Preparation and Certification of a Soil Total Organic Carbon Reference Material
-
摘要: 土壤环境标准样品是土壤生态环境监测质量控制的重要技术工具。目前,土壤中总有机碳环境标准样品仍为中国环境标准样品体系的空缺,特别是配套燃烧氧化-非分散红外法的土壤标准样品一直未曾问世。本文以有机碳含量较高的农用地土壤为原材料,经干燥、研磨、混匀、装瓶、灭菌等加工步骤,制备获得土壤中总有机碳环境标准样品。分层随机抽取10瓶样品进行均匀性检验,经评价统计量F小于临界值F0.05(9,10),瓶间均匀性相对不确定度(ubb)为1.5%,样品均匀性良好。在室温避光保存条件下,对样品进行了18个月的稳定性检验,稳定性相对不确定度(ults)为1.2%,样品具有良好稳定性。由中国11家实验室采用燃烧氧化-非分散红外法和重铬酸钾容量法进行协作定值,通过对检测结果的数理统计分析,样品量值评定结果为(25.2±1.4)mg/g。该标准样品为采用燃烧氧化-非分散红外法参与定值的土壤中总有机碳环境标准样品,可作为土壤中总有机碳测定标准方法配套的实物标准,满足土壤生态环境监测及相关研究需求,且与国外同类样品具有可比性。
-
关键词:
- 土壤 /
- 总有机碳 /
- 环境标准样品 /
- 标准值 /
- 燃烧氧化-非分散红外法
要点(1) 采用燃烧氧化-非分散红外法研制土壤中总有机碳环境标准样品。
(2) 标准样品不确定度水平达到土壤生态环境监测质量控制要求。
(3) 该批标准样品可作为《土壤有机碳的测定燃烧氧化-非分散红外法》配套的实物标准。
(4) 样品量值浓度与国际同类标准样品具有可比性。
HIGHLIGHTS(1) A soil TOC reference material was developed using combustion oxidation-NDIR absorption method.
(2) The uncertainty range met the quality control requirements of soil environmental monitoring.
(3) The reference material supported the standard method "Soil—Determination of Organic Carbon—Combustion Oxidation Nondispersive Infrared Absorption Method "(HJ 695—2014)
(4) The certified value was comparable to that of the overseas TOC reference materials.
Abstract:BACKGROUNDSoil environmental reference materials are important technical tools for the quality control of soil environmental monitoring. However, there is no self-developed environmental matrix reference material with total organic carbon (TOC). In particular, a soil standard sample supporting the combustion oxidation-non-dispersive infrared method has not been developed yet.OBJECTIVESTo develop a soil TOC reference material that can support standard methods for the determination of TOC in soil.METHODSAgricultural land soil with a high organic carbon content was selected as the raw material. The soil TOC reference materials were prepared after drying, grinding, mixing, bottling, and sterilization. Ten bottles of the reference materials were randomly sampled in layers, and their homogeneities were determined using combustion oxidation-non-dispersive infrared (NDIR) absorption method. The data were assessed using a single element analysis of variance. The reference material was stored at room temperature, and its stability was determined for 18 months. The test results were assessed using a linear fitting model. Eleven laboratories were organized as the cooperation to determine the TOC content of the prepared reference material using combustion oxidation-NDIR absorption method and potassium dichromate volumetric method. All measurement data were statistically analyzed to obtain the certified value and uncertainty of the reference material.RESULTSThe soil TOC reference material exhibited good homogeneity and stability. After evaluation, the F value was determined to be less than the critical value of F0.05 (9, 10). Additionally, the relative uncertainty (ubb) of the uniformity between bottles was 1.5%, and the sample exhibited good uniformity. The stability uncertainty