Effect of Fluorine on Human Health in High-fluorine Areas in Yuanzhou District, Guyuan City, Ningxia Autonomous Region
-
摘要: 近年来随着人们生活质量的提升,对健康的关注度也不断提高,氟中毒性地方病越来越受到人们的重视。在关注氟污染源分析及暴露途径研究的同时,开展氟暴露途径评价健康风险研究也十分必要。据调查,固原市原州区彭堡镇地区表层土壤氟含量高于当地区域背景值,本文针对当地存在氟超标导致地方病的实际情况,重点采集了固原市原州区彭堡镇地区表层土壤、地层岩石、农作物、地下水等样品,主要采用电感耦合等离子体发射光谱法(ICP-OES)、原子荧光光谱法(AFS)等分析方法对相关元素进行分析测试,研究固原市原州区彭堡镇高氟区氟超标对人体健康的影响,并运用健康风险评价模型对人体健康风险进行评价。评价结果表明:谷物和蔬菜氟暴露途径健康风险指数HQ < 1,没有非致癌风险。当地人体氟暴露风险主要途径为饮用地下水摄入,相关的健康风险指数HQ>1,这表明通过饮用氟超标的地下水,可能具有潜在的非致癌风险。年度总健康风险为1.69×10-8,低于国际辐射防护委员会(ICRP)建议的最大可接受年健康风险水平5.0×10-5,属于人类可接受的风险水平。根据氟健康风险评价结果,本文提出该地区饮用水安全性方面还需多给予关注。要点
(1) 对固原市原州区彭堡镇高氟地区的谷物、蔬菜和饮用水途径计算氟暴露剂量,对人体健康风险进行评价。
(2) 饮用水中平均氟的质量浓度为1.07mg/L,其相关健康风险指数为1.023,表明地下水中的氟通过饮用对当地人群产生潜在的非致癌风险。
(3) 固原市原州区氟暴露年度总健康风险为1.69×10-8,低于国际辐射防护委员会(ICRP)推荐的有毒有害物质个人年健康风险最大可接受水平5.0×10-5。
HIGHLIGHTS(1) The exposure dose of fluorine was calculated for cereals, vegetables and drinking water in Pengbao Town, Yuanzhou District, Guyuan City, and the human health risk was evaluated.
(2) The average concentration of fluorine in drinking water was 1.07mg/L, and its related health risk index was 1.023, indicating that fluorine in groundwater may pose a potential non-carcinogenic risk to local people through drinking.
(3) The annual total health risk of fluorine exposure in Yuanzhou District of Guyuan City was 1.69×10-8, which was lower than the maximum acceptable level of 5.0×10-5 recommended by the International Commission for Radiation Protection (ICRP).
Abstract:BACKGROUNDIn recent years, with the improvement of people's quality of life, people pay more and more attention to health, and thus endemic fluorosis attracts more and more attention. While paying attention to the analysis of the fluorine pollution source and research on exposure pathways, it is also necessary to carry out health risk evaluations of fluorine exposure pathways. According to the survey, the fluorine content in the surface soil of Pengbao Town, Yuanzhou District, and Guyuan City is higher than the local background value.OBJECTIVESTo investigate the effect of fluorine on human health.METHODSThe health risk assessment model recommended by the US Environmental Protection Agency was used to assess the human health risk. According to the actual situation of endemic diseases caused by excessive fluorine, the samples of surface soil, stratum rocks, crops and groundwater in Pengbao Town, Yuanzhou District, and Guyuan