• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

江西赣县清溪地区土壤硒地球化学特征和水稻根系土硒生物有效性影响因素

刘冰权, 沙珉, 谢长瑜, 周强强, 魏星星, 周梵

刘冰权, 沙珉, 谢长瑜, 周强强, 魏星星, 周梵. 江西赣县清溪地区土壤硒地球化学特征和水稻根系土硒生物有效性影响因素[J]. 岩矿测试, 2021, 40(5): 740-750. DOI: 10.15898/j.cnki.11-2131/td.202107230082
引用本文: 刘冰权, 沙珉, 谢长瑜, 周强强, 魏星星, 周梵. 江西赣县清溪地区土壤硒地球化学特征和水稻根系土硒生物有效性影响因素[J]. 岩矿测试, 2021, 40(5): 740-750. DOI: 10.15898/j.cnki.11-2131/td.202107230082
LIU Bing-quan, SHA Min, XIE Chang-yu, ZHOU Qiang-qiang, WEI Xing-xing, ZHOU Fan. Geochemical Characteristics of Soil Selenium and Influencing Factors of Selenium Bioavailability in Rice Root Soils in Qingxi Area, Ganxian County, Jiangxi Province[J]. Rock and Mineral Analysis, 2021, 40(5): 740-750. DOI: 10.15898/j.cnki.11-2131/td.202107230082
Citation: LIU Bing-quan, SHA Min, XIE Chang-yu, ZHOU Qiang-qiang, WEI Xing-xing, ZHOU Fan. Geochemical Characteristics of Soil Selenium and Influencing Factors of Selenium Bioavailability in Rice Root Soils in Qingxi Area, Ganxian County, Jiangxi Province[J]. Rock and Mineral Analysis, 2021, 40(5): 740-750. DOI: 10.15898/j.cnki.11-2131/td.202107230082

江西赣县清溪地区土壤硒地球化学特征和水稻根系土硒生物有效性影响因素

基金项目: 

中国地质调查局地质调查项目"海峡西岸经济区土地质量地球化学调查" DD20160321

中国地质调查局地质调查项目"江西赣州地区土地资源地质环境调查" J[2014]02-021-024

中国地质调查局地质调查项目"海峡西岸经济区土地质量地球化学调查"(DD20160321);中国地质调查局地质调查项目"江西赣州地区土地资源地质环境调查"(J[2014]02-021-024)

详细信息
    作者简介:

    刘冰权, 硕士, 高级工程师, 从事生态地球化学及环境地球化学研究。E-mail: 251497867@qq.com

  • 中图分类号: S151.93;O613.52;O657.63;O657.31

Geochemical Characteristics of Soil Selenium and Influencing Factors of Selenium Bioavailability in Rice Root Soils in Qingxi Area, Ganxian County, Jiangxi Province

  • 摘要: 江西赣南地区是典型的硒缺乏地理分布区,但近年来研究成果表明该地区稻谷富硒率高,土壤与稻谷富硒存在不一致的原因尚不明确,探讨土壤和稻谷硒含量特征和土壤硒的生物有效性,对赣南地区富硒土地资源利用和富硒农产品开发具有重要意义。本文以赣县清溪地区为研究对象,采用电感耦合等离子体质谱/发射光谱(ICP-MS/OES)等方法测定了研究区1734件表层土壤、57组稻谷及配套根系土硒等元素含量及硒形态地球化学指标;系统分析了区内土壤硒含量和分布特征、稻谷硒含量特征,探讨了根系土硒生物有效性的影响因素。结果表明:研究区表层土壤以足硒、富硒区为主,土壤硒含量与成土母岩关系密切,不同成土母岩区土壤硒含量规律为:古生代变质岩>中生代花岗岩>新元古代变质岩>中生代陆源碎屑岩>新生代第四系。根系土硒含量均未达到富硒土壤标准,稻谷富硒率为64.91%,稻谷对土壤硒的富集能力强(富集系数20.05%),当根系土硒含量≥0.25mg/kg时,水稻富硒率高达70.83%,能够稳定产出优质富硒水稻。硒的赋存形态是影响土壤硒生物有效性的主要因素,土壤总硒含量较低时,水溶态、离子可交换态、碳酸盐结合态硒的占比高,从而提升了硒的生物有效性;有机质含量低,对硒吸附能力弱,也是硒生物有效性高的重要原因。本研究认为,赣县清溪地区富硒、足硒土壤开发利用时,综合考虑土壤硒含量、土壤理化指标、硒形态对土壤硒生物有效性的影响,有利于科学指导天然富硒土地划定和富硒水稻产业开发。
    要点