was 1.2%, which indicated good stability. The certified value of the soil TOC reference material was determined to be (25.2±1.4)mg/g, using the grand mean of the collaborative determination results from multiple laboratories.CONCLUSIONSA soil TOC reference material was developed using combustion oxidation-NDIR absorption method. This reference material can be used to support the standard determination methods of TOC in soil and meets the requirements of the studies on TOC content in soil. Moreover, it is comparable with similar foreign samples. -
-
表 1 国内外主要土壤标准样品中涉及总有机碳的信息
Table 1 Information of TOC in major soil reference materials at home and abroad
土壤标准样品研制机构 土壤标准样品编号 碳含量范围(mg/g) 土壤标准样品具体类型 总碳(TC) 总有机碳(TOC) 欧盟标准样品和测量研究所 IRMM-443-1~ IRMM-443-7 14.5~108.1 13.1~59.6 欧洲土壤 美国RTC公司 RTC-CCRM090~RTC-CCRM092 - 4.13~5.72 黏土、砂壤土、砂土 RTC-SQC014 - 6.51 国家地质实验测试中心 GBW07974~GBW07977 8.1~56.8 6.9~51.5 土壤
农用地土壤GBW07913~GBW07942 6.2~79.0 3.7~47.3 中国地质科学院地球物理地球化学勘查研究所 GBW07401~GBW07408 5.5~21.1 4.9~18.0 暗棕壤、栗钙土、黄棕壤、红壤等
主要平原土壤
盐碱土、棕漠土、灰钙土、滩涂沉积物等
土壤GBW07423~GBW07430 9.3~19.0 6.2~13.5 GBW07446~GBW07457 10.3~19.4 2.5~11.5 GBW07536~GBW07573 2.8~38.1 1.7~27.5 表 2 土壤中总有机碳测定常用方法的比较
Table 2 Comparison of common methods for determination of TOC in soil
对比项目 燃烧氧化-非分散红外法 重铬酸钾容量法 优点 碳元素氧化完全,稳定性高,测定结果回收率高,样品前处理快捷,污染排放低 灵敏度高,操作简单,仪器设备费用低,使用成本低,更适合分析碱性土壤 缺点 仪器费用昂贵,使用维护费较高,长期使用仪器背景值易升高 存在氧化不完全的情况,易受氯离子、亚铁离子、锰化合物干扰,废液产生量大,不适合用于大量样品的快速测定 相应标准方法 《土壤有机碳的测定燃烧氧化-非分散红外法》 (HJ 695—2014) 《区域地球化学样品分析方法第27部分:有机碳量测定重铬酸钾容量法》(DZ/T 0279.27—2016) 表 3 土壤中总有机碳标准样品的均匀性检验结果
Table 3 Homogeneity assessment results of TOC in soil reference material
样品编号 总有机碳均匀性测定结果(mg/g) RSD(%) 平行测定1 平行测定2 均值 总均值 1 24.4 22.9 23.7 23.2 1.4 2 24.0 22.6 23.3 3 23.2 23.2 23.2 4 24.5 22.6 23.6 5 24.2 23.2 23.7 6 22.5 23.5 23.0 7 23.0 23.2 23.1 8 22.2 23.3 22.8 9 22.9 22.8 22.9 10 23.4 22.9 23.2 表 4 土壤中总有机碳标准样品的稳定性检验结果
Table 4 Stability assessment results of TOC in soil reference material
时间间隔(月) 总有机碳测定结果(mg/g) 时间间隔(月) 总有机碳测定结果(mg/g) 0 23.2 6 23.2 1 23.5 12 23.4 3 23.2 18 24.1 表 5 协作实验室所用分析方法和测定数据
Table 5 Analysis methods and measurement data of the collaborative laboratories
实验室代号 总有机碳分析方法 总有机碳协作测定数据(mg/g) RSD(%) S-1 S-2 S-3 S-4 S-5 S-6 均值 Lab-1 燃烧氧化-非分散红外法 23.7 23.3 23.2 23.6 23.7 23.0 23.4 1.3 Lab-2 燃烧氧化-非分散红外法 23.4 22.8 22.8 23.8 22.9 22.4 23.0 2.2 Lab-3 重铬酸钾容量法 26.7 26.4 26.4 26.3 26.5 26.4 26.5 0.6 Lab-4a 重铬酸钾容量法 25.4 25.6 26.1 26.0 26.0 25.4 25.8 1.3 Lab-4b 燃烧氧化-非分散红外法 25.9 25.9 25.5 25.7 25.7 26.1 25.8 0.9 Lab-5 重铬酸钾容量法 26.3 24.7 25.1 27.8 26.7 27.3 26.3 4.7 Lab-6 重铬酸钾容量法 25.8 26.3 26.5 25.9 26.3 26.0 26.1 1.1 Lab-7 重铬酸钾容量法 25.2 25.3 25.4 25.3 25.2 25.0 25.2 0.6 Lab-8 燃烧氧化-非分散红外法 21.1 21.1 21.5 21.1 21.3 21.3 21.2 0.8 Lab-9 重铬酸钾容量法 27.1 27.1 28.1 28.4 28.2 28.2 27.9 2.2 Lab-10 重铬酸钾容量法 26.1 26.0 25.4 26.3 24.9 26.0 25.8 2.1 Lab-11 燃烧氧化-非分散红外法 24.9 24.8 25.4 25.4 25.1 25.7 25.2 1.4 -
Lefèvre C, Rekik F, Alcantara V. Soil organic carbon: The hidden potential[M]. Food and Agriculture Organization of the United Nations, 2017.
