• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

四川省沐川县西部地区土壤硒含量特征及影响因素

成晓梦, 孙彬彬, 贺灵, 吴超, 赵辰, 曾道明

成晓梦, 孙彬彬, 贺灵, 吴超, 赵辰, 曾道明. 四川省沐川县西部地区土壤硒含量特征及影响因素[J]. 岩矿测试, 2021, 40(6): 808-819. DOI: 10.15898/j.cnki.11-2131/td.202106080072
引用本文: 成晓梦, 孙彬彬, 贺灵, 吴超, 赵辰, 曾道明. 四川省沐川县西部地区土壤硒含量特征及影响因素[J]. 岩矿测试, 2021, 40(6): 808-819. DOI: 10.15898/j.cnki.11-2131/td.202106080072
CHENG Xiao-meng, SUN Bin-bin, HE Ling, WU Chao, ZHAO Chen, ZENG Dao-ming. Content Characteristics and Influencing Factors of Soil Selenium in Western Muchuan County, Sichuan Province[J]. Rock and Mineral Analysis, 2021, 40(6): 808-819. DOI: 10.15898/j.cnki.11-2131/td.202106080072
Citation: CHENG Xiao-meng, SUN Bin-bin, HE Ling, WU Chao, ZHAO Chen, ZENG Dao-ming. Content Characteristics and Influencing Factors of Soil Selenium in Western Muchuan County, Sichuan Province[J]. Rock and Mineral Analysis, 2021, 40(6): 808-819. DOI: 10.15898/j.cnki.11-2131/td.202106080072

四川省沐川县西部地区土壤硒含量特征及影响因素

基金项目: 

中国地质调查局地质调查项目(DD20190522-03,DD20190522-07)

中国地质调查局地质调查项目 DD20190522-07

中国地质调查局地质调查项目 DD20190522-03

详细信息
    作者简介:

    成晓梦, 工程师, 主要从事生态地球化学研究。E-mail: cxiaomeng@mail.cgs.gov.cn

    通讯作者:

    贺灵, 高级工程师, 主要从事生态地球化学调查与研究。E-mail: lingh1237@163.com

  • 中图分类号: O657.63;X820.4

Content Characteristics and Influencing Factors of Soil Selenium in Western Muchuan County, Sichuan Province

  • 摘要: 硒是人体和动物必需的微量有益元素,摄入适量硒是提高人群生活质量的重要标志。食用富硒农产品是缺硒地区人体获取和补充硒元素的重要途径。调查土壤硒的含量特征、圈定富硒土壤资源分布区、查明土壤硒迁移富集的影响因素,是高效利用富硒土壤资源和科学开发富硒农产品的重要依据。本文选择四川省沐川县西部地区采集土壤样品,采用原子荧光光谱法、X射线荧光光谱法、电感耦合等离子体质谱/发射光谱法等方法测定土壤中Se、Al2O3、TFe2O3、OrgC、Cd等元素含量和pH值,利用统计学及相关分析等方法研究了土壤硒等元素含量和分布特征,并对土壤硒含量的主要影响因素进行探讨。结果表明:①研究区表层土壤硒含量范围为0.08~1.30mg/kg,平均含量为0.39±0.15mg/kg,满足富硒土壤条件的土壤面积为112km2,占研究区总面积的52%,其中无公害富硒土壤面积为35km2。土壤Cd含量是造成富硒土壤和无公害富硒土壤面积具有较大差异性的主要因素。②地质背景与土壤硒含量密切相关,富硒土壤主要受含碳酸盐岩及夹碳质地层的砂岩、粉砂岩等地层控制,土壤硒来源稳定;③土壤硒含量随pH值、风化程度的降低而升高,随有机质、TFe2O3、S含量的升高而升高,其中有机质对土壤硒的影响显著大于TFe2O3,表明该区域铁氧化物对硒的吸附能力低于有机质。综上所述,研究区富硒土壤资源丰富,建议当地充分利用相关资源开发富硒农产品,同时应注重有机肥的平衡施肥,并进一步加强土壤-作物系统中硒迁移富集影响因素的协同分析。
    要点

    (1) 研究区富硒土壤面积为112km2,其中无公害富硒土壤面积为35km2,富硒土壤资源丰富。

    (2) 地质背景与土壤硒含量密切相关,富硒土壤主要受含碳酸盐岩及夹碳质地层的砂岩、粉砂岩等地层控制。

    (3) 土壤pH、有机质、TFe2O3、S及土壤风化程度均对土壤硒的富集活化产生影响,其中铁氧化物对硒的吸附能力低于有机质。

    HIGHLIGHTS

    (1) The selenium-rich land covers 112km2, including 35km2 nuisanceless selenium-rich land. The selenium-rich land resources are abundant in the study area.

    (2) The geological background is closely related to the soil selenium contents, which is mainly controlled by carbonate rocks, sandstone and siltstone intercalated with carbonaceous strata.

    (3) Soil pH, organic matter, TFe2O3, S and weathering degree are important factors affecting the enrichment and activation of soil selenium. The effect of organic matter on soil selenium is significantly greater than TFe2O3.

  • 铌钽是稀有金属中的重要品种,在钢铁工业、超导材料、电子工业、医疗领域及铸造行业等领域有较广泛的应用,是国家战略资源中极为重要的部分。因此,铌钽矿的开发越来越受到重视[1]。我国是铌、钽矿藏较富足的国家[2-3],但铌钽矿资源矿物分布粒度细,且矿石含量较低,要求选矿处理量大,所以铌钽选矿工艺普遍存在流程复杂、回收率低等特点,同时伴生可综合利用的锂、铍、长石等资源[4-6]。所以,化学分析数据对判定矿物在分选流程中的去向就十分重要,而标准物质是对分析数据准确性的考察指标之一。但在铌钽选矿过程中常因化学分析结果的时间比较长、没有高品位的精矿标准物质、结果准确度不高等原因,不能满足量值溯源、传递及高精度、高准确度的质量控制要求,严重影响到了选矿工艺的设计。所以有必要研制铌钽精矿的相关标准物质,来指导选冶试验工艺流程的合理性,提高矿物的综合利用率[7-8]

