Application of Automatic Mineral Analysis Technology to Identify Minerals and Occurrences of Elements in Sandstone-type Uranium Deposits in the Ordos Basin
-
摘要: 鄂尔多斯盆地是我国重要的砂岩型铀矿成矿区之一。铀矿物赋存状态研究对砂岩型铀矿的成因认识、找矿勘查及选冶开采具有重要意义,但其矿物组成复杂,铀矿物粒度细小、种类繁多且赋存状态多样,致使研究初始的鉴定阶段就存在难点。目前普遍使用放射性照相法和电子探针(EMPA)两种方法开展铀矿物鉴定分析工作。放射性照相可一次性得到光片中所有铀矿物赋存位置、赋存状态和放射性形态,但无法鉴定矿物种类,耗时较长且需在暗室中进行;电子探针可得到铀矿物背散射图像和各元素含量,但在高倍数下薄片中寻找含量少、粒度小的铀矿物费时费力,并且在黑白背散射图像中无法快速判断伴生矿物种类。本文以鄂尔多斯盆地北缘-南缘-西缘砂岩型铀矿为研究对象,将自动矿物分析系统(AMICS)运用于砂岩型铀基础研究中,结合扫描电镜(SEM)、能谱仪(EDS)鉴定出研究区铀矿物有铀石、晶质铀矿、沥青铀矿和硅钙铀矿,黄铁矿和钛氧化物与铀矿物关系密切,识别出其他伴生矿物还有石英、金红石、长石、云母、高岭石等。本文建立的AMICS-SEM-EDS分析方法,实现了铀矿物及其共生矿物组合的快速识别鉴定和赋存状态研究。要点
(1) AMICS-SEM-EDS技术联用快速查找鉴定铀矿物并探究其赋存状态、矿石矿物组成及嵌布关系。
(2) 鄂尔多斯盆地铀矿物包括铀石、沥青铀矿、晶质铀矿和硅钙铀矿,盆地北缘以铀石为主,西缘、南缘以沥青铀矿为主。
(3) 铀矿物常与黄铁矿紧密伴生,赋存于金红石、石英、长石等矿物边缘或晶隙中。
HIGHLIGHTS(1) AMICS-SEM-EDS technology was used to find and identify uranium minerals, and to explore their occurrence, mineral composition and dissemination relationship.
(2) The uranium minerals in the Ordos Basin included coffinite, pitchblende, uraninite and uranophane. In the northern margin of the basin, uranium mineral was dominated by uranite, while in the western and the southern margin it was dominated by pitchblende.
(3) Uranium minerals were often closely associated with pyrite and occur in the margins or gaps among rutile, quartz, feldspar and other minerals.
Abstract:BACKGROUND The Ordos Basin is one of the most important areas in China because it hosts lots of sandstone-type uranium deposits and a variety of other energy and mineral resources. The occurrence of uranium minerals is of great significance to the genetic understanding and prospecting of sandstone-type uranium deposits. However, the complex mineral composition, fine grain size, and various types and occurrences of uranium minerals make the initial identification stage of the study difficult. Currently, radiograph and electron probe microanalysis (EMPA) have played an important role in the identification of uranium minerals. Radiography can be used to obtain the position, occurrence and radioactive form of all uranium minerals in the light film at one time, but the mineral type cannot be identified. Moreover, it is a lengthy process and must be performed in darkness. Electron probe can be used to obtain the backscattered image of the uranium mineral. However, it takes time and effort to find uranium minerals with small content and small particle size in thin slices at high magnification, and it is impossible to quickly determine the types of associated minerals in BSE images.OBJECTIVES To find a more rapid and accurate method for identifying uranium minerals.METHODS The automatic mineral analysis system (AMICS), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) were used to identify minerals from sandstone-type uranium deposits in the north, south, and west margins of the Ordos Basin.RESULTS The minerals in the study were identified as coffinite, pitchblende, uraninite and uranophane. Pyrite and titanium oxide were closely related to uranium minerals, and other associated minerals were identified as quartz, rutile, feldspar, mica and kaolinite.CONCLUSIONS AMICS-SEM-EDS in situ analysis technology proves to be a reliable method for the rapid identification of uranium minerals, associated minerals, and their occurrences. -
稀土资源在国民经济多种领域中发挥着不可替代的作用,随之其开采利用造成的环境影响也得到了高度关注。国外较有名的Mountain Pass稀土矿和Mount Weld稀土矿目前暂无环境研究成果可参考,仅有少数与其他稀土矿山相关的环境研究结果见于报道。如对马来西亚Kinta Valley前锡矿(伴生稀土资源)的水体及水系沉积物的稀土元素含量水平研究表明,与当地河水相比,受此前矿业活动影响的湖水和湖底沉积物稀土元素含量明显偏高,且向周围环境中扩散的可能性极高[1]。一项在越南Laichau的Namxe稀土矿开展的大气、水、土壤和植物多介质放射性污染研究结果表明,大部分土壤和植物存在放射性且造成了健康风险,放射性存在的区带与矿山的稀土富集带对应[2]。此外,国外也有较多对植物-土壤中稀土元素含量的研究,如对土壤-植物、植物不同部位、不同植物之间稀土分布模式异同的探讨及规律总结[3];或出于鉴定葡萄酒产地真伪的目的,分析地域性土壤-葡萄稀土配分模式差异[4];或结合废弃锡矿区(伴生稀土资源)土壤-植物多部位稀土元素分析结果,发现超累积植物并探讨植物修复的可能性[5]。