City were collected. The related elements were analyzed by inductively coupled plasma-optical emission spectrometry, atomic fluorescence spectrometry and other analytical methods to study the influence of excessive fluorine on human health in Pengbao Town of Yuanzhou District, and Guyuan City.RESULTSThe evaluation results showed that the health risk index (HQ) of fluorine exposure pathways in cereals and vegetables was less than 1, and there was no non-carcinogenic risk. The main way of exposure risk of local fluorine was drinking groundwater, and the related health risk index (HQ) was more than 1, which indicated that drinking groundwater with excessive fluorine may have potential non-carcinogenic risk. The annual total health risk was 1.69×10-8, which was lower than the maximum acceptable annual health risk level of 5.0×10-5 recommended by the International Commission for Radiological Protection (ICRP).CONCLUSIONSBased on the results of the fluorine health risk assessment, it is proposed that the safety of drinking water in this area needs more attention. -
油井岩心是发现油气层和研究地层结构的重要资料,其中汞的富集和扩散是岩心分析的一个重要指标[1]。在原油加工过程中,砷会影响催化剂的活性[2]。在地质找矿中,汞和砷也是重要指示元素[3]。石油钻探往往达到几千米的深度,需要投入巨大的人力和物力,测定油井岩心中汞和砷的含量,能够同时为石油钻探和地质找矿提供技术服务,达到节约高效的目标。
汞和砷的测定方法有滴定法[4]、液相色谱法[5-6]、气相色谱法[7]、电感耦合等离子体发射光谱法[8]、分光光度法[9]、原子吸收光谱法[10-11]、电感耦合等离子体质谱法[12-13]、便携式仪器测定法[14-15]等。王水溶矿-原子荧光光度检测方法因其检出限低、灵敏度高、稳定性好、样品前处理简单而被广泛应用,如苏明跃等[16]采用王水消解-原子荧光光谱法测定矿石中的汞和砷,相对标准偏差在0.93%~8.1%之间;倪润祥等[17]采用湿法消解-原子荧光光谱法测定煤中的硒和砷,砷的相对标准偏差在5.6%~6.0%之间。但是,当采用王水溶解含油岩心时,由于原油的疏水性会造成许多样品漂浮在液面上,或者在溶液中的样品也由于表面原油的包裹与酸接触不充分[18],样品中的部分汞和砷无法被溶解出来,导致检测结果偏低。对于这种样品,传统方法主要通过高温烧制和强酸氧化将有机物分解后再进行溶矿测试。例如,罗荣根[19]利用高温分解载金碳中的汞,结果显示高温会造成汞的损失,导致结果偏低。杨常青等[20]用硝酸-硫酸-氢氟酸分解无烟煤中的汞,由于反应温度较高,敞口溶解造成结果偏低。
索氏提取法是一种可以通过有机溶剂将原油从固体物质中提取分离出来的方法,该方法对原油的提取分离彻底,提取温度低不易造成汞和砷的损失,是对含油岩心中原油进行提取分离的理想选择。本文拟建立一种通过索氏提取法将岩心中的原油提取分离,用50%王水溶解剩余样品中的汞和砷元素,用原子荧光光谱仪测定汞和砷含量的方法。
1. 实验部分
1.1 仪器与工作条件
AFS-9561原子荧光光谱仪(北京海光仪器有限公司);汞、砷空心阴极灯(北京有色金属研究院)。测汞的工作条件为:灯电流30mA,辅助阴极电流0mA(汞灯没有辅助阴极),负高压300mV,载气流量300mL/min,原子化器高度8cm,读数时间12s,读数延迟时间3s,进样量1000μL,还原剂用量1834μL/min。测砷的工作条件为:灯电流30mA,辅助阴极电流15mA,负高压270mV,载气流量300mL/min,原子化器高度10cm,读数时间12s,读数延迟时间3s,进样量500μL,还原剂用量1000μL/min。
索氏提取器(100mL,沈阳市昌昊玻璃仪器有限公司);RE-52A旋转蒸发仪(上海亚荣生化仪器厂)。
1.2 标准溶液和主要试剂
砷、汞标准储备液(中国计量科学研究院,100μg/mL)。
汞标准系列溶液(0、0.05、0.20、0.50、1.50、3.00、5.00μg/L):由汞标准储备液用含重铬酸钾(0.5g/L)的10%硝酸逐级稀释至所需浓度[21]。
砷标准系列溶液(0、0.5、2、5、15、50、100.00μg/L):由砷标准储备液用10%盐酸逐级稀释至所需浓度。
