• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

土壤硒的存在特征及分析测试技术研究进展

伊芹, 程皝, 尚文郁

伊芹, 程皝, 尚文郁. 土壤硒的存在特征及分析测试技术研究进展[J]. 岩矿测试, 2021, 40(4): 461-475. DOI: 10.15898/j.cnki.11-2131/td.202006230095
引用本文: 伊芹, 程皝, 尚文郁. 土壤硒的存在特征及分析测试技术研究进展[J]. 岩矿测试, 2021, 40(4): 461-475. DOI: 10.15898/j.cnki.11-2131/td.202006230095
YI Qin, CHENG Huang, SHANG Wen-yu. Review on Characteristics of Selenium in Soil and Related Analytical Techniques[J]. Rock and Mineral Analysis, 2021, 40(4): 461-475. DOI: 10.15898/j.cnki.11-2131/td.202006230095
Citation: YI Qin, CHENG Huang, SHANG Wen-yu. Review on Characteristics of Selenium in Soil and Related Analytical Techniques[J]. Rock and Mineral Analysis, 2021, 40(4): 461-475. DOI: 10.15898/j.cnki.11-2131/td.202006230095

土壤硒的存在特征及分析测试技术研究进展

基金项目: 

中国地质调查局地质调查项目(DD20190323);中国地质调查局中国地质科学研究院基本科研业务费项目(CJYYWF20182602)

中国地质调查局地质调查项目 DD20190323

中国地质调查局中国地质科学研究院基本科研业务费项目 CJYYWF20182602

详细信息
    作者简介:

    伊芹, 博士, 助理研究员, 主要从事土壤岩石矿物分析。E-mail: yiyiustb@163.com

  • 中图分类号: S151.93;O613.52

Review on Characteristics of Selenium in Soil and Related Analytical Techniques

  • 摘要: 硒是重要的生命健康微量元素之一,土壤硒的空间异质性是造成各种病害和环境问题的主要原因。全球土壤硒分布不均匀,大部分属于低硒土壤,土壤硒含量平均值为0.4mg/kg,典型高硒地区土壤硒含量为346~2018mg/kg。准确分析土壤硒含量是开展土壤硒研究的基础,土壤样品来源特征和硒存在形式是土壤硒分析测试方法的选择依据,合理使用标准物质能够有效监控分析质量。本文阐述了土壤硒的主要来源、分布特征和存在形式,总结了近年来土壤硒形态提取方法、硒含量分析技术研究进展和土壤硒标准物质研制现状。指出当前对硒迁移转化机理研究尚不完善,分步提取态的提出为研究土壤硒形态分布和迁移转化提供了新途径,但因未能完全解决提取专一性和提取过程中硒形态转化的问题,该方法仍在进一步发展。光谱技术尤其是原子荧光光谱是中国分析土壤硒含量的主流方法;高精密度、低检出限的质谱技术,以及具备原位形态分析能力的同步辐射X射线技术,在超痕量分析和形态分析领域具有显著优势。针对当前具有硒含量定值的土壤标准物质能覆盖的土壤基体和硒含量的范围有限,本文提出有待加强研制具备硒梯度含量变化和硒形态含量定值的系列标准物质,以满足分析质量监控需求。
    要点

    (1) 土壤硒含量通常较低,且动态变化。

    (2) 高灵敏度、低检出限分析技术是土壤硒分析领域硬性需求。

    (3) 迫切需要研制能够涵盖更多基体类型和具有硒形态含量定值的标准物质。

    HIGHLIGHTS

    (1) The selenium content in most soils in the world is ultra-low and varies with the environment.

    (2) Methods with high sensitivity and a low detection limit are a basic requirement.

    (3) Reference materials with gradient content and certified speciation content of selenium are urgently needed.

  • 石英岩质玉是显晶质石英质玉石的一种,粒度一般在0.01~0.6mm,其主要矿物为石英,含有少量的云母、赤铁矿、针铁矿等副矿物。不同的石英岩质玉具有不同的结构,大部分石英岩质玉质地细腻,少数质地略显粗糙。纯净的石英岩质玉为无色,当含有其他有色矿物时可呈现不同颜色。目前在世界范围内,西班牙、印度、俄罗斯、智利、中国等国均有石英岩质玉产出[1-6]

    石英岩质玉产状及成因较为多样,一般是以沉积石英砂岩为原岩经接触变质作用或区域变质作用形成的。其中接触变质作用是高温岩体入侵时产生的热源使周围岩体受到高温烘烤,发生变质结晶和重结晶从而成矿。而区域变质作用的热源则来源于强烈的岩浆活动和频繁的构造运动,在热源的激发下受变质作用影响的含水岩浆岩和基底原岩,释放出大量的水形成热液,这些含矿溶液受构造应力影响沿着韧性剪切带运移,由于温压条件的变化,热液中的SiO2过饱和析出从而逐渐富集成矿[7-12]。相比中国,国外学者的研究多着重于岩浆成因的隐晶质石英质玉[13-14],而显晶质的石英岩质玉则鲜被提及。湖南临武地区作为近年来石英岩质玉的新产地之一,前人对该矿区开展了一些研究,如李伟良等[15]、袁顺达等[16]、徐质彬等[17]通过对湖南香花岭地区的地质背景以及矿区产状的勘查与研究,对该地区成矿构造运动作了简要阐述,且对该地区石英岩质玉的成矿规律作了简单探讨。指出该地区石英岩质玉的分布与铁锂云母二长花岗岩体密切相关,矿体呈层状产出,围岩常发育硅化、绢云母化、高岭土化等蚀变现象,随矿体延伸可见部分黄铁矿、磁黄铁矿、毒砂等金属硫化物矿化[15-17]

    目前对于该地区石英岩质玉的研究主要集中于其产出的地质环境及矿区概述,而对于其矿物组成及成因探讨有待补充,具有很大的研究空间。本文通过常规宝石学测试、红外光谱测试、偏反光显微镜下观察、X射线粉晶衍射(XRD)、X射线荧光光谱(XRF)、电感耦合等离子体质谱(ICP-MS)等手段对样品进行测试,对其矿物组成进行系统分析,并讨论其成因,研究成果拟为该玉种进入市场及科学鉴定提供理论支持。

    湖南省彬州市临武县北部香花岭地区通天山附近,距临武县城区约20km,海拔近1600m,该地区三面环山,褶皱地质构造发育,地质环境较复杂为成矿提供了有利条件。研究区主要出露于寒武纪地层纪塔山群中[15-16],大地构造上位于华南新元古代—早古生代造山带中段北部,位于东北向郴(州)—临(武)深大断裂带与南北向断裂带交汇部位[17](图 1)。区域构造经历了地槽阶段、地台阶段、大陆边缘活动带三个构造发展阶段,构造运动较为复杂,岩浆活动频繁;印支期形成了以南北向为主的晚古生代沉积盖层褶皱带,燕山期进一步形成了北东向第二沉积盖层断陷盆地及大型断裂,频繁的地质活动形成研究区内三重构造叠加的构造形态。区内岩浆活动具有多期次、多阶段活动的特点,以燕山期活动最为强烈[15-17],这也为热液矿床的形成提供了条件。

    图  1  湖南省临武县香花岭地区地质略图(图片来源:袁顺达等[16])
    Figure  1.  Geological sketch of Xianghualing District, Linwu County of Hunan Province (Image source: Yuan S D, et al [16])

    选取15件湖南临武地区黑色石英岩质玉样品进行测试,样品多为大小不一的原石,经后期切割抛磨后进行测试。样品颜色均为灰色-黑色,中-细粒粒状结构,结构较细腻,抛光面均呈现玻璃-沥青光泽,不透明;部分样品可见白色针状、点状矿物,黄色、白色斑晶;个别样品可见绿色围岩,局部位置有黄色铁质浸染,表面有白色碳酸盐矿物等。本文根据样品颜色深浅程度将其分为三组,其中第一组样品(编号:LS-1-1~LS-1-4)普遍为黑色,共4件;第二组样品(编号:LS-2-1~LS-2-5)为灰黑色,共5件;第三组样品(编号:LS-3-1~LS-3-5)为灰色,共5件。如图 2所示。

