• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

基于电子探针面扫描定量化的石英闪长岩微区成分分析

胡瑶瑶, 王浩铮, 侯玉杨, 宋皓然

胡瑶瑶, 王浩铮, 侯玉杨, 宋皓然. 基于电子探针面扫描定量化的石英闪长岩微区成分分析[J]. 岩矿测试, 2022, 41(2): 260-271. DOI: 10.15898/j.cnki.11-2131/td.202109280132
引用本文: 胡瑶瑶, 王浩铮, 侯玉杨, 宋皓然. 基于电子探针面扫描定量化的石英闪长岩微区成分分析[J]. 岩矿测试, 2022, 41(2): 260-271. DOI: 10.15898/j.cnki.11-2131/td.202109280132
HU Yaoyao, WANG Haozheng, HOU Yuyang, SONG Haoran. A Method for Estimating Micro-area Composition of Quartz-diorite Based on Quantitative Mapping of Electron Probe Microanalysis[J]. Rock and Mineral Analysis, 2022, 41(2): 260-271. DOI: 10.15898/j.cnki.11-2131/td.202109280132
Citation: HU Yaoyao, WANG Haozheng, HOU Yuyang, SONG Haoran. A Method for Estimating Micro-area Composition of Quartz-diorite Based on Quantitative Mapping of Electron Probe Microanalysis[J]. Rock and Mineral Analysis, 2022, 41(2): 260-271. DOI: 10.15898/j.cnki.11-2131/td.202109280132

基于电子探针面扫描定量化的石英闪长岩微区成分分析

基金项目: 

国家自然科学基金项目 41702199

国家自然科学基金项目(41702199,42072225);国家留学基金委西部人才计划项目(201708515142);国家级创新创业训练项目(S202010615029)

国家留学基金委西部人才计划项目 201708515142

国家级创新创业训练项目 S202010615029

国家自然科学基金项目 42072225

详细信息
    作者简介:

    胡瑶瑶,硕士研究生,地质学专业。E-mail: 1317969211@qq.com

    通讯作者:

    王浩铮,副研究员,主要从事变质岩石学、前寒武纪地质学研究。E-mail: cugwanghaozheng@sina.com

  • 中图分类号: P57

A Method for Estimating Micro-area Composition of Quartz-diorite Based on Quantitative Mapping of Electron Probe Microanalysis

  • 摘要: 岩石的微区成分特征是精细化反演岩石演化的重要依据,而常规的电子探针面扫描分析方法无法提供面扫描区域的定量分析结果。本文使用矿物分布相对均匀的代表性岩石样品开展了岩石薄片的面扫描和矿物的定量分析。通过对常规测试的主量元素的面扫描进行图像校正,并利用ZAF校正后的点分析数据与面扫描图像的灰度值进行最小二乘法曲线拟合的方式,实现了X射线强度与质量浓度的转换。对比全岩X射线荧光光谱(XRF)测试数据,电子探针面扫描定量化方法的主量元素SiO2、CaO、FeO、Al2O3、TiO2的相对误差在10%以内,且相对标准偏差(RSD)不高于12%,具有良好的一致性;MgO和Na2O的相对误差与标准偏差略大,可通过多次测量加以改善;K2O由于缺乏富钾硅酸盐矿物的定量分析数据,导致结果不精确。研究表明,在仪器测试条件良好的情况下使用电子探针定量数据校正面扫描图像,可对矿物分布较均匀的岩石开展微区成分分析,给出估计结果,并通过多个切面的多次测量等方式,减少来自矿物形态、粒径大小、分布的影响。
    要点

    (1) 电子探针面扫描结果可以与定量分析数据建立较好的对应关系。

    (2) 结合电子探针定量分析与面扫描结果,可开展面扫描定量化数据处理。

    (3) 矿物分布均匀的岩石微区电子探针面描定量化数据处理结果与XRF全岩分析结果基本一致。

    HIGHLIGHTS

    (1) The mapping results of electron probe microanalysis establish a good relationship with the quantitative analysis results.

    (2) The quantitative data processing uses the relationship between the mapping and point analyses.