    我国常用的铌、钽元素矿石标准物质[9]GBW07185、GBW07152、GBW07153、GBW07154、GBW07155、GBW07184、GBW07185等,它们的铌钽元素(Nb2O5+Ta2O5)含量基本在200×10-6以下,只有GBW07155和GBW07185的铌钽元素(Nb2O5+Ta2O5)含量分别在1130×10-6和15400×10-6,而对于选厂和冶炼厂的铌钽中间产品及最终产品来说,Nb2O5+Ta2O5的含量大于10%,甚至达到60%以上,没有相对应的铌钽标准物质对分析过程进行监控。可见,已有的铌钽矿石标准物质只适用于边界品位、工业品位的铌钽矿石分析,无法满足选冶试验样品中铌钽精矿样品分析的要求。铌铁标准物质(DH2805-铌铁,组分含量Ta 0.35×10-2,Nb 65.40×10-2;ECRM576-1-铌铁,组分含量Ta 0.306×10-2,Nb 43.90×10-2;YSBC18606-08-铌铁,组分含量Ta 0.84×10-2,Nb 66.24×10-2)中的铌高钽低,铌钽含量差距太大,且合金类标准物质,其基体与组分和铌钽矿石均不匹配,不适合在铌钽精矿分析过程中使用。因此,铌钽精矿标准物质的研制,不仅可为铌钽矿资源的开发中得到的精矿品位数据提供可靠的质量保证,也将填补我国铌钽精矿标准物质的空白;同时与原有的铌钽矿标准物质形成一个完整的铌钽矿含量系列标准物质,能够满足铌钽矿勘查和选冶对标准物质的需求。

    本文研制了4个铌钽矿化学成分标准物质,采用气流粉碎及高铝球磨细碎的两次破碎方法,保证满足标准物质粒度的要求,混合均匀后对全部定值元素进行均匀性和稳定性检验,选择8家具有资质的实验室,采取经典分析方法与现代仪器分析技术相结合的方式对该标准物质联合定值,依照JJF 1343—2012和一级标准物质技术规范给出了12项组分(包括主量、痕量元素)的标准值和不确定度。

    系列样品的选采主要考虑:①采样区是该矿种的主要矿床成因类型和工业类型,矿石的组成具有代表性;②矿石主成分的含量能满足含量梯度的要求。

    根据国内外铌钽矿资源的情况,结合铌钽矿产出的类型及性质,选取江西宜春铌钽矿区和尼日利亚宾盖地区铌钽矿为采集地点。江西宜春铌钽矿[10]是以铌钽锂铍为主要成分的的特大型稀有多金属矿床,也是目前我国产生最大的铌钽采选企业及铌钽原料生产基地;尼日利亚宾盖铌钽矿[11]为典型的沉积型砂矿。为了避免选矿的药剂污染及采集样品的稳定性,结合国内外的实际情况,确定了4个品位级别的候选物(编号为NTJK1、NTJK2、NTJK3和NTJK4),宜春微晶岩型(3个)和尼日利亚砂矿类型(1个)两种类型经过重选加工后的不同含量段的4个铌钽精矿样品。对4个铌钽精矿标准物质候选物进行化学分析、光薄片鉴定和X射线衍射分析,其矿物组成和基本特征见表 1

    表  1  采集铌钽精矿候选物的基本特征
    Table  1.  Basic characteristics of niobium-tantalum concentrate candidates
    样品编号 Ta2O5含量(×10-2) Nb2O5含量(×10-2) 采样地及采样量 主要矿物组成
    NTJK-1 5.72 4.17 江西宜春,80 kg 长石30%,黄玉35%,钽铌锰矿15%,石英10%,锡石3%,萤石2%
    NTJK-2 12.07 8.48 江西宜春,80 kg 黄玉20%,钽铌锰矿30%~35%,锡石5%,细晶石6%~8%,磁铁矿1%,长石10%,石英2%
    NTJK-3 21.02 19.77 江西宜春,80 kg (钽铌+铌钽+锡钽)锰矿60%,黄玉10%,细晶石15%,锡石10%,磁铁矿1%
    NTJK-4 5.81 47.88 尼日利亚,80 kg 铌钽铁矿75%,钛铁矿+铁金红石15%,赤铁矿5%,锡石3%,角闪石3%,钍石2%
    下载: 导出CSV 
    | 显示表格

    在避免污染的前提下,将4个铌钽精矿候选物按照铌钽含量由低到高分别进行晾晒,混合后于105℃烘24 h,然后进行样品的细碎和混匀。加工后的样品存于聚乙烯塑料桶内密封保存,每桶的样品质量约25 kg。分装样品的最小单元,全部采用国际上推荐的中高密度的100 mL聚乙烯瓶,包装单位为100 g/瓶。样品加工流程见图 1

    图  1  样品的加工流程
    Figure  1.  Processing flow of sample

    铌钽矿物颗粒硬度大且具有脆性,不易粉碎,尤其对于铌钽矿物颗粒富集的精矿,因此,在本系列标准物质加工过程中采用两次粉碎的方法。首先采用气流粉碎,在对气流粉碎后的样品全部进行高铝球磨机细磨,同时时刻注意检查样品粒度,要求74 μm筛通过率大于98%。气流粉碎特别适用于硬度大、脆性大的样品,且气流粉碎技术在矿石加工和标准物质制备加工中已有应用[12-13],而在铌钽精矿标准物质的制备中首次采用。

    混合均匀后的4个铌钽精矿样品经激光粒度分析仪(BT-9300S型)进行分析,检测结果(图 2)表明:4个铌钽精矿标准物质的颗粒粒径主要集中在2~50.2 μm,占粒径分布的65.10%~84.85%,其中NTJK-3样品所占比例最小,为65.10%;<50.2 μm的粒径分别占到97.33%、94.97%、99.44%和98.07%,NTJK-3样品所占比例最大;NTJK-4样品中>74 μm的颗粒比例最大,为0.98%。4个铌钽精矿标准物质颗粒的粒径<74 μm的含量均达到99%以上,符合国家一级标准物质技术规范的要求。

