in topsoil of the industrial zone, including Southeast Factory, Shougang Industry and Datai Coal Mine, were 1006.9, 1379.4 and 146.8μg/kg, respectively. The average values of ∑16PAHs in topsoil of the water-conserving areas, Huairou and Miyun, were 86.4μg/kg and 154.5μg/kg, respectively. The average values of ∑16PAHs in topsoil of four agricultural planting regions (Changping, Pinggu, Fangshan and Tongzhou) were 109.0, 118.3, 106.8 and 94.2μg/kg, respectively. The average value of ∑16PAHs in topsoil of residential areas was 131.1μg/kg. Compared with previous research results on the content and distribution characteristics of PAHs, the content of PAHs in the topsoil in Beijing City showed a decreased trend, which was related to the decrease in the use of coal and the increase in the use of natural gas in Beijing City in recent years. The composition of PAHs in different functional areas was different. The proportion of heavy and medium rings PAHs were higher in industrial areas. The proportion of light rings PAHs in water-conserving areas, agricultural planting regions and residential areas was higher than that in industrial areas, which might be due to the different sources of PAHs in different functional areas. The results of principal component analysis-multiple linear regression method showed that the main sources of PAHs in the core area were tail gas emissions and leakage during oil storage and transportation, which contributed 81.46% and 18.54%, respectively. The main sources of PAHs in the topsoil of the industrial area were coal combustion and tail gas emissions, which contributed 62.65% and 37.35%, respectively. The main sources of PAHs in residential areas were tail gas emissions and natural gas combustion sources, with contribution rates of 53.30% and 46.70%, respectively.
    CONCLUSIONSFurther strengthening traffic control, continuing to reduce the proportion of coal in energy structure, and increasing the proportion of clean energy are effective ways to reduce PAHs emissions and pollution in Beijing City.

     

/

返回文章
返回