中国稀土矿山规模大且分布广,已报道了大量关于稀土矿山稀土及重金属污染的研究成果[6-10]。白云鄂博是世界最大的稀土矿山,已有多年开采历史,研究表明其尾矿对周边环境造成了耕地退化、粮食减产绝产、牲畜死亡等多种潜在环境威胁[11-13]。已知部分稀土元素对生物有抑制生长及毒害作用[14-15],而白云鄂博矿区周边土壤、空气,甚至是人发、尿液中的稀土元素含量都远高于地壳及其他地区相应样品的稀土背景值[16-19],尽管目前没有报道显示人群出现与稀土过量相关的疾病,但这些环境介质中的高稀土含量仍应当引起重视。此外,环境中的重金属含量长期达到一定剂量也会对生物体产生毒害作用[20]。一项研究指出白云鄂博矿区人群与对照组人群相比,晨尿样本中含有更高的重金属含量,且重金属含量随稀土元素含量增长而升高[19],因此白云矿山及周边的重金属污染也值得进一步关注。白云鄂博矿区矿业活动仍在进行并将持续开展,考虑到稀土开发的环境成本是影响稀土价格的一个重要因素[21],对矿山土壤、植物中的稀土及重金属元素含量进行调查很有必要,对于探明稀土矿区稀土及重金属污染意义重大。基于以上目的,近年来一些学者对白云鄂博矿区大气[16, 22-23]、土壤[17, 24]、植物[6]已开展稀土或重金属元素含量的研究。例如,张立锋等[6]研究了白云鄂博东矿坑50m 100m范围内铁花、沙蒿、沙打旺、沙朋、青蒿、小叶杨、猪毛菜七种植物根、茎、叶及整株不同季节稀土元素含量变化规律,发现七种植物稀土含量基本不受季节影响,其中铁花为稀土总量最高者(1023.25mg/kg),大部分植物最富集稀土的部位是叶或花。王哲等[25]对白云鄂博矿区11种优势植物开展了重金属及稀土元素含量水平研究,以筛选适合的重金属及稀土修复植物,发现稀土含量最高者(9888.64mg/kg)为风毛菊的地上部。除此之外,前人对白云矿区草本植物稀土含量特征的研究并不多,已有研究获得的结果差异较大,且重点关注的是不同植物或植物不同部位的稀土含量差异。白云鄂博主矿、东矿、东介勒格勒等矿体含矿性差异很大,现有研究尚缺乏对白云鄂博多处主要矿段的植物稀土含量的空间对比,因此不同区域植物的稀土含量是否有差异值得研究。
基于以上现实问题考虑,本文分别采集了白云鄂博主矿、东矿、东介勒格勒的铁花植株及对应的土壤样品,以及背景区本巴台的土壤、岩石、牛粪样品,采用电感耦合等离子体质谱法(ICP-MS)对主要矿段的土壤、植物稀土及重金属元素含量开展了对比研究,拟为矿区环境调查提供基础数据。
1. 研究区概况
白云鄂博矿区是世界上最大的铁、铌、稀土复合矿山[26-27]。矿区稀土资源的开采利用始于20世纪50年代,为露天开采作业,如今已经形成以资源开采、冶炼为主的工业模式[3]。白云鄂博蕴藏的稀土资源占世界已探明稀土资源总量的38%以上[18],处于世界第一位,铌和钍资源居世界第二位。矿区东西长为16~18km,南北宽2~3km,面积48km2,为一个狭长的稀土、铁、铌矿化带[27]。白云鄂博是典型的轻稀土矿床,其稀土资源以Ce为主,La、Ce、Nd氧化物含量占稀土氧化物总量的88.5%到92.4%[28]。稀土资源主要分布在矿区的主矿体、东矿体、西矿体三个铁矿体、东部接触带、东矿下盘白云岩中,稀土矿体围岩主要为云母岩、石英岩、长石板岩、云母板岩、碳质板岩等[26]。矿区内主矿矿化最为强烈,东矿次之,西矿及东介勒格勒有较大的远景储量,但目前暂时无法加以利用[29]。
2. 实验部分
2.1 样品采集及处理
2019年8月19日至8月31日,项目组在内蒙古白云鄂博稀土矿区及周边选取11个采样点位,共采集17件植物、土壤、岩石及牛粪样品。其中本巴台为白云鄂博主矿区西边80km处一个伟晶岩群(可视为背景区域),东介勒格勒为位于东矿南侧的1km处的一个小矿体。沿主矿及东矿采集植物样品9件,包括:8件铁花样品(编号B8919、B8920、B8921-1、B8922-1、B8924-1、B8925-1、B8926-1、B8929),1件风毛菊样品(编号B8918);以及与植物配套的根系土壤样品5件(编号B8921-2、B8922-2、B8924-2、B8925-2、B8926-2)。于本巴台采集原生晕岩石样品1件(编号B8915),次生晕土壤样品1件(编号B8916-1),牛粪样品1件(编号B8916-2)。矿区采样点分布图如图 1所示,采样记录具体见表 1。
图 1 白云鄂博主矿区采样点分布图(据柯昌辉等[30])1—第四系;2—白垩系固阳组;3—长城系尖山组;4—长城系都拉哈拉组;5—新太古界乌拉山群;6—二叠纪二长花岗岩;7—黑云母花岗闪长岩;8—中元古代白云石碳酸岩;9—花岗岩脉;10—石英斑岩脉;11—闪长岩/闪长玢岩脉;12—碳酸岩脉;13—碱性岩脉;14—钠角闪石岩脉;15—钠辉石钠角闪石碱性岩脉;16—铁矿化体;17—低品位铁矿化带;18—矿区采样点及编号。
本巴台采样点B8915及B8916距离主矿区80km,未在图中显示。Figure 1. Map of sampling sites in main mining area of Bayan Obo (According to Ke, et al[30])表 1 白云鄂博矿区各类型样品稀土元素和重金属含量测试结果Table 1. Contents of rare earth elements and heavy metals of samples collected from Bayan Obo mining area样品编号 样品类型 采样位置 矿区稀土元素含量(mg/kg) La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y B8915 岩石 本巴台 7.3 8.21 1.27 4.47 0.78 0.07 0.58 0.1 0.62 0.13 0.39 0.07 0.52 0.08 3.71 B8916-1 土壤 本巴台(距白云鄂博矿区约80km) 83.4 153 17.5 63.6 9.45 1.76 6.48 1 5.84 1.13 3.31 0.47 3.26 0.49 32.7 B8916-2 牛粪 本巴台(距白云鄂博矿区约80km) 18.8 35 3.74 13.5 1.98 0.35 1.16 0.17 0.96 0.18 0.47 0.06 0.42 0.06 5.84 B8918 风毛菊 高磁异常区 387 703 70.5 238 23.2 4.55 8.52 0.77 2.73 0.36 0.58 0.05 0.31 ND 10.1 B8919 铁花 主矿南侧板岩 425 783 79.6 267 27 5.03 9.61 0.9 3.31 0.44 0.76 0.07 0.37 ND 11.7 B8920 铁花 主矿1626平台北侧 651 1163 118 397 38.8 7.31 13.7 1.25 4.43 0.6 0.96 0.08 0.50 0.05 15.4 B8921-1 铁花 主矿北侧 695 1174 112 360 34.1 6.35 12.2 1.17 4.19 0.55 0.88 0.08 0.45 ND 13.8 B8921-2 土壤 主矿北侧 9039 15368 1383 4358 402 77.2 132 14.9 53.5 6.75 11.4 0.93 5.56 0.61 141 B8922-1 铁花 主矿北侧 380 652 64.5 216 20.2 3.85 8.18 0.72 2.57 0.35 0.59 0.05 0.30 ND 8.55 B8922-2 土壤 主矿北侧 7188 12992 1198 3773 365 70.3 138 13.9 48.6 6.16 11.5 0.88 5.26 0.59 135 B8924-1 铁花 东矿西侧 553 1009 100 327 32.6 6.07 12.1 1.15 4.01 0.52 