Excretion Rate and Accumulating Rate of p, p'-DDE in Beijing Resident during Consecutive Lactation
-
摘要: 母乳中p,p’-DDE浓度是监测母体短期内p,p’-DDE的“静态”蓄积水平,估算婴幼儿每日摄入量的重要技术手段。本文旨在通过监测北京女性两个相邻哺乳期内母乳中p,p’-DDE浓度及变化,估算两次分娩间隔期母体内p,p’-DDE的“动态”富集速度,并根据每日摄入量掌握人体p,p’-DDE的长期变化趋势。在2009年至2019年期间,收集了43名女性首次分娩后六个月内和18名女性第二次分娩后六个月内的母乳样本,并采用气相色谱法检测了母乳中p,p’-DDE的浓度。实验结果表明,母乳中p,p’-DDE浓度在哺乳期持续下降。年龄和分娩次数是母乳中p,p’-DDE浓度的影响因素,p,p’-DDE浓度随母亲年龄增大而升高,随分娩次数增多而降低。18名母亲两个哺乳期内母乳中p,p’-DDE平均排泄速度计算结果表明,排泄速度从18.9μg/kg lipid/month降低到16.8μg/kg lipids/month。而母体两次分娩隔期内p,p’-DDE年富集速度估算值为正,分布在10.9~14.9μg/kg lipids/year之间,每日摄入量分布在29.8~40.8ng/day/kg.b.w.之间。因此北京女性哺乳期母体内p,p’-DDE月排泄速度与母体年富集速度数值相当,母体p,p’-DDE每日摄入量远低于世界卫生组织(WHO)建议值,北京女性是低风险暴露人群。要点
(1) 北京女性两个相邻哺乳期体内p, p’-DDE浓度持续下降,但排泄速度变缓。
(2) 初步研究表明母亲分娩次数与哺乳期母乳中p, p’-DDE浓度呈负相关。
(3) 北京妇女p, p’-DDE每日摄入量远低于WHO建议值,年富集速度与哺乳期内月平均排泄速度相当。
HIGHLIGHTS(1) p, p'-DDE concentration in lipids of breast milk decreased during consecutive lactation, and the excretion speed slowed.
(2) There was a negative correlation between the p, p'-DDE in lipid and delivery times.
(3) The daily intake of p, p'-DDE in Beijing women was far below the recommended value of WHO, and the annual enrichment rate was equivalent to the monthly average excretion rate during lactation.
Abstract:BACKGROUNDMonitoring of p, p'-DDE in breast milk was a significant way to evaluate the p, p'-DDE accumulation level in human beings within a short-term and calculate daily intake for infants. Although the investigation of classic organic chlorine pesticides in Beijing breast milk showed that p, p'-DDE was detected with the highest residue level. The study on the accumulating rate of p, p'-DDE, indicated a dynamic and long-term change, in Beijing females this was neglected and scarce.OBJECTIVESTo detect p, p'-DDE in breast milks from two consecutive lactations, estimate the excreted speed during each lactation along with the impact of delivery times on residue level of p, p'-DDE in mothers, and estimate its annual accumulating rate in Beijing residents.METHODSDuring 2009-2019, breast milk samples were collected from 43 mothers during their first lactation and 18 of them during their two consecutive lactations. The concentration of p, p'-DDE in breast milk was determined by gas chromatography.RESULTSThe analytical results showed that the p, p'-DDE in breast milk decreased continuously during each lactation. Age and the number of