氯仿;硝酸;盐酸;氢氧化钠;硼氢化钾;抗坏血酸;硫脲;抗坏血酸-硫脲混合溶液(抗坏血酸浓度50g/L,硫脲浓度50g/L);还原剂溶液(硼氢化钾浓度20g/L,氢氧化钠浓度5g/L);载流溶液(5%盐酸)。以上试剂均为分析纯,水为超纯水。
1.3 实验方法
1.3.1 样品的前处理
选取油井含油层原油含量差异明显的4个岩心样品作为实验对象,编号为SY-1、SY-2、SY-3和SY-4。称取样品5g(粒径≤75μm)于滤纸筒中,将滤纸筒包好,放入索氏提取器中,向底瓶加入氯仿100mL,在75℃下提取8h,冷却,将提取液浓缩至5mL,转移至称量瓶中,室温挥发至干,称取抽提物质量。取出纸筒中岩心样品,晾干,待测[22]。
称取提取过的样品0.2500g于25mL比色管中,用水润湿,加入50%王水10mL,摇匀,在沸水浴中加热2h,中间摇匀2次[23],取出,冷却,定容至刻度,摇匀,放置过夜,待测。同时进行空白实验。
1.3.2 样品测定
移取上层清液10mL于样品管中,对汞进行测定。移取上层清液2.5mL于25mL比色管中,加入盐酸5mL,加入抗坏血酸-硫脲混合溶液5mL,摇匀,静置反应1h以上,对砷进行测定。
2. 结果与讨论
2.1 样品中原油含量的影响
称取含油岩心平行样品SY-1两份,一份经过索氏提取,一份未经过索氏提取,同时用50%王水加热分解,定容,两种处理所得的溶液如图 1所示,两种溶液中汞和砷测定结果见表 1。由图 1可见,对于未经过提取的样品溶液,由于原油的疏水性,许多样品漂浮在液面上,与酸接触不充分。与经过提取的样品溶液相比,未经过提取的样品溶液颜色明显偏淡,这主要是因为原油在溶矿过程中被氧化而消耗部分王水[24],导致王水中的氯化亚硝酰减少,氧化性变弱。由表 1检测结果对比可得,未经过提取的样品由于与酸接触不充分以及王水溶液氧化性变弱,导致汞和砷检测结果偏低。通过索氏提取法用氯仿对样品中的原油进行提取后,样品完全浸入王水溶液中,溶液颜色也显示为强氧化性的黄色,汞和砷检测结果明显增大。
表 1 经过提取和未经过提取的汞和砷的测定结果对比Table 1. Comparison of analytical results of Hg and As in the extracted and unextracted samples样品编号 氯仿沥青含量(%) Hg测定值(mg/kg) As测定值(mg/kg) 未经过提取 经过提取 未经过提取 经过提取 SY-1 0.078 0.065 0.105 19.3 24.4 SY-2 0.134 0.044 0.114 16.4 26.5 SY-3 0.033 0.076 0.108 18.3 22.4 SY-4 0.254 0.049 0.128 12.3 31.5 2.2 提取条件的选择
2.2.1 提取溶剂
在常用有机溶剂中,对原油具有高溶解度的主要有甲苯、石油醚、正己烷、氯仿、二硫化碳、二氯甲烷、辛烷、庚烷等[25-26]。通过毒性和溶解性的筛查,以石油醚、正己烷和氯仿作为提取的备选溶剂进行实验。由表 2测定结果可得,氯仿的提取能力最强,石油醚次之,正己烷最弱,所以选择氯仿作为提取剂。
表 2 不同溶剂提取原油的结果对比Table 2. Comparison of crude oil extracted by different solvents样品编号 氯仿
(g)相对提取率
(%)石油醚
(g)相对提取率
(%)正己烷
(g)相对提取率
(%)SY-1 0.0777 100 0.0748 96.3 0.0722 92.9 SY-2 0.1336 100 0.1242 93.0 0.1205 90.2 SY-3 0.0328 100 0.0302 92.1 0.0284 86.6 SY-4 0.2536 100 0.2311 91.1 0.2206 87.0 2.2.2 提取温度
索氏提取法是一种利用虹吸效应对固体物质中的有机物进行多次提取的方法。提取温度越高,在一定时间内提取的次数越多,提取效率越高,但是溶剂的损失也越严重[27],对于本研究也会引起汞和砷的损失,进而导致测得浓度值偏低。综合考虑,将提取速度控制在3次/h,对应的水浴温度为75℃。
2.2.3 提取时间
索氏提取的基本原理是连续多次萃取,这就决定了萃取物含量越高的样品往往需要更长的萃取时间[28-29],因此选择原油含量最高的SY-4样品作为萃取时间实验的对象。将提取温度设置为75℃,分别测定提取时间为1、2、3、4、5、6、7、8、9和10h时样品中汞和砷的含量。由图 2测定结果得知,随着提取时间的延长,汞和砷的测定值越来越大。这主要是因为随着样品中原油越来越多地被溶剂提取分离,其中的汞和砷更多地被王水溶解。但是,当提取时间大于8h时,汞的测定值有明显下降的趋势,这是因为长时间的高温回流造成了汞的挥发损失[30],所以将提取时间设置为8h。
2.3 方法技术指标
2.3.1 检出限和线性范围
对一个汞和砷含量都很低的沉积物标准物质GBW07121(砷认定值0.25mg/kg,汞认定值0.0040mg/kg)进行7次平行实验,测得汞含量分别为0.0043、0.0038、0.0068、0.0053、0.0061、0.0044、0.0046mg/kg,计算汞的方法检出限为0.003mg/kg,测得砷含量分别为0.25、0.20、0.34、0.26、0.29、0.24、0.27mg/kg,计算砷的方法检出限为0.10mg/kg。
通过标准系列溶液的测定可得本方法在汞含量为0.010~0.50mg/kg具有良好的线性,相关系数为0.9998;在砷含量为0.25~50mg/kg具有良好的线性,相关系数为0.9998。
2.3.2 精密度和回收率