    图  2  样品粒度分布图
    Figure  2.  Grain distributions of samples

    样品的均匀性是研制标准物质的基础,是标准物质物质必须具备的特性,也是衡量标准物质加工质量的非常重要的因素。检验方法为:从分装的最小包装单元中随机抽取50个子样,每个样品进行双份测试。采用酸溶ICP-OES/MS法(取样量0.100 g)对定值元素Nb2O5、Ta2O5、Fe2O3、TiO2、WO3、MnO、P2O5、U、Th等9个元素进行了均匀性检验。采用碱熔ICP-OES/MS法(取样量0.100 g)对SiO2、Zr、Hf进行了均匀性检验。根据测试值的相对标准偏差(RSD)和瓶间与瓶内方差检验的F值结果,对标准物质候选物的均匀性作出评价[14-15],均匀性检验结果见表 2

    表  2  候选物均匀性检验结果
    Table  2.  Homogeneity tests of niobium-tantalum concentrate candidates
    元素 NTJK-1 NTJK-2 NTJK-3 NTJK-4
    含量测定平均值 RSD(%) F 含量测定平均值 RSD(%) F 含量测定平均值 RSD(%) F 含量测定平均值 RSD(%) F
    Nb2O5 4.07 1.15 1.43 8.54 1.85 1.41 20.94 3.74 1.58 49.01 1.60 1.46
    Ta2O5 5.39 1.52 1.41 10.80 1.51 0.79 19.58 2.92 1.46 5.45 1.37 1.51
    SiO2 26.75 1.37 1.49 20.61 0.41 0.48 10.81 0.93 0.99 2.03 3.67 1.12
    Fe2O3 3.47 1.73 1.32 4.47 1.39 1.00 5.81 1.18 1.23 23.89 1.60 1.36
    TiO2 0.068 6.12 1.49 0.12 4.01 0.85 1.43 1.17 0.92 10.41 0.97 1.24
    MnO 1.94 1.15 0.83 3.55 3.08 0.91 5.63 2.12 1.03 2.46 3.27 0.87
    P2O5 0.37 1.51 1.50 0.26 5.05 0.26 0.26 4.61 1.27 0.090 1.56 0.98
    Zr* 897.75 3.55 1.47 1549.44 1.52 1.14 1812.26 1.46 0.77 2733.70 1.75 0.32
    Hf* 159.72 3.16 0.43 303.87 5.11 1.50 294.38 2.62 1.52 238.87 4.06 1.41
    U* 957.05 3.42 1.52 2168.39 4.76 1.54 2955.06 2.95 1.51 340.01 4.19 1.59
    Th* 98.94 0.69 1.55 192.83 2.91 0.94 377.83 3.50 1.18 1357.67 2.33 0.78
    W* 532.68 4.20 1.59 1127.25 4.91 1.49 2283.44 2.89 1.39 2445.83 3.30 0.66
    注:表中带“*”成分的测定平均值单位为10-6,其他成分的测定平均值单位为10-2
    下载: 导出CSV 
    | 显示表格

    表 2中4个候选物的检验结果可以看出,大部分主量元素的相对标准偏差小于3%,微量元素的相对标准偏差小于5%,说明12个指标的分析方法精密度较高。经单因素方差检验,4个标准物质候选物中12项元素的F实测值均小于临界值F0.05(24,25)=1.76,说明组内和组间分析结果无明显差异,综合判断样品的均匀性良好。

    标准物质在运输过程中不可避免地会发生颠震,铌钽精矿中部分矿物比重较大,运输过程中的颠震是否会对其造成影响而出现不均匀和不稳定的现象,值得关注。每个铌钽精矿标准物质候选物随机抽取2个最小包装单元的样品分别在50℃和-18℃温度条件下保存,常温下振荡器上振荡模拟运输过程中的颠簸情况,在颠振48 h后取样分析,试验后的样品每个取2份进行分析。对12个定值元素Nb2O5、Ta2O5、Fe2O3、TiO2、WO3、MnO、P2O5、U、Th、SiO2、Zr、Hf进行了测试,分析方法同均匀性检验。采用T检验法验证标准物质的稳定性,以Nb2O5和Ta2O5为例,分析结果见表 3,本系列标准物质在进行了48 h的颠振后,T检测值均小于T临界值,样品特性量值未发生显著变化,这说明本系列标准物质候选物的短期稳定性良好。

    表  3  ICP-OES法测定Nb2O5和Ta2O5短期稳定性的结果
    Table  3.  Short-term stability test results of Nb2O5 and Ta2O5 by ICP-OES
    样品编号 检验方式 取样部位 Nb2O5 Ta2O5 T临界值
    平均测定值(×10-2) T检测值 平均测定值(×10-2) T检测值
    NTJK-1 机器振荡 上部 4.11 0.9 5.47 0.7 2.3
    下部 4.13 5.46
    正常存放 上部 4.22 1.0 5.40 0.8
    下部 4.21 5.36
    NTJK-2 机器振荡 上部 8.52 2.0 11.28 1.1 2.3
    下部 8.62 11.41
    正常存放 上部 8.82 1.9 11.37 1.3
    下部 8.83 11.36
    NTJK-3 机器振荡 上部 21.04 1.2 19.26 1.2 2.3
    下部 20.98 19.56
    正常存放 上部 21.38 1.5 20.30 1.3
    下部 21.33 20.31
    NTJK-4 机器振荡 上部 48.92 1.3 5.45 1.0 2.3
    下部 49.15 5.47
    正常存放 上部 54.14 1.2 5.71 0.7
    下部 54.12 5.72
    下载: 导出CSV 
    | 显示表格

    本次研制的系列铌钽精矿标准物质的长期稳定性按照“先密后疏”原则在第0、1、4、12、18、36、48个月时定期取样分析,每个铌钽精矿标准物质随机抽取2瓶样品进行分析,每瓶样品对12个定值元素Nb2O5、Ta2O5、Fe2O3、TiO2、WO3、MnO、P2O5、U、Th、SiO2、Zr、Hf进行了7次测试,7次不同时间分析结果的平均值均在正常的分析误差和标准值的不确定度范围内, 无明显偏向性变化, 表明本系列标准物质候选物的长期稳定性良好。

    标准物质的定值分析测试是标准物质研制的重要环节之一。铌钽精矿标准物质元素定值是按照国家一级标准物质技术规范,采用多个实验室、多种分析方法合作定值。邀请了经过计量认证、铌钽元素测试水平较高的检测机构参加样品测试,制定了分析测试细则,采用两套以上原理独立的方法进行检测,以提高定值的质量。每种方法对每一样品的每一元素至少报出4个数据,定值元素不少于8组数据。样品各定值元素的测定采用多种不同原理的分析方法分别进行分析,各元素的分析方法见表 4