0.96 0.07 0.42 ND 12.3 B8924-2 土壤 东矿西侧 8880 16851 1608 5175 503 92.4 168 17.2 59 7.57 13.3 1.02 6.10 0.67 155 B8925-1 铁花 东矿北侧 569 1025 102 338 32.7 6.06 12.2 1.14 3.98 0.54 0.95 0.07 0.43 ND 12.7 B8925-2 土壤 东矿北侧 9044 17174 1622 5247 519 95.3 150 18.4 62.3 7.85 15.1 1.05 6.26 0.68 165 B8926-1 铁花 东矿东侧 416 746 75.5 250 23.8 4.44 9.36 0.82 2.89 0.39 0.61 0.05 0.29 ND 10 B8926-2 土壤 东矿东侧 4689 8856 870 2876 286 54.5 108 10.8 39.6 5.35 9.53 0.86 4.92 0.56 116 B8929 铁花 东介勒格勒 430 761 75 240 23.4 4.3 8.79 0.82 2.79 0.36 0.70 ND 0.30 ND 8.96 样品编号 样品类型 采样位置 矿区稀土元素总量(mg/kg) ΣLREE/ ΣHREE 矿区重金属元素含量(mg/kg) ΣREE ΣLREE ΣHREE Cr Mn Ni Cu Zn Cd Pb As 重金属总量 B8915 岩石 本巴台 28.30 22.1 6.2 3.56 170 123 65.5 12.6 6.18 0.06 55.8 0.91 481.95 B8916-1 土壤 本巴台(距白云鄂博矿区约80km) 383.39 328.71 54.68 6.01 71.3 743 35.7 29.8 87.4 0.15 21.7 12.7 1720.75 B8916-2 牛粪 本巴台(距白云鄂博矿区约80km) 82.69 73.37 9.32 7.87 15.4 277 7.09 16.9 53.8 0.26 5.38 2.97 520.80 B8918 风毛菊 高磁异常区 1449.67 1426.25 23.42 60.9 5.68 447 3.41 12.7 122 0.29 23.1 3.70 1579.88 B8919 铁花 主矿南侧板岩 1613.79 1586.63 27.16 58.42 5.34 579 5.05 12.6 146 0.49 32.4 4.75 1866.63 B8920 铁花 主矿1626平台北侧 2412.08 2375.11 36.97 64.24 7.46 705 5.08 11 137 0.43 32.2 3.57 2407.74 B8921-1 铁花 主矿北侧 2414.77 2381.45 33.32 71.47 6.44 548 3.4 8.64 70.9 0.21 19.5 2.72 2080.81 B8921-2 土壤 主矿北侧 30993.85 30627.2 366.65 83.53 54.3 6194 26 28.3 465 1.81 181 26.6 23807.01 B8922-1 铁花 主矿北侧 1357.86 1336.55 21.31 62.72 2.77 326 2.14 7.04 64.6 0.21 14.8 2.08 1388.64 B8922-2 土壤 主矿北侧 25946.19 25586.3 359.89 71.09 38.1 5297 26.6 32.6 583 1.73 202 28.9 24340.93 B8924-1 铁花 东矿西侧 2059.2 2027.67 31.53 64.31 4.3 732 3.57 8.37 102 0.29 45 2.80 2299.33 B8924-2 土壤 东矿西侧 33537.26 33109.4 427.86 77.38 40.4 9774 29.1 48.5 749 2.23 431 31.3 28893.53 B8925-1 铁花 东矿北侧 2104.77 2072.76 32.01 64.75 4.24 631 3.2 7.31 75.2 0.19 32 2.38 2282.52 B8925-2 土壤 东矿北侧 34127.94 33701.3 426.64 78.99 39.5 9454 29.2 37.7 778 2.21 420 32.1 31107.71 B8926-1 铁花 东矿东侧 1540.15 1515.74 24.41 62.1 5.05 439 3.82 7.12 71.3 0.14 23.6 1.37 1877.40 B8926-2 土壤 东矿东侧 17927.12 17631.5 295.62 59.64 58.7 5062 45.9 65 602 1.35 221 20.6 22317.55 B8929 铁花 东介勒格勒 1556.42 1533.7 22.72 67.5 2.98 380 2.34 5.22 51.2 0.09 18.9 1.58 1573.31 注:ND代表低于检出限(0.05mg/kg),未检出。 植物样品使用预先清洁过的陶瓷剪刀将地上部分整株采集,带回实验室于烘箱中65℃烘干72h。完全干燥后使用Grinder GT200陶瓷振动球磨仪将植株样品粉碎,收集5g以上样品粉末用于测试稀土及重金属元素含量。
土壤样品使用预先清洁过的塑料铲子采集于一次性密实袋中,须于野外完全风干,带回实验室后过200目筛,收集土壤粉末5g以上用于测试稀土及重金属元素含量。
岩石样品与牛粪样品均于野外直接采集,其中岩石样品使用陶瓷震动球磨仪粉碎为待测粉末,牛粪样品须烘干72h(同植物样品)后粉碎待测。
2.2 样品测试
所有粉末样品送至国家地质实验测试中心采用电感耦合等离子体质谱仪(PE300Q,美国PerkinElmer公司)进行稀土元素(如La、Ce、Eu、Gd、Tb、Lu、Y等)及重金属元素(如Cr、Mn、Cu、Zn、Cd、Pb、As等)含量测试。上机测试前,样品的处理过程如下:称取岩石及土壤样品0.05g,置于聚四氟乙烯罐中用于封闭熔样,加入2mL氢氟酸、1mL 7.5mol/L硝酸,盖上上盖,入钢套封闭,190℃保温30h。冷却后取出内罐,在电热板上170℃蒸发至干。加入0.5mL硝酸二次蒸干,此步骤重复两次。加入5mL 7.5mol/L硝酸,将样品罐装入钢套中封闭150℃保温3h,冷却后将其内的溶液转移至50mL容量瓶中并用超纯水定容至刻度。植物和牛粪样品称取0.1g,加入1.5mL硝酸微热预消解一夜,放入聚四氟乙烯内罐中加入1mL双氧水加钢套熔样24h,冷却后使用超纯水定容至25mL。上述溶液即为ICP-MS测试用。方法依据为《硅酸盐岩岩石化学分析方法第30部分: 44个元素量测定》(GB/T 14506.30—2010),精密度(RSD)低于2%~10%,检出限为0.05×10-6。
测试过程中通过测定国家一级土壤成分分析标准物质进行质量监控,各元素测试结果与标准结果吻合。此外,使用重复样及密码样对所测样品进行质量监控,重复样品检测结果差值均小于5%,符合测试质量要求。
3. 结果与讨论
3.1 研究区岩石—土壤—植物—牛粪样品中稀土和重金属含量特征
3.1.1 研究区稀土和重金属含量测试结果
白云鄂博矿区采集的各类型样品的稀土及重金属含量测试结果及统计结果见表 1。白云矿区所采集土壤的稀土总量为17927.12~34127.94mg/kg,本巴台土壤稀土总量为383.39mg/kg。白云鄂博矿区土壤的稀土总量及ΣLREE/ΣHREE值均远高于本巴台土壤,说明白云鄂博成矿及土壤风化过程中,土壤稀土元素经历了强烈的分馏,轻稀土得到显著的富集。植物的稀土总量最高达到2414.77mg/kg,其中轻稀土总量为2381.45 mg/kg,为采于主矿北侧的一个铁花样品。前人对矿区各类型矿石研究结果显示,主矿现存9种类型矿石样品的稀土总量平均为44400mg/kg[31],东矿深部8种类型256件矿石样品的稀土总量平均为60700mg/kg[32],可知白云鄂博矿区内各类型样品的稀土总量高低关系为:矿石>土壤>植物。