对未经过提取分离、经过高氯酸处理和经过提取分离的样品SY-1分别进行7次平行实验,测得结果见表 3。对比可知,未经过提取分离的测定精密度很差,这主要是因为对于未提取的样品,在溶矿过程中,由于原油的疏水性导致许多样品漂浮在液面上方[31],随着王水的沸腾,部分样品被随机浸入溶液中,其中的汞和砷不定量地溶解出来。对于经过高氯酸处理的样品,由于部分原油组分不能被高氯酸完全碳化[32],在溶矿过程中仍有小部分样品漂浮在液面上,造成测定结果精密度较差。而经过有机溶剂的提取后,由于原油被完全分离提取,样品沉入王水底部,其中的汞和砷被王水完全溶解,方法精密度有了很大提高。
表 3 精密度实验结果Table 3. Precision tests of the method样品处理 元素 分次测定值(mg/kg) RSD(%) 未经提取的SY-1 Hg 0.065 0.038 0.044 0.07
30.061 0.086 0.03533.0 As 15.3 11.4 14.2 18.7
17.0 20.1 9.6725.0 高氯酸处理的SY-1 Hg 0.089 0.082 0.068 0.073
0.089 0.094 0.07115.0 As 22.1 21.6 18.7 20.7
22.2 23.6 18.59.0 经过提取的SY-1 Hg 0.105 0.098 0.102 0.112
0.104 0.092 0.1147.3 As 24.4 26.5 23.2 23.5
25.6 24.1 25.95.1 对样品SY-1进行三种浓度的加标实验,测得结果见表 4。在三种不同加标浓度下,加标回收率均在92.5%以上。这说明提取过程造成汞和砷的损失较小,样品溶解完全,该方法具有良好的准确度。
表 4 加标回收实验结果Table 4. Spiked recovery tests of the method实验序号 元素 样品浓度
(mg/kg)加标浓度
(mg/kg)测得浓度
(mg/kg)回收率
(%)1 Hg 0.105 0.200 0.296 95.5 As 24.4 50.0 72.4 96.0 2 Hg 0.105 0.100 0.199 94.0 As 24.4 25.0 48.1 94.8 3 Hg 0.105 0.040 0.142 92.5 As 24.4 10.0 33.8 94.0 3. 结论
本文建立了用索氏提取法低温提取分离含油岩心中的原油,用50%王水溶解剩余样品,再采用原子荧光光谱测定汞和砷含量的方法。本方法避免了由于原油的疏水性造成样品与王水接触不充分、分解不完全和反应温度过高造成汞元素损失的问题,与传统方法相比较,具有精密度好、准确度高的优点,可为含油岩心中其他元素的检测提供借鉴。
-
表 1 样品指标分析质量参数
Table 1 Quality parameters of index analysis for the samples
指标 分析方法 检出限 报出率(%) 准确度合格率(%) 精密度合格率(%) 重复检验合格率(%) F 离子选择电极法(ISE) 50.0×10-6 100 100 100 100 Mo 电感耦合等离子体质谱法(ICP-MS) 0.1×10-6 100 100 100 100 Mn 粉末压片-X射线荧光光谱法(XRF) 10.0×10-6 100 100 100 100 Ge 原子荧光光谱法(AFS) 0.01×10-6 100 100 100 100 SOM 重铬酸钾容量法(VOL) 0.01×10-6 100 100 100 100 CaO 粉末压片-X射线荧光光谱法(XRF) 0.03×10-2 100 100 100 100 MgO 电感耦合等离子体发射光谱法(ICP-OES) 0.02×10-2 100 100 100 100 Ni 粉末压片-X射线荧光光谱法(XRF) 2.0×10-6 100 100 100 100 Se 原子荧光光谱法(AFS) 0.01×10-6 100 100 100 100 表 2 氟元素与其他元素的相关性
Table 2 Correlationship of fluorine and other elements
元素 F 元素 F Mo 0.612** CaO 0.496** Mn -0.347** MgO 0.812** Ge -0.480** Ni -0.270** SOM 0.365** Se 0.517** 注:样品数1100,“**”表示0.01水平(双侧)显著相关;“*”表示在0.05水平(双侧)显著相关。 表 3 不同介质中氟元素含量
Table 3 Fluorine contents in different media
介质类别 样品数 氟含量最小值(mg/kg) 氟含量最大值(mg/kg) 氟含量平均值(mg/kg) 国家标准限量(mg/kg) 小麦 39 0.12 1.21 0.37 1 玉米 41 0.14 1.08 0.52 1 辣椒 10 0.43 0.99 0.70 1 饮用水 7 0.96 1.24 1.07 1 注:饮用水中氟含量的单位为mg/L。 表 4 氟元素对人体健康暴露风险
Table 4 Exposure risk of fluorine to human health
介质类型 日消费量(kg/d)& (L/d) 氟平均含量(mg/kg)& (mg/L) 日暴露剂量 健康风险指数 年健康风险 谷物 0.609 0.61 5.31×10-3 0.089 1.26×10-9 蔬菜 0.426 0.70 4.26×10-3 0.071 1.02×10-9 饮用水 2 1.07 3.06×10-2 1.023 1.46×10-8 总风险(年) 1.69×10-8 -