    表  4  样品各定值元素的分析方法
    Table  4.  Analytical methods of certified value elements in samples
    定值元素 分析方法
    Nb2O5和Ta2O5 碱熔-纸上层析重量法;混合酸溶ICP-OES测定;混合碱熔ICP-OES测定
    Fe2O3 磺基水杨酸比色法;混合酸溶ICP-OES测定
    TiO2 二氨替比林甲烷比色法;混合酸溶ICP-OES测定
    WO3 硫氰酸盐比色法;混合酸溶ICP-OES测定;混合碱熔ICP-OES测定
    SiO2 动物胶凝聚重量法;硅钼蓝比色法;混合碱熔ICP-OES测定
    U3O8 钒酸铵容量法;混合酸溶ICP-OES测定
    下载: 导出CSV 
    | 显示表格

    以各单位提供的各元素平均值数据为统计单元,用Grubbs准则剔除离群数据,共收集8家实验室466组平均值数据,剔除2组数据,占总数的0.43%。用夏皮罗-威尔克法(Shapiro-Wilk)进行正态检验。本次研制的4个铌钽精矿标准物质正态检验值W均大于置信概率95%的列表值,定值测试数据均呈正态分布或近似正态分布。

    按照《标准物质定值的通用原则及统计学原理》(JJF1343—2012)的要求,当数据为正态分布或近似正态分布时,以算术平均值为最佳估计值,当数据集属偏态分布时以中位值为最佳估计值。本次研制的4个铌钽精矿标准物质平均值全部为正态分布,以算术平均值为最佳估计值,计算得到认定值和不确定度。

    化学成分测量不确定度来源较多,其不确定度评定较为困难,对于地质标准物质不确定评定的表达也不尽统一[16-17]。本次铌钽精矿标准物质在研制过程中,不确定度的评定采用JJF1343—2012推荐的标准值的不确定度评定方法,各元素的不确定度主要由其稳定性不确定度(us)、均匀性不确定度(ubb)和定值不确定度(uchar)三部分构成[18-19]。合成标准不确定度(uCRM)为:

    $ u{_{{\text{CRM}}}} = \sqrt {u_{\text{s}}^2 + u_{{\text{bb}}}^2 + u_{{\text{char}}}^2} $

    使用扩展不确定度UCRM=k×uCRM表示最终不确定度的值,因子k取2,对应的置信水平大约为95%,不确定度的数字修约采用只进不舍的原则。地质标准物质定值组分多,受工作量和分析方法精密度的限制,通常只选择有代表性的组分进行均匀性和稳定性检验[20-21]。本次标准物质的认定值和扩展不确定度列于表 5

    表  5  铌钽精矿标准物质的认定值及不确定度
    Table  5.  Certified values and expanded uncertainty of niobium-tantalum concentrates reference materials
    定值元素 认定值与扩展不确定度
    NTJK-1 NTJK-2 NTJK-3 NTJK-4
    MnO(×10-2) 1.84±0.065 3.59±0.094 5.82±0.158 2.47±0.124
    P2O5(×10-6) 3785±414.33 2839±455.71 2189±183.94 1002±114.49
    SiO2(×10-2) 27.88±0.542 21.60±0.586 10.99±0.7 2.12±0.282
    Fe2O3(×10-2) 3.67±0.307 4.75±0.254 6.34±0.473 24.51±0.343
    TiO2(×10-2) 0.075±0.013 0.13±0.016 1.45±0.041 11.28±0.485
    Ta2O5(×10-2) 5.72±0.05 12.07±0.10 21.02±0.16 5.81±0.08
    Nb2O5(×10-2) 4.17±0.225 8.48±0.267 19.77±0.550 47.88±0.968
    W(×10-6) 742±19.62 1540±101.34 2899±107.37 2997±97.46
    Th(×10-6) 103±16.10 170±12.11 383±26.91 1520±129.01
    U(×10-6) 984±42.50 2084±118.444 3322±290.60 334±12.48
    Zr(×10-6) 971±64.30 1624±88.53 1900±110.73 2898±189.44
    Hf(×10-6) 171±17.28 283±14.26 295±25.38 166±19.03
    下载: 导出CSV 
    | 显示表格

    为了保证本次标准物质研制工作的溯源性,采取了如下具体措施:①所使用的仪器设备及计量器具按国家计量部门有关规定进行检定或校准,确保量值准确、可靠,可溯源到国家标准。②用作校正曲线的标准溶液由标准物质或基准物质配制,可溯源到测量国际单位制。③保证分析试剂和水的高纯度,每次分析进行空白试验,减空白和背景校正正确、合理。④所选用的定值分析方法是经实践经验证明为成熟的、准确的、可靠的方法。另外,本次定值是由多家通过国家级计量认证,并多次参加了标准物质定值工作的单位以及多种经过实践经验的准确、可靠的方法联合测定,而且各单位和各方法都使用了国家一级标准物质(GBW07155和GBW07185)进行质量监控。

    本批标准物质研制成功后,先后送江西宜春铌钽矿选厂和河南洛阳钼业公司进行应用分析,两个应用单位根据各自的条件,采用例行分析方法对本批标准物质进行了验证分析,分析数据见表 6,结果表明本批标准物质定值准确、可靠。同时,本批标准物质在河南三门峡市卢氏七里沟和卢氏火炎沟等地区的铌钽矿选矿过程样品分析中进行应用,分析结果表明,铌钽选矿过程样品的分析数据满足选矿金属量平衡的需要,证明本批标准物质能够对分析过程发挥很好的监控作用。

    表  6  实际样品应用分析结果对照
    Table  6.  Comparison of analytical results of actual samples
    样品编号 Nb2O5分析结果(×10-2) Ta2O5分析结果(×10-2)
    宜春选厂 洛阳钼业 参考值 宜春选厂 洛阳钼业 参考值
    NTJK-1 4.23 4.19 4.17 5.64 5.74 5.72
    NTJK-2 8.49 8.36 8.48 12.25 12.04 12.07
    NTJK-3 20.06 19.96 19.77 20.87 20.93 21.02
    NTJK-4 48.09 47.97 47.88 5.72 5.87 5.81
    注:参考值为8家实验室测定数据统计分析后的算术平均值。
    下载: 导出CSV 
    | 显示表格