    图  2  测试样品照片
    Figure  2.  Photos of experimental samples

    对样品的常规宝石学特征进行研究,采用折射仪、紫外荧光灯、硬度笔分别对样品的折射率、发光性、硬度进行测试。发光性测试时,为排除样品对紫外光的反射,每件样品均在不同方向进行三次测试;利用宝石显微镜对样品进行放大观察;密度使用净水称重法进行测量,并依照阿基米德定律将结果进行计算,排除较大异常数据后,每件样品均取三次测试结果的平均值。

    利用红外KBr压片透射法测定宝石显微镜下观察到的绿色围岩矿物种属,并为后期矿物成分分析提供帮助。实验采用美国ThermoFisher公司IS5傅里叶变换红外光谱仪进行测试,波长范围为400~4000cm-1,扫描次数为32次,分辨率为4cm-1

    对样品的矿物组成、结构等物相特征进行初步研究,并为后期测试提供有力依据。将样品制成光学薄片后,采用德国Leica DW27009型偏光镜进行薄片镜下观察。

    对样品的物相进行研究,并进行物相半定量分析,结合偏光镜下特征为矿物成因的探讨提供有力证据。实验采用日本理学Smart Lab Rigaku仪器,铜靶(Cu)测试,发射、散射狭缝均为1°,接收狭缝0.3mm,工作电压48kV,电流1000mA,扫描速度6°(20)min,扫描范围2.6°~70°,将所得衍射结果利用Jade 9进行Rietveld全谱拟合后利用PDF 2016对其物相进行比对分析。

    对样品的主量元素含量进行分析研究,并为其原岩类型探讨提供依据。实验采用日本岛津1800型X射线荧光光谱仪对样品主量元素进行分析。

    对样品的微量元素、稀土元素地球化学特征进行分析研究,并为其成矿环境探讨提供依据。实验采用iCAP Q电感耦合等离子体质谱仪(美国ThermoFisher公司)进行分析。

    常规宝石学测试结果表明, 该地区石英岩质玉的折射率均分布在1.53~1.54之间,符合国家标准《珠宝玉石鉴定》中石英岩质玉的折射率标准。紫外荧光测试表明,样品在长波364nm、短波253nm均无发光现象。硬度测试观测到样品硬度较低,大多为5.5,低于《珠宝玉石鉴定》中石英岩质玉的硬度,是由于其内部含有大量有机质所致。部分样品可见白、绿色围岩,硬度偏低,放大可见其结晶程度较差,经红外透射法检测,绿色围岩为绿泥石。

    静水称重测试显示该地区石英岩质玉相对密度主要分布在2.65~2.82之间。其中第一组样品除LS-1-1外,由于内部含有大量铁质矿物密度较大为2.816外,其余4件样品相对密度较小,分布于2.65~2.70之间;第二组和第三组样品的相对密度相对较大,大多分布在2.71~2.82之间,结合偏光镜下观察可知,其密度范围变化是由于其变质程度所致。

    通过红外光谱对样品绿色围岩部分进行了谱学测试,结果表明样品绿色围岩部分除明显的石英特征吸收峰外,还出现了740cm-1、895cm-1绿泥石特征吸收峰,以及2511cm-1处绿泥石OH与阳离子相连形成氢键所致伸缩振动特征吸收[18],由此可证,该样品绿色围岩部分为绿泥石。

    通过偏光显微镜对湖南临武黑色石英岩质玉部分具有典型、代表性特征的样品(LS-1-1、LS-1-2、LS-1-4,LS-2-1、LS-2-2、LS-2-3、LS-2-4,LS-3-1、LS-3-2、LS-3-5)进行切片观察,主要观察样品的矿物组成及结构特征。

    该地区黑色石英岩质玉的主要矿物组分为石英,次要矿物有白云母、金云母、长石、红柱石(空晶石)、铁铝榴石、黄铁矿等[19],部分位置可见极微量的金红石、钛铁矿。部分薄片显示出典型的变质作用结构特征,铁铝榴石呈变斑晶状分布于由金云母、黑云母混合形成的基质中,基质中出现少部分片状白云母无方向性分布,形成斑状片状显微粒状变晶结构(图 3a);红柱石(空晶石)晶体为变斑晶无方向性分布于碳质基质中,呈典型斑状变晶结构(图 3b),以及大量石英碎屑斑团分布于由碳质、云母组成的基质中,组成斑点状构造(图 3c)[20]

    图  3  湖南临武地区黑色石英岩质玉在偏光镜下特征
    Qtz—石英;Phl—金云母;Alm—石榴石;Chs—红柱石(空晶石);Ms—白云母;Gr—石墨;Py—黄铁矿。a、c、d—正交偏光2.5X;b、e—正交偏光10X;f—反射50X。
    Figure  3.  Polariscope features of the black quartzite jade in Linwu District, Hunan Province

    部分样品薄片呈现沉积岩结构特性,放大观察可见白云母、石英、长石等矿物出现由变质作用所致的变形现象[21],以及少量的红柱石等变质矿物。垂直层理方向观察,大量碳质定向分布形成层理,呈现细粒片状、粒状变晶结构,板状、千枚状构造(图 3d),平行层理方向观察,主要由大量石英、长石、白云母以及黏土矿物组成,具变余泥质结构。此外,薄片中还观察到大量的片状、鳞片状石墨充填于矿物间隙中,单偏光下不透光(图 3e)[20]。各别样品有少量黄铁矿呈变斑晶出现,形成斑状变晶结构,黄铁矿晶型较完整(图 3f);基质中放大可见石英、云母、长石等均呈现他形片状、粒状,其中白云母变形作用最为明显,多呈现出柱状、针状,为泥质岩浅变质作用特点[18-19]

    对其中6件样品进行X射线粉晶衍射测试,测试结果见表 1,样品主要矿物为石英,次要矿物为云母、长石及少量的红柱石、石榴石、黄铁矿等。样品的石英含量均在41.2%~47.5%之间,云母含量低于其他泥质变质岩,为15.7%~22.4%,长石相对较少,黏土矿物以绿泥石和高岭石为主,各别样品高岭石衍射峰值面积较小,故分析时将所有黏土矿物进行了统一量化。此外,利用Jade 9进行物相检索时发现了极弱的白云石衍射峰,由于衍射强度较低且衍射峰较少,半定量时未作考虑。据前人研究,区域变质岩中的常见特征矿物有石英、硬绿泥石、红柱石、石榴子石、十字石等,且常见片状、鳞片状或粒状变晶结构以及各种变余结构,石榴子石等矿物呈变斑晶产出时,可见斑状变晶结构。综合X射线粉晶衍射半定量分析结果与薄片镜下观察特征,可知样品的矿物组分含量和结构构造特征基本符合区域变质岩特征,可初步判断该地区黑色石英岩质玉属于区域变质岩[20-22]

    表  1  湖南临武地区黑色石英岩质玉的矿物相半定量分析结果
    Table  1.  Semi-quantitative analysis of mineral phases of the black quartzite jade in Linwu District, Hunan Province
    样品编号 矿物含量(%)
    石英 云母 长石 红柱石 石榴石 黄铁矿 钛铁矿 磷灰石 黏土矿物
    LS-1-1 47.1 22.4 9.8 2.2 3.8 2.6 1.1 0.9 10.1
    LS-1-2 41.2 15.7 12.2 7.1 2.7 1.1 2.0 1.4 16.6
    LS-1-4 43.2 20.3 15.3 1.9 / 2.8 1.3 2.0 13.2
    LS-2-3 43.5 17.4 9.8 4.6 6.3 1.2 3.5 2.2 10.5
    LS-3-1 45.6 18.4 16.1 1.0 1.1 2.1 1.8 1.5 12.4
    LS-3-2 47.5 20.3 8.2 5.3 1.1 2.3 1.3 0.5 13.5
    平均值 44.7 19.1 11.9 3.7 3.0 2.0 1.8 1.4 12.7
    下载: 导出CSV 
    | 显示表格