桂建业, 韩占涛, 张向阳, 等. 土壤中氟的形态分析[J]. 岩矿测试, 2008, 27(4): 284-286 doi: 10.3969/j.issn.0254-5357.2008.04.010 Gui J Y, Han Z T, Zhang X Y, et al. Speciation analysis of fluorine in soil samples[J]. Rock and Mineral Analysis, 2008, 27(4): 284-286. doi: 10.3969/j.issn.0254-5357.2008.04.010
涂成龙, 何令令, 崔丽峰, 等. 氟的环境地球化学行为及其对生态环境的影响[J]. 应用生态学报, 2019, 39(1): 21-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201901004.htm Tu C L, He L L, Cui L F, et al. Environmental and geochemical behaviors of fluorine and its impacts on ecological environment[J]. Chinese Journal of Ecology, 2019, 30(1): 21-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201901004.htm
何令令. 不同地质背景区氟的分布特征与人体氟暴露水平研究[D]. 贵阳: 贵州大学, 2020. https://d.wanfangdata.com.cn/thesis/D02025764 He L L. Study on the distribution characteristics of fluorine in different geological background areas and the levels of human fluoride exposure[D]. Guiyang: Guizhou University, 2020. https://d.wanfangdata.com.cn/thesis/D02025764
何锦, 张福存, 韩双宝, 等. 中国北方高氟地下水分布特征和成因分析[J]. 中国地质, 2010, 37(3): 621-626. doi: 10.3969/j.issn.1000-3657.2010.03.012 He J, Zhang F C, Han S B, et al. The distribution and genetic types of high-fluoride groundwater in northern China[J]. Geology in China, 2010, 37(3): 621-626. doi: 10.3969/j.issn.1000-3657.2010.03.012
莫春雷, 宁立波, 卢天梅. 土壤中氟的垂向分布特征及其与岩性的关系[J]. 环境科学与技术, 2013, 36(10): 49-52. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201310009.htm Mo C L, Ning L B, Lu T M. Vertical distribution characteristics of fluorine in the soil and its relationship with lithology[J]. Environmental Science & Technology, 2013, 36(10): 49-52. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201310009.htm
何令令, 何守阳, 陈琢玉, 等. 环境中氟污染与人体氟效应[J]. 地球与环境, 2020, 48(1): 87-95. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ202001011.htm He L L, He S J, Chen J Y, et al. Fluorine pollution in the environment and human fluoride effect[J]. Earth and Environment, 2020, 48(1): 87-95. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ202001011.htm
吴功建, 李家熙, 硒氟的地球化学特征与人体健康[J]. 岩矿测试, 1996, 15(4): 241-250. http://www.ykcs.ac.cn/article/id/ykcs_19960481 Wu G J, Li J X. Geochemical characters of selenium, fluorine and human health[J]. Rock and Mineral Analysis, 1996, 15(4): 241-250. http://www.ykcs.ac.cn/article/id/ykcs_19960481
李静. 重金属和氟的土壤环境质量评价及健康基准的研究[D]. 杭州: 浙江大学, 2020. http://cdmd.cnki.com.cn/article/cdmd-10335-2006085253.htm Li J. Study on evaluation and health guideline for heavy metals and fluorine of soil environmental quality[D]. Hangzhou: Zhejiang University, 2006. http://cdmd.cnki.com.cn/article/cdmd-10335-2006085253.htm