    研制的4个铌钽精矿标准物质,其主要成分Ta(Nb)2O5的含量为9.89%、20.55%、40.79%、53.69%,此系列标准物质多数成分含量呈梯度分布,定值成分12个,具有样品粒度均匀且分布范围窄、定值元素含量分布广泛的特点,形成了一个从粗精矿到精矿较为完整的含量体系,可以满足选冶和冶金试验各阶段流程样品对标准物质的需求。4个铌钽精矿标准物质在选冶试验流程样品和冶金过程样品中的应用良好,可以满足铌钽选矿与贸易、铌钽矿开发综合利用和冶金过程样品中对分析测试过程、仪器校正、方法验证等的要求,具有较好应用前景,解决了我国无铌钽精矿标准物质的问题。

    在铌钽精矿标准物质研制过程中,采用气流粉碎和高铝球磨两次粉碎的技术对样品进行粉碎,解决了铌钽精矿中矿物颗粒硬度高、细碎难度大的问题,其粒度分布可满足日常质量监控的需要,并经实验证实;所应用的两次细碎的粉碎方法可以为今后类似矿石标准物质的研制提供借鉴。

  • 图  1   研究区地质简图

    Figure  1.   Geological sketch map of the study area

    图  2   研究区土壤硒空间分布特征与无公害富硒土壤评价

    Figure  2.   Spatial distribution characteristics of soil selenium concentration and evaluation of nuisanceless selenium-enriched land

    图  3   各成土母岩区土壤Cd含量箱式图

    Figure  3.   Boxplots of cadmium concentration in soils derived from different parent rocks

    图  4   研究区土壤pH与Se含量散点图

    Figure  4.   Scatter plots of pH and selenium concentration in soils

    图  5   各成土母岩区土壤有机质和TFe2O3平均含量

    K1w:窝头山组;J3p:蓬莱镇组;J3sn:遂宁组;J2s:沙溪庙组;J1z:自流井组;T3x:须家河组;T3k-x:垮洪洞组—须家河组并层;T2l:雷口坡组;T1-2f-l:飞仙关组—嘉陵江组—雷口坡组并层;T1f-j:飞仙关组—嘉陵江组并层;P2x:宣威组。

    Figure  5.   Average concentration of organic matter and TFe2O3 in soils derived from different parent rocks

    表  1   各指标分析测试的检出限

    Table  1   Detection limit of analyzed indicators

    分析项目 检出限 分析项目 检出限
    As 0.3mg/kg Al2O3 0.05%
    Cd 0.03mg/kg TFe2O3 0.05%
    Cr 3mg/kg S 30mg/kg
    Hg 0.0005mg/kg pH 0.1
    Pb 2mg/kg OrgC 0.1%
    Se 0.01mg/kg
    下载: 导出CSV

    表  2   土壤硒含量划分界限值

    Table  2   Threshold between abundance and deficiency of soil selenium

    土壤硒等级 硒含量(mg/kg) 硒总体情况
    缺乏 ≤0.125 缺硒
    边缘 0.125~0.175 硒潜在不足
    适量 0.175~0.40 足硒
    0.4~3.0 富硒
    过剩 >3.0 硒中毒
    下载: 导出CSV

    表  3   主要成土母岩区土壤硒地球化学参数

    Table  3   Geochemical parameters of selenium concentration in soils derived from different parent rocks

    地层 样本数(件) Se含量(mg/kg) 标准偏差(mg/kg) 变异系数
    最大值 最小值 平均值
    白垩系 K1w 26 0.65 0.30 0.38 0.07 0.19
    侏罗系 J3p 87 0.52 0.15 0.33 0.07 0.22
    J3sn 90 0.66 0.14 0.33 0.09 0.28
    J2s 383 0.67 0.08 0.32 0.08 0.25
    J1z 243 1.13 0.09 0.39 0.11 0.28
    三叠系 T3x 138 1.08 0.12 0.46 0.14 0.31
    T3k-x 170 0.78 0.25 0.47 0.09 0.20
    T2l 79 0.78 0.35 0.53 0.11 0.21
    T1-2f-l 52 1.30 0.31 0.63 0.20 0.31
    T1f-j 27 0.70 0.32 0.48 0.09 0.18
    二叠系 P2x 27 1.16 0.33 0.67 0.25 0.37
    下载: 导出CSV

    表  4   不同土地利用方式土壤硒地球化学参数

    Table  4   Geochemical parameters of selenium concentration in soils with different land use types

    土地利用方式 样本数(件) Se含量(mg/kg) 标准偏差(mg/kg) 变异系数
    最大值 最小值 平均值
    水田 386 0.73 0.13 0.39 0.10 0.26
    旱地 798 1.30 0.09 0.41 0.16 0.38
    茶园 108 1.20 0.24 0.47 0.19 0.39
    下载: 导出CSV
  • Shi Z M, Pan P J, Feng Y W, et al. Environmental water chemistry and possible correlation with Kaschin-Beck Disease (KBD) in northwestern Sichuan, China[J]. Environment International, 2017, 99: 282-292. doi: 10.1016/j.envint.2016.12.006

    Navarro-Alarcon M, Cdbrera-Vique C. Selenium in food and the human body: A review[J]. Science of the Total Environment, 2008, 400(1-3): 115-141. doi: 10.1016/j.scitotenv.2008.06.024

    Li Z, Liang D L, Peng Q, et al. Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: A review[J]. Geoderma, 2017, 295(1): 69-79. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0016706116305018&originContentFamily=serial&_origin=article&_ts=1488279631&md5=4540f124bd4f6db999b22a7874f67982

    Fordyce F M, Zhang G D, Green K, et al. Soil, grain and water chemistry in relation to human selenium-responsive diseases in Enshi District, China[J]. Applied Geochemistry, 2000, 15: 117-132. doi: 10.1016/S0883-2927(99)00035-9

    Dinh Q T, Cui Z W, Huang J, et al. Selenium distribution in the Chinese environment and its relationship with human health: A review[J]. Environment International, 2018, 112: 294-309. doi: 10.1016/j.envint.2017.12.035

    王学求, 柳青青, 刘汉粮, 等. 关键元素与生命健康: 中国耕地缺硒吗?[J]. 地学前缘, 2021, 28(3): 412-423. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202103035.htm