白云鄂博矿区土壤样品的重金属总量(22317.55~31107.71mg/kg)为本巴台土壤重金属总量(1721mg/kg)的12.97~18.08倍。白云鄂博植物样品的重金属总量介于1388.64~2407.74mg/kg,于主矿所采集的一个铁花样品具有最高的重金属总量(2408mg/kg),风毛菊和铁花植物样品的总重金属含量无明显差异。白云鄂博主矿及东矿所采集的土壤的稀土及重金属含量均远高于本巴台土壤样品的相应含量,说明白云鄂博稀土矿在成矿过程中,土壤中的稀土和重金属元素都得到了富集。
本次仅在本巴台地区尝试性采集牛粪样品一件,其稀土含量与土壤、植物等相比处于较低水平。
3.1.2 与前人研究及其他矿区研究结果对比
张立锋等[6]于白云鄂博矿区采集七种植物,研究结果表明稀土含量最高者为铁花(整株),稀土总量为1023.25mg/kg。王哲等[25]在白云鄂博矿区采集11种植物的稀土总量变化范围是291.91~9888.64mg/kg,最高者为风毛菊的地上部分。本研究中所采集的风毛菊和铁花样品整株稀土总量(1357.86~2414.77mg/kg)高于张立锋等[6]在白云鄂博东矿采集的7种植物的稀土总量,低于王哲等[25]研究中的5种植物地上部分稀土总量,但高于其余6种植物地上部分稀土总量。此前,本文作者团队在甲基卡锂矿采集了康定小叶冬青植物样品,其地下部分和地上部分稀土总量分别变化于0.46~28.52mg/kg及0.57~17.3mg/kg,本次白云鄂博几种植物稀土含量均远高于甲基卡植物稀土含量,其中轻稀土元素含量与甲基卡植物对比差异更为明显,体现在:白云鄂博植物样品的各轻稀土含量达到甲基卡植物轻稀土含量的115~380倍(与甲基卡植物地下部分相比)和161~546倍(与甲基卡植物地上部分相比),重稀土元素含量则分别达到甲基卡地下部分及地上部分的6.84~52.11倍及9.27~78.27倍。另外,此前本文作者团队在贵州织金富稀土的磷矿采集的草本植物地下部分稀土总量为178.68mg/kg,相较甲基卡矿区植物要高,但仍低于本次白云鄂博所采集植物的各项稀土含量。上述对比说明植物中稀土元素含量对土壤中稀土元素含量水平的指示作用较强。
本项目课题组此前曾在川西甲基卡锂矿区试验性采集了数件牛粪样品,与此次在本巴台所采集样品对比发现两地区牛粪样品的稀土含量差异很大。本巴台牛粪样品的各项稀土元素含量均高于甲基卡锂矿区多件牛粪样品均值,且轻稀土元素富集更为明显,轻稀土元素含量达到甲基卡均值的1.90~4.25倍;反之,锂含量(8.33mg/kg)低于甲基卡牛粪样品锂含量均值(11.58mg/kg),该现象在一定程度上说明牛粪样品中的稀土元素及锂元素含量水平可以反映特定地区稀土元素及锂元素的富集情况。
3.2 土壤—植物系统稀土元素和重金属分布特征
多名学者研究了岩石—土壤—植物的稀土元素分布特征,发现岩石—土壤—植物具有一致的稀土元素含量模式[33-34]。此次工作中白云鄂博4种类型样品的稀土元素配分曲线(图 2a)显示,岩石、土壤、植物、牛粪的稀土元素配分模式相似,均显示出富集轻稀土、贫重稀土的特征,其中本巴台岩石样品有明显的Eu亏损特征。矿区各类样品均表现出相对富集轻稀土的特征,且含量最高的稀土元素均为Ce,与前人研究结果一致[10]。前人研究指出白云稀土矿中Ce含量最高,ΣCeO2超过95%,具有显著的富Ce低Y的特征[35]。本研究中土壤和植物中Ce平均质量分数分别为49.95%及48.55%,与该区前人研究结果较为相近[6]。土壤—植物重金属含量特征(图 2b)显示,两类样品重金属含量趋势相似,土壤—植物的元素继承性吸收特征明显。岩石和牛粪样品均采自本巴台,牛粪样品的Mn、Zn、Cu、As含量均几乎同等程度地低于岩石样品,Pb、Cr、Ni含量模式与岩石相似但是高于岩石样品(图 2b)。
白云鄂博矿区三处矿体矿化程度差别较大,含矿性强弱为:主矿体>东矿体>东介勒格勒小矿体,于三处矿体采集铁花植株,发现三处铁花稀土总量排序为:主矿体>东矿体>东介勒格勒,与三处矿体本身含矿性变化一致,说明铁花的稀土含量基本上受不同区域稀土含矿性控制(图 3)。
在5个采样点采集的土壤—植物样品的稀土元素和重金属元素含量特征显示(图 4中a和b),植物的稀土元素和重金属总量基本受土壤中相应元素含量的控制。植物的稀土元素及重金属元素含量均低于土壤,不同地点含量模式相似,说明植物对土壤中多种稀土元素和重金属元素的吸收与土壤中相应元素含量密切相关。
土壤样品的稀土总量和重金属总量呈显著正相关关系(图 5a),相关系数(R2)达到0.9191,植物样品此种关系相对较弱(图 5b),但也呈正相关关系,R2为0.7707。前人对白云鄂博矿区人群尿液的研究也发现此关系[23],说明矿区土壤、植物以及人体代谢物中的重金属含量与稀土含量有明显正相关关系。上述关系出现的原因可能是稀土成矿过程中的重金属元素也同时得到了富集,或者稀土矿区开采造成了周边环境重金属污染,稀土资源越富集,开采程度越高,重金属污染越严重。
3.3 土壤重金属含量与现行环境标准对比
中国2018年颁发的《土壤环境质量农用地土壤污染风险管控标准(试行)》(GB 15618—2018)中对农用地Cd、Cr、Pb、Zn、Cu、As、Ni等重金属含量有明确的要求,包括筛选值及管制值两种标准。若农用地土壤重金属含量低于筛选值,则由其引起的风险可忽略不计;当高于筛选值、低于或等于管制值,说明存在土壤污染风险,可能存在可食用农产品不符合食品质量标准的风险,应加强农用地及其农产品质量监测。若高于管制值,说明食用农产品有风险的可能性极高,应当采取禁止种植可食农产品、退耕还林等严格管制措施。白云鄂博矿区地处脆弱草原生态区,采取农用地质量标准中对大部分重金属较为严格的限值,即pH < 5.5的重金属筛选值,风险管制值不考虑土壤pH。该标准中给出的具体筛选值及管制值与本研究测试结果对比情况见表 2。
表 2 最新农用地土壤质量标准中土壤重金属筛选值及管制值与本研究土壤重金属含量对比Table 2. Comparison of latest threshold values of heavy metals from Chinese quality standards for agricultural land and heavy metals contents in soils in this study元素 筛选值(mg/kg) 管制值(mg/kg) 本研究土壤样品(mg/kg) Cd 0.3 1.5 1.35~2.23 Cr 150 800 38.1~58.7 Pb 70 400 181~431 Zn 200 - 465~778 Cu 50 - 28.3~65.0 As 40 200 20.6~32.1 Ni 60 - 26.0~45.9 注:“-”表示国家标准中未给出该元素限制值。 本研究中所采集的土壤与农用地标准相比(图 6),多种重金属元素存在累积情况。土壤样品除Cr、Ni、As含量均低于筛选值,没有污染风险外,其余重金属元素存在一定的污染风险。1件土壤的Cu含量超过了风险筛选值,为东矿东侧的样品B8926-2。所采集土壤的Zn含量普遍偏高,6件样品中有5件超过了风险筛选值,达到筛选值的2.33~3.89倍。5件样品Cd含量超出风险筛选值,其中4件超出管制值,达到管制值的1.15~1.49倍。采自矿区的5件样品Pb含量均超出风险筛选值,其中2件样品(东矿西、东矿北)超过管制值。综上,除采于矿区80km外的本巴台土壤,采于白云鄂博各矿体周边的土壤均存在不同程度的重金属富集现象,以Zn、Cd、Pb为主,受风力、降雨等自然搬运营力的影响,容易进一步影响周边土壤及水环境,对于主矿及东矿的矿业及农牧业活动值得进一步关注。
4. 结论
本文采用ICP-MS方法对白云鄂博矿区不同区域及周边的岩石—土壤—植物—牛粪样品开展稀土元素及重金属元素含量分布特征研究,研究结果表明土壤、植物、牛粪、岩石样品的稀土配分模式均显示出轻稀土富集、重稀土亏损的特征,矿区土壤和植物中含量最高的稀土元素均为Ce,质量分数分别达到49.95%及48.55%,与白云鄂博矿富集轻稀土Ce的特征一致。植物中稀土元素含量受矿区不同矿体含矿性控制,不同区域铁花植物稀土元素含量顺序为:主矿>东矿>东介勒格勒,与三个矿体含矿性强弱顺序一致。白云鄂博矿区主矿体和东矿体附近土壤存在一定程度的Zn、Cd、Pb累积,且部分地区Cd、Pb存在超出管制值的现象。
本研究取得的结果为矿区环境调查提供了基础数据。铁花植物的稀土含量对矿体稀土含矿性反映较好,可以考虑继续开展植物研究以总结含矿地区植物的稀土异常。此外,考虑到矿区土壤存在一定程度的Zn、Cd、Pb累积,须适度加强对矿区矿业活动及其附近农牧业活动的关注。
-
-