    (3) The quantitative mapping results of the micro-area of homogeneous rock was consistent with the results of bulk rock measured by X-ray fluorescence spectrometry (XRF).

  • 致谢: 感谢西南石油大学地球科学与技术学院陈曦老师在样品分析过程中提供的帮助。感谢丁宁、宋辉、张瑾怡、张易、冯林峰同学在成稿过程中提供的帮助。特别感谢匿名专家在稿件修改过程中提出的细致且宝贵的建议。
  • 图  1   川北米仓山地体新元古岩浆岩基底石英闪长岩岩相学特征

    a、d—石英闪长岩野外特征,发育半自形粒状结构,块状构造;b、c—斜长石表面浑浊呈自形;石英呈半自形-它形分布在角闪石和斜长石周围;e、f—角闪石呈半自形到它形,不透明金属矿物分布在角闪石和斜长石内部。
    矿物代号:Pl—斜长石;Amp—角闪石;Qz—石英;Opq—不透明矿物。

    Figure  1.   Field outcrop and microscopic characteristics of Neoproterozoic magmatic quartz-diorite in Micangshan, northern Sichuan. (a, d—Field photos of quartz-diorite which has subhedral granular texture and massive structure; b, c—Plagioclase is enhedral with a turbid surface, and the quartz is subhedral to anhedral distributed around amphibole and plagioclase; e, f—Amphibole is subhedral to anhedral, and contain opaque metallic minerals are founded in amphibole and plagioclase. Mineral abbreviation: Amp—amphibole; Pl—plagioclase; Qz—quartz; Opq—opaque mineral)

    图  2   面扫描分析区域的背散射图像与定量分析点位

    图中圆点代表模拟的探针点位,数字代表定量分析测试的序号。a—早期形成的斜长石自形程度较好;b—自形的斜长石中部蚀变为绿帘石;c—它形角闪石边部分布着不自形的石英、钛铁矿、富钾硅酸盐矿物,内部存在磷灰石、钛铁矿等包裹体;d—半自形钛铁矿和磁铁矿分布在斜长石和角闪石边部。

    Figure  2.   Backscattered electron image of mapping area and positions of point analyses (Dots represent the position of the simulated point analyses and the numbers in the figure represent the serial number of the article test data. a—The plagioclase formed in the early stage is enhedral crystal. b—The middle part of enhedral plagioclase is alterated into epidote. c—The edge of anhedral amphibole is covered with quartz, ilmenite and K-rich silicate minerals, while apatite, ilmenite and other inclusions exist in it. d—Subhedral ilmenite and magnetite are distributed at the edge of plagioclase and amphibole)

    图  3   面扫描像素灰度与定量数据的曲线拟合结果

    Figure  3.   Curve fitting results of grayscale of pixels and point analyses

    图  4   部分区域的矿物面扫描图像

    a、d—对比未校正的面扫描图像,在校正后的图像中,斜长石的Al2O3成分分布较均一且显示出微弱的模态丰度变化;b、e—在Na2O面扫描图中,斜长石成分分布不均一,存在计数率缺失,而在校正后的图像中,斜长石成分分布较均一;c、f—在CaO面扫描图中,斜长石内部发生蚀变;g、j—对比未校正的面扫描图像,在校正后的图像中,角闪石具有较高的MgO含量,存在钛铁矿等包裹体且成分分布较均一;h、k—在K2O面扫描图中,角闪石和斜长石不易区分且边部存在富K的硅酸盐矿物,而在校正后的图像中,角闪石的K2O含量高于斜长石且边部的富K的硅酸盐矿物可以被明显鉴别;i、l—对比未校正的面扫描图像,在校正后的图像中,角闪石含有微量的TiO2晶界清晰且边部分布着钛铁矿、磁铁矿。
    矿物代号:Pl—斜长石;Amp—角闪石;Qz—石英;Ilm—钛铁矿;Mag—磁铁矿。