    Wang X Q, Liu Q Q, Liu H L, et al. Key elements and human health: Are selenium deficient in cultivated soils in China?[J]. Earth Science Frontiers, 2021, 28(3): 412-423. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202103035.htm

    Wang J, Li H R, Yang L S, et al. Distribution and trans-location of selenium from soil to highland barley in the Tibetan Plateau Kashin-Beck disease area[J]. Environmental Geochemistry and Health, 2017, 39: 221-229. doi: 10.1007/s10653-016-9823-3

    Rayman M P. Food-chain selenium and human health: Emphasis on intake[J]. British Journal of Nutrition, 2008, 100: 254-268. doi: 10.1017/S0007114508939830

    王锐, 邓海, 贾中民, 等. 硒在土壤-农作物系统中的分布特征及富硒土壤阈值[J]. 环境科学, 2020, 41(12): 5571-5578. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202012043.htm

    Wang R, Deng H, Jia Z M, et al. Distribution characteristics of selenium in a soil-crop system and the threshold of selenium-rich soils[J]. Environmental Science, 2020, 41(12): 5571-5578. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202012043.htm

    Liu H L, Wang X Q, Zhang B M, et al. Concentration and distribution of selenium in soils of mainland China, and implications for human health[J]. Journal of Geochemical Exploration, 2021, 220: 1-14.

    余涛, 杨忠芳, 王锐, 等. 恩施典型富硒区土壤硒与其他元素组合特征及来源分析[J]. 土壤, 2018, 50(6): 1119-1125. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201806010.htm

    Yu T, Yang Z F, Wang R, et al. Characteristics and sources of soil selenium and other elements in typical high selenium soil area of Enshi[J]. Soils, 2018, 50(6): 1119-1125. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201806010.htm

    时章亮, 金立新, 廖超, 等. 四川雷波县重点耕地区土壤硒含量特征及其成因分析[J]. 物探与化探, 2020, 44(5): 1253-1260. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202005036.htm

    Shi Z L, Jin L X, Liao C, et al. Content characteristics and genesis of soil selenium in important cultivated areas of Leibo County, Sichuan Province[J]. Geophysical and Geochemical Exploration, 2020, 44(5): 1253-1260. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202005036.htm

    任海利, 高军波, 龙杰, 等. 贵州开阳地区富硒地层及风化土壤地球化学特征[J]. 地球与环境, 2012, 40(2): 161-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201202006.htm

    Ren H L, Gao J B, Long J, et al. Geochemical characteristics of selenium-rich strata and weathered soil from Kaiyang County, Guizhou Province[J]. Earth and Environment, 2012, 40(2): 161-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201202006.htm

    刘才泽, 王永华, 曾琴琴, 等. 成渝典型地区土壤硒地球化学特征及其成因分析[J]. 物探与化探, 2018, 42(6): 1289-1295. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201806026.htm

    Liu C Z, Wang Y H, Zeng Q Q, et al. The distribution and source of soil selenium in typical areas of Chengdu-Chongqing region[J]. Geophysical and Geochemical Exploration, 2018, 42(6): 1289-1295. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201806026.htm

    宋明义, 李恒溪, 魏迎春, 等. 浙江省龙游志棠地区硒的地球化学研究[J]. 贵州地质, 2005, 22(3): 176-180. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ200503005.htm

    Song M Y, Li H X, Wei Y C, et al. Geochemistry of the selenium, Zhitang Town, Longyou County, Zhejiang Province[J]. Guizhou Geology, 2005, 22(3): 176-180. https://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ200503005.htm

    吴兴盛. 福建省武平县富硒土壤特征及成因分析[J]. 物探与化探, 2021, 45(3): 778-784. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202103027.htm

    Wu X S. Characteristics and genesis of selenium-rich soil in Wuping area, Fujian Province[J]. Geophysical and Geochemical Exploration, 2021, 45(3): 778-784. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202103027.htm

    Blazina T, Sun Y B, Voegelin A, et al. Terrestrial selenium distribution in China is potentially linked to monsoonal climate[J]. Nature Communications, 2014, 5: 4717. doi: 10.1038/ncomms5717

    冯辉, 张学君, 张群, 等. 北京大清河流域生态涵养区富硒土壤资源分布特征和来源解析[J]. 岩矿测试, 2019, 38(6): 693-704. doi: 10.15898/j.cnki.11-2131/td.201905270071

    Feng H, Zhang X J, Zhang Q, et al. Distribution characteristics and sources identification of selenium-rich soils in the ecological conservation area of the Daqinghe River watershed, Beijing[J]. Rock and Mineral Analysis, 2019, 38(6): 693-704. doi: 10.15898/j.cnki.11-2131/td.201905270071

    周殷竹, 刘义, 王彪, 等. 青海省囊谦县农耕区土壤硒的富集因素[J]. 地质通报, 2020, 39(12): 1952-1959. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202012011.htm

    Zhou Y Z, Liu Y, Wang B, et al. Influence factors of soil selenium in cultivated area of Nangqian County, Qinghai Province[J]. Geological Bulletin of China, 2020, 39(12): 1952-1959. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202012011.htm

    张立, 刘国栋, 吕石佳, 等. 黑龙江省海伦市农耕区土壤硒分布特征及影响因素[J]. 现代地质, 2019, 33(5): 1046-1054. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201905012.htm

    Zhang L, Liu G D, Lv S J, et al. Distribution characteristics of selenium cultivated soil and its influencing factors in Hailun County of Heilongjiang Province[J]. Geoscience, 2019, 33(5): 1046-1054. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201905012.htm

    周国华. 富硒土地资源研究进展与评价方法[J]. 岩矿测试, 2020, 39(3): 319-336. doi: 10.15898/j.cnki.11-2131/td.201911140158

    Zhou G H. Research progress of selenium-enriched land resources and evaluation methods[J]. Rock and Mineral Analysis, 2020, 39(3): 319-336. doi: 10.15898/j.cnki.11-2131/td.201911140158

    谭建安. 中华人民共和国地方病与环境图集[M]. 北京: 科学出版社, 1989.

    Tan J A. The atlas of endemic diseases and their environments in the People's Republic of China[M]. Beijing: Science Press, 1989.

    迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007.

    Chi Q H, Yan M C. Applied geochemistry data book of element abundance[M]. Beijing: Geological Publishing House, 2007.