    样品X射线荧光光谱仪检测结果见表 2。结果表明,该地区石英岩质玉的主要成分为SiO2(59.49%~70.45%),以及少量的Al2O3(14.90~24.68%),Fe2O3相对较少(4.02%~7.19%),此外含有少量的K2O(2.38%~3.10%)、CaO(0.39%~1.33%)、TiO2(0.58%~1.00%)、Na2O(0.32%~0.91%)、MgO(约0.56%~0.79%)、MnO(0.14%~0.17%)、Cr2O3(0.01%)。

    表  2  湖南临武地区黑色石英岩质玉的主量元素测试结果及变质岩原岩性质判别函数(DF值)计算结果
    Table  2.  Analytical results of major elements and DF values of the black quartzite jade in Linwu District, Hunan Province
    样品编号 含量(%) DF值
    SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO CaO Na2O K2O 总量
    LS-1-1 70.45 0.58 14.90 0.01 4.02 0.60 0.17 1.33 0.91 2.38 95.35 -2.82
    LS-1-2 59.49 0.86 24.68 0.01 7.19 0.56 0.14 0.39 0.32 3.10 96.74 -1.95
    LS-1-3 65.47 1.00 22.97 0.01 4.89 0.79 0.16 0.49 0.60 2.67 99.05 -3.07
    下载: 导出CSV 
    | 显示表格

    对三个有典型代表性特征的样品(LS-1-1、LS-2-4、LS-3-1)采用电感耦合等离子体质谱法进行了微量元素测试(表 3),将测试结果与原始地幔数据进行标准化处理后进行投图(图 4a)。可见大离子亲石元素(Sr、Ba)轻微亏损,U较为富集,三个样品的富集亏损程度较为相似。除此之外,三个样品均显示出较强烈的Ti元素亏损,平均值仅为1.227μg/g;Zr、Hf富集程度在三个样品中有轻微差异。

    表  3  湖南临武地区黑色石英岩质玉的地球化学特征
    Table  3.  Geochemical characteristics of the black quartzite jades in Linwu District, Hunan Province
    微量元素 微量元素含量测定值(μg/g)
    LS-1-1 LS-2-4 LS-3-1
    Rb 122 170 147
    Ba 306 485 346
    Th 15.7 18.6 21.6
    U 5.41 5.47 7.33
    Ta 1.92 2.05 2.21
    Nb 23.6 20.8 21.4
    La 42.4 46.7 52.0
    Ce 82.0 97.1 102
    Sr 150 96.4 82.8
    Nd 37.1 39.0 43.4
    Zr 119 98.0 291
    Hf 3.16 2.63 7.91
    Sm 6.96 7.18 8.22
    Ti 1.37 1.18 1.13
    Y 22.8 18.0 32.9
    Yb 2.88 2.22 4.51
    Lu 0.50 0.38 0.75
    稀土元素 稀土元素含量测定值(μg/g)及相关参数
    LS-1-1 LS-2-4 LS-3-1
    La 42.4 46.7 52.0
    Ce 82.0 97.1 102
    Pr 9.34 9.10 10.3
    Nd 37.1 39.0 43.4
    Sm 6.96 7.18 8.22
    Eu 1.64 1.41 1.11
    Gd 5.93 5.76 6.60
    Tb 0.63 0.79 1.02
    Dy 5.05 3.96 6.20
    Ho 0.93 0.70 1.27
    Er 2.71 2.10 3.96
    Tm 0.43 0.33 0.68
    Yb 2.88 2.22 4.51
    Lu 0.50 0.38 0.75
    Y 22.8 18.0 32.9
    ΣREE 198 216 242
    LREE 179 200 217
    HREE 19.0 16.2 25.0
    LREE/HREE 9.41 12.4 8.69
    LaN/YbN 10.6 15.1 8.26
    δEu 0.76 0.65 0.44
    δCe 0.97 1.08 1.02
    下载: 导出CSV 
    | 显示表格
    图  4  样品的(a)微量元素原始地幔标准化蛛网图和(b)稀有元素标准化分布模型图
    Figure  4.  Arachnoid map of (a) the primary mantle standardization of trace elements and (b)standardized distribution model of rare elements of samples in Linwu District, Hunan Province

    利用球粒陨石元素丰度对样品的稀土元素测试结果(表 3)进行标准化处理(图 4b),LREE相对HREE富集,La相对Yb富集。样品稀土元素蛛网图模式曲线呈现W型右缓倾,总体呈现出Eu负异常,总体观察除LS-1-1呈现Tb负异常外,三个样品模式曲线呈现特征基本相同。

    根据X射线荧光光谱测试结果可知,样品中SiO2含量均在53.5%以上。根据变质岩变质岩的函数式——DF判别式进行变质岩原岩性质判别:

    DF=10.44-0.21SiO2-0.32Fe2O3-0.98MgO+0.55CaO+1.46Na2O+0.54K2O[23]

    研究表明当DF>0时样品为正变质岩,原岩为岩浆岩;当DF < 0时则为副变质岩,原岩为沉积岩[23-24]。计算结果表明该地区黑色石英岩质玉的DF < 0(表 2),可知研究区样品为副变质岩,原岩为沉积岩。

    前人研究表明,岩石中的Al2O3/TiO2比值对于原岩性质判定具有指示性作用,当该比值小于14时物源可能为铁镁质沉积物,当比值介于19~29时物源则可能为长英质岩石沉积物[25-26]。计算结果表明三个样品的Al2O3/TiO2比值分别为25.69、28.70、22.97,均在长英质岩石沉积物范围之内。此外,样品薄片观察可见大量变余泥质结构、千枚状构造,均为泥岩浅变质常见结构构造类型,且样品含有一定量的红柱石、铁铝榴石等变质矿物[20],均可证明样品原岩为富铝的泥质、泥沙质沉积岩。综上所述,样品物质来源主要为沉积来源,属富铝泥质沉积岩系列,原岩为富铝的泥质、泥砂质以石英、长石为主要组成矿物的沉积岩。

    研究区在区域构造上属于燕山构造带[15],变质作用与区域构造关系密切,前人研究表明,沉积岩的Al2O3/(Al2O3+Fe2O3)比值对岩石生成的构造环境有指示性作用[27-28]。该比值为0.1~0.4的沉积岩构造环境多为洋脊海岭环境;该比值为0.4~0.7的沉积岩构造环境多为远洋深海环境;该比值为0.7~0.9的沉积岩构造环境多为大陆边缘环境[28-29]。经计算,本研究样品该比值分别为0.79、0.77、0.82,均在大陆边缘环境范围。另外,区域变质岩的成矿条件主要分为两种:一种是随着温度升高,原岩中的矿物经过脱水、再结晶作用成矿;另一种则是热液交代[30-32],结合偏光镜下观察结果,样品中石英、云母等矿物多呈他形粒状、片状,符合热液交代变质作用特征,可证样品成矿方式属于后者[31-34]