    Figure  4.   Phase composition mappings of the minerals. (a, d—The composition of Al2O3 of plagioclase is relatively homogeneous in the corrected image compared to the uncorrected mapping, showing a weak change in modal abundance. b, e— In mapping of Na2O, the composition of plagioclase is inhomogeneous and the count is lost. However, after image processing the composition of plagioclase is homogeneous. c, f— In CaO mapping, the interior of plagioclase is altered. g, j—The composition of minerals is homogeneou and MgO content of amphibole is relatively high in the corrected image compared to the uncorrected mapping, containing ilmenite and other inclusions. h, k—In K2O mapping, amphibole and plagioclase are difficult to distinguish and K-rich silicate minerals exist at the edge. However, after image processing the K2O content of amphibole is obviously higher than that of plagioclase and K-rich silicate minerals are obvious. i, l—Amphibole contains a small amount of TiO2, grain boundary is clear, and ilmenite and magnetite are distributed at the edge in the corrected image compared to the uncorrected mapping. Mineral abbreviation: Amp—amphibole; Pl—plagioclase; Qz—quartz; Ilm—ilmenite; Mag—magnetite)

    表  1   斜长石和角闪石电子探针分析结果

    Table  1   Electron probe microanalysis results of plagioclase and amphibole

    成分 斜长石不同测试点位的分析结果(%) 角闪石不同测试点位的分析结果(%)
    1 2 11 13 17 18 23 24 3 4 5 7 8 9 15 16 19 25 26
    SiO2 57.83 56.74 56.74 56.54 56.89 57.67 57.78 57.25 45.82 47.71 47.08 46.36 47.17 46.72 46.50 45.66 46.68 47.66 45.85
    TiO2 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 2.28 1.03 1.14 1.28 1.31 1.47 1.95 2.39 1.85 1.19 2.26
    Al2O3 27.03 27.80 28.07 28.28 28.28 28.28 27.57 25.23 8.30 7.33 7.64 7.20 7.63 7.82 8.00 8.58 7.80 7.17 8.35
    FeO 0.19 0.13 0.18 0.08 0.11 0.10 0.10 0.04 15.22 15.12 15.35 15.01 14.44 15.49 14.88 14.27 14.66 14.63 14.88
    MnO 0.00 0.02 0.00 0.00 0.01 0.00 0.02 0.00 0.47 0.44 0.38 0.48 0.50 0.48 0.45 0.48 0.45 0.50 0.49
    MgO 0.02 0.03 0.00 0.00 0.02 0.02 0.01 0.00 12.24 12.54 12.47 12.76 12.41 12.32 11.92 12.27 12.49 12.64 12.29
    CaO 8.49 9.47 9.47 9.91 9.59 8.88 8.62 6.96 11.10 11.74 11.73 11.34 11.35 11.24 11.28 11.41 11.16 11.68 10.94
    Na2O 6.44 6.26 6.17 5.71 6.08 6.18 6.37 7.41 1.23 0.85 0.74 1.00 1.06 1.05 1.23 1.17 1.16 0.92 1.39
    K2O 0.19 0.16 0.17 0.08 0.13 0.21 0.11 0.08 0.49 0.50 0.52 0.44 0.47 0.49 0.49 0.54 0.44 0.49 0.49
    总含量 100.19 100.61 100.80 100.67 101.11 101.33 100.57 96.98 97.14 97.26 97.05 95.86 96.33 97.08 96.70 96.76 96.69 96.87 96.94
    O 8.02 7.99 8.00 8.03 8.00 8.02 8.02 7.98 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00
    Si 2.59 2.53 2.53 2.53 2.53 2.56 2.58 2.63 6.55 6.79 6.71 6.70 6.77 6.67 6.67 6.55 6.68 6.80 6.57
    Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.11 0.12 0.14 0.14 0.16 0.21 0.26 0.20 0.13 0.24
    Al 1.42 1.46 1.47 1.49 1.48 1.48 1.45 1.37 1.40 1.22 1.28 1.23 1.29 1.32 1.35 1.45 1.32 1.21 1.40
    Fe 0.01 0.01 0.01 0.00 0.04 0.00 0.00 0.01 1.82 1.80 1.83 1.82 1.73 1.85 1.78 1.71 1.75 1.75 1.78
    Mn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.05 0.05 0.06 0.06 0.06 0.05 0.06 0.05 0.06 0.06
    Mg 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.60 2.66 2.65 2.75 2.65 2.62 2.55 2.62 2.67 2.69 2.62
    Ca 0.41 0.45 0.45 0.48 0.46 0.42 0.41 0.34 1.70 1.80 1.80 1.76 1.74 1.72 1.73 1.75 1.71 1.79 1.69
    Na 0.56 0.54 0.53 0.50 0.52 0.53 0.55 0.66 0.34 0.24 0.20 0.28 0.30 0.30 0.34 0.32 0.32 0.26 0.39
    K 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.09 0.09 0.10 0.08 0.09 0.09 0.09 0.10 0.08 0.09 0.09
    总阳离子数 5.00 5.00 5.00 5.00 5.04 5.00 5.00 5.01 16.81 16.75 16.75 16.81 16.77 16.78 16.77 16.83 16.79 16.77 16.83
    An 41.64 45.13 45.46 48.74 46.20 43.73 42.52 34.01
    Ab 57.22 53.96 53.56 50.81 53.03 55.04 56.85 65.51
    Or 1.13 0.90 0.98 0.45 0.77 1.23 0.63 0.48
    下载: 导出CSV