    侯青叶, 杨忠芳, 余涛, 等. 中国土壤地球化学参数[M]. 北京: 地质出版社, 2020.

    Hou Q Y, Yang Z F, Yu T, et al. Soil geochemical parameters in China[M]. Beijing: Geological Publishing House, 2020.

    韩伟, 王成文, 彭敏, 等. 川南山区土壤与农作物重金属特征及成因[J]. 环境科学, 2021, 42(5): 2480-2489. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202105046.htm

    Han W, Wang C W, Peng M, et al. Characteristics and origins of heavy metals in soil and crops in mountain area of southern Sichuan[J]. Environmental Science, 2021, 42(5): 2480-2489. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202105046.htm

    贺灵, 吴超, 曾道明, 等. 中国西南典型地质背景区土壤重金属分布及生态风险特征[J]. 岩矿测试, 2021, 40(3): 395-407. doi: 10.15898/j.cnki.11-2131/td.202101260016

    He L, Wu C, Zeng D M, et al. Distribution of heavy metals and ecological risk of soils in typical geological background region of southwest China[J]. Rock and Mineral Analysis, 2021, 40(3): 395-407. doi: 10.15898/j.cnki.11-2131/td.202101260016

    唐瑞玲, 王惠艳, 吕许朋, 等. 西南重金属高背景区农田系统土壤重金属生态风险评价[J]. 现代地质, 2020, 34(5): 917-927. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202005005.htm

    Tang R L, Wang H Y, Lv X P, et al. Ecological risk assessment of heavy metals in farmland system from an area with high background of heavy metals, southwestern China[J]. Geoscience, 2020, 34(5): 917-927. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202005005.htm

    马宏宏, 彭敏, 刘飞, 等. 广西典型碳酸盐岩区农田土壤-作物系统重金属生物有效性及迁移富集特征[J]. 环境科学, 2020, 41(1): 449-459. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202001054.htm

    Ma H H, Peng M, Liu F, et al. Bioavailability, translocation, and accumulation characteristics of heavy metals in a soil-crop system from a typical carbonate rock area in Guangxi, China[J]. Environmental Science, 2020, 41(1): 449-459. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202001054.htm

    杨忠芳, 汤奇峰, 成杭新, 等. 爱恨交织的化学元素[M]. 北京: 地质出版社, 2019.

    Yang Z F, Tang Q F, Cheng H X, et al. The chemical elements of love-hate[M]. Beijing: Geological Publishing House, 2019.

    Fang W X, Wu P W. Elevated selenium and other mine-ral element concentrations in soil and plant tissue in bone coal sites in Haoping area, Ziyang County, China[J]. Plant and Soil, 2004, 261: 135-146. doi: 10.1023/B:PLSO.0000035580.32406.e3

    蒋慧豪, 罗杰, 蔡立梅, 等. 广东省普宁市土壤硒的分布特征及影响因素研究[J]. 现代地质, 2019, 33(1): 161-168. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201901015.htm

    Jiang H H, Luo J, Cai L M, et al. Distribution of selenium and its influencing factors in soils of Puning City, Guangdong Province[J]. Geoscience, 2019, 33(1): 161-168. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201901015.htm

    韩伟, 王乔林, 宋云涛, 等. 四川省沐川县北部土壤硒地球化学特征与成因探讨[J]. 物探与化探, 2021, 45(1): 215-222. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202101026.htm

    Han W, Wang Q L, Song Y T, et al. Geochemical characteristics and genesis of selenium in soil in northern Muchuan County, Sichuan Province[J]. Geophysical and Geochemical Exploration, 2021, 45(1): 215-222. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202101026.htm

    曹荣浩. 福建省龙海市表层土壤硒含量及影响因素研究[J]. 岩矿测试, 2017, 36(3): 282-288. doi: 10.15898/j.cnki.11-2131/td.201606130084

    Cao R H. Study on selenium content of surface soils in Longhai, Fujian and its influencing factors[J]. Rock and Mineral Analysis, 2017, 36(3): 282-288. doi: 10.15898/j.cnki.11-2131/td.201606130084

    黄春雷, 魏迎春, 简中华, 等. 浙中典型富硒区土壤硒含量及形态特征[J]. 地球与环境, 2013, 41(2): 155-159. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201302011.htm

    Huang C L, Wei Y C, Jian Z H, et al. Study on selenium contents and combined forms of typical selenium-rich soil in the central part of Zhejiang Province[J]. Earth and Environment, 2013, 41(2): 155-159. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201302011.htm

    周墨, 陈国光, 张明, 等. 赣南地区土壤硒元素地球化学特征及其影响因素研究: 以青塘-梅窖地区为例[J]. 现代地质, 2018, 32(6): 1292-1301. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201806017.htm

    Zhou M, Chen G G, Zhang M, et al. Geochemical characteristics and influencing factors of selenium in soils of south Jiangxi Province: A typical area of Qingtang-Meijiao[J]. Geoscience, 2018, 32(6): 1292-1301. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201806017.htm

    朱建明, 梁小兵, 凌宏文, 等. 环境中硒存在形式的研究现状[J]. 矿物岩石地球化学通报, 2003, 22(1): 75-81. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200301015.htm

    Zhu J M, Liang X B, Ling H W, et al. Advances in studying occurrence modes of selenium in environment[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2003, 22(1): 75-81. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200301015.htm

    Fordyce F M. Selenium deficiency and toxicity in the envir-onment[M]//Selinus O. Essentials of medical geology (Revised Edition). British Geological Survey, 2013.