childbirths were the influencing factors of the concentration of p, p'-DDE in breast milk. The concentration of p, p'-DDE increased with the age of mothers and decreased with the number of childbirths. In addition, the average excretion speed of p, p'-DDE in breast milk from 18 twice-birth mothers decreased from 18.9μg/kg lipids per month within the first lactation to 16.8μg/kg lipids per month within the second lactation. The estimated value of the annual enrichment rate of p, p'-DDE in the interval between two births of the mother was positive, from 10.9μg/kg lipids per year to 14.9μg/kg lipid per year during the consecutive deliveries. Daily intake of p, p'-DDE was from 29.8ng/day/kg.b.w. to 40.8ng/day/kg.b.w..CONCLUSIONSThe depurated dose of p, p'-DDE in mothers within a month of lactation was equal to the accumulating dose in a year. The estimated daily intake of p, p'-DDE was far lower than the suggested value of WHO. The Beijing female was in a low exposure risk environment.-
Keywords:
- p, p'-DDE /
- breast milk /
- gas chromatography /
- excretion rate /
- accumulating rate /
- Beijing female
-
赣南地区以钨、锡、稀土等金属为优势矿种,金、银、铅、锌等产资源较丰富,硫铁矿资源较少[1-3]。于都银坑—宁都青塘金银多金属矿整装勘查区位于南岭成矿带与武夷成矿带的交汇部位,是南岭成矿带东段的重要有色贵多金属矿集区之一。区内以铅、锌、金、银为优势矿种,已发现有留龙中型金矿、柳木坑—牛形坝中型铅锌多金属矿、营脑中型银多金属矿、老虎头、葫芦应和小庄小型铅锌矿等;此外,区内还具有丰富的硫铁矿资源,已知有狮吼山大型硫铁-钨多金属矿床、画眉坳小型硫铁矿(伴生)及孙屋背、黄贯硫铁矿矿点。
目前国内对硫铁矿的研究大多针对其开发与利用方面,关于矿床成因方面的研究较少。整装勘查区内以往研究工作的重点是金、银(铅、锌)多金属矿床的成矿规律及找矿预测[4-8],专门针对硫铁矿床的研究较少。梁景时等[9]根据矿床地质特征,初步推断矿床成因类型为岩浆期后热液充填交代层控矿床;赵正[10]通过对典型矿床的研究,根据锆石U-Pb和辉钼矿Re-Os同位素测年结果(157.5±3.3 Ma,159.1±1.1 Ma),认为该矿床的成矿与成岩作用同期进行。前人研究已基本厘清矿床地质特征、成岩与成矿时代及成矿地质体等相关问题,但对矿床的成矿物质来源方面的研究极少,梓山组地层中的含铁层位能为成矿提供铁物质,但无法提供成矿所需的大量的硫源及钨、铜、金等成矿元素,关于该矿床的成矿物质来源及成矿作用过程等关键问题仍需进一步研究。
在200~600℃内,闪锌矿、磁黄铁矿与热液系统中的H2S的硫同位素分馏值很小(0.12‰~0.45‰),闪锌矿或磁黄铁矿的硫同位素组成近似代表热液系统中的总硫[11],利用硫化物中硫同位素来研究热液成矿作用方面已有较多的成功实例[12-13]。根据不同来源的流体的氢氧同位素组成差异大的特征,利用氢氧同位素体系进行热液矿床的成矿流体来源示踪是目前应用最广泛的手段[14-15]。本文通过对狮吼山矿床原生矿石中H-O-S同位素的测试,对比分析同位素组成特征,并结合已有的矿床地质特征、锆石U-Pb、辉钼矿Re-Os及铅同位素的研究[10],对矿床的成矿物质来源、成矿流体演化及成矿作用进行示踪,完善矿床成矿理论,丰富该整装勘查区内的岩浆热液成矿理论。
1. 矿床地质特征
研究区位于江西省宁都县青塘镇西侧,大地构造位置处于武夷隆起西缘、宁都—南城坳陷断束南端和信丰—于都坳陷褶束交接部位的青塘—银坑凹陷带的北东缘(图 1)。
区内出露有南华系、泥盆系、石炭系和第四系地层,泥盆系—石炭系为青塘向斜盆地的两翼地层,向斜核部为上石炭统黄龙组灰岩。狮吼山矿区内出露地层简单,主要为石炭系和第四系地层。石炭系下统梓山组上段(C1z2)是矿区的主要赋矿地层,主要岩性为紫红色(含)铁质粉砂岩、钙质砂岩夹细砂岩。黄龙组(C2h)地表仅零星出露于,与下伏梓山组地层整合接触,岩性为白云质、灰质白云岩夹少量钙质砂岩,近花岗岩处灰岩受热液变质作用成为大理岩,偶夹矽卡岩。第四系分布范围较广。