张树海, 魏固宁. 宁夏固原市原州区耕地地力评价与测土配方施肥[M]. 银川: 阳光出版社, 2011: 3. Zhang S H, Wei G N. Evaluation of cultivated land fertility and soil testing and fertilization in Yuanzhou District, Guyuan City, Ningxia[M]. Yinchuan: Sunshine Publishing, 2011: 3.
李静, 谢正苗, 徐建明. 我国氟的土壤环境质量指标与人体健康关系的研究概况[J]. 土壤通报, 2006, 37(1): 194-199. doi: 10.3321/j.issn:0564-3945.2006.01.042 Li J, Xie Z M, Xu J M. Research progress in the relationship between soil environmental quality index of fluorine and human health in China[J]. Chinese Journal of Soil Science, 2006, 37(1): 194-199. doi: 10.3321/j.issn:0564-3945.2006.01.042
杨忠芳, 汤奇峰, 成杭新, 等. 爱恨交织的化学元素[M]. 北京: 地质出版社, 2019: 37. Yang Z F, Tang Q F, Cheng H X, et al. The chemical elements of love and hate[M]. Beijing: Geological Publishing House, 2019: 37.
雷德林, 付学功, 耿红凤, 等. 沧州市高氟水分布规律及环境影响分析[J]. 水资源保护, 2007, 23(2): 43-46. doi: 10.3969/j.issn.1004-6933.2007.02.011 Lei D L, Fu X G, Geng H F, et al. Distribution rules of high fluoride water and its environmental impacts in Cangzhou City[J]. Water Resources Protetion, 2007, 23(2): 43-46. doi: 10.3969/j.issn.1004-6933.2007.02.011
杨海君, 张海涛, 许云海, 等. 长株潭地区集中式饮用水水源地周边土壤环境质量监测与评价[J]. 水土保持研究, 2018, 25(3): 150-156. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201803025.htm Yang H J, Zhang H T, Xu Y H, et al. Monitoring and evaluation of soil environmental quality around the concentrated drinking water source in Changsha Zhuzhou-Xiangtan area[J]. Research of Soil and Water Conservation, 2018, 25(3): 150-156. https://www.cnki.com.cn/Article/CJFDTOTAL-STBY201803025.htm
陈少贤. 饮水型氟病区改水后儿童健康风险度评价[D]. 广州: 南方医科大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-90023-1014101096.htm Chen S X. Children's health risk assessment in the drinking water type endemic fluorosis areas after supplying low fluoride public water[D]. Guangzhou: Southern Medical University, 2013. http://cdmd.cnki.com.cn/Article/CDMD-90023-1014101096.htm
张晓平. 西藏土壤中氟的含量及其分布[J]. 环境科学, 1998(1): 66-68. doi: 10.3321/j.issn:0250-3301.1998.01.017 Zhang X P. Contents of fluorine in soil and their distribution in Tibet[J]. Environmental Science, 1998(1): 66-68. doi: 10.3321/j.issn:0250-3301.1998.01.017
吴淑岱. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990. Wu S D. Chinese soil element background value[M]. Beijing: China Environmental Press, 1990.