    (1) 赣县清溪地区成土母质是土壤硒含量的主要控制因素。

    (2) 揭示了研究区“土壤不富硒而稻谷富硒”现象。

    (3) 土壤硒生物有效性主要受到硒赋存形态、pH值和有机质等条件影响。

    HIGHLIGHTS

    (1) Soil parent material was the key controlling factor affecting the soil selenium content in Qingxi area, Ganxian County.

    (2) The phenomenon of "selenium is not rich in soil but in rice" in the study area was revealed.

    (3) The bioavailability of selenium in soil was mainly affected by the form of selenium, pH and organic matter.

  • 图  1   研究区地质和水稻采样点位置示意图

    Figure  1.   Geology and rice sampling sites in the study area

    图  2   研究区根系土总硒与水溶态硒、活动态硒、稳定态硒、残渣态硒的散点图

    Figure  2.   Scatter plots of total Se in root soil vs. water soluble Se, active Se, stable Se and residual Se in the study area

    表  1   研究区不同成土母质区土壤硒含量对比

    Table  1   Comparison of Se contents in soils derived from different parent rocks in the study area

    成土母质 土壤硒含量范围
    (mg/kg)
    硒平均值
    (mg/kg)
    样品数
    (件)
    新生代第四系 0.07~0.90 0.26 346
    中生代陆源碎屑岩 0.08~0.84 0.28 262
    中生代花岗岩 0.09~1.58 0.35 930
    古生代变质岩 0.13~1.17 0.37 164
    新元古代变质岩 0.14~0.71 0.32 26
    下载: 导出CSV

    表  2   研究区稻谷与根系土硒含量特征及稻谷富集系数

    Table  2   Characteristics of Se contents in rice and root soil and enrichment coefficient of rice in the study area

    硒含量 最大值 最小值 平均值 标准差 变异系数 重庆黔江区
    (王锐等, 2020[29])
    广西浔郁平原
    (陈锦平等, 2018[30])
    赣州青塘—梅窖地区
    (周墨等, 2018[25])
    根系土硒含量(mg/kg) 0.36 0.14 0.24 0.05 0.23 0.43 0.546 0.34
    稻米硒含量(mg/kg) 0.10 0.02 0.04 0.02 0.35 0.05 0.059 0.06
    硒生物富集系数(%) 63.42 8.58 20.05 9.73 0.49 13.00 10.80 16.00
    下载: 导出CSV

    表  3   研究区根系土硒含量分级及其对应稻谷的富硒率与重金属超标率

    Table  3   Classification of Se contents in root soil, corresponding Se-enrichment rate and heavy metal excess rate of rice in the study area

    根系土硒含量水平
    (mg/kg)
    富硒水稻样本
    (件)
    超标水稻样本
    (件)
    水稻样本
    (件)
    富硒率
    (%)
    超标率
    (%)
    Se含量≥0.15 36 4 55 65.45 7.27
    Se含量≥0.20 30 3 45 66.67 6.66
    Se含量≥0.25 17 0 24 70.83 0
    下载: 导出CSV

    表  4   研究区根系土总硒与各形态硒含量、形态比例的相关系数(n=14)

    Table  4   Correlation coefficients of total Se in root soil vs. its species content and proportion in the study area

    硒形态 各形态硒含量与土壤总硒的相关系数 硒形态 各形态硒比例与土壤总硒的相关系数
    水溶态 0.85** 水溶态 -0.54*
    离子可交换态 0.13 离子可交换态 -0.66**
    碳酸盐结合态 0.06 碳酸盐结合态 -0.74**
    腐植酸结合态 0.74** 腐植酸结合态 -0.09
    铁锰氧化态 0.70** 铁锰氧化态 -0.64**
    强有机结合态 0.84** 强有机结合态 -0.20
    残渣态 0.93** 残渣态 0.40
    活动态 0.52* 活动态 -0.75**
    稳定态 0.99** 稳定态 0.75**
    注:“**”代表在0.01水平下显著相关;“*”代表在0.05水平下显著相关。
    下载: 导出CSV
  • 周国华. 富硒土地资源研究进展与评价方法[J]. 岩矿测试, 2020, 39(3): 319-336. doi: 10.15898/j.cnki.11-2131/td.201911140158