    表  2   石英、磁铁矿、磷灰石、绿帘石和黑云母电子探针分析结果

    Table  2   Electron probe microanalysis results of quartz, magnetite, apatite, epidote and biotite

    成分 石英不同测试点位分析结果(%) 磁铁矿不同测试点位分析结果(%) 磷灰石不同测试点位分析结果(%) 绿帘石不同测试点位分析结果(%) 黑云母不同测试点位分析结果(%)
    10 6 12 14 20 21 22 27 28 29
    SiO2 99.77 0.04 0.04 0.05 0.06 0.06 0.11 36.52 35.49 34.87
    TiO2 0.00 0.06 0.01 0.01 0.02 0.00 0.00 0.00 2.831 2.59
    Al2O3 0.00 0.04 0.06 0.07 0.18 0.00 0.01 20.97 15.79 15.83
    FeO 0.06 95.10 96.12 95.98 95.44 0.00 0.05 17.22 17.57 18.30
    MnO 0.00 0.05 0.07 0.12 0.14 0.04 0.06 0.00 0.00 0.00
    MgO 0.00 0.00 0.00 0.04 0.03 0.02 0.00 0.00 12.12 12.24
    CaO 0.02 0.00 0.00 0.00 0.00 53.01 53.06 23.05 0.03 0.09
    Na2O 0.01 0.03 0.01 0 0.04 0.09 0.14 0.00 0.08 0.09
    K2O 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 9.14 8.36
    P2O5 - - - - - 46.77 46.56 - - -
    总含量 99.86 95.32 96.30 96.27 95.90 99.99 100.00 97.76 93.05 92.37
    O 2.00 4.00 4.00 4.00 4.00 12.00 12.00 12.50 12.00 12.00
    Si 0.997 0.002 0.002 0.003 0.003 0.004 0.008 2.92 2.73 2.73
    Ti 0.000 0.002 0.000 0.000 0.001 0.000 0.000 0.00 0.15 0.15
    Al 0.000 0.002 0.004 0.004 0.010 0.000 0.001 1.98 1.46 1.46
    Fe 0.000 3.984 3.987 3.981 3.967 0.000 0.003 1.15 1.20 1.20
    Mn 0.000 0.002 0.003 0.005 0.006 0.003 0.004 0.00 0.00 0.00
    Mg 0.000 0.000 0.000 0.003 0.003 0.002 0.000 0.00 1.43 1.43
    Ca 0.000 0.000 0.000 0.000 0.000 4.367 4.377 1.97 0.01 0.01
    Na 0.000 0.002 0.001 0.000 0.004 0.013 0.021 0.00 0.01 0.01
    K 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.00 0.83 0.83
    P - - - - - 3.045 3.035 - - -
    总阳离子数 1.00 4.00 4.00 4.00 3.99 7.43 7.45 9.02 7.82 7.82
    下载: 导出CSV