区域构造以北北东-北东向断裂构造为主,褶皱构造较发育。狮吼山矿区受茶山迳岩株侵入的影响,构造特征表现为一弧形的单斜构造:矿区南部,地层走向北东向,倾向北北西,倾角较缓;岩体西侧,地层走向北西,倾向北东东。结合矿区勘查资料,矿区构造细分为成矿前层间断裂构造、成矿期裂隙构造和成矿后断裂构造。
茶山迳岩体与狮吼山硫铁多金属矿床成矿作用关系密切,出露面积约0.8 km2,岩性主要为中(粗)粒斑状黑云二长花岗岩,地表岩石风化较强,主要矿物成分:石英25%~30%,钾长石20%~25%,斜长石15%~20%,黑云母1%~5%;次生绢云母、白云母5%~10%,绿泥石1%~5%;副矿物有锆石、磷灰石等。
矿区已探明工业矿体共14条,以似层状、透镜状产出于梓山组上段含铁、含钙砂岩层位。矿体形态受岩体侵入的影响明显,在沿走向及倾向上表现为膨大缩小、分支复合及尖灭再现等现象。原生矿石以磁黄铁矿、黄铁矿为主,并伴生有黄铜矿、斑铜矿、白钨矿;氧化矿石主要分布于地表,以疏松多孔状褐铁矿为主。根据矿物组合、形成时间及相互关系,成矿可分为矽卡岩阶段、石英-硫化物阶段和石英-碳酸盐阶段,石英-硫化物阶段为主成矿期。矿石中有益组分为S、全铁(TFe)、Cu、WO3,部分矿体的伴生金和银含量达工业指标。
2. 样品采集与分析
2.1 样品采集
此次工作主要对狮吼山矿区矿石矿物进行H-O-S同位素样品采集和测试工作。由于硫铁矿矿石极易氧化,为保证样品未受风化和氧化作用影响,采集工作集中于矿区#2和#3斜井的160中段进行。在已有的V11矿体H-O-S测试数据的基础上,补充对V1矿体进行采样。通过对比分析两次测试数据的差异,便于判断数据的可靠性和代表性。此次样品采集对象为矿石矿物,主要为团块状或致密块状的磁黄铁矿矿石,在采集氢、氧同位素样品时,着重采集胶结有石英的矿石。此次共采集氢氧同位素样品5件、硫同位素样品3件,统一编号、密封包装并送样测试。
2.2 样品分析测试
样品测试工作由核工业北京地质研究院分析测试研究中心完成。首先,所有样品进行粉碎、粗选、清洗工作,在显微镜下挑选磁黄铁矿、黄铁矿、石英单矿物,纯度达99%以上。硫同位素测试仪器为Finnigan MAT-251型质谱仪,制备样品的氧化剂选用Cu2O,采用国际标准CDT表达测试结果,分析精度优于±0.2‰。氢氧同位素测试仪器为MAT-253质谱仪:氢同位素分析采用锌还原法测定,同位素分析精度为±1‰;氧同位素采用五氟化溴法测定,同位素分析精度为±0.2‰。通过对比两次测试结果(表 1和表 2),H-O-S同位素变化范围较一致,说明数据具有代表性。
表 1 狮吼山硫铁多金属矿床矿石硫化物的硫同位素组成Table 1. Sulfur isotopic compositions of ore sulfides from the Shihoushan pyrite polymetallic deposit样品编号 采样对象 测试矿物 采样位置 δ34SVCDT(‰) 数据来源 KD-b1 致密块状磁黄铁矿矿石 磁黄铁矿 160中段V1 -1.99 KD-b2 致密块状磁黄铁矿矿石 磁黄铁矿 160中段V1 -0.87 本文 KD-b4 团块状磁黄铁矿矿石 磁黄铁矿 160中段V1 -1.18 SHS-05 团块状磁黄铁矿矿石 磁黄铁矿 160中段V11 -1.30 SHS-06 团块状磁黄铁矿矿石 磁黄铁矿 160中段V11 -2.50 文献[10] SHS-07 团块状磁黄铁矿矿石 磁黄铁矿 160中段V11 -2.10 SHS2#-5 团块状磁黄铁矿矿石 磁黄铁矿 160中段V11 -1.90 SHS2#-2 磁黄铁矿-黄铁矿矿石 黄铁矿 160中段V11 -0.20 SHS2#-6a 磁黄铁矿-黄铁矿矿石 黄铁矿 160中段V11 -2.10 文献[10] SHS3#-2 磁黄铁矿-黄铁矿矿石 黄铁矿 160中段V11 -5.20 SHS3#-3 磁黄铁矿-黄铁矿矿石 黄铁矿 160中段V11 -5.50 表 2 狮吼山硫铁多金属矿床氢氧同位素组成Table 2. Hydrogen and oxygen isotopic compositions of the Shihoushan pyrite polymetallic deposit样品编号 矿石类型 测试矿物 采样位置 δDv-SNOW(‰) δ18Ov-pdb(‰) δ18Ov-SNOW(‰) t(℃) δ18OH2O(‰) 数据来源 KD-b4 团块状磁黄铁矿 石英 160中段V1 -74.4 -21.5 8.8 360 3.76 Shs-Q01 团块状磁黄铁矿 石英 160中段V1 -69.0 -18.7 11.6 360 6.56 Shs-Q02 团块状磁黄铁矿 石英 160中段V1 -71.3 -17.1 13.3 360 8.26 本文 Shs-Q03 团块状磁黄铁矿 石英 160中段V1 -63.7 -17.5 12.8 360 7.76 Shs-Q05 团块状磁黄铁矿 石英 160中段V1 -66.3 -14.5 15.9 360 10.86 SHS2#-2 团块状磁黄铁矿 石英 160中段V11 -55.0 / 9.4 360 4.36 SHS2#-4 团块状磁黄铁矿 石英 160中段V11 -49.0 / 13 360 7.96 文献[10] SHS2#-5 团块状磁黄铁矿 石英 160中段V11 -57.0 / 11.5 360 6.46 SHS3#-1 团块状磁黄铁矿 石英 160中段V11 -48.0 / 13.7 360 8.66 3. 结果与讨论
3.1 硫同位素组成及来源