    Zhou G H. Research progress of selenium-enriched land resources and evaluation methods[J]. Rock and Mineral Analysis, 2020, 39(3): 319-336. doi: 10.15898/j.cnki.11-2131/td.201911140158

    熊咏民, 杨晓莉, 张丹丹, 等. 硒的生物学效应与环境相关性疾病的研究进展[J]. 土壤, 2018, 50(6): 1105-1112. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201806008.htm

    Xiong Y M, Yang X L, Zhang D D, et al. Research progress in biological function of selenium and environmentally associated diseases[J]. Soils, 2018, 50(6): 1105-1112. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201806008.htm

    Smits J E, Krohn R M, Akhtar E, et al. Food as medi-cine: Selenium enriched lentils offer relief against chronic arsenic poisoning in Bangladesh[J]. Environmental Research, 2019, 176: 108561. https://doi.org/10.1016/j.envres.2019.108561.

    彭晓敏, 高愈希. 自然界中的硒及其生物学效应[J]. 化学教育, 2019, 40(17): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-FXJJ201917001.htm

    Peng X M, Gao Y X. Selenium in nature and its biological effects[J]. Chinese Journal of Chemical Education, 2019, 40(17): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-FXJJ201917001.htm

    Fordyce F M. Selenium deficiency and toxicity in the environment[M]//Selinus O. Essentials of medical geology (revised edition). British Geological Survey, 2013: 373-416.

    Winkel L H E, Johnson C A, Lenz M, et al. Environmental selenium research: From microscopic processes to global understanding[J]. Environmental Science & Technology, 2012, 46: 571-579. http://www.onacademic.com/detail/journal_1000035851000110_e692.html

    中国营养学会. 中国居民膳食营养素参考摄入量[M]. 北京: 科学出版社, 2013.

    Chinese Nutrition Society. Chinese dietary reference intakes[M]. Beijing: Science Press, 2013.

    Fordyce F. Selenium geochemistry and health[J]. AMBIO: A Journal of the Human Environment, 2007, 36(1): 94-97. doi: 10.1579/0044-7447(2007)36[94:SGAH]2.0.CO;2

    Dinh Q T, Cuia Z W, Huang J, et al. Selenium distribution in the Chinese environment and its relationship with human health: A review[J]. Environment International, 2018, 112: 294-309. doi: 10.1016/j.envint.2017.12.035

    成晓梦, 马荣荣, 彭敏, 等. 中国大宗农作物及根系土中硒的含量特征与富硒土壤标准建议[J]. 物探与化探, 2019, 43(6): 1367-1372. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201906026.htm

    Cheng X M, Ma R R, Peng M, et al. Characteristics of selenium in crops and roots in China and recommen-dations for selenium-enriched soil standards[J]. Geophysical and Geochemical Exploration, 2019, 43(6): 1367-1372. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201906026.htm

    周墨, 唐志敏, 张明, 等. 赣州市水稻及根系土中硒的含量特征与富硒土壤界限值[J]. 地质通报, 2021, 40(4): 604-609. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202104017.htm

    Zhou M, Tang Z M, Zhang M, et al. Selenium contents of rice and rhizosphere soil and threshold value of selenium-rich soil in Ganzhou of Jiangxi Province[J]. Geological Bulletin of China, 2021, 40(4): 604-609. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202104017.htm

    Favorito J E, Eick M J, Grossl P R, et al. Selenium geo-chemistry in reclaimed phosphate mine soils and its relationship with plant bioavailability[J]. Plant and Soil, 2017, 418(1): 541-555. doi: 10.1007/s11104-017-3299-5

    刘秀金, 杨柯, 成杭新, 等. 四川省泸州市页岩和碳酸盐岩区水稻根系土Se含量和生物有效性的控制因素[J]. 地质通报, 2020, 39(12): 1919-1931. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202012007.htm