Ramesh T, Bolan N S, Kirkham M B, et al. Soil organic carbon dynamics: Impact of land use changes and management practices: A review[J]. Advances in Agronomy, 2019, 156: 1-107. http://www.sciencedirect.com/science/article/pii/S0065211319300343
Avramidis P, Nikolaou K, Bekiari V. Total organic carbon and total nitrogen in sediments and soils: A comparison of the wet oxidation-titration method with the combustion-infrared method[J]. Agriculture and Agricultural Science Procedia, 2015, 4: 425-430. doi: 10.1016/j.aaspro.2015.03.048
冯锦, 崔东, 孙国军, 等. 新疆土壤有机碳与土壤理化性质的相关性[J]. 草业科学, 2017, 34(4): 692-697. https://www.cnki.com.cn/Article/CJFDTOTAL-CYKX201704004.htm Feng J, Cui D, Sun G J, et al. Soil organic carbon in relation to soil physicochemical properties in Xinjiang[J]. Pratacultural Science, 2017, 34(4): 692-697. https://www.cnki.com.cn/Article/CJFDTOTAL-CYKX201704004.htm
蔡婷, 张枝焕, 王新伟, 等. 有机碳含量对土壤剖面中多环芳烃纵向迁移的影响[J]. 环境科学学报, 2019, 39(3): 880-890. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201903028.htm Cai T, Zhang Z H, Wang X W, et al. Effects of total content of organic carbon (TOC) on the vertical migration of polycyclic aromatic hydrocarbons (PAHs) in soil profiles[J]. Acta Scientiae Circumstantiae, 2019, 39(3): 880-890. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201903028.htm
邱灵佳, 黄国林, 苏玉, 等. 总有机碳测定方法研究进展[J]. 广东化工, 2015, 42(9): 107-108. doi: 10.3969/j.issn.1007-1865.2015.09.050 Qiu L J, Huang G L, Su Y, et al. An overview on current measurement methods of total organic carbon[J]. Guangdong Chemical Industry, 2015, 42(9): 107-108. doi: 10.3969/j.issn.1007-1865.2015.09.050
骆永明, 李广贺, 李发生, 等. 中国土壤环境管理支撑技术体系研究[M]. 北京: 科学出版社, 2015: 70-75. Luo Y M, Li G H, Li F S, et al. Research on supporting technology system of soil environment management in China[M]. Beijing: Science Press, 2015: 70-75.