在已有矿区V11矿体的硫同位素测试结果的基础上,此次补充对V1矿体进行的3件硫同位素样品测试工作,测试分析结果见表 1。狮吼山硫铁多金属矿床硫同位素值δ34S变化范围为-5.50‰~-0.20‰,平均值为-2.26‰(n=11),极差5.30‰。其中,磁黄铁矿硫同位素值δ34S集中在-2.50‰~-0.87‰,平均值为-1.69‰(n=7),极差为1.63‰;黄铁矿硫同位素值δ34S变化范围较宽,在-5.50‰~-0.20‰之间,平均值为-3.25‰(n=4),极差为5.30‰。
结合矿床的矿物组合特征,硫化物矿物主要为磁黄铁矿-黄铁矿-黄铜矿(-辉钼矿)的简单组合,未出现硫酸盐,硫化物中δ34S的平均值基本可代表热液中总硫的同位素组成[11, 16]。从硫同位素组成频率直方图看出(图 2a),δ34S主要集中在-3.0‰~0.0‰,峰值-2.0‰~-1.0‰,接近于地幔δ34S平均值(0‰±3‰)[17];硫同位素总体呈塔式分布,显示具有深部来源硫的特点,主要来源于岩浆硫。狮吼山矿区黄铁矿硫同位素变化范围宽(-6.0‰~0.0‰),主要分为两个部分:-3.0‰~0.0‰和-6.0‰~-5.0‰。前者为磁黄铁矿中硫分同位素布范围,代表该矿床主要成矿流体的硫同位素含量;后者偏离中心较远,说明该黄铁矿可能为后期流体形成的,预示着该区存在多种来源的成矿流体作用。
通过与全球重要的硫同位素储库对比可知(图 2b),矿床硫同位素组成在花岗岩的范围内,稍宽于玄武岩的范围,显示流体的深源性;与典型硫铁矿床对比显示,该区硫同位素组成与以深源硫为主要硫源的骆驼山硫铁矿床相近,而与以火山热水沉积(峙门口)和沉积岩(桂北地区)为主要硫源的矿床有较大的差别。硫同位素组成特征显示:狮吼山硫铁多金属矿床的硫源主要为岩浆硫,并表现出遭受到后期的叠加和改造作用,这可能是燕山早期中酸性岩浆在侵位过程中与地层发生交代反应的结果。
3.2 H-O同位素组成及流体示踪
此次工作在前人研究基础上,补充采集了5件样品进行氢氧同位素测试,测试结果见表 2。石英单矿物中δD值为-74.4‰~-48.0‰,平均值为-61.5‰(n=9),极差26.3‰;δ18Ov-SNOW值为8.8‰~15.9‰,平均值为12.2‰(n=9),极差7.1‰。成矿流体中氢同位素即为寄主矿物石英的氢同位素值,而流体中氧同位素需根据石英中氧同位素值和包裹体均一温度计算得到。结合赵正[10]对狮吼山矿区不同成矿阶段的包裹体测温结果,此次样品主要为磁黄铁矿化石英团块或石英脉,因此,式中温度采用磁黄铁矿化期石英包裹体的均一温度,最能反映成矿流体温度。根据矿物-水体系的同位素分馏方程(1000 lnα石英-H2O=3.38×106/T2-3.40[11])计算得到:δ18OH2O值的变化范围为3.76‰~10.86‰,平均值为7.19‰,极差7.1‰。
不同成因流体的氢氧同位素组成具有明显差异,可根据矿石矿物中的氢氧同位素组成有效地分析成矿流体来源。狮吼山硫铁矿矿床磁黄铁矿石中石英单矿物的δD-δ18O同位素组成与岩浆水的氢氧同位素组成范围(δD=-80‰~-50‰,δ18O=5‰~7‰)相近[14],但δ18O值的变化范围较岩浆水宽,说明成矿过程还有其他流体的加入。在δ18O-δD图解中(图 3),狮吼山硫铁多金属矿床样品投点于大气降水、原生岩浆水、变质水及岩浆水与变质水重叠区域,个别样品投点于岩浆水与雨水线之间靠近岩浆水的区域,但集中于岩浆水和岩浆水与变质水重叠区域,反映了该矿床成矿流体类型多样,是以岩浆水和变质水为主要成矿流体,后期可能有天水的混入。
图 3 狮吼山硫铁多金属矿床成矿流体氢氧同位素组成图解(底图据路远发[22])Figure 3. Hydrogen and oxygen isotope diagram of the ore-forming fluid from the Shihoushan pyrite polymetallic deposit3.3 矿床成因探讨
稳定同位素H-O-S对成矿流体具良好的示踪作用,其组成能显示出流体来源及演化过程。通过对比不同类型的成矿热液特征(表 3),狮吼山硫铁矿床中包裹体特征(类型、体系、均一温度及盐度)具原生岩浆热液和变质热液的部分特征,与前面分析的H-O-S稳定同位素分析结果一致,进一步说明了该区成矿流体为岩浆热液与变质热液混合的结果。通过对比不同成因的硫铁矿床成矿流体特征,该区成矿流体与火山热水(峙门口)、沉积岩建造水(桂北地区)及热卤水(向山式)等成矿流体特征差异较大,与骆驼山矽卡岩型多金属硫铁矿床的特征相似。结合赵正[10]对狮吼山矿区铅同位素研究,206Pb/204Pb、207Pb/204Pb和208Pb/204Pb比值分别为18.078~18.782、15.621~15.645和38.523~38.593,这些值变化不大、相对比较均一,属于岩浆热液成因的矿石铅范围,主要来源于深部岩浆。H-O-S-Pb同位素组成特征综合显示成矿流体主要来源于深部岩浆水,成矿作用过程中有变质热液的混入。