    本文利用偏反光显微镜观察、X射线粉晶衍射、X射线荧光光谱、电感耦合等离子体质谱法等技术手段对湖南临武地区黑色石英岩质玉矿物组成进行系统分析,并对其成因作了探讨。结果表明,该地区矿物组成较为复杂,除主要矿物石英外,还有较多的金云母、白云母、长石等次要矿物,以及少量的铁铝榴石、红柱石、黄铁矿、钛铁矿、磷灰石、黏土矿物、有机碳等。部分样品可见较明显的区域变质岩结构特征及完整的变斑晶矿物,同时存在沉积岩结构特征,放大后可见矿物变形,为典型的泥岩浅变质证据。依据主量和微量元素分析结果并结合前人研究,可证样品为副变质岩系列的区域变质岩,原岩主要为富铝的泥质、砂质且富含石英、长石的沉积岩,经过热液交代型区域变质作用后富集成矿,构造环境主要为大陆边缘。

    本研究明确了该地区石英岩质玉的宝石学特征、矿物组成,初步探讨其矿物成因,为该产地石英岩质玉的科学鉴定及进入市场提供了理论支持。石英岩质玉的产地较多,不同产地石英岩质玉在矿物组成及成矿特征上会有差异,今后可进一步对其他产地的石英岩质玉进行系统性分析研究,完善石英岩质玉的商业规范。

    致谢: 感谢国家标准物质共享平台工作人员在国内外标准物质查询方面给予的指导和帮助。
  • 图  1   自然界硒循环

    Figure  1.   Schematic diagram of the global selenium cycle and transportation

    表  1   土壤中部分含硒化合物及其存在环境

    Table  1   Part of selenium forms in soil and their existing environment

    土壤中部分硒物种 各形态硒的主要性质及其存在环境特征
    无机硒 元素态硒(Se0) 不可溶,元素态硒在土壤中含量甚微,一般不参与化学反应,不能为植物所吸收,但在适宜条件下,可通过水解、氧化剂以及微生物直接氧化为亚硒酸盐和硒酸盐[5]
    负二价硒化合物(Se2-,HSe-,H2Se) 除碱金属的硒化物外,大部分硒化物不可溶,不能被植物吸收利用。多为半干旱地区含未经强烈风化的富硫化合物和含黄铁矿土壤中硒的主要存在形式。排水不良的土壤更容易积累不溶性硒化物[35]
    四价硒化合物(SeO2,SeO32-,HSeO3-,H2SeO3) 四价硒主要是以二氧化硒和亚硒酸盐两种形式存在。其中,二氧化硒是一种较稳定的氧化物,主要来自于化石燃料的燃烧,其在大气中流动性很强[35],可以固体颗粒形式存在,也可溶于水,并能够与水发生反应生成亚硒酸。亚硒酸盐既是土壤中硒的主要存在形式,也是可被植物吸收的主要无机硒形态,广泛存在于温带湿润地区土壤中;在酸性或中性且排水良好的土壤中,可通过配体交换反应在土壤表面形成内界表面配合物,很容易被氧化物和黏土矿物等吸附[34]
    六价硒化合物(SeO42-,HSeO4-,H2SeO4) 六价是硒的最高价态,相应化合物易被植物吸收,可溶性高。六价硒在土壤中主要以硒酸和硒酸盐的形式稳定存在,很难被土壤吸附,是土壤可溶性硒的主要组成部分,是植物可利用硒的主要来源[36]。在碱性和氧化良好的土壤中,六价硒占主导地位[37]
    有机硒 富里酸硒、胡敏酸硒、多肽硒、二甲基硒醚、二甲基二硒醚、硫代硒醚、二硫代硒醚、硒代胱氨酸、硒代半胱氨酸、甲基硒代半胱氨酸、γ-谷氨酸硒甲基硒代半胱氨酸、硒代乙硫氨酸、硒代蛋氨酸 土壤中有机硒化合物主要来源于动植物残体腐解和微生物作用。通常以负二价形式存在,是植物可利用硒的另一种存在形式,其成分复杂,种类繁多[15, 35, 38]
    下载: 导出CSV

    表  2   适用于土壤硒形态分析的分步提取方案

    Table  2   Sequential extraction schemes suitable for soil selenium speciation analysis

    硒元素形态 浸提剂
    Shaheen等[44] Tessier等[42] 王亚平等[45] Fan等[46] Qin等[47] 唐沫岚等[48] Wang等[49] Favorito等[50]
    水溶态 - -
    弱酸提取态(可交换态) - 1mol/L氯化镁(pH=7) 0.11mol/L乙酸 0.1mol/L磷酸二氢钾-磷酸氢二钾(pH=7) 0.1mol/L磷酸二氢钾-磷酸氢二钾 0.1mol/L磷酸二氢钾-磷酸氢二钾 0.1mol/L磷酸二氢钾-磷酸氢二钾(pH=7) 磷酸提取态0.01mol/L磷酸二氢钾-磷酸氢二钾
    弱酸提取态(碳酸盐结合态) 0.1mol/L乙酸 1mol/L乙酸钠(pH=5) 0.11mol/L乙酸 0.1mol/L磷酸二氢钾-磷酸氢二钾(pH=7) - - 0.1mol/L磷酸二氢钾-磷酸氢二钾(pH=7) 1mol/L乙酸胺(pH=5)
    有机结合态(可还原态) 0.50mol/L盐酸羟铵 0.04mol/L盐酸羟铵+25%乙酸 0.50mol/L盐酸羟铵 0.1mol/L氢氧化钠 0.1mol/L氢氧化钠 0.1mol/L氢氧化钠 富里酸结合态:0.1mol/L氢氧化钠90℃水浴,盐酸酸化至pH=1。腐植酸结合态:0.1mol/L氢氧化钠 0.1mol/L过硫酸钾(先提取晶形铁铝氧化物结合态,再提取有机结合态)
    铁锰氧化物结合态(可氧化态) 双氧水(pH 2~3)-1.0mol/L乙酸铵 0.02mol/L硝酸+30%双氧水 双氧水(pH 2~3)-1.0mol/L乙酸铵 - - - - 无定形铁铝氧化物结合态:0.2 mol/L草酸铵+ 草酸。晶形铁铝氧化物结合态:0.04mol/L盐酸羟铵+25%乙酸
    酸溶态 - - - - - 3mol/L盐酸 - -
    乙酸提取态 - - - 15%乙酸 15%乙酸 - - -
    元素态 - - - 1mol/L亚硫酸钠(pH=7) 1mol/L亚硫酸钠(pH=7,先提取元素态,再提取乙酸提取态) - - -
    硫化物/硒化物结合态 - - - - 0.5mol/L氯化铬+6mol/L盐酸 - - -
    残渣态 王水 盐酸-氢氟酸-高氯酸 盐酸-硝酸-氢氟酸-高氯酸 硝酸-高氯酸 硝酸-氢氟酸 硝酸-氢氟酸-高氯酸 硝酸-高氯酸 硝酸
    注:“-”表示该方法未涉及此形态。
    下载: 导出CSV

    表  3   原子光谱技术分析土壤硒含量应用实例

    Table  3   Application examples of soil selenium content analyzed by atomic spectroscopy

    样品处理方法和硒含量分析测试技术 检出限 硒含量线性范围 RSD (%) 回收率(%)
    硝酸-盐酸微波消解,ET-AAS测定[54] - - 1.2~9.6 约100.2
    王水加热消解,HG-AAS测定[55] 0.10~0.62 mg/g - 1.4~6.6 -
    超声辅助碱性提取,HG-AAS测定[56] (仅分析四价硒) 6μg/L 20~100 μg/L - -
    硝酸提取,HG-AAS测定[57] - - - 65.0
    硝酸-氢氟酸微波消解,HG-AAS测定[58] 0.02 μg/L 0.08~16 μg/L <3 94.9~99.5
    直接进样,高分辨连续光源HG-AAS测定[59] 30 ng/g - 3~10 -
    GF-AAS测定[60] - - - -
    王水-氢氟酸-硼酸- 程序控制石墨消解,HG-AFS测定[61] - - 2.1~9.3 79.9~108.5
    微波消解,HG-AFS测定[62] 0.0097 mg/kg 0~20 μg/L 2.6~4.2 93.6~95.0
    悬浮液进样,HG-AFS测定[63] 0.06 μg/L 0~50 μg/L 3.08~5.54 94.6~107.2
    硝酸-盐酸-高氯酸消解,HG-AFS测定[11] - - - -
    硝酸-盐酸消解,HG-AFS测定[4] 0.002 μg/g - 1.8~4.4 -
    下载: 导出CSV