邢秀娟, 柳益群, 樊爱萍. 鄂尔多斯盆地店头地区砂岩型铀矿成因初步探讨[J]. 中国地质, 2006, 33(3): 591-597. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200603015.htm Xing X J, Liu Y Q, Fan A P. Genesis of sandstone-type uranium deposits: A case study in the Diantou Area of the Ordos Basin[J]. Geology in China, 2006, 33(3): 591-597. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200603015.htm
吴仁贵, 祝民强, 余达淦, 等. 沉积体系分析与底河道型砂岩铀矿成矿条件讨论: 以鄂尔多斯中生代盆地北部东胜地区为例[J]. 矿床地质, 2002, 21(A1): 878-880. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2002S1233.htm Wu R G, Zhu M Q, Yu D G, et al. Analyses of depositional system and studies on metallogenic condition of basal-channel sandstone uranium deposit[J]. Mineral Deposits, 2002, 21(A1): 878-880. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ2002S1233.htm
陈路路, 冯晓曦, 司马献章, 等. 鄂尔多斯盆地纳岭沟地区铀矿物赋存形式研究及其地质意义[J]. 地质与勘探, 2017, 53(4): 632-642. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201704003.htm Chen L L, Feng X X, Sima X Z, et al. Occurrence forms of the uranium minerals in the Nalinggou Area of the Ordos Basin and geological implications[J]. Geology and Exploration, 2017, 53(4): 632-642. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201704003.htm
李泽明, 李占春, 张振强, 等. 河北青龙县四三三铀矿田围岩蚀变岩石学特征研究[J]. 东华理工大学学报(自然科学版), 2020, 43(1): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ202001006.htm Li Z M, Li Z C, Zhang Z Q, et al. Petrological features of rock alternation in No. 433 uranium orefield in Qinglong County of Hebei Province[J]. Journal of East China University of Technology, 2020, 43(1): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-HDDZ202001006.htm
高飞, 庞雅庆, 赵琳, 等. 诸广长江地区花岗岩型铀矿铀矿物赋存状态研究[J]. 铀矿地质, 2015, 31(A1): 330-335. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-EGVD201503001025.htm Gao F, Pang Y Q, Zhao L, et al. Study on occurrence of uranium mineral in Changjiang granite-type uranium deposits of Zhuguang[J]. Uranium Geology, 2015, 31(A1): 330-335. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-EGVD201503001025.htm
温利刚, 曾普胜, 詹秀春, 等. 矿物表征自动定量分析系统(AMICS)技术在稀土稀有矿物鉴定中的应用[J]. 岩矿测试, 2018, 37(2): 121-129. doi: 10.15898/j.cnki.11-2131/td.2015.05.003 Wen L G, Zeng P S, Zhan X C, et al. Application of the automated mineral identification and characterization system (AMICS) in the identification of rare earth and rare minerals[J]. Rock and Mineral Analysis, 2018, 37(2): 121-129. doi: 10.15898/j.cnki.11-2131/td.2015.05.003
方明山, 王明燕. AMICS在铜矿伴生金银综合回收中的应用[J]. 矿冶, 2018(3): 104-108. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ201803023.htm Fang M S, Wang M Y. Application of AMICS in comprehensive recovery of associated gold and silver in a copper ore[J]. Mining & Metallurgy, 2018(3): 104-108. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ201803023.htm
李波, 梁冬云, 张莉莉, 等. 自动矿物分析系统的统计误差分析[J]. 矿冶, 2018, 27(4): 120-123. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ201804025.htm Li B, Liang D Y, Zhang L L, et al. The statistical deviation analysis of automatic process mineralogy analysis system[J]. Mining & Metallurgy, 2018, 27(4): 120-123. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ201804025.htm
王明燕, 肖仪武, 祁小军. 刚果(金)某氧化铜钴矿工艺矿物学特性及对浸出工艺的影响[J]. 矿产保护与利用, 2020(1): 118-123. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH202001018.htm Wang M Y, Xiao Y W, Qi X J. Process mineralogy and its influence on metallurgy technology of a copper-cobalt oxidized ore in Congo (DRC)[J]. Conservation and Utilization of Mineral Resources, 2020(1): 118-123. https://www.cnki.com.cn/Article/CJFDTOTAL-KCBH202001018.htm