表 3 不同成因类型的硫铁矿床成矿流体特征对比Table 3. Camparison of characteristics of ore fluids from different type pyrite deposits特征 原生岩浆硫铁 变质流体 硫铁矿床 骆驼山式硫铁矿 向山式硫铁矿 狮吼山式硫铁矿 包裹体类型 液相和含子矿物包裹体 气液包裹体和CO2包裹体 液相为主,少量为气相CO2包裹体 液相包裹体 富气相包裹体和含子晶包裹体 流体体系 H2O-NaCl H2O-NaCl±CO2±CH4 H2O-NaCl-CO2 H2O-NaCl H2O-NaCl±CO2 温度(℃) >400 >200 370~520 90~270 180~500 盐度(wt%NaCl) 变化范围大 一般中低盐度 早期低→晚期高 8.01~21.1 1.05~4.24 δ34S(‰) -3~5 -20~22 0.24~6.46 10~23 -5.50~1.68 δ18O水(‰) 5~7 -16~25 -0.03~1.93 -11.01~1.60 3.76~10.86 δ18D水(‰) -80~-50 -140~-20 -85‰~-80‰ -51.6~-72.0 -74.4~-48.0 流体来源 岩浆水 变质水 以岩浆流体为主,晚期混入大气水 大气降水和热卤水 岩浆水与变质水混合成矿,晚期混入大气水 成矿类型 / / 岩浆热液交代型 热水沉积型 岩浆期后热液充填交代型 数据来源 徐兆文等[21]和张德会等[14] 徐兆文等[21]和张德会等[14] 梁新辉[23]和邢矿[24] 熊先孝等[25] 本文和赵正[10] 狮吼山矿床成矿作用与燕山早期茶山迳岩体岩浆侵位活动关系密切,同位素测年显示成矿作用与成岩作用同期发生,矿床为茶山迳岩体岩浆侵位活动的产物。矿体主要赋存梓山组上段含铁、含钙层位,以透镜体状、似层状为主,层控性特征显示矿床具有充填交代的成因。因此,成矿是岩浆热液与地层共同作用的结果。上述分析综合表明:狮吼山硫铁矿床成矿流体主要来自深部岩浆水,岩浆在上升侵位过程中与梓山组地层中钙质砂岩、含铁砂岩发生接触交代作用,产生一定规模的变质流体,并在后期有少量天水的加入;当不同性质的流体相混合时,流体间不混溶作用使成矿物质在岩体与梓山组含钙层位的接触部位大量富集沉淀,形成矽卡岩型硫铁-钨多金属矿床。
4. 结论
通过矿床地质特征研究表明,狮吼山硫铁-钨多金属矿床产出于燕山早期茶山迳侵入体与石炭系梓山组上段含钙层位的接触部位,矿体具有明显的层控性,充分说明了岩浆和地层共同参与成矿作用。矿石矿物δ34S值变化范围为-5.50‰~-0.20‰,集中于-3.0‰~0.0‰,显示硫源主要为岩浆硫,较宽的范围显示成矿流体遭受到后期的叠加和改造作用。矿石中石英单矿物中δD-δ18OH2O值变化范围分别为-74.4‰~-48.0‰和3.76‰~10.86‰,主要集中于岩浆水与变质水重叠区域,充分说明了该矿床成矿流体以岩浆水和变质水为主,而较宽的变化范围预示可能有天水的混入。
结合矿床地质特征、H-O-S-Pb同位素组成特征及同位素测年数据,综合认为:狮吼山硫铁-钨多金属矿床成矿流体主要来自深部岩浆水,岩浆上升侵位过程中,与地层中钙质砂岩、含铁砂岩发生接触交代作用,并形成一定规模变质流体;当两种或多种(后期混入少量的天水)含矿热液相混合,流体的不混溶作用使成矿物质在岩体与梓山组上段含铁、含钙层位的接触部位大量富集沉淀,形成似层状矽卡岩型工业矿体。该矿床成因类型为岩浆期后热液充填交代型矿床。
-
图 2 初次分娩和二次分娩志愿者(32~36岁)F1和S1中p, p’-DDE浓度的箱式分布图
P0、P25、P50、P75和P100分别表示最小值、最小四分位值、中值、较大四分位值和最大值。
Figure 2. Comparison of average residue levels of p, p'-DDE in F1 samples and S1 samples from mothers at age of 32-36 years old (Each box shows the median as a square, P25 and P75 as a box, and the lowest P0 and highest P100 values as whiskers)
表 1 志愿者及样品信息
Table 1 Information of donors and samples
志愿者数(人) 分娩次数 样品编号 样品数量 年龄范围(岁) 43 1 F1,F6 86 26~31 18 2 F1, F6, S1,S6 72 32~36 表 2 p, p’-DDE的排泄速度和富集速度
Table 2 Excretion speed and accumulating speed of p, p'-DDE
参数a 单位 取所有值计算 去极值计算 取P25~P75b区间值计算 F1 μg/kg lipids 429.0 374.3 297.1 F6 μg/kg lipids 337.2 279.7 227.8 Vec μg/kg lipids/month 18.3 18.9 13.9 F10 μg/kg lipids 263.9 204.1 172.3 S1 μg/kg lipids 352.7 293.5 238.0 S6 μg/kg lipids 293.5 209.4 152.3 Ved μg/kg lipids/month 16.0 16.8 17.1 Va μg/kg lipids/year 14.8 14.9 10.9 EDI ng/kg/day b.w. 40.5 40.8 29.8 注:a表示模拟计算值;b表示取值范围在最小四分位数和较大四分位数之间;c和d分别表示第一和第二个哺乳期内p, p’-DDE的平均排泄速度的估算值。 -
Taiwo A M. A review of environmental and health effects of organochlorine pesticide residues in Africa[J]. Chemosphere, 2019, 220: 1126-1140. doi: 10.1016/j.chemosphere.2019.01.001