US EPA. Available information on assessment exposure from pesticides in food[R]. US Environmental Protection Agency Office of Pesticide Programs, 2000.
黄磊, 李鹏程, 刘白薇. 长江三角洲地区地下水污染健康风险评价[J]. 安全与环境工程, 2008, 15(2): 26-29. doi: 10.3969/j.issn.1671-1556.2008.02.007 Huang L, Li P C, Liu B W. Health risk assessment of pollution in groundwater-A case study in Changjiang Delta[J]. Safety and Environmental Engineering, 2008, 15(2): 26-29. doi: 10.3969/j.issn.1671-1556.2008.02.007
向全永. 环境中氟对居民健康影响的危险评价[D]. 上海: 复旦大学, 2004. http://cdmd.cnki.com.cn/article/cdmd-10246-2004135028.htm Xiang Q Y. Fluoride health risk assessment in environment[D]. Shanghai: Fudan University, 2004. http://cdmd.cnki.com.cn/article/cdmd-10246-2004135028.htm
黄珊. 重金属污染土壤风险评价及化学淋洗研究[D]. 重庆: 重庆大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10611-1013044169.htm Huang S. Research of heavy metals pollution soil risk evaluation and chemical leaching[D]. Chongqing: Chongqing University, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10611-1013044169.htm
沈丽峰, 王文义. 临汾市尧都区氟离子分布状况及形成原因[J]. 水资源保护, 2005, 21(5): 76-78. https://www.cnki.com.cn/Article/CJFDTOTAL-SZYB200505019.htm Shen L F, Wang W Y. Distribution of fluorin ion in Yaodu District of Linfen City and causes of formation[J]. Water Resources Protection, 2005, 21(5): 76-78. https://www.cnki.com.cn/Article/CJFDTOTAL-SZYB200505019.htm
焦有, 宝德俊, 尹川芬. 氟的土壤地球化学[J]. 土壤通报, 2000, 31(6): 251-254. doi: 10.3321/j.issn:0564-3945.2000.06.013 Jiao Y, Bao D J, Yin C F. Geochemistry of fluorine[J]. Chinese Journal of Soil Science, 2000, 31(6): 251-254. doi: 10.3321/j.issn:0564-3945.2000.06.013
刘征原, 郝瑞彬. 氟的环境地球化学特征及生物效应[J]. 唐山师范学院学报, 2007, 29(2): 34-36. doi: 10.3969/j.issn.1009-9115.2007.02.013 Liu Z Y, Hao R B. Environmental geochemistry characteristics of fluorine and its biological effects[J]. Journal of Tangshan Teachers College, 2007, 29(2): 34-36. doi: 10.3969/j.issn.1009-9115.2007.02.013
杨金燕, 苟敏. 中国土壤氟污染研究现状[J]. 生态环境学报, 2017, 26(3): 506-513. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201703021.htm Yang J Y, Gou M. The research status of fluorine contamination in soils of China[J]. Ecology and Environmental Sciences, 2017, 26(3): 506-513. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201703021.htm
杨忠芳, 成杭新, 奚小环, 等. 区域生态地球化学评价思路及建议[J]. 地质通报, 2005, 24(8): 687-693. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200508002.htm Yang Z F, Cheng H X, Xi X H, et al. Regional ecolopical geochemical assessment: Ideas and praspects[J]. Geological Bulletin of China, 2005, 24(8): 687-693. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200508002.htm
邵宗臣, 陈家坊. 土壤和氧化铁对氟化物的吸附和解吸[J]. 地质学报, 1986, 23(3): 236-242. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB198603005.htm Shao Z C, Chen J F. Adsorption and desorption of fluoride by some soils and iron oxides[J]. Acta Pedologica Sinica, 1986, 23(3): 236-242. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB198603005.htm
万红友, 黎成厚, 师会勤, 等. 几种土壤的氟吸附特性研究[J]. 农业环境科学学报, 2003, 22(3): 329-332. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200303020.htm Wan H Y, Li C H, Shi H Q, et al. Study on adsorption characters of fluorine in several soils[J]. Journal of Agro-Environment Science, 2003, 22(3): 329-332. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200303020.htm
何志润. 宁夏清水河流域氟化物(F-)的分布特征及其影响因素研究[D]. 银川: 宁夏大学, 2020. He Z R. Study on the distribution characteristics and influencing factors of fluoride (F-) in Oingshui River Basin of Ningxia[D]. Yinchuan: Ningxia University, 2020.