狄永强. 试论鄂尔多斯北部中新生代盆地砂岩型铀矿找矿前景[J]. 铀矿地质, 2001, 18(6): 340-347. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ200206003.htm Di Y Q. Preliminary discussion on prospecting potential for sandstone-type uranium deposits in Meso-Cenozoic basins, northern Ordos[J]. Uranium Geology, 2001, 18(6): 340-347. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ200206003.htm
Jin R S, Miao P S, Sima X Z, et al. Structure styles of mesozoic-cenozoic U-bearing rock series in northern China[J]. Acta Geologica Sinica (English Edition), 2016, 90(6): 2104-2116. doi: 10.1111/1755-6724.13025
杨晓勇, 罗贤冬, 凌明星, 等. 鄂尔多斯盆地砂岩型铀矿床地球化学特征及其地质意义[J]. 地质论评, 2008, 54(4): 539-549. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200804018.htm Yang X Y, Luo X D, Ling M X, et al. Geochemical features of sandstone-type uranium deposits in the Ordos Basin and their geological significances[J]. Geological Review, 2008, 54(4): 539-549. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200804018.htm
苗培森, 李建国, 汤超, 等. 中国北方中新生代盆地深部砂岩铀矿成矿条件与找矿方向[J]. 地质通报, 2017, 36(10): 1830-1840. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201710014.htm Miao P S, Li J G, Tang C, et al. Metallogenic condition and prospecting orientation for deep sandstone-hosted uranium deposits in Mesozoic-Cenozoic basins of North China[J]. Geological Bulletin of China, 2017, 36(10): 1830-1840. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201710014.htm
杨晓勇, 凌明星, 赖小东. 鄂尔多斯盆地东胜地区地浸砂岩型铀矿成矿模型[J]. 地学前缘, 2009, 16(2): 239-249. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200902023.htm Yang X Y, Ling M X, Lai X D. Metallogenic model of the Dongsheng in-situ leaching sandstone-type uranium deposit in the Ordos Basin[J]. Earth Science Frontiers, 2009, 16(2): 239-249. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200902023.htm
Wang Z T, Zhou H R, Wang X L, et al. Characteristics of the crystalline basement beneath the Ordos Basin: Constraint from aeromagnetic data[J]. Geoscience Frontiers, 2015, 6: 465-475. doi: 10.1016/j.gsf.2014.02.004
Yang M H, Li L, Zhou J, et al. Segmentation and inversion of the Hangjinqi fault zone, the northern Ordos Basin (North China)[J]. Journal of Asian Earth Sciences, 2013, 70(71): 64-78. http://www.sciencedirect.com/science/article/pii/S1367912013001594
Cai Y Q, Zhang J D, Li Z Y, et al. Outline of uranium resources characteristics and metallogenetic regularity in China[J]. Acta Geologica Sinica(English Edition), 2015, 89(3): 918-937. doi: 10.1111/1755-6724.12490
Bonnetti C, Cuney M, Bourlange S, et al. Primary uranium sources for sedimentary-hosted uranium deposits in NE China: Insight from basement igneous rocks of the Erlian Basin[J]. Mineralium Deposita, 2017, 52(3): 297-315. doi: 10.1007/s00126-016-0661-0
刘晓雪, 汤超, 司马献章, 等. 鄂尔多斯盆地东北部砂岩型铀矿常量元素地球化学特征及地质意义[J]. 地质调查与研究, 2016, 39(3): 169-176. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201603002.htm Liu X X, Tang C, Sima X Z, et al. Major elements geochemical characteristics of sandstone-type uranium deposit in north-east Ordos Basin and its geological implactions[J]. Geological Survey and Research, 2016, 39(3): 169-176. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201603002.htm
Zhang T F, Sun L X, Zhang Y, et al. Geochamical characteristics of the Jurassic Yan'an and Zhiluo Formations in the northern Margin of Ordos Basin and their paleoenvironmental implications[J]. Acta Geologica Sinica, 2016, 90(12): 3454-3472. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201612013.htm
Gallegos T J, Campbell K M, Zielinski R A. Persistent U(Ⅳ) and U(Ⅵ) following in-situ recovery (ISR) mining of a sandstone uranium deposit, Wyoming, USA[J]. Applied Geochemistry, 2015, 63: 222-234. doi: 10.1016/j.apgeochem.2015.08.017