    Liu X J, Yang K, Cheng H X, et al. Control factors of selenium content and bioavailability of rice root soil in shale and carbonate rock areas, Luzhou City, Sichuan Province[J]. Geological Bulletin of China, 2020, 39(12): 1919-1931. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202012007.htm

    Supriatin S, Weng L P, Comans R N J. Selenium-rich dissolved organic matter determines selenium uptake in wheat grown on low-selenium arable land soils[J]. Plant Soil, 2016, 408: 73-94. doi: 10.1007/s11104-016-2900-7

    Li Z, Liang D, Peng Q, et al. Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: A review[J]. Geoderma, 2017, 295(3): 69-79. http://www.onacademic.com/detail/journal_1000039830883110_59e8.html

    王锐, 余涛, 杨忠芳, 等. 富硒土壤硒生物有效性及影响因素研究[J]. 长江流域资源与环境, 2018, 27(7): 1647-1654. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201807024.htm

    Wang R, Yu T, Yang Z F, et al. Bioavailability of soil selenium and its influencing factors in selenium-enriched soil[J]. Resources and Environment in the Yangtze Basin, 2018, 27(7): 1647-1654. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201807024.htm

    钱薇, 唐昊冶, 王如海, 等. 一次消解土壤样品测定汞、砷和硒[J]. 分析化学, 2017, 45(8): 1215-1221. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201708024.htm

    Qian W, Tang H Y, Wang R H, et al. Determination of mercury, arsenic and selenium in soils by one-time digestion[J]. Chinese Journal of Analytical Chemistry, 2017, 45(8): 1215-1221. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201708024.htm

    李蕾, 苏园, 陈楚国, 等. 微敞开体系快速石墨消解-原子荧光法测定食品及土壤中的硒[J]. 环境化学, 2020, 39(4): 1098-1104. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202004026.htm

    Li L, Su Y, Chen C G, et al. Fast determination of selenium in food and soils by micro-open graphite digestion-atomic fluorescence spectrometry[J]. Environmental Chemistry, 2020, 39(4): 1098-1104. https://www.cnki.com.cn/Article/CJFDTOTAL-HJHX202004026.htm

    欧朝接, 吴琼婧, 韦东, 等. 微波消解-电感耦合等离子体质谱(ICP-MS)法测定稻谷中铬、镍、铜、砷、镉、铅的含量[J]. 中国无机分析化学, 2019, 9(2): 5-8. doi: 10.3969/j.issn.2095-1035.2019.02.002

    Ou C J, Wu Q J, Wei D, et al. Determination of chromium, nickel, copper, arsenic cadmium and lead in rice by ICP-MS with microwave digestion[J]. Chinese Journal of Inorganic Analytical Chemistry, 2019, 9(2): 5-8. doi: 10.3969/j.issn.2095-1035.2019.02.002

    魏复盛. 中国土壤元素平均值[M]. 北京: 中国环境科学出版社, 1990.

    Wei F S. Background values of soil elements in China[M]. Beijing: China Environmental Science Press, 1990.

    魏振山, 涂其军, 唐蜀虹, 等. 天山北坡乌鲁木齐至沙湾地区富硒土壤地球化学特征及成因探讨[J]. 物探与化探, 2016, 40(5): 893-898. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201605008.htm

    Wei Z S, Tu Q J, Tang S H, et al. A discussion on the geochemical features and origin of selenium -rich soil on the northern slope of the Tianshan Mountains from Urumqi to Shawan County[J]. Geophysical and Geochemical Exploration, 2016, 40(5): 893-898. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201605008.htm

    余涛, 杨忠芳, 王锐, 等. 恩施典型富硒区土壤硒与其他元素组合特征及来源分析[J]. 土壤, 2018, 50(6): 1119-1125. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201806010.htm

    Yu T, Yang Z F, Wang R, et al. Characteristics and sources of soil selenium and other elements in typical high selenium soil area of Enshi[J]. Soils, 2018, 50(6): 1119-1125. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201806010.htm

    Long J, Luo K. Trace element distribution and enrichment patterns of Ediacaran-Early Cambrian, Ziyang selenosis area, central China: Constraints for the origin of selenium[J]. Journal of Geochemical Exploration, 2017, 172: 211-230. doi: 10.1016/j.gexplo.2016.11.010