Ma J, Pan L B, Yang X Y, et al. DDT, DDD, and DDE in soil of Xiangfen County, China: Residues, sources, spatial distribution, and health risks[J]. Chemosphere, 2016, 163: 578-583. doi: 10.1016/j.chemosphere.2016.08.050
Han X, Zhang F, Meng L L, et al. Exposure to organochlorine pesticides and the risk of type 2 diabetes in the population of East China[J]. Ecotoxicology and Environmental Safety, 2020, 190: 110125. doi: 10.1016/j.ecoenv.2019.110125
Zheng Q, Li J, Wang Y, Lin T, et al. Levels and enantiomeric signatures of organochlorine pesticides in Chinese forest soils: Implications for sources and environmental behavior[J]. Environmental Pollution, 2020, 262: 114-139. https://www.sciencedirect.com/science/article/abs/pii/S0269749119359500
Yang R Q, Zhang S J, Li A, et al. Altitudinal and spatial signature of persistent organic pollutants in soil, lichen, conifer needles, and bark of the Southeast Tibetan Plateau: Implications for sources and environmental cycling[J]. Environmental Science and Technology, 2013, 47: 12736-12743. doi: 10.1021/es403562x
Qu C, Albanese S, Lima A, et al. The occurrence of OCPs, PCBs, and PAHs in the soil, air, and bulk deposition of the Naples metropolitan area, southern Italy: Implications for sources and environmental processes[J]. Environmental International, 2019, 124: 89-97. doi: 10.1016/j.envint.2018.12.031
Helou K, Harmouche-Karaki M, Karake S, et al. A review of organochlorine pesticides and polychlorinated biphenyls in Lebanon: Environmental and human contaminants[J]. Chemosphere, 2019, 231: 357-368. doi: 10.1016/j.chemosphere.2019.05.109
Gakuba E, Moodley B, Ndungu P, et al. Partition dis-tribution of selected organochlorine pesticides in water, sediment pore water and surface sediment from uMngeni River, KwaZulu-Natal, South Africa[J]. Water SA, 2018, 44: 232-249. http://www.scielo.org.za/pdf/wsa/v44n2/09.pdf
Huang H, Ding Y, Chen W, et al. Two-way long-range atmospheric transport of organochlorine pesticides (OCPs) between the Yellow River source and the Sichuan Basin, western China[J]. Science of the Total Environment, 2019, 651: 3230-3240. doi: 10.1016/j.scitotenv.2018.10.133
Jin X, Liu Y, Qiao X, et al. Risk assessment of organo-chlorine pesticides in drinking water source of the Yangtze River[J]. Ecotoxicology and Environmental Safety, 2019, 182: 109390. doi: 10.1016/j.ecoenv.2019.109390