刘波, 时志强, 彭云彪, 等. 中国北方兴蒙地区叠合盆地砂岩型铀成矿特征及勘查方法综述[J]. 地质与勘探, 2019, 55(6): 1343-1355. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201906001.htm Liu B, Shi Z Q, Peng Y B, et al. Review on metallogenic characteristics and exploration methods of sandstone-type uranium deposits in superimposed basins in the Xingmeng Area, northern China[J]. Geology and Exploration, 2019, 55(6): 1343-1355. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201906001.htm
Strakhovenko V D, Gas'kova O L. Thermodynamic model of formation of carbonates and uranium mineral phases in lakes Namshi-Nur and Tsagan-Tyrm (Cisbaikalia)[J]. Russia Geology and Geophysics, 2018, 59(4): 374-385. doi: 10.1016/j.rgg.2017.05.002
冯晓曦, 滕雪明, 何友宇. 初步探讨鄂尔多斯盆地东胜铀矿田成矿作用研究若干问题[J]. 地质调查与研究, 2019, 36(2): 96-103, 108. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201902003.htm Feng X X, Teng X X, He Y Y. Study on land subsidence assessment in evaluation of carrying capacity of geological environment[J]. Geological Survey and Research, 2019, 36(2): 96-103, 108. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ201902003.htm
肖志斌, 耿建珍, 涂家润, 等. 砂岩型铀矿微区原位U-Pb同位素定年技术方法研究[J]. 岩矿测试, 2020, 39(2): 262-273. doi: 10.15898/j.cnki.11-2131/td.2015.05.003 Xiao Z B, Geng J Z, Tu J R, et al. In situ U-Pb isotope dating techniques for sandstone-type uranium deposits[J]. Rock and Mineral Analysis, 2020, 39(2): 262-273. doi: 10.15898/j.cnki.11-2131/td.2015.05.003
Xia Y L, Zhang C E. Evolutionary characteristics of the U-Pb isotopic system in a certain uranium deposit in North Guangdong-A discussion on the model for its genesis[J]. Geochemistry (English Language Edition), 1985, 4(3): 257-267. http://www.ixueshu.com/document/c2f1afb362c2fdeda8eff8218c762877318947a18e7f9386.html
肖志斌, 张然, 叶丽娟, 等. 沥青铀矿(GBW04420)的微区原位U-Pb定年分析[J]. 地质调查与研究, 2020, 43(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202001001.htm Xiao Z B, Zhang R, Ye L J, et al. In-situ U-Pb dating of pitchblende (GBW04420)[J]. Geological Survey and Research, 2020, 43(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-QHWJ202001001.htm
Jin R S, Yu R A, Yang J, et al. Paleo-environmental constraints on uranium mineralization in the Ordos Basin: Evidence from the color zoning of U-bearing rock series[J]. Ore Geology Reviews, 2019(104): 175-189. http://www.sciencedirect.com/science/article/pii/s0169136818302993
李子颖, 秦明宽, 蔡煜琦, 等. 鄂尔多斯盆地砂岩型铀矿成矿作用和前景分析[J]. 铀矿地质, 2020, 36(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ202001001.htm Li Z Y, Qin M K, Cai Y Q, et al. Metalllogenic models and prospective analysis of sandstone-type uranium deposits in Ordos Basin[J]. Uranium Geology, 2020, 36(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ202001001.htm
谢惠丽, 焦养泉, 刘章月, 等. 鄂尔多斯盆地北部铀矿床铀矿物赋存状态及富集机理[J]. 地球科学, 2020, 45(5): 1531-1543. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202005005.htm Xie H L, Jiao Y Q, Liu Z Y, et al. Occurrence and enrichment mechanism of uranium ore minerals from sandstone-type uranium deposit, northern Ordos Basin[J]. Earth Science, 2020, 45(5): 1531-1543. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202005005.htm
朱强, 俞礽安, 李建国, 等. 鄂尔多斯盆地东北部塔然高勒地区还原介质对砂岩型铀矿的控制[J]. 煤田地质与勘探, 2018, 46(6): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201806002.htm Zhu Q, Yu N A, Li J G, et al. Control of reducing medium on uranium deposit of sandstone in Tarangaole Area, northeastern Ordos Basin[J]. Coal Geology & Exploration, 2018, 46(6): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT201806002.htm