    表  4   质谱分析土壤硒常见同质异位素干扰

    Table  4   Isobaric interference in the determination of selenium in soil by ICP-MS

    质荷比 丰度(%) 同质异位素 氩基干扰离子 多原子离子 双电荷
    74Se+ 0.89 74Ge+ 36Ar38Ar+40Ar34S+ 37Cl2+58Fe16O+58Ni16O+39K35Cl+42Ca16O2+ -
    76Se+ 9.36 76Ge+ 40Ar36Ar+40Ar36S+40Ar35Cl1H+38Ar2+ 60Ni16O+42Ca16O18O+75As1H+ -
    77Se+ 7.63 - 38Ar21H+40Ar37Cl+39K38Ar+36Ar40Ar1H+ 60Ni16O1H+60Ni17O+76Ge1H+76Se1H+60Ni16O1H+42Ca35Cl+ 154Sm++
    78Se+ 23.78 78Kr+ 40Ar38Ar+40Ar37Cl1H+40Ar36Ar1H2+38Ar40Ca+ 44Ca16O18O+77Se1H+62Ni16O+41K37Cl+ 156Gd++
    80Se+ 49.61 80Kr+ 40Ar40Ca+40Ar38Ar1H2+40Ar40Ar+40Ar40K+ 44Ca18O2+64Ni16O+64Zn16O+48Ca16O232S16O3+79Br1H+ 160Gd++160Dy++
    82Se+ 8.73 82Kr+ 40Ar21H2+40Ar42Ca+34S16O3+ 81Br1H+66Zn16O+68Zn14N+34S16O3+65Cu16O1H+81Br1H+ 164Dy++
    80Se16O+ - 96Ru+96Zr+96Mo+56Fe40Ar+ - 95Mo1H+ 192Os++
    下载: 导出CSV

    表  5   具备硒含量定值的国际土壤标准物质

    Table  5   Standard reference materials of soil with certified value of seleniumin developed by foreign nations

    标准物质编号 研制机构 样品类型 硒含量(mg/kg) 硒含量分析方法
    BCR-320R IRMM 河道沉积物 0.96±0.18 -
    BCR-667 IRMM 河口湾沉积物 1.59±0.08 -
    ERM-CC135a LGC 被污染砖厂土壤 0.9±0.3
    LGC6145 LGC 被污染黏土 可提取硒含量1.81±0.13 CRC-ICP-MS
    LGC6187 LGC 河底沉积物 可提取硒含量1.2±0.2 -
    NIST-SRM-2706 NIST 新泽西土壤 0.3 INAA
    NIST-SRM-2709a NIST 圣华金土壤 1.5 CCT-ICP-MS
    NIST-SRM-2710a NIST 蒙大拿土壤Ⅰ 1 CCT-ICP-MS
    NIST-SRM-2711a NIST 蒙大拿土壤Ⅱ 2 CCT-ICP-MS
    NIST-SRM-1646a NIST 河口湾沉积物 0.193±0.028 RNAA,HYDR,ICP-MS
    NIST-SRM-2586 NIST 铅污染地区土壤 0.6 HF-AAS
    JSAC0461 JSAC 褐色森林土 0.44 AFS,HG-AAS,HG-ICP-MS,ICP-MS
    JSAC0462 JSAC 褐色森林土 71.6±2.1 AFS,HG-AAS,HG-ICP-MS,ICP-MS
    JSAC0463 JSAC 褐色森林土 141.5±3.6 AFS,HG-AAS,HG-ICP-MS,ICP-MS
    JSAC0464 JSAC 褐色森林土 291.9±5.8 AFS,HG-AAS,HG-ICP-MS,ICP-MS
    JSAC0465 JSAC 褐色森林土 587±13 AFS,HG-AAS,HG-ICP-MS,ICP-MS
    JSAC0466 JSAC 褐色森林土 1175±26 AFS,HG-AAS,HG-ICP-MS,ICP-MS
    注:IRMM—标准物质和测量协会;LGC—英国政府化学实验室;NIST—美国国家标准与技术研究所;JSAC—日本分析化学会。INAA—仪器中子活化分析;RNAA—放射中子活化分析;HYDR—氢化物发生-原子吸收光谱法。“-”表示标准物质证书中未明确说明硒分析方法。
    下载: 导出CSV
  • Banning H, Stelling M, Konig S, et al. Preparation and purification of organic samples for selenium isotope studies[J]. PLoS ONE, 2018, 13(3): 1-19. http://europepmc.org/abstract/MED/29509798

    Ali J, Tuzen M, Feng X, et al. Determination of trace levels of selenium in natural water, agriculture soil and food samples by vortex assisted liquid-liquid microextraction method: Multivariate techniques[J]. Food Chemistry, 2021, 344: 1-7. http://www.sciencedirect.com/science/article/pii/S0308814620325681

    Araujo A M, Lessa J H D L, Lima F R D D, et al. Adsorption of selenite in tropical soils as affected by soil management, ionic strength, and soil properties[J]. Journal of Soil Science and Plant Nutrition, 2020, 20(1): 139-148. doi: 10.1007/s42729-019-00107-x

    Mansur E T, Barnes S-J, Savard D, et al. Determination of Te, As, Bi, Sb and Se (TABS) in geological reference materials and GeoPT proficiency test materials by hydride generation-atomic fluorescence spectrometry (HF-AFS)[J]. Geostandards and Geoanalytical Research, 2020, 44(1): 147-167. doi: 10.1111/ggr.12289

    Etteieb S, Magdouli S, Zolfaghari M, et al. Monitoring and analysis of selenium as an emerging contaminant in mining industry: A critical review[J]. Science of The Total Environment, 2020, 698: 1-14. http://www.ncbi.nlm.nih.gov/pubmed/31783461

    Tabelin C B, Igarashi T, Villacorte-Tabelin M, et al. Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies[J]. Science of The Total Environment, 2018, 645: 1522-1553. doi: 10.1016/j.scitotenv.2018.07.103

    Wen H, Carignan J. Reviews on atmospheric selenium: Emissions, speciation and fate[J]. Atmospheric Environment, 2007, 41(34): 7151-7165. doi: 10.1016/j.atmosenv.2007.07.035

    Liu Y, Tian X, Liu R, et al. Key driving factors of selenium-enriched soil in the low-Se geological belt: A case study in Red Beds of Sichuan Basin, China[J]. Catena, 2021, 196: 1-12. http://www.sciencedirect.com/science/article/pii/s0341816220304768

    Wadgaonkar S L, Nancharaiah Y V, Esposito G, et al. Environmental impact and bioremediation of seleniferous soils and sediments[J]. Critical Reviews in Biotechnology, 2018, 38(6): 941-956. doi: 10.1080/07388551.2017.1420623

    Wang Q Q, Yu S C, Xu C D, et al. Association between selenium in soil and diabetes in Chinese residents aged 35-74 years: Results from the 2010 national survey of chronic diseases and behavioral risk factors surveillance[J]. Biomedical and Environmental Sciences, 2020, 33(4): 260-268.