    李娟, 龙健, 汪境仁. 贵州开阳地区土壤中硒的地球化学特征[J]. 土壤通报, 2004, 35(5): 579-582. doi: 10.3321/j.issn:0564-3945.2004.05.013

    Li J, Long J, Wang J R. Geochemical characteristics of selenium in soils of Kaiyang region, Guizhou Province[J]. Chinese Journal of Soil Science, 2004, 35(5): 579-582. doi: 10.3321/j.issn:0564-3945.2004.05.013

    周墨, 陈国光, 张明, 等. 赣南地区土壤硒元素地球化学特征及其影响因素研究: 以青塘-梅窖地区为例[J]. 现代地质, 2018, 32(6): 1292-1300. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201806017.htm

    Zhou M, Chen G G, Zhang M, et al. Geochemical characteristics and influencing factors of selenium in soils of south Jiangxi Province: A typical area of Qingtang-Meijiao[J]. Geoscience, 2018, 32(6): 1292-1300. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201806017.htm

    曹容浩. 福建省龙海市表层土壤硒含量及影响因素研究[J]. 岩矿测试, 2017, 36(3): 282-288. doi: 10.15898/j.cnki.11-2131/td.201606130084

    Cao R H. Study on selenium content of surface soils in Longhai, Fujian and its influencing factors[J]. Rock and Mineral Analysis, 2017, 36(3): 282-288. doi: 10.15898/j.cnki.11-2131/td.201606130084

    熊平生. 江西赣县花岗岩型红土剖面常量元素地球化学特征[J]. 高校地质学报, 2015, 21(3): 553-558. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201503018.htm

    Xiong P S. Major elements geochemical characteristics of the granite-type laterite profile in Gan Xian, Jiangxi Province[J]. Geological Journal of China Universities, 2015, 21(3): 553-558. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201503018.htm

    杨妍萍, 刘晓端, 刘久臣, 等. 川西高原地区岩石中硒的地球化学特征和影响因素[J]. 岩矿测试, 2020, 39(1): 115-126. doi: 10.15898/j.cnki.11-2131/td.201808290098

    Yang Y P, Liu X D, Liu J C, et al. Geochemical characteristics of selenium in rocks from the western Sichuan Plateau[J]. Rock and Mineral Analysis, 2020, 39(1): 115-126. doi: 10.15898/j.cnki.11-2131/td.201808290098

    王锐, 邓海, 贾中民, 等. 硒在土壤-农作物系统中的分布特征及富硒土壤阈值[J]. 环境科学, 2020, 41(12): 5571-5578. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202012043.htm

    Wang R, Deng H, Jia Z M, et al. Distribution characteristics of selenium in a soil-crop system and the threshold of selenium-rich soils[J]. Environmental Science, 2020, 41(12): 5571-5578. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202012043.htm

    陈锦平, 刘永贤, 潘丽萍, 等. 浔郁平原不同作物的硒富集特征及其影响因素[J]. 土壤, 2018, 50(6): 1155-1159. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201806016.htm

    Chen J P, Liu Y X, Pan L P, et al. Selenium accumulation characteristics and influential factors of different crops in Xunyu Plain[J]. Soils, 2018, 50(6): 1155-1159. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201806016.htm

    管文文, 戴其根, 张洪程, 等. 硒肥对水稻生长及其重金属累积的影响[J]. 土壤, 2018, 50(6): 1165-1169. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201806018.htm

    Guan W W, Dai Q G, Zhang H C, et al. Effect of selenium fertilization on rice growth and accumulation of heavy metals in rice (Oryza sativa)[J]. Soils, 2018, 50(6): 1165-1169. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201806018.htm

    洪涛, 孔祥胜, 岳祥飞. 贵州丹寨县土壤-水稻中硒和重金属的积累及迁移特征[J]. 地球与环境, 2021, https://kns.cnki.net/kcms/detail/52.1139.p.20210630.1108.001.html.

    Hong T, Kong X S, Yue X F. Translocation and accumulation of selenium and heavy metals in paddy soil-rice plant system in Danzhai County, Guizhou Province[J]. Earth and Environment, 2021, https://kns.cnki.net/kcms/detail/52.1139.p.20210630.1108.001.html.