Zhou S S, Tang Q Z, Jin M Q, et al. Residues and chiral signatures of organochlorine pesticides in mollusks from the coastal regions of the Yangtze River Delta: Source and health risk implication[J]. Chemosphere, 2014, 114: 40-50. doi: 10.1016/j.chemosphere.2014.03.108
Mahmoud A F A, Ikenaka Y, Yohannes Y B, et al. Distribution and health risk assessment of organochlorine pesticides (OCPs) residue in edible cattle tissues from northeastern part of Egypt: High accumulation level of OCPs in tongue[J]. Chemosphere, 2016, 144: 1365-1371. doi: 10.1016/j.chemosphere.2015.10.016
Ngweme G N, Salah D M M A, Laffite A, et al. Occurrence of organic micropollutants and human health risk assessment based on consumption of Amaranthus viridis, Kinshasa in the Democratic Republic of the Congo[J]. Science of the Total Environment, 2021, 754(1): 142-175. https://www.sciencedirect.com/science/article/pii/S0048969720357041
Olisah C, Okoh O O, Okoh A I. Occurrence of organochlorine pesticide residues in biological and environmental matrices in Africa: A two-decade review[J]. Heliyon, 2020, 6: e03518. doi: 10.1016/j.heliyon.2020.e03518
Song S L, Ma X D, Pan M, et al. Excretion kinetics of three dominant organochlorine compounds in human milk within the first 6 months postpartum[J]. Environmental Monitoring and Assessment, 2018, 190: 457. doi: 10.1007/s10661-018-6850-9
Samira S, Andrea Tove F, Corey D B J, et al. The metabolic fingerprint of p, p'-DDE and HCB exposure in humans[J]. Environment International, 2016, 88: 60-66. doi: 10.1016/j.envint.2015.12.015
Berghuis S A, Bos A F, Sauer P J J, et al. Developmental neurotoxicity of persistent organic pollutants: An update on childhood outcome[J]. Archives of Toxicology, 2015, 89: 687-709. doi: 10.1007/s00204-015-1463-3
Abolhassani M, Asadikaram G, Paydar P, et al. Organochlorine and organophosphorous pesticides may induce colorectal cancer: A case-control study[J]. Ecotoxicology and Environmental Safety, 2019, 178: 168-177. doi: 10.1016/j.ecoenv.2019.04.030
Dardiotis E, Aloizou A M, Sakalakis E, et al. Organochlorine pesticide levels in Greek patients with Parkinson's disease[J]. Toxicology Report, 2020, 7: 596-601. doi: 10.1016/j.toxrep.2020.03.011
Yin S J, Wei J, Wei Y H, et al. Organochlorine pesticides exposure may disturb homocysteine metabolism in pregnant women[J]. Science of the Total Environment, 2020, 708: 135146. doi: 10.1016/j.scitotenv.2019.135146
Carvalho F P. Pesticides, environment, and food safety[J]. Food and Energy Security, 2017, 6(2): 48-60.