    Xiao K, Tang J, Chen H, et al. Impact of land use/land cover change on the topsoil selenium concentration and its potential bioavailability in a Karst area of southwest China[J]. Science of The Total Environment, 2020, 708: 1-8. http://www.researchgate.net/publication/337456171_Impact_of_land_useland_cover_change_on_the_topsoil_selenium_concentration_and_its_potential_bioavailability_in_a_karst_area_of_southwest_China

    秦海波, 朱建明. 中国典型高硒区硒的环境地球化学研究进展[J]. 生物技术进展, 2017, 7(5): 367-373. https://www.cnki.com.cn/Article/CJFDTOTAL-SWJZ201705008.htm

    Qin H B, Zhu J M. Progress on environmental geochemistry of selenium in typical high-Se areas in China[J]. Current Biotechnology, 2017, 7(5): 367-373. https://www.cnki.com.cn/Article/CJFDTOTAL-SWJZ201705008.htm

    Winkel L H E, Vriens B, Jones G D, et al. Selenium cycling across soil-plant-atmosphere interfaces: A critical review[J]. Nutrients, 2015, 7(6): 4199-4239. doi: 10.3390/nu7064199

    Floor G H, Román-Ross G. Selenium in volcanic environments: A review[J]. Applied Geochemistry, 2012, 27(3): 517-531. doi: 10.1016/j.apgeochem.2011.11.010

    Fernández-Martínez A, Charlet L. Selenium environmental cycling and bioavailability: A structural chemist point of view[J]. Reviews in Environmental Science and Bio/Technology, 2009, 8(1): 81-110. doi: 10.1007/s11157-009-9145-3

    Statwick J, Sher A A. Selenium in soils of western Colorado[J]. Journal of Arid Environments, 2017, 137: 1-6. doi: 10.1016/j.jaridenv.2016.10.006

    Armstrong J G T, Parnell J, Bullock L A, et al. Mobilisation of arsenic, selenium and uranium from Carboniferous black shales in West Ireland[J]. Applied Geochemistry, 2019, 109: 1-13. http://www.sciencedirect.com/science/article/pii/S088329271930201X

    Parnell J, Brolly C, Spinks S, et al. Selenium enrichment in Carboniferous shales, Britain and Ireland: Problem or opportunity for shale gas extraction?[J]. Applied Geochemistry, 2016, 66: 82-87. doi: 10.1016/j.apgeochem.2015.12.008

    Tuttle M L W, Fahy J W, Elliott J G, et al. Contaminants from cretaceous black shale: Ⅱ. Effect of geology, weathering, climate, and land use on salinity and selenium cycling, Mancos Shale landscapes, southwestern United States[J]. Applied Geochemistry, 2014, 46: 72-84. doi: 10.1016/j.apgeochem.2013.12.011

    周国华. 富硒土地资源研究进展与评价方法[J]. 岩矿测试, 2020, 39(3): 319-336. doi: 10.15898/j.cnki.11-2131/td.201911140158

    Zhou G H. Research progress of selenium-enriched land resources and evaluation methods[J]. Rock and Mineral Analysis, 2020, 39(3): 319-336. doi: 10.15898/j.cnki.11-2131/td.201911140158

    Pilon-Smits E, Winkel L, Lin Z Q, Selenium in plants, Cham: Springer International Publishing, 2017.

    谈加香, 冯朝军, 耿丽婵. 氢化物发生-原子荧光光谱法测定土壤中水溶性硒含量[J]. 化工管理, 2017(22): 50-52. doi: 10.3969/j.issn.1008-4800.2017.22.047

    Tan J X, Feng C J, Geng L C. Determination of water-soluble selenium in soil by hydride generation-atomic fluorescence spectrometry[J]. Chemical Management, 2017(22): 50-52. doi: 10.3969/j.issn.1008-4800.2017.22.047

    Dinh Q T, Cui Z, Huang J, et al. Selenium distribution in the Chinese environment and its relationship with human health: A review[J]. Environment International, 2018, 112: 294-309. doi: 10.1016/j.envint.2017.12.035

    He K Q, Yuan C G, Shi M D, et al. Accelerated scre-ening of arsenic and selenium fractions and bioavailability in fly ash by microwave assistance[J]. Ecotoxicology and Environmental Safety, 2020, 187: 1-8. http://www.sciencedirect.com/science/article/pii/S0147651319311510

    Gebreeyessus G D, Zewge F. A review on environmental selenium issues[J]. SN Applied Sciences, 2018, 1(1): 55-74.

    Myers T. Remediation scenarios for selenium contamination, blackfoot watershed, southeast Idaho, USA[J]. Hydrogeology Journal, 2013, 21(3): 655-671. doi: 10.1007/s10040-013-0953-8

    Bajaj M, Eiche E, Neumann T, et al. Hazardous con-centrations of selenium in soil and groundwater in North-West India[J]. Journal of Hazardous Materials, 2011, 189(3): 640-646. doi: 10.1016/j.jhazmat.2011.01.086

    Cao S, Duan X, Zhao X, et al. Health risks from the exposure of children to As, Se, Pb and other heavy metals near the largest coking plant in China[J]. Science of The Total Environment, 2014, 472: 1001-1009. doi: 10.1016/j.scitotenv.2013.11.124

    LeBlanc K L, Kumkrong P, Mercier P H J, et al. Selenium analysis in waters. Part 2: Speciation methods[J]. Science of The Total Environment, 2018, 640-641: 1635-1651. doi: 10.1016/j.scitotenv.2018.05.394

    Bailey R T. Review: Selenium contamination, fate, and reactive transport in groundwater in relation to human health[J]. Hydrogeology Journal, 2017, 25: 1191-1217. doi: 10.1007/s10040-016-1506-8

    Vinceti M, Crespi C M, Bonvicini F, et al. The need for a reassessment of the safe upper limit of selenium in drinking water[J]. Science of The Total Environment, 2013, 443: 633-642. doi: 10.1016/j.scitotenv.2012.11.025

    Xu Y, Li Y, Li H, et al. Effects of topography and soil properties on soil selenium distribution and bioavailability (phosphate extraction): A case study in Yongjia County, China[J]. Science of The Total Environment, 2018, 633: 240-248. doi: 10.1016/j.scitotenv.2018.03.190

    Smažíková P, Praus L, Száková J, et al. Effects of organic matter-rich amendments on selenium mobility in soils[J]. Pedosphere, 2019, 29(6): 740-751. doi: 10.1016/S1002-0160(17)60444-2

    Ma B, Fernandez-Martinez A, Grangeon S, et al. Selenite uptake by Ca-Al LDH: A description of intercalated anion coordination geometries[J]. Environmental Science & Technology, 2018, 52(3): 1624-1632. http://europepmc.org/abstract/MED/29271640

    Ullah H, Liu G, Yousaf B, et al. A comprehensive review on environmental transformation of selenium: Recent advances and research perspectives[J]. Environmental Geochemistry and Health, 2019, 41(2): 1003-1035. doi: 10.1007/s10653-018-0195-8

    Fan J, Zeng Y, Sun J. The transformation and migration of selenium in soil under different Eh conditions[J]. Journal of Soils and Sediments, 2018, 18(9): 2935-2947. doi: 10.1007/s11368-018-1980-9

    Kopittke P M, Wang P, Lombi E, et al. Synchrotron-based X-ray approaches for examining toxic trace metal(loid)s in soil-plant systems[J]. Journal of Environmental Quality, 2017, 46(6): 1175-1189. doi: 10.2134/jeq2016.09.0361

    Reynolds R J B, Jones R R, Heiner J, et al. Effects of selenium hyperaccumulators on soil selenium distribution and vegetation properties[J]. American Journal of Botany, 2020, 107(7): 970-982. doi: 10.1002/ajb2.1500

    Tan L C, Nancharaiah Y V, van Hullebusch E D, et al. Selenium: Environmental significance, pollution, and biological treatment technologies[J]. Biotechnology Advances, 2016, 34(5): 886-907. doi: 10.1016/j.biotechadv.2016.05.005

    Shaheen S M, Kwon E E, Biswas J K, et al. Arsenic, chromium, molybdenum, and selenium: Geochemical fractions and potential mobilization in riverine soil profiles originating from Germany and Egypt[J]. Chemosphere, 2017, 180: 553-563. doi: 10.1016/j.chemosphere.2017.04.054