    Wan Y N, Yu Y, Wang Q, et al. Cadmium uptake dynamics and translocation in rice seedling: Influence of different forms of selenium[J]. Ecotoxicology and Environmental Safety, 2016, 133: 127-134. doi: 10.1016/j.ecoenv.2016.07.001

    王锐, 侯宛苓, 李雨潼, 等. 高硒高镉区土地安全区划方法[J]. 环境科学, 2019, 40(12): 5524-5530. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201912037.htm

    Wang R, Hou W L, Li Y T, et al. Land safety zoning method in high-selenium and high-cadmium areas[J]. Environmental Science, 2019, 40(12): 5524-5530. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201912037.htm

    梁东丽, 彭琴, 崔泽玮, 等. 土壤中硒的形态转化及其对有效性的影响研究进展[J]. 生物技术进展, 2017, 7(5): 374-380. https://www.cnki.com.cn/Article/CJFDTOTAL-SWJZ201705010.htm

    Liang D L, Peng Q, Cui Z W, et al. Progress on selenium bioavailability and influential factors in soil[J]. Current Biotechnology, 2017, 7(5): 374-380. https://www.cnki.com.cn/Article/CJFDTOTAL-SWJZ201705010.htm

    赵禹, 白金, 刘拓. 南疆焉耆盆地土壤-小麦系统硒耦合关系及生物有效性[J]. 地质通报, 2020, 39(12): 1960-1970. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202012012.htm

    Zhao Y, Bai J, Liu T, et al. Se coupling relation and biological effectiveness study of the soil-wheat system in Yanqi Basin, southern Xinjiang[J]. Geological Bulletin of China, 2020, 39(12): 1960-1970. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202012012.htm

    Qin H B, Zhu J M, Lin Z Q, et al. Selenium speciation in seleniferous agricultural soils under different cropping systems using sequential extraction and X-ray absorption spectroscopy[J]. Environmental Pollution, 2017, 225: 361-369. doi: 10.1016/j.envpol.2017.02.062

    谢薇, 杨耀栋, 侯佳渝, 等. 天津市蓟州区土壤硒的有效性及影响因素[J]. 环境化学, 2019, 38(10): 2306-2316. doi: 10.7524/j.issn.0254-6108.2019042802

    Xie W, Yang Y D, Hou J Y, et al. Bioavailability of selenium and its influencing factors in soil of Jizhou District, Tianjin[J]. Environmental Chemistry, 2019, 38(10): 2306-2316. doi: 10.7524/j.issn.0254-6108.2019042802

    马迅, 宗良纲, 诸旭东, 等. 江西丰城生态硒谷土壤硒有效性及其影响因素[J]. 安全与环境学报, 2017, 17(4): 1588-1593. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201704073.htm

    Ma X, Zong L G, Zhu X D, et al. Effectiveness and influential factors of soil selenium in selenium valley, Fengcheng, Jiangxi[J]. Journal of Safety and Environment, 2017, 17(4): 1588-1593. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201704073.htm

    王仁琪, 张志敏, 晁旭, 等. 陕西省安康市西部稻田土壤硒形态特征与水稻富硒状况研究[J]. 中国地质, https://kns.cnki.net/kcms/detail/11.1167.P.20201019.1838.020.html.

    Wang R Q, Zhang Z M, Chao X, et al. A study of the selenium speciation in paddy soil and status of selenium-enriched rice in western part of Ankang, Shaanxi Province[J]. Geology in China, https://kns.cnki.net/kcms/detail/11.1167.P.20201019.1838.020.html.

    Wang D, Liang D L, Zhou F, et al. Selenate redistribution during aging in different Chinese soils and the dominant influential factors[J]. Chemosphere, 2017, 182: 284-292. doi: 10.1016/j.chemosphere.2017.05.014

    周小娟, 张嫣, 祝莉玲, 等. 武汉市侏儒-消泗地区农田系统中硒的分布特征及有效性研究[J]. 地质科技情报, 2016, 35(4): 158-163. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201604025.htm

    Zhou X J, Zhang Y, Zhu L L, et al. Research on selenium distribution and effectiveness in the farm system in Zhuru and Xiaosi areas, Wuhan City[J]. Geological Science and Technology Information, 2016, 35(4): 158-163. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201604025.htm