    表  3   面扫描定量化微区分析结果与全岩XRF分析结果对比

    Table  3   Comparison between estimated results from quantified mapping and bulk XRF data

    原样品号 SiO2 CaO K2O TFe2O3 Na2O MgO Al2O3 TiO2
    XRF:全岩GC01-1(%) 52.12 7.20 1.50 8.72 4.28 4.75 18.16 1.16
    XRF:全岩GC01-3(%) 57.09 6.72 1.15 6.98 4.19 3.38 16.95 0.99
    电子探针面扫描定量化(%) 56.10 7.40 0.66 7.38 3.50 3.52 16.80 0.93
    相对误差(%) 1.81 4.13 -40.18 -4.07 -12.28 -9.36 -2.91 -9.42
    RSD(%) 4.77 4.92 38.24 11.85 10.70 19.41 4.31 11.62
    注:相对误差=(实际值-真实值)/真实值×100;标准偏差:$ s = \sqrt {\sum {{({x_i} - x)}^2}/(n{\rm{ - }}1)} $;相对标准偏差(RSD)=标准偏差/平均值×100;FeO=0.9×Fe2O3
    下载: 导出CSV

    表  4   定量化面扫描与面扫描定量化处理方式的对比

    Table  4   Comparison of different processing methods of quantitative mapping

    处理类型 定量化面扫描 面扫描定量化
    Donovan等[16] Lanari等[15] 本文
    操作方式 电子探针仪器 原始X光谱 面扫描半定量图像
    背景校正 平均原子序数 点分析的背景值 原始校正方式及直方图均衡化
    仪器误差 死时间、束流漂移校正、标准强度校正、矩阵校正、光谱干扰校准等 死时间、束流漂移等校准 双边滤波、闭运算等图像处理算法
    错误计数 增加计数时间、加速电压和束流大小 均值滤波 均值滤波、中值滤波、高斯滤波等图像处理算法
    质量浓度转换 使用参考物质校准仪器上的X射线强度再量化多个面扫描图像 校准曲线转换 结合ZAF定量数据进行最小二乘法曲线拟合
    下载: 导出CSV
  • Wang H Z, Zhang H F, Zhai M G, et al. Granulite facies metamorphism and crust melting in the Huai'an terrane at~1.95Ga, North China Craton: New constraints from geology, zircon U-Pb, Lu-Hf isotope and metamorphic conditions of granulites[J]. Precambrian Research, 2016, 286: 126-151. doi: 10.1016/j.precamres.2016.09.012

    孙春青, 游海涛, 刘嘉麒, 等. 火山灰全岩与原位分析差异: 以四海龙湾记录的1600年前金龙顶子火山喷发为例[J]. 地球科学, 2016, 41(1): 97-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201601008.htm

    Sun C Q, You H T, Liu J L, et al. Differences between whole rock and in situ analysis on Tephra: Evidence from the 1600a cal. BP eruption of Jinlongingzi Volcano[J]. Earth Science, 2016, 41(1): 97-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201601008.htm

    Wang H Z, Laurent O, Zhang H F, et al. Recognition and significance of c. 800Ma upper amphibolite to granulite facies metamorphism in metasedimentary rocks from the NW margin of the Yangtze Block[J]. Journal of the Geological Society, 2020, 177(2): 424-441. doi: 10.1144/jgs2019-035

    许乃岑, 沈加林, 张静. X射线衍射-X射线荧光光谱-电子探针等分析测试技术在玄武岩矿物鉴定中的应用[J]. 岩矿测试, 2015, 34(1): 75-81. doi: 10.15898/j.cnki.11-2131/td.2015.01.010

    Xu N C, Shen J L, Zhang J. Application of X-ray diffraction, X-ray fluorescence spectrometry and electron microprobe in the identification of basalt[J]. Rock and Mineral Analysis, 2015, 34(1): 75-81. doi: 10.15898/j.cnki.11-2131/td.2015.01.010