田洪海, 邢小茹, 宁远英, 等. 我国环境标准样品发展及应用[J]. 中国环境监测, 2019, 35(5): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB201905003.htm Tian H H, Xing X R, Ning Y Y, et al. A review on the development and application of environmental reference materials[J]. Environmental Monitoring in China, 2019, 35(5): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB201905003.htm
李括, 彭敏, 赵传冬, 等. 全国土地质量地球化学调查二十年[J]. 地学前缘, 2019, 26(6): 128-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201906020.htm Li K, Peng M, Zhao C D, et al. Vicennial implementation of geochemical survey of land quality in China[J]. Earth Science Frontiers, 2019, 26(6): 128-158. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201906020.htm
陈宗定, 许春雪, 安子怡, 等. 土壤碳赋存形态及分析方法研究进展[J]. 岩矿测试, 2019, 38(2): 233-244. doi: 10.15898/j.cnki.11-2131/td.201709270148 Chen Z D, Xu C X, An Z Y, et al. Research progress on fraction and analysis methods of soil carbon[J]. Rock and Mineral Analysis, 2019, 38(2): 233-244. doi: 10.15898/j.cnki.11-2131/td.201709270148
夏龙龙, 颜晓元, 蔡祖聪. 我国农田土壤温室气体减排和有机碳固定的研究进展及展望[J]. 农业环境科学学报, 2020, 39(4): 834-841. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH202004021.htm Xia L L, Yan X Y, Cai Z C. Research progress and prospect of greenhouse gas mitigation and soil carbon sequestration in croplands of China[J]. Journal of Agro-Environment Science, 2020, 39(4): 834-841. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH202004021.htm
张秀, 赵永存, 谢恩泽, 等. 土壤有机碳时空变化研究进展与展望[J]. 农业环境科学学报, 2020, 39(4): 673-679. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH202004004.htm Zhang X, Zhao Y C, Xie E Z, et al. Spatio-temporal change of soil organic carbon, progress and prospects[J]. Journal of Agro-Environment Science, 2020, 39(4): 673-679. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH202004004.htm
李雄, 张旭博, 孙楠, 等. 不同土地利用方式对土壤有机碳比例的影响[J]. 植物营养与肥料学报, 2018, 24(6): 1508-1519. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201806013.htm Li X, Zhang X B, Sun N, et al. Impact of land uses on the ratio of soil organic and inorganic carbon[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(6): 1508-1519. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201806013.htm
Zhang H L, Rattan L, Zhao X, et al. Opportunities and challenges of soil carbon sequestration by conservation agriculture in China[J]. Advances in Agronomy, 2014, 124: 1-36. http://www.sciencedirect.com/science/article/pii/B9780128001387000012
蒋腊梅, 杨晓东, 杨建军, 等. 不同管理模式对干旱区草地土壤有机碳氮库的影响及其影响因素探究[J]. 草业学报, 2018, 27(12): 22-33. doi: 10.11686/cyxb2018062 Jiang L M, Yang X D, Yang J J, et al. Effects of different management strategies on soil organic carbon and nitrogen pools in arid areas and their influencing factors[J]. Acta Prataculturae Sinica, 2018, 27(12): 22-33. doi: 10.11686/cyxb2018062
周李磊, 朱华忠, 钟华平, 等. 新疆伊犁地区草地土壤全碳含量空间格局分析[J]. 草业科学, 2016, 33(10): 1963-1974. doi: 10.11829/j.issn.1001-0629.2015-0745 Zhou L L, Zhu H Z, Zhong H P, et al. Spatial analysis of the soil total carbon in Ili, Xinjiang Uygur Autonomous Region, China[J]. Pratacultural Science, 2016, 33(10): 1963-1974. doi: 10.11829/j.issn.1001-0629.2015-0745
李朝英, 郑路. 土壤颗粒粒径及进样量对TOC含量测定精度的影响[J]. 上海农业学报, 2018, 34(5): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLB201805003.htm Li Z Y, Zheng L. Effects of soil particle size and sample size on the determination accuracy of TOC content[J]. Acta Agriculturae Shanghai, 2018, 34(5): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLB201805003.htm
田衎, 杨珺, 孙自杰, 等. 矿区污染场地土壤重金属元素分析标准样品的研制[J]. 岩矿测试, 2017, 36(1): 82-88. doi: 10.15898/j.cnki.11-2131/td.2017.01.012 Tian K, Yang J, Sun Z J, et al. Preparation of soil certified reference materials for heavy metals in contaminated sites[J]. Rock and Mineral Analysis, 2017, 36(1): 82-88. doi: 10.15898/j.cnki.11-2131/td.2017.01.012
生态环境部. 土壤环境监测分析方法[M]. 北京: 中国环境出版集团, 2019: 141-149. Ministry of Ecology and Environment. Soil environment monitoring and analysis method[M]. Beijing: China Environment Publishing Group, 2019: 141-149.