Girones L, Oliva A L, Marcovecchio J E, et al. Spatial distribution and ecological risk assessment of residual organochlorine pesticides (OCPs) in South American marine environments[J]. Current Environmental Health Reports, 2020, 7: 147-160. doi: 10.1007/s40572-020-00272-7
Santiago E C, Cayetano M G. Organochlorine pesticides in ambient air in selected urban and rural residential areas in the philippines derived from passive samplers with polyurethane disks[J]. Bulletin of Environmental Contamination and Toxicology, 2011, 86: 50-55. doi: 10.1007/s00128-010-0160-4
Yu Y X, Tao S, Liu W X, et al. Dietary intake and human milk residues of hexachlorocyclohexane isomers in two Chinese cities[J]. Environmental Science and Technology, 2009, 43: 4830-4835. doi: 10.1021/es900082v
Sun H W, An T C, Li G Y, et al. Distribution, possible sources, and health risk assessment of SVOC pollution in small streams in Pearl River Delta, China[J]. Environmental Science and Pollution Research, 2014, 21(17): 10083-10095. doi: 10.1007/s11356-014-3031-4
Tang J, An T, Xiong J. The evolution of pollution profile and health risk assessment for three groups SVOCs pollutants along with Beijiang River, China[J]. Environmental Geochemistry and Health, 2017, 39: 1487-1499. doi: 10.1007/s10653-017-9936-3
宋淑玲, 田芹, 佟玲, 等. 生物样品母乳中有机氯农药类化合物近二十年研究进展[J]. 岩矿测试, 2016, 35(5): 339-347. doi: 10.15898/j.cnki.11-2131/td.2016.05.002 Song S L, Tian Q, Tong L, et al. Research application and development of organochlorine pesticides in breast milk in the recent twenty years[J]. Rock and Mineral Analysis, 2016, 35(5): 339-347. doi: 10.15898/j.cnki.11-2131/td.2016.05.002
Waliszewski S M G, Melo-Santiesteban R. Breast milk excretion kinetic of β-HCH, p, p'-DDE and p, p'-DDT[J]. Bulletin of Environmental Contamination and Toxicology, 2009, 83: 869-873. doi: 10.1007/s00128-009-9796-3
Tue N M, Sudaryanto A, Minh T B, et al. Kinetic differences of legacy organochlorine pesticides and polychlorinated biphenyls in Vietnamese human breast milk[J]. Chemosphere, 2010, 81: 1006-1011. doi: 10.1016/j.chemosphere.2010.09.013
LaKind J S, Berlin C M, Sjödin A, et al. Do human milk concentrations of persistent organic chemicals really decline during lactation? Chemical concentrations during lactation and milk/serum partitioning[J]. Environmental Health Perspectives, 2009, 117(10): 1625-1631. doi: 10.1289/ehp.0900876
Man Y B, Chan J K Y, Wang H S, et al. DDTs in mothers' milk, placenta and hair, and health risk assessment for infants at two coastal and inland cities in China[J]. Environment International, 2014, 65: 73-82. doi: 10.1016/j.envint.2014.01.001
郭晓辰, 饶竹, 高冉. 气相色谱法测定地下水中拟除虫菊酯有机氯百菌清等24种农药残留[J]. 岩矿测试, 2014, 33(3): 406-412. http://www.ykcs.ac.cn/article/id/77935fc3-6812-484c-8002-d3aaaf02d772 Guo X C, Rao Z, Gao R. Determination of 24 pesticides including pyrethroids, organochlorines and chlorothalonil in underground water by gas chromatography[J]. Rock and Mineral Analysis, 2014, 33(3): 406-412. http://www.ykcs.ac.cn/article/id/77935fc3-6812-484c-8002-d3aaaf02d772
徐殿斗, 马玲玲, 李淑珍, 等. 北京石景山区夏季大气中有机氯农药的研究[J]. 中国环境科学, 2010, 30(5): 599-602. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201005006.htm Xu D D, Ma L L, Li S Z, et al. Organochloride pesiticides in the atmosphere in the Shijingshan District of Beijing[J]. China Environmental Science, 2010, 30(5): 599-602. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ201005006.htm
张春辉, 吴永贵, 杨少博, 等. 广东沿海3种食用鱼中有机氯农药的残留特征及风险评价[J]. 贵州农业科技, 2015, 43(11): 174-178. https://www.cnki.com.cn/Article/CJFDTOTAL-GATE201511044.htm Zhang C H, Wu Y G, Yang S B, et al. Residual feature and health risk assessment of organo-chlorine pesticides in three edible fish from Guangdong Coast[J]. Guizhou Agricultural Sciences, 2015, 43(11): 174-178. https://www.cnki.com.cn/Article/CJFDTOTAL-GATE201511044.htm
王晓华, 母清林, 张庆红, 等. 舟山近岸海域贝类中有机氯农药残留水平及人体健康风险评估[J]. 环境污染与防治, 2014, 36(10): 59-62, 67. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR201410013.htm Wang X H, Mu Q L, Zhang Q H, et al. Residue level of organochlorine pesticides in shellfish of Zhoushan coastal areas and assessment of its risk to human health[J]. Environmental Pollution & Control, 2014, 36(10): 59-62, 67. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR201410013.htm
Sudaryanto A, Kunisue T, Kajiwara N, et al. Specific accumulation of organochlorines in human breast milk from Indonesia: Levels, distribution, accumulation kinetics and infant health risk[J]. Environmental Pollution, 2006, 139: 107-117. doi: 10.1016/j.envpol.2005.04.028
-
期刊类型引用(2)
1. 贺根文,路思明,彭琳琳,于长琦,李伟,刘翠辉. 赣南狮吼山硫铁多金属矿区花岗岩地球化学、年代学特征及其成因. 吉林大学学报(地球科学版). 2020(05): 1491-1504 . 百度学术
2. 彭琳琳,李伟,刘翠辉,陈伟,谭友,卢国安. 赣南锡矿类型、成矿规律及找矿远景分析. 东华理工大学学报(自然科学版). 2020(05): 463-471 . 百度学术
其他类型引用(0)