Miao P S, Jin R S, Li J G, et al. The first discovery of a large sandstone-type uranium deposit in Aeolian depositional environment[J]. Acta Geologica Sinica (English Edition), 2020, 94(2): 583-584. doi: 10.1111/1755-6724.14518
汤超, 魏佳林, 肖鹏, 等. 松辽盆地北部砂岩型铀矿铀的赋存状态研究[J]. 矿产与地质, 2017, 31(6): 1009-1016. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD201706001.htm Tang C, Wei J L, Xiao P, et al. Research on uranium occurrence state of sandstone-type uranium deposit in the northern Songliao Basin[J]. Mineral Resources and Geology, 2017, 31(6): 1009-1016. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD201706001.htm
马强, 冯志刚, 孙静, 等. 新疆某地浸砂岩型铀矿中铀赋存形态的研究[J]. 岩矿测试, 2012, 31(3): 501-506. doi: 10.15898/j.cnki.11-2131/td.2015.05.003 Ma Q, Feng Z G, Sun J, et al. Study on chemical speciation of uranium in samples from in-situ leaching sandstone-type uranium deposit in Xinjiang[J]. Rock and Mineral Analysis, 2012, 31(3): 501-506. doi: 10.15898/j.cnki.11-2131/td.2015.05.003
闵茂中, 吴燕玉, 张文兰, 等. 铀石-沥青铀矿稠密韵律生长环带及其成因意义[J]. 矿物学报, 1999, 19(1): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB199901002.htm Min M Z, Wu Y Y, Zhang W L, et al. A densely zoned rhythmically intergrowth of coffinite and pitchblende and its genetic significance[J]. Acta Mineralogica Sinica, 1999, 19(1): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB199901002.htm
张莉娟, 安树清, 徐铁民, 等. 鄂尔多斯砂岩型铀矿床中灰绿色砂岩还原能力影响因素研究[J]. 岩矿测试, 2018, 37(4): 396-403. doi: 10.15898/j.cnki.11-2131/td.2015.05.003 Zhang L J, An S Q, Xu T M, et al. Study on influcing factors for reduction capacity of gray-green sandstone in Ordos sandstone-type uranium deposits[J]. Rock and Mineral Analysis, 2018(4): 396-403. doi: 10.15898/j.cnki.11-2131/td.2015.05.003
张成江, 王德荫, 傅永全. 铀矿物学[M]. 北京: 原子能出版社, 2007. Zhang C J, Wang D Y, Fu Y Q. Uranium mineralogy[M]. Beijing: Atomic Energy Press, 2007.
王濮. 系统矿物学[M]. 北京: 地质出版社, 1987. Wang P. Systematic mineralogy[M]. Beijing.Geological Publishing House, 1987.
刘青宪. 铀矿物学[M]. 哈尔滨: 哈尔滨工程大学出版社, 2016. Liu Q X. Uranium mineralogy[M]. Harbin: Harbin Engineering University Press, 2016.
段晓华, 张君弟. 鄂尔多斯盆地西南缘砂岩型铀矿赋矿地层及矿化特征[J]. 铀矿地质, 2019, 35(2): 88-94. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ201902005.htm Duan X H, Zhang J D. Stratigraphy and mineralization feature of ore-bearing layer for sandstone-type uranium deposit in the southwestern margin of Ordos Basin[J]. Uranium Geology, 2019, 35(2): 88-94. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ201902005.htm
李伟涛, 李子颖, 李西得, 等. 二连盆地哈达图砂岩型铀矿铀的赋存状态研究[J]. 铀矿地质, 2020, 36(1): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ202001003.htm Li W T, Li Z Y, Li X D, et al. Study on uranium occurring state in Hadatu sandstone-type uranium deposit in Erlian Basin[J]. Uranium Geology, 2020, 36(1): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ202001003.htm
魏佳林, 汤超, 金若时, 等. 松辽盆地北部龙虎泡地区铁钛氧化物与砂岩型铀矿化关系探讨[J]. 岩石矿物学杂志, 2019, 38(3): 375-389. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201903007.htm Wei J L, Tang C, Jin R S, et al. A study of the relationship between the Fe-Ti oxide and sandstone-hosted uranium mineralization in Longhupao Area, northern Songliao Basin[J]. Acta Petrologica et Mineralogica, 2019, 38(3): 375-389. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201903007.htm
葛祥坤, 范光, 汪波, 等. 自动矿物分析仪用于砂岩型铀矿床矿物组成的定量分析[M]//中国核科学技术进展报告(第五卷), 2017: 586-591. Ge X K, Fan G, Wang B, et al.Mineral quantitative analysis of sandstone-type uranium ores by automatic mineral quantitative identification system[M]//Progress Report on China Nuclear Science & Technology (Vol.5), 2017: 586-591.
-
期刊类型引用(1)
1. 李欣尉,李超,周利敏,赵鸿. 贵州正安县奥陶系—志留系界线碳质泥岩Re-Os同位素精确厘定及其古环境反演. 岩矿测试. 2020(02): 251-261 . 本站查看
其他类型引用(1)