Wang J P, Wang X J, Zhang J. Evaluating loss-on-ignition method for determinations of soil organic and inorganic carbon in arid soils of northwestern China[J]. Pedosphere, 2013, 23(5): 593-599. http://d.wanfangdata.com.cn/Periodical_trq-e201305004.aspx
李国傲, 陈雪, 孙建伶, 等. 土壤有机碳含量测定方法评述及最新研究进展[J]. 江苏农业科学, 2017, 45(5): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201705006.htm Li G A, Chen X, Sun J L, et al. A review and the latest research progress of soil organic carbon content determination methods[J]. Jiangsu Agricultural Sciences, 2017, 45(5): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201705006.htm
吴才武, 夏建新, 段峥嵘. 土壤有机质测定方法述评与展望[J]. 土壤, 2015, 47(3): 453-460. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201503004.htm Wu C W, Xia J X, Duan Z R. Review on detection methods of soil organic matter (SOM)[J]. Soils, 2015, 47(3): 453-460. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201503004.htm
田云飞, 安俊芳, 陶士敏. 重铬酸钾氧化-分光光度法测定土壤有机碳含量的研究[J]. 现代化工, 2020, 40(4): 231-235. https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG202004057.htm Tian Y F, An J F, Tao S M. Determination of organic carbon content in soil by potassium dichromate oxidation-spectrophotometry[J]. Modern Chemical Industry, 2020, 40(4): 231-235. https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG202004057.htm
杨丹, 潘建明. 总有机碳分析技术的研究现状及进展[J]. 浙江师范大学学报(自然科学版), 2008, 31(4): 441-444. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSZ200804021.htm Yang D, Pan J M. Progress and study on analytical approach of total organic carbon[J]. Journal of Zhejiang Normal University (Natural Science Edition), 2008, 31(4): 441-444. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSZ200804021.htm
谢娟, 张心昱, 王秋凤, 等. 燃烧法与化学氧化法测定不同pH土壤有机碳之比较[J]. 土壤通报, 2013, 44(2): 333-337. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201302014.htm Xie J, Zhang X Y, Wang Q F, et al. Comparative determination of soil organic carbon with different pH using combustion method and chemical oxidation method[J]. Chinese Journal of Soil Science, 2013, 44(2): 333-337. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201302014.htm
于艳梅, 刘小粉, 王艳丹, 等. 酸性土壤有机碳两种测定方法的比较[J]. 中国土壤与肥料, 2017(5): 152-156. https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL201705026.htm Yu Y M, Liu X F. Wang Y D, et al. Comparison of two methods for determining soil organic carbon in acid soil[J]. Soil and Fertilizer Sciences in China, 2017(5): 152-156. https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL201705026.htm
唐伟祥, 孟凡乔, 张煜, 等. 不同土壤有机碳测定方法的比较[J]. 土壤, 2018, 50(3): 552-557. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201803016.htm Tang W X, Meng F Q, Zhang Y, et al. Method comparison for determining soil organic carbon[J]. Soils, 2018, 50(3): 552-557. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201803016.htm
何海龙, 君珊, 张学宽. 总有机碳(TOC)分析仪测定土壤中TOC的研究[J]. 分析仪器, 2014(5): 59-61. https://www.cnki.com.cn/Article/CJFDTOTAL-FXYQ201405013.htm He H L, Jun S, Zhang X K. Analysis of total organic carbon in soil by TOC analyzer[J]. Analytical Instrumentation, 2014(5): 59-61. https://www.cnki.com.cn/Article/CJFDTOTAL-FXYQ201405013.htm