    周伟, 曾梦, 王健, 等. 熔融制样-X射线荧光光谱法测定稀土矿石中的主量元素和稀土元素[J]. 岩矿测试, 2018, 37(3): 298-305. doi: 10.15898/j.cnki.11-2131/td.201706280113

    Zhou W, Zeng M, Wang J, et al. Determination of major and rare earth elements in rare earth ores by X-ray fluorescence spectrometry with fusion sample preparation[J]. Rock and Mineral Analysis, 2018, 37(3): 298-305. doi: 10.15898/j.cnki.11-2131/td.201706280113

    李小莉, 吴良英, 王力强, 等. X射线荧光光谱法分析碳酸盐时两种制样方法的比较[J]. 理化检验(化学分册), 2016, 52(6): 664-668. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201606012.htm

    Li X L, Wu L Y, Wang L Q, et al. Comparative study on the 2 methods for preparation of sample discs in XRFs analysis of carbonates[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2016, 52(6): 664-668. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201606012.htm

    汪方跃, 葛粲, 宁思远, 等. 一个新的矿物面扫描分析方法开发和地质学应用[J]. 岩石学报, 2017, 33(11): 3422-3436. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201711006.htm

    Wang F Y, Ge C, Ning S Y, et al. A new approach to LA-ICP-MS mapping and application in geology[J]. Acta Petrologica Sinica, 2017, 33(11): 3422-3436. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201711006.htm

    Spear F S, Wolfe O M. Evaluation of the effective bulk composition (EBC) during growth of garnet[J]. Chemical Geology, 2018, 491: 39-47. doi: 10.1016/j.chemgeo.2018.05.019

    田作林, 张泽明, 董昕. 有效全岩成分的计算方法及其在变质相平衡模拟中的应用[J]. 岩石学报, 2020, 36(9): 2616-2630. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202009003.htm

    Tian Z L, Zhang Z M, Dong X. Calculation of effective bulk composition and its application in metamorphic phase equilibria modeling[J]. Acta Petrologica Sinica, 2020, 36(9): 2616-2630. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202009003.htm

    聂潇, 王宗起, 陈雷, 等. 蚀变粗面岩中再平衡结构黑云母的电子探针分析[J]. 岩矿测试, 2019, 38(5): 565-574. doi: 10.15898/j.cnki.11-2131/td.201807100081

    Nie X, Wang Z Q, Chen L, et al. Electron microprobe analysis of biotite with reequilibration texture in altered trachyte[J]. Rock and Mineral Analysis, 2019, 38(5): 565-574. doi: 10.15898/j.cnki.11-2131/td.201807100081

    秦玉娟, 余朝丰, 徐洋, 等. 应用电子探针原位微区分析技术测试硅硼钠石矿物[J]. 电子显微学报, 2016, 35(3): 217-222. doi: 10.3969/j.issn.1000-6281.2016.03.006

    Qin Y J, Yu C F, Xu Y, et al. A microarea analysis technique of EPMA to probe reedmergnerite[J]. Journal of Chinese Electron Microscopy Society, 2016, 35(3): 217-222. doi: 10.3969/j.issn.1000-6281.2016.03.006

    Reed S J B. Electron microprobe analysis and scanning electron microscopy in geology[M]. Cambridge: Cambridge University Press, 2005: 164.

    Batanova V G, Sobolev A V, Magnin V. Trace element analysis by EPMA in geosciences: Detection limit, precision and accuracy[C]//IOP Conference Series: Materials Science and Engineering, 2018, 304.

    Ritchie N. Embracing uncertainty: Modeling the standard uncertainty in electron probe microanalysis—Part Ⅰ[J]. Microscopy and Microanalysis, 2020, 26(3): 469-483. doi: 10.1017/S1431927620001555

    Lanari P, Alice V, Thomas B, et al. Quantitative compositional mapping of mineral phases by electron probe micro-analyser[R]. London: Geological Society (Special Publications), 2019: 39-63.