    谢邦廷, 贺灵, 江官军, 等. 中国南方典型富硒区土壤硒有效性调控与评价[J]. 岩矿测试, 2017, 36(3): 273-281. doi: 10.15898/j.cnki.11-2131/td.201610100152

    Xie B T, He L, Jiang G J, et al. Regulation and evaluation of selenium availability in Se-rich soils in southern China[J]. Rock and Mineral Analysis, 2017, 36(3): 273-281. doi: 10.15898/j.cnki.11-2131/td.201610100152

    Dinh Q T, Li Z, Tran T A T, et al. Role of organic acids on the bioavailability of selenium in soil: A review[J]. Chemosphere, 2017, 184: 618-635. http://www.onacademic.com/detail/journal_1000039924900210_575e.html

  • 期刊类型引用(31)

    1. 谢心怡,罗玉霞,邱慧,王健行,赵学付,王春英. 离子型稀土矿中残留氨氮的淋洗去除及动力学研究. 有色金属科学与工程. 2025(01): 143-151 . 百度学术
    2. 轩诗垚,王占刚. 结合风场的土壤重金属污染扩散过程模拟. 计算机应用与软件. 2024(02): 68-72+151 . 百度学术
    3. 韦春妙,章艳红,唐玉红,刘斌. 江西某退役焦化厂土壤重金属赋存形态分析及生物有效性评价. 土壤通报. 2024(03): 810-818 . 百度学术
    4. 张振国,王月,陈军典,高倩,邢杰,骆念岗,田释梦,代佳浩. 冀东代表性铁尾矿库表层重金属含量特征及生态风险评价. 金属矿山. 2024(07): 231-240 . 百度学术
    5. 张永康,曹耀华,冯乃琦,刘岩,张耀,王庆,刘佳. 某废弃煤矿区土壤重金属污染风险评价. 煤炭学报. 2024(07): 3188-3198 . 百度学术
    6. 迟崇哲,刘影,王超,张大勇,王春慧. 有色金属矿山尾矿土壤化生态修复技术研究进展. 黄金. 2024(12): 8-12+138 . 百度学术
    7. 汪媛媛,廖启林,李文博,徐宏婷,崔晓丹,刘玮晶,李文婷,周强. 江苏典型农田土壤重金属形态分布初步研究. 土壤. 2024(06): 1326-1338 . 百度学术
    8. 魏光普,于晓燕,康瑜,宋宇辰. 稀土矿山“菌根-油松-耐性蚯蚓”修复土壤效应评价. 稀土. 2023(02): 120-129 . 百度学术
    9. 吴灿萍,周罕,陈安,徐继刘,付俊. 某铜选冶场地土壤重金属污染特征及风险评价. 西南农业学报. 2023(02): 402-408 . 百度学术
    10. 魏洪斌,罗明,向垒,查理思,杨慧丽. 矿业废弃地重金属形态分布特征与迁移转化影响机制分析. 环境科学. 2023(06): 3573-3584 . 百度学术
    11. 杨洋,高慧敏,陶红,张秋灯. 重金属复合污染河道底泥淋洗动力学特征. 净水技术. 2023(06): 152-160+175 . 百度学术
    12. 张永康,冯乃琦,刘岩,徐志强,张耀,王庆. 江西某铅锌矿区土壤重金属形态分析及风险评价. 矿产综合利用. 2023(03): 199-204+210 . 百度学术
    13. 陈丹利,刘冠男,行正松,刘伟,潘飞飞,徐建军,赵元艺. 河南栾川钼铅锌多金属矿集区土壤重金属累积及源解析. 岩矿测试. 2023(04): 839-851 . 本站查看
    14. 黄方昱,明光艳,谢玮琛,吴道铭,陈燕明. 稀土矿迹地周边农田土壤重金属生态风险评价. 世界有色金属. 2023(14): 178-181 . 百度学术