李小涵, 王朝辉. 两种测定土壤有机碳方法的比较[J]. 分析仪器, 2009(5): 78-80. https://www.cnki.com.cn/Article/CJFDTOTAL-FXYQ200905024.htm Li X H, Wang Z H. Comparison of two soil organic carbon determination methods[J]. Analytical Instrumentation, 2009(5): 78-80. https://www.cnki.com.cn/Article/CJFDTOTAL-FXYQ200905024.htm
Linsinger T P J, Pauwels J, van der Veen A M H, et al. Homogeneity and stability of reference materials[J]. Accredition and Quality Assurance, 2001, 6(1): 20-25. doi: 10.1007%2Fs007690000261
吴庆标, 王效科, 郭然. 土壤有机碳稳定性及其影响因素[J]. 土壤通报, 2005, 36(5): 743-747. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB200505025.htm Wu Q B, Wang X K, Guo R. Soil organic carbon stability and influencing factors[J]. Chinese Journal of Soil Science, 2005, 36(5): 743-747. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB200505025.htm
田衎, 周裕敏, 邢书才, 等. 土壤类标准样品的稳定性研究方法探讨[J]. 理化检验(化学分册), 2017, 53(2): 201-204. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201702017.htm Tian K, Zhou Y M, Xing S C, et al. Discussion on the stability research methods of soil reference materials[J]. Physical and Chemical Test (Part B: Chemical Analysis), 2017, 53(2): 201-204. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201702017.htm
田衎, 王尧, 房丽萍, 等. 土壤中重金属可提取态(氯化钙法)分析质量控制样品的研制[J]. 中国环境监测, 2019, 35(6): 110-117. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB201906017.htm Tian K, Wang Y, Fang L P, et al. Preparation and certification of quality control sample for CaCl2-extractable heavy metals in agricultural soil[J]. Environmental Monitoring in China, 2019, 35(6): 110-117. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB201906017.htm
田宗平, 彭君, 王干珍, 等. 石煤钒矿成分分析标准物质的研制[J]. 岩矿测试, 2021, 40(1): 111-120. doi: 10.15898/j.cnki.11-2131/td.202001070008 Tian Z P, Peng J, Wang G Z, et al. Preparation of standard materials for composition analysis of stone coal vanadium ore[J]. Rock and Mineral Analysis, 2021, 40(1): 111-120. doi: 10.15898/j.cnki.11-2131/td.202001070008
黄梓宸, 周瑾艳, 黄彦捷, 等. 水中总有机碳溶液标准物质的研制[J]. 食品安全质量检测学报, 2019, 10(11): 3530-3535. https://www.cnki.com.cn/Article/CJFDTOTAL-SPAJ201911053.htm Huang Z C, Zhou J Y, Huang Y J, et al. Development of total organic carbon reference materials in water solution[J]. Journal of Food Safety and Quality, 2019, 10(11): 3530-3535. https://www.cnki.com.cn/Article/CJFDTOTAL-SPAJ201911053.htm
-
期刊类型引用(9)
1. 谭咏诗,韦真茜,肖雁,黄玉林,黎宗鑫,杨舒婷,邹林,杨岚惠,邓羽松. 基于高光谱和多光谱融合的喀斯特地区石灰土有机碳含量反演. 应用生态学报. 2025(01): 197-207 . 百度学术
2. 张倩. 燃烧氧化-缓释-非分散红外吸收法测定土壤中总有机碳(TOC)的研究. 福建分析测试. 2024(02): 40-47 . 百度学术
3. 孟喜悦,卢杰. 全球气候变化下森林土壤碳汇研究进展. 现代农业研究. 2024(04): 58-63 . 百度学术
4. 耶曼,李田义,李小桂,李湘. 高频燃烧-红外吸收光谱法测定土壤和水系沉积物中总有机碳和有机质的含量. 理化检验-化学分册. 2024(05): 449-454 . 百度学术
5. 刘杰,赵志明,阎荣辉,黄子舰. 泥岩岩石热解分析标准物质研制. 岩矿测试. 2023(01): 203-212 . 本站查看
6. 耶曼,宋宏庆,张华,李小桂. 高频燃烧-红外吸收法测定石墨矿中固定碳. 化学分析计量. 2023(03): 66-70 . 百度学术
7. 邹瑞晗,王振华,朱艳,宗睿,陈睿. 非灌溉季节生物炭施用对滴灌棉田土壤团聚体及其碳含量的影响. 土壤通报. 2023(03): 626-635 . 百度学术
8. 聂小军,赵星辉,AMMARA Gill,洪雯雯,张合兵. 基于光谱特征指数与机器学习的矿区土壤煤源碳质量分数反演. 煤炭学报. 2023(07): 2869-2880 . 百度学术
9. 雷利宏. 基于红外光谱分析法的含水土壤总氮含量检测研究. 光源与照明. 2022(07): 71-73 . 百度学术
其他类型引用(1)