    Donovan J, Allaz J, Handt A, et al. Quantitative WDS com-positional mapping using the electron microprobe[J]. The American Mineralogist, 2021, 106: 1717-1735. doi: 10.2138/am-2021-7739

    Yasumoto A, Yoshida K, Kuwatani T, et al. A rapid and precise quantitative electron probe chemical mapping technique and its application to an ultrahigh-pressure eclogite from the Moldanubian Zone of the Bohemian Massif (Nové Dvory, Czech Republic)[J]. American Mineralogist, 2018, 103(10): 1690-1698. doi: 10.2138/am-2018-6323CCBY

    Ortolano G, Visalli R, Godard G, et al. Quantitative X-ray map analyser (Q-XRMA): A new GIS-based statistical approach to mineral image analysis[J]. Computers and Geosciences, 2018, 115: 56-65. doi: 10.1016/j.cageo.2018.03.001

    周剑雄, 毛水和, 陈克樵, 等. 电子探针分析[M]. 北京: 地质出版社, 1988: 499.

    Zhou J X, Mao S H, Chen K Q, et al. Electron probe micro-analysis[M]. Beijing: Geological Publishing, 1998: 499.

    梁细荣, 姚立, 田地. 电子探针背景扣除和谱线干扰修正方法的进展[J]. 岩矿测试, 2008, 27(1): 49-54. doi: 10.3969/j.issn.0254-5357.2008.01.013

    Liang X R, Yao L, Tian D. Progress in background subtraction and spectral interference correction in electron probe microanalysis[J]. Rock and Mineral Analysis, 2008, 27(1): 49-54. doi: 10.3969/j.issn.0254-5357.2008.01.013

    Newbury D E, Marinenko R B, Myklebust R L, et al. Quantitative compositional mapping with the electron probe microanalyzer[M]. Springer Press, 1991: 335-369.

    毕秀丽, 邱雨檬, 肖斌, 等. 基于统计特征的图像直方图均衡化检测方法[J]. 计算机学报, 2021, 44(2): 292-303. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX202102003.htm

    Bi X L, Qiu Y M, Xiao B, et al. Histogram equalization detection based on statistical features in digital image[J]. Chinese Journal of Computers, 2021, 44(2): 292-303. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX202102003.htm

    Anupama S, Prajwalasimha S N, Swapna H. Image de-noising algorithm based on filtering and histogram equalizationl[C]//Proceedings of the Second International Conference on I-SMAC, 2019: 325-328.

    李明辉, 郜鲜辉, 吴金金, 等. 电子探针波谱仪和能谱仪在材料分析中的应用及对比[J]. 电子显微学报, 2020, 39(2): 218-223. doi: 10.3969/j.issn.1000-6281.2020.02.018

    Li M H, Gao X H, Wu J J, et al. The application and comparison of EPMA WDS and EDS in material analysis[J]. Journal of Chinese Electron Microscopy Society, 2020, 39(2): 218-223. doi: 10.3969/j.issn.1000-6281.2020.02.018

    Joseph D G, Charles H. High count rate electron probe microanalysis[J]. Journal of Research of the National Institute of Standards and Technology, 2002, 107(6): 503-508. doi: 10.6028/jres.107.043

    Chen B H, Tseng Y, Yin J L. Gaussian-adaptive bilateral filter[J]. IEEE Signal Processing Letters, 2020, 27: 1670-1674. doi: 10.1109/LSP.2020.3024990

    杨赞伟, 郑亮亮, 曲宏松, 等. 联合均值滤波与泊松核双边滤波降噪算法研究[J]. 计算机仿真, 2020, 37(9): 460-463, 468. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ202009097.htm

    Yang Z W, Zheng L L, Qu H S, et al. Image denoising research of combining mean filtering with Poisson Kernel improved bilateral filtering[J]. Computer Simulation, 2020, 37(2): 460-463, 468. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJZ202009097.htm

    Kikongi P, Salvas J, Gosselin R. Curve-fitting regression: Improving light element quantification with XRF[J]. X-Ray Spectrometry, 2017, 46(5): 347-355. doi: 10.1002/xrs.2760

    Willis K V, Srogi L A, Lutz T, et al. Phase composition maps integrate mineral compositions with rock textures from the micro-meter to the thin section scale[J]. Computers and Geosciences, 2017, 109: 162-177. doi: 10.1016/j.cageo.2017.08.009