    15. 林小淳,刘晓瑜,袁欣,张隆隆,刘斯文,冯亚鑫,赵晓倩,黄园英. 碱改性沸石吸附铅和氨氮性能及对稀土矿山土壤的修复作用. 岩矿测试. 2023(06): 1177-1188 . 本站查看
    16. 杨士,刘祖文,龙焙,毕永顺,林苑,左华伟. 生物炭负载氧化石墨烯对离子型稀土矿区土壤中重金属的阻控效应. 环境科学. 2022(03): 1567-1576 . 百度学术
    17. 陈陵康,陈海霞,金雄伟,张恋,刘金辉,柳传毅,徐狮,吴开兴,何书,孙涛,刘卫明. 离子型稀土矿粒度、粘土矿物、盐基离子迁移及重金属释放研究及展望. 中国稀土学报. 2022(02): 194-215 . 百度学术
    18. 刘斯文,黄园英,赵文博,魏吉鑫,徐春丽,马嘉宝,刘久臣,黄采文. 赣南北部黄陂河流域离子型稀土矿地区水质与健康风险评价. 岩矿测试. 2022(03): 488-498 . 本站查看
    19. 范晨子,袁继海,刘成海,郭威,孙冬阳,刘崴,赵九江,胡俊栋,赵令浩. 云南省安宁地区土壤重金属等元素生态地球化学调查与评价. 物探与化探. 2022(03): 761-771 . 百度学术
    20. 彭红丽,谭海霞,王颖,魏建梅,冯阳. 不同种植模式下土壤重金属形态分布差异与生态风险评价. 生态环境学报. 2022(06): 1235-1243 . 百度学术
    21. 鲍丽萍,陈芸,杨海博,董学林,孙勇,周佳,周新. 鄂西北稀土矿区粮食与蔬菜中重金属污染风险评价. 食品安全质量检测学报. 2022(15): 5062-5069 . 百度学术
    22. 白宇明,李永利,周文辉,胡浩远,卢震,边鹏. 典型工业城市土壤重金属元素形态特征及生态风险评估. 岩矿测试. 2022(04): 632-641 . 本站查看
    23. 张笑辰,刘煜,张兴绘,孙小艳. 江西省主要城市土壤重金属污染及风险评价. 环境科学与技术. 2022(08): 206-217 . 百度学术
    24. 杨贤房,郑林,万智巍,王远东,孟丽红,俞大杰. 酸性矿山5种植被恢复措施下土壤碱性磷酸酶基因细菌群落特征及其与重金属关系. 环境科学学报. 2022(12): 251-261 . 百度学术
    25. 范晨子,郭威,袁继海,郝乃轩,赵九江,刘成海. 西南地区典型工矿业城市土壤—作物系统中重金属和硒元素特征及评价. 西南农业学报. 2022(08): 1909-1919 . 百度学术
    26. 王毛兰,何昶,赵茜宇. 江西某养殖场废水灌溉土壤重金属污染特征及健康风险评价. 岩矿测试. 2022(06): 1072-1081 . 本站查看
    27. 谭启海,赵永红,黄璐,万臣,杨智,周丹. 硫酸铵对离子型稀土矿区土壤重金属的释放和形态转化影响. 有色金属科学与工程. 2022(06): 134-144 . 百度学术
    28. 陈月茹,曾敏静,程媛媛,龙焙,张斌超,曾玉,林树涛,易名儒,黄思浓. 温度对好氧颗粒污泥硝化-反硝化耦合脱氮性能影响. 环境科技. 2021(03): 7-12 . 百度学术
    29. 范晨子,刘永兵,赵文博,刘成海,袁继海,郭威,郝乃轩. 云南安宁水系沉积污染物分布特征与风险评价. 岩矿测试. 2021(04): 570-582 . 本站查看
    30. 徐春丽,刘斯文,魏吉鑫,黄园英,马嘉宝,曾普胜,李旭光. 离子型稀土矿区及周边土壤中稀土、重金属元素的地球化学特征. 矿产保护与利用. 2021(04): 1-11 . 百度学术
    31. 高娟琴,于扬,李以科,李瑞萍,柯昌辉,王登红,于沨,张塞,王雪磊. 内蒙白云鄂博稀土矿土壤-植物稀土元素及重金属分布特征. 岩矿测试. 2021(06): 871-882 . 本站查看

    其他类型引用(19)

图(2)  /  表(4)
计量
  • 文章访问数:  3817
  • HTML全文浏览量:  2748
  • PDF下载量:  71
  • 被引次数: 50
出版历程
  • 收稿日期:  2021-06-21
  • 修回日期:  2021-07-30
  • 录用日期:  2021-08-25
  • 发布日期:  2021-09-27

目录

    /

    返回文章
    返回