    Natasha, Shahid M, Niazi N K, et al. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health[J]. Environmental Pollution, 2018, 234: 915-934. doi: 10.1016/j.envpol.2017.12.019

    Tessier A P, Campbell P G C, Bisson M X. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. doi: 10.1021/ac50043a017

    Fernández-Ondoño E, Bacchetta G, Lallena A M, et al. Use of BCR sequential extraction procedures for soils and plant metal transfer predictions in contaminated mine tailings in Sardinia[J]. Journal of Geochemical Exploration, 2017, 172: 133-141. doi: 10.1016/j.gexplo.2016.09.013

    Shaheen S M, Ali R A, Abowaly M E, et al. Assessing the mobilization of As, Cr, Mo, and Se in Egyptian lacustrine and calcareous soils using sequential extraction and biogeochemical microcosm techniques[J]. Journal of Geochemical Exploration, 2018, 191: 28-42. doi: 10.1016/j.gexplo.2018.05.003

    王亚平, 黄毅, 王苏明, 等. 土壤和沉积物中元素的化学形态及其顺序提取法[J]. 地质通报, 2005, 24(8): 728-734. doi: 10.3969/j.issn.1671-2552.2005.08.009

    Wang Y P, Huang Y, Wang S M, et al. Chemical speciation of elements in sediments and soil and their sequential extraction process[J]. Geological Bulletin of China, 2005, 24(8): 728-734. doi: 10.3969/j.issn.1671-2552.2005.08.009

    Fan J, Zhao G, Sun J, et al. Effect of humic acid on Se and Fe transformations in soil during waterlogged incubation[J]. Science of The Total Environment, 2019, 684: 476-485. doi: 10.1016/j.scitotenv.2019.05.246

    Qin H B, Zhu J M, Lin Z Q, et al. Selenium speciation in seleniferous agricultural soils under different cropping systems using sequential extraction and X-ray absorption spectroscopy[J]. Environmental Pollution, 2017, 225: 361-369. doi: 10.1016/j.envpol.2017.02.062

    唐沫岚, 鲍征宇, 范博伦, 等. 顺序提取分离-氢化物发生-原子荧光光谱法测定富硒土壤中5种形态硒的含量[J]. 理化检验(化学分册), 2018, 54(4): 408-412. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201804009.htm

    Tang M L, Bao Z Y, Fan B L, et al. HG-AFS speciation analysis for 5 species of selenium in Se-rich soil with separation by sequential extraction[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(4): 408-412. https://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201804009.htm

    Wang D, Dinh Q T, Thu T T A, et al. Effect of selenium-enriched organic material amendment on selenium fraction transformation and bioavailability in soil[J]. Chemosphere, 2018, 199: 417-426. doi: 10.1016/j.chemosphere.2018.02.007

    Favorito J E, Luxton T P, Eick M J, et al. Selenium speciation in phosphate mine soils and evaluation of a sequential extraction procedure using XAFS[J]. Environmental Pollution, 2017, 229: 911-921. doi: 10.1016/j.envpol.2017.07.071

    Wang M, Cui Z, Xue M, et al. Assessing the uptake of selenium from naturally enriched soils by maize (Zea mays L. ) using diffusive gradients in thin-films technique (DGT) and traditional extractions[J]. Science of The Total Environment, 2019, 689: 1-9. doi: 10.1016/j.scitotenv.2019.06.346

    秦冲, 施畅, 万秋月, 等. 高效液相色谱-电感耦合等离子体质谱联用检测土壤中的无机硒形态[J]. 岩矿测试, 2018, 37(6): 664-670. doi: 10.15898/j.cnki.11-2131/td.201803200024

    Qin C, Shi C, Wan Q Y, et al. Speciation analysis of inorganic selenium in soil by high performance liquid chromatography-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2018, 37(6): 664-670. doi: 10.15898/j.cnki.11-2131/td.201803200024

    Dodd J, Large D J, Fortey N J, et al. A petrographic investigation of two sequential extraction techniques applied to anaerobic canal bed mud[J]. Environmental Geochemistry & Health, 2000, 22(4): 281-296. http://www.ingentaconnect.com/content/klu/egah/2000/00000022/00000004/00319557

    Shaltout A A, Castilho I N B, Welz B, et al. Method development and optimization for the determination of selenium in bean and soil samples using hydride generation electrothermal atomic absorption spectrometry[J]. Talanta, 2011, 85(3): 1350-1356. doi: 10.1016/j.talanta.2011.06.015

    Busheina I S, Abobaker M M, Aljurmi E S, et al. Determination of selenium in environmental samples using hydride generation coupled to atomic absorption spectroscopy[J]. Journal of Environmental Analytical Chemistry, 2016, 3(2): 1-5. http://www.onacademic.com/detail/journal_1000040892108610_8e8a.html

    Schneider M, Pereira É R, Castilho I N B, et al. A simple sample preparation procedure for the fast screening of selenium species in soil samples using alkaline extraction and hydride-generation graphite furnace atomic absorption spectrometry[J]. Microchemical Journal, 2016, 125: 50-55. doi: 10.1016/j.microc.2015.10.018

    Carvalho G S, Oliveira J R, Curi N, et al. Selenium and mercury in Brazilian Cerrado soils and their relationships with physical and chemical soil characteristics[J]. Chemosphere, 2019, 218: 412-415. doi: 10.1016/j.chemosphere.2018.11.099

    韩亚, 郭伟, 汪洪. 电感耦合等离子体质谱(ICP-MS)法与氢化物发生-原子吸收光谱(HG-AAS)法测定土壤中硒含量的对比研究[J]. 中国无机分析化学, 2020, 10(3): 28-32. doi: 10.3969/j.issn.2095-1035.2020.03.006

    Han Y, Guo W, Wang H. Method comparison for determination of selenium in soil by ICP-MS and HG-AAS[J]. Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(3): 28-32. doi: 10.3969/j.issn.2095-1035.2020.03.006

    Castilho I N B, Pereira É R, Welz B, et al. Determination of selenium in soil samples using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis[J]. Analytical Methods, 2014, 6(9): 2870-2875. doi: 10.1039/C3AY42227E

    Lessa J H L, Araujo A M, Silva G N T, et al. Adsorption-desorption reactions of selenium(Ⅵ) in tropical cultivated and uncultivated soils under Cerrado biome[J]. Chemosphere, 2016, 164: 271-277. doi: 10.1016/j.chemosphere.2016.08.106

    钱薇, 唐昊冶, 王如海, 等. 一次消解土壤样品测定汞、砷和硒[J]. 分析化学, 2017, 45(8): 1215-1221. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201708024.htm

    Qian W, Tang H Y, Wang R H, et al. Determination of mercury, arsenic and selenium in soil by one-time digestion[J]. Chinese Journal of Analytical Chemistry, 2017, 45(8): 1215-1221. https://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201708024.htm

    李美秀, 齐少华. 微波消解-双通道原子荧光光谱法同时测定土壤中的硒和锑[J]. 化学分析计量, 2018, 27(6): 81-86. doi: 10.3969/j.issn.1008-6145.2018.06.019

    Li M X, Qi S H. Simultaneous determination of selenium and antimony in soil by microwave digestion and double channel atomic fluorescence spectrometry[J]. Chemical Analysis and Meterage, 2018, 27(6): 81-86. doi: 10.3969/j.issn.1008-6145.2018.06.019

    温晓华, 邵超英, 张琢, 等. 悬浮液进样-氢化物发生原子荧光光谱法测定土壤中痕量砷锑硒[J]. 岩矿测试, 2007, 26(6): 460-464. doi: 10.3969/j.issn.0254-5357.2007.06.007