    张迪, 陈意, 毛骞, 等. 电子探针分析技术进展及面临的挑战[J]. 岩石学报, 2019, 35(1): 261-274. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201901022.htm

    Zhang D, Chen Y, Mao Q, et al. Progress and challenge of electron probe microanalysis technique[J]. Acta Petrologica Sinica, 2019, 35(1): 261-274. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201901022.htm

    李德忍. 电子探针分析过程中钠不稳定机理的新解释初探[J]. 岩矿测试, 1995, 14(3): 224-226. http://www.ykcs.ac.cn/article/id/ykcs_19950350

    Li D R. An explanation for the unstability of sodium determination in the electron microprobe analysis of Albite[J]. Rock and Mineral Analysis, 1995, 14(3): 224-226. http://www.ykcs.ac.cn/article/id/ykcs_19950350

    张文兰, 胡欢, 谢磊, 等. Na元素的EPMA定量分析: 矿物晶体结构对Na行为的制约[J]. 高校地质学报, 2021, 27(3): 327-339. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202103009.htm

    Zhang W L, Hu H, Xie L, et al. Quantitative analysis of Na by EPMA: Constraints for the behavior of Na by the crystal structure[J]. Geological Journal of China Universities, 2021, 27(3): 327-339. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX202103009.htm

    杨宗锋, 罗照华, 黄丹峰, 等. 花岗质岩石中矿物含量和粒径对代表性样品的约束[J]. 北京大学学报(自然科学版), 2010, 46(6): 951-959. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201006015.htm

    Yang Z F, Luo Z H, Huang D F, et al. Constraints on representative samples from crystal contents and size in granitic rocks[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2010, 46(6): 951-959. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201006015.htm

    杨宗锋, 李解, 姜晓杰, 等. 火成岩结构的二维定量化分析方法[J]. 地学前缘, 2020, 27(5): 23-38. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202005005.htm

    Yang Z F, Li J, Jiang X J, et al. Two dimensional quantitative textural analysis method for igneous rock[J]. Earth Science Frontiers, 2020, 27(5): 23-38. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202005005.htm

    Hezel D C. A model for calculating the errors of 2D bulk analysis relative to the true 3D bulk composition of an object, with application to chondrules[J]. Computers and Geosciences, 2007, 33(9): 1162-1175. doi: 10.1016/j.cageo.2007.01.003

    Richard M P, Owen M W, David J W, et al. Quantifying geological uncertainty in metamorphic phase equilibria modelling; a Monte Carlo assessment and implications for tectonic interpretations[J]. Geoscience Frontiers, 2016, 7(4): 591-607. doi: 10.1016/j.gsf.2015.08.005

    McCanta M C, Dyar M D, Dobosh P A. Extracting bulk rock properties from microscale measurements: Subsampling and analytical guidelines[J]. GSA Today, 2017, 27(7): 4-9.

    Sharma J, Naik A, Pant N, et al. Estimation of effective bulk composition—Critical appraisal and a scanning electron microscope based approach[J]. Geological Journal, 2021, 56(6): 2950-2962. doi: 10.1002/gj.4077

    Hombourger C, Outrequin M. Quantitative analysis and high-resolution X-ray mapping with a field emission electron microprobe[J]. Microscopy Today, 2013, 21(3): 10-15. doi: 10.1017/S1551929513000515

    Takahashi H, Mcswiggen P, Nielsen C. A unique wavelength- dispersive soft X-ray emission spectrometer for electron probe X-ray microanalyzers[J]. Microscopy and Analysis, 2014, 15: 5-8.

    Llovet X, Moy A, Pinard P T, et al. Electron probe microanalysis: A review of recent developments and applications in materials science and engineering[J]. Progress in Materials Science, 2021, 116: 100673.

图(4)  /  表(4)
计量
  • 文章访问数:  382
  • HTML全文浏览量:  285
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-27
  • 修回日期:  2021-11-02
  • 录用日期:  2021-11-26
  • 发布日期:  2022-03-27

目录

    /

    返回文章
    返回