Mondal D, Gupta S. Fluoride hydrogeochemistry in alluvia-laquifer: An implication to chemical weathering and ion-exchange phenomena[J]. Environmental Earth Sciences, 2015, 73(7): 3537-3554. http://www.onacademic.com/detail/journal_1000037620626710_791e.html
张惠英, 宋琦如, 赵海萍, 等. 宁夏农村居民膳食结构及营养状况调查分析[J]. 宁夏医学院学报, 2005, 27(2): 104-106. https://www.cnki.com.cn/Article/CJFDTOTAL-XNXY200502006.htm Zhang H Y, Song Q R, Zhao H P, et al. Analysis of dietary structure and nutrition state in rural area of Ningxia[J]. Joural of Ningxia Medical College, 2005, 27(2): 104-106. https://www.cnki.com.cn/Article/CJFDTOTAL-XNXY200502006.htm
郭晋燕. 吉兰泰沙漠盆地地下水环境特征及高氟区饮用水安全风险控制[D]. 西安: 长安大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10710-1014070029.htm Guo J Y. Groundwater environmental evolution in Jilantai Desert Basin and safety risk control of drinking water in high fluoride area[D]. Xi'an: Chang'an University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10710-1014070029.htm
赵庆令, 李清彩, 谢江坤, 等. 鲁中南地区双村岩溶水系统地下水中化学致癌物和非致癌物的健康风险评价[J]. 岩矿测试, 2016, 35(1): 90-97. doi: 10.15898/j.cnki.11-2131/td.2016.01.015 Zhao Q L, Li Q C, Xie J K, et al. Health risk assessment of carcinogenic and non-carcingenic substances in underground water from the Shuangcun karst system of central-southern Shandong Province[J]. Rock and Mineral Analysis, 2016, 35(1): 90-97. doi: 10.15898/j.cnki.11-2131/td.2016.01.015
-
期刊类型引用(5)
1. 孟康,邵德勇,张六六,李立武,张瑜,罗欢,宋辉,张同伟. 鄂西宜昌地区寒武系水井沱组页岩破碎气地球化学特征及其对页岩含气性的指示意义. 地学前缘. 2023(03): 14-27 . 百度学术
2. 蒙炳坤,李靖,周世新,淡永,张庆玉,聂国权. 黔南坳陷震旦系—寒武系页岩解析气中氦气成因及来源. 天然气地球科学. 2023(04): 647-655 . 百度学术
3. 朱志勇,朱祥坤,杨涛. 自动分离提纯系统的研制及其在同位素分析测试中的应用. 岩矿测试. 2020(03): 384-390 . 本站查看
4. 高梓涵,李立武,王玉慧,曹春辉,贺坚. 双真空炉管的研制及其在岩石加热脱气气体组分测试中的应用. 岩矿测试. 2019(05): 469-478 . 本站查看
5. 尚慧. 页岩脱气实验下含气性变化特征研究. 宁波职业技术学院学报. 2018(05): 105-108 . 百度学术
其他类型引用(2)