    Wen X H, Shao C Y, Zhang Z, et al. Determination of trace arsenic, antimony, selenium in soil samples by hydride generation-atomic fluorescence spectrometry with slurry sample introduction[J]. Rock and Mineral Analysis, 2007, 26(6): 460-464. doi: 10.3969/j.issn.0254-5357.2007.06.007

    赵宗生, 赵小学, 姜晓旭, 等. 原子荧光光谱测定土壤和水系沉积物中硒的干扰来源及消除方法[J]. 岩矿测试, 2019, 38(3): 333-340. doi: 10.15898/j.cnki.11-2131/td.201809190106

    Zhao Z S, Zhao X X, Jiang X X, et al. Interference sources and elimination methods for the determination of selenium in soil and water sediment by atomic fluorescence spectrometry[J]. Rock and Mineral Analysis, 2019, 38(3): 333-340. doi: 10.15898/j.cnki.11-2131/td.201809190106

    Zhou F, Li Y, Ma Y, et al. Selenium bioaccessibility in native seleniferous soil and associated plants: Comparison between in vitro assays and chemical extraction methods[J]. Science of The Total Environment, 2020, 762: 1-10. http://www.sciencedirect.com/science/article/pii/S0048969720366493

    Bullock L A, Parnell J, Feldmann J, et al. Selenium and tellurium concentrations of Carboniferous British coals[J]. Geological Journal, 2019, 54(3): 1401-1412. doi: 10.1002/gj.3238

    Balcaen L, Bolea-Fernandez E, Resano M, et al. Inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS): A powerful and universal tool for the interference-free determination of (ultra)trace elements-A tutorial review[J]. Analytica Chimica Acta, 2015, 894: 7-19. doi: 10.1016/j.aca.2015.08.053

    de Souza J R, da Silva L, da Rocha M S, et al. Dynamic reaction cell-ICP-MS as a powerful tool for quality control of a Se-enriched dietary supplement[J]. Food Analytical Methods, 2017, 10: 3088-3097. doi: 10.1007/s12161-017-0861-y

    Henn A S, Rondan F S, Mesko M F, et al. Determination of Se at low concentration in coal by collision/reaction cell technology inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2018, 143: 48-54. doi: 10.1016/j.sab.2018.02.014

    屈明华, 陈雄弟, 倪张林, 等. DRC-ICP-MS法测定土壤硒前处理方法研究[J]. 土壤通报, 2019, 50(3): 698-703. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201903027.htm

    Qu M H, Chen X D, Ni Z L, et al. Pretreatment for determination of soil selenium by ICP-MS with dynamic reaction cell[J]. Chinese Journal of Soil Science, 2019, 50(3): 698-703. https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201903027.htm

    de Feudis M, D'Amato R, Businelli D, et al. Fate of selenium in soil: A case study in a maize (Zea mays L. ) field under two irrigation regimes and fertilized with sodium selenite[J]. Science of The Total Environment, 2019, 659: 131-139. doi: 10.1016/j.scitotenv.2018.12.200

    刘芸, 曹国松, 程佩, 等. 微波消解-ICP-MS法测定土壤中的硒含量[J]. 化学与生物工程, 2017, 34(11): 67-70. doi: 10.3969/j.issn.1672-5425.2017.11.017

    Liu Y, Cao G S, Cheng P, et al. Determination of selenium content in soil by microwave digestion-ICP-MS[J]. Chemistry & Bioengineering, 2017, 34(11): 67-70. doi: 10.3969/j.issn.1672-5425.2017.11.017

    林立, 王琳琳. 采用ICP-MS/MS对硒和砷检测的质谱干扰[J]. 分析试验室, 2016, 35(3): 344-348. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201603026.htm

    Lin L, Wang L L. Study on the interference of selenium and arsenic in different detecting conditions by ICP-MS/MS[J]. Chinese Journal of Analysis Laboratory, 2016, 35(3): 344-348. https://www.cnki.com.cn/Article/CJFDTOTAL-FXSY201603026.htm

    Kumkrong P, LeBlanc K L, Mercier P H J, et al. Selenium analysis in waters. Part 1: Regulations and standard methods[J]. Science of The Total Environment, 2018, 640-641: 1611-1634. doi: 10.1016/j.scitotenv.2018.05.392

    Gil-Díaz T, Schäfer J, Keller V, et al. Tellurium and selenium sorption kinetics and solid fractionation under contrasting estuarine salinity and turbidity conditions[J]. Chemical Geology, 2020, 532: 1-10. http://www.sciencedirect.com/science/article/pii/S0009254119304991

    Bolea-Fernandez E, Balcaen L, Resano M, et al. Interference-free determination of ultra-trace concentrations of arsenic and selenium using methyl fluoride as a reaction gas in ICP-MS/MS[J]. Analytical and Bioanalytical Chemistry, 2015, 407(3): 919-929. doi: 10.1007/s00216-014-8195-8

    di Tullo P, Pannier F, Thiry Y, et al. Field study of time-dependent selenium partitioning in soils using isotopically enriched stable selenite tracer[J]. Science of The Total Environment, 2016, 562: 280-288. doi: 10.1016/j.scitotenv.2016.03.207

    谭德灿, 朱建明, 李社红, 等. 同位素双稀释剂法的原理与应用Ⅱ: 应用部分[J]. 矿物岩石地球化学通报, 2017, 36(6): 948-954. doi: 10.3969/j.issn.1007-2802.2017.06.010

    Tan D C, Zhu J M, Li S H, et al. The principle and application of isotopic double spike technique: The application[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2017, 36(6): 948-954. doi: 10.3969/j.issn.1007-2802.2017.06.010

    Pons M L, Millet M A, Nowell G N, et al. Precise measurement of selenium isotopes by HG-MC-ICPMS using a 76-78 double-spike[J]. Journal of Analytical Atomic Spectrometry, 2020, 35(2): 320-330. doi: 10.1039/C9JA00331B

    Marguí E, Floor G H, Hidalgo M, et al. Analytical possibilities of total reflection X-ray spectrometry (TXRF) for trace selenium determination in soils[J]. Analytical Chemistry, 2010, 82(18): 7744-7751. doi: 10.1021/ac101615w

    Kocot K, Leardi R, Walczak B, et al. Determination and speciation of trace and ultratrace selenium ions by energy-dispersive X-ray fluorescence spectrometry using graphene as solid adsorbent in dispersive micro-solid phase extraction[J]. Talanta, 2015, 134: 360-365. doi: 10.1016/j.talanta.2014.11.036

    Scheinost A C, Kretzschmar R, Pfister S, et al. Combining selective sequential extractions, X-ray absorption spectroscopy, and principal component analysis for quantitative zinc speciation in soil[J]. Environmental Science & Technology, 2002, 36(23): 5021-5028. http://www.ncbi.nlm.nih.gov/pubmed/12523415

    Qin H B, Takeichi Y, Nitani H, et al. Tellurium distri-bution and speciation in contaminated soils from abandoned mine tailings: Comparison with selenium[J]. Environmental Science & Technology, 2017, 51(11): 6027-6035. doi: 10.1021/acs.est.7b00955

    Nie Z, Finck N, Heberling F, et al. Adsorption of sele-nium and strontium on goethite: EXAFS study and surface complexation modeling of the ternary systems[J]. Environmental Science & Technology, 2017, 51(7): 3751-3758.

    Ryser A, Strawn D, Marcus M, et al. Microscopically focused synchrotron X-ray investigation of selenium speciation in soils developing on reclaimed mine lands[J]. Environmental Science & Technology, 2006, 40(2): 462-467. doi: 10.1021/es051674i

图(1)  /  表(5)
计量
  • 文章访问数:  2585
  • HTML全文浏览量:  485
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-22
  • 修回日期:  2021-01-03
  • 录用日期:  2021-01-25
  • 发布日期:  2021-07-27

目录

/

返回文章
返回