    董旭, 姜明亮, 汤明. 安徽省金寨县土壤硒分布特征及影响因素研究[J]. 东华理工大学学报(自然科学版), 2021, 44(1): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ202101006.htm

    Dong X, Jiang M L, Tang M. Distribution characteristics and influencing factors of selenium content in soil in Jinzhai County, Anhui Province[J]. Journal of East China University of Technology (Natural Science), 2021, 44(1): 48-53. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ202101006.htm

    杨志忠, 周文龙, 罗勇军, 等. 贵州镇远县耕地土壤中硒的分布特征及控制因素[J]. 现代地质, 2021, 35(2): 434-442. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202102013.htm

    Yang Z Z, Zhou W L, Luo Y J, et al. Distribution of soil selenium of cultivated land and its controlling factors in Zhenyuan of Guizhou Province[J]. Geoscience, 2021, 35(2): 434-442. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202102013.htm

    成晓梦, 吴超, 孙彬彬, 等. 浙江中部典型黑色岩系分布区土壤-作物富硒特征与重金属风险评价[J]. 现代地质, 2021, 35(2): 425-433. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202102012.htm

    Cheng X M, Wu C, Sun B B, et al. Selenium-rich characteristics and risk assessment of heavy metals in soil and crop in a typical black shale area of the central part of Zhejiang Province, China[J]. Geoscience, 2021, 35(2): 425-433. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202102012.htm

    Tullo P D, Pannier F, Thiry Y, et al. Field study of time-dependent selenium partitioning in soils using isotopically enriched stable selenite tracer[J]. Science of the Total Environment, 2016, 562: 280-288. http://www.onacademic.com/detail/journal_1000038952396710_6cda.html

    瞿建国, 徐伯兴, 龚书椿. 上海不同地区土壤中硒的形态分布及其有效性研究[J]. 土壤学报, 1998, 35(3): 398-403. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB199803014.htm

    Qu J G, Xu B X, Gong S C. Study of speciation distribution and availability of selenium in different soils of Shanghai[J]. Acta Pedologica Sinica, 1998, 35(3): 398-403. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB199803014.htm

    Goldberg S. Modeling selenite adsorption envelopes on oxides, clay minerals, and soils using the triple layer model[J]. Soil Science Society of America Journal, 2014, 77: 64-71. http://www.onacademic.com/detail/journal_1000041679656899_8249.html

    Selinus O, Alloway B, Centeno J, et al. Essentials of medical geology: Impacts of the natural environment on public health[M]. Elsevier Academic Press, 2005.

    Coppin F, Chabroullet C, Martin-Garin A. Selenite interactions with some particulate organic and mineral fractions isolated from a natural grassland soil[J]. European Journal of Soil Science, 2009, 60: 369-376. http://europepmc.org/abstract/AGR/IND44204811

    牛雪, 何锦, 庞雅婕, 等. 三江平原西部土壤硒分布特征及其影响因素[J]. 物探与化探, 2021, 45(1): 223-229. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202101027.htm

    Niu X, He J, Pang Y J, et al. Distribution feature of soil selenium in west Sanjiang Plain and its influencing factors[J]. Geophysical and Geochemical Exploration, 2021, 45(1): 223-229. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202101027.htm

    朱建明, 郑宝山, 苏宏灿, 等. 恩施渔塘坝自然硒的发现及其初步研究[J]. 地球化学, 2001, 30(3): 236-241. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200103005.htm

    Zhu J M, Zheng B S, Su H C, et al. New occurrence of native selenium and its preliminary investigation[J]. Geochimica, 2001, 30(3): 236-241. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200103005.htm

    韩文亮, 朱建明, 秦海波, 等. 恩施渔塘坝富硒碳质岩石中硒的形态分析[J]. 矿物学报, 2007, 27(1): 91-97. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200701014.htm

    Han W L, Zhu J M, Qin H B, et al. Selenium speciation in Se-rich rocks at Yutangba[J]. Acta Pedologica Sinica, 2007, 27(1): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200701014.htm

    黄昌勇, 徐建明. 土壤学[M]. 北京: 中国农业出版社, 2010.

    Huang C Y, Xu J M. Pedology[M]. Beijing: China Agriculture Press, 2010.

    余飞, 张风雷, 张永文, 等. 重庆典型农业区土壤硒地球化学特征及影响因素[J]. 物探与化探, 2020, 44(4): 830-838. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202004019.htm

    Yu F, Zhang F L, Zhang Y W, et al. Geochemical characteristics and influential factors of soil selenium in typical agricultural area, Chongqing[J]. Geophysical and Geochemical Exploration, 2020, 44(4): 830-838. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH202004019.htm

  • 期刊类型引用(9)

    1. 付玉蕾,史淼,曹沁元,马世玉. 黑青和田玉宝石矿物学及地球化学特征研究. 岩石矿物学杂志. 2024(03): 630-642 . 百度学术
    2. 廖宗廷,景璀,李平,沈俊逸,金雪萍. 和田玉研究的关键问题. 同济大学学报(自然科学版). 2022(08): 1073-1080+1070 . 百度学术
    3. 张晓晖,冯玉欢,张勇,买托乎提·阿不都瓦衣提. 新疆且末—若羌地区黄绿色和田玉分析测试及特性表征. 岩矿测试. 2022(04): 586-597 . 本站查看
    4. 崔中良,黄怡祯,郭心雨. 闪石玉研究进展的文献计量学分析. 宝石和宝石学杂志(中英文). 2022(05): 155-169 . 百度学术
    5. 闵红,刘倩,张金阳,周海明,严德天,邢彦军,李晨,刘曙. X射线荧光光谱-X射线粉晶衍射-偏光显微镜分析12种产地铜精矿矿物学特征. 岩矿测试. 2021(01): 74-84 . 本站查看
    6. 黄倩心,王时麒,梁国科,杨晓东,吴祥珂. 广西巴马玉的矿物学特征及其成因探讨. 岩石矿物学杂志. 2021(05): 977-990 . 百度学术
    7. 杨凌岳,王雨嫣,王朝文,沈梦颖,殷科. “撒金花黑青玉”的宝石学特征与成因矿物学研究. 宝石和宝石学杂志(中英文). 2020(04): 1-12 . 百度学术
    8. 刘喜锋,贾玉衡,刘琰. 新疆若羌—且末戈壁料软玉的地球化学特征及成因类型研究. 岩矿测试. 2019(03): 316-325 . 本站查看
    9. 郑奋,刘琰,张红清. 辽宁岫岩河磨玉岩石地球化学组成及锆石U-Pb定年研究. 岩矿测试. 2019(04): 438-448 . 本站查看

    其他类型引用(14)

图(5)  /  表(4)
计量
  • 文章访问数:  1169
  • HTML全文浏览量:  427
  • PDF下载量:  60
  • 被引次数: 23
出版历程
  • 收稿日期:  2021-06-07
  • 修回日期:  2021-06-30
  • 录用日期:  2021-08-27
  • 发布日期:  2021-11-27

目录

/

返回文章
返回