The Control Mode of Extraction Temperature for Water-soluble Fluorine in Soils Measurement by Selective Electrode Method
-
摘要: 采用超声提取法对样品进行预处理,利用离子选择电极法测定土壤中的水溶性氟,超声空化热效应会造成提取液温度升高,检测结果不稳定,不能如实反映土壤中水溶性氟含量,对土壤环境中氟的监测造成困扰。因此,选择有效的控制提取液温度方式至关重要。本文通过记录直接超声、加冰袋、加冰水、冷却循环水四种温度控制方式提取液温度变化确定出最佳温度控制方式;选取具有稳定性和代表性的土壤有效态成分分析标准物质测定土壤水溶性氟含量,以验证最佳温度控制方式的合理性和有效性;同时分析了提取过程中提取液pH值变化,探讨温度对土壤中水溶性氟提取量影响的原因。结果表明:冷却循环水温度控制方式可有效将提取液温度控制在25±2℃内,该方式的相对误差(8.9%)明显小于直接超声(14.1%);提取液pH值无明显变化,测定结果稳定可靠。要点
(1) 超声清洗器外接冷却循环水装置有效控制超声提取液温度。
(2) 选取有证标准物质验证超声提取温度控制的必要性。
(3) 通过分析提取液pH值变化探究温度影响土壤水溶性氟提取量的原因。
HIGHLIGHTS(1) The temperature of ultrasonic extraction liquid was effectively controlled by an ultrasonic cleaner connected to a cooling circulating water device.
(2) Certified standard substances were selected to verify the necessity of the control of ultrasonic extraction temperature.
(3) The reason why temperature affected the extraction amount of water-soluble fluorine in soil was analyzed through the change of pH value of the extraction liquid.
Abstract:BACKGROUNDThe water-soluble fluoride in soil was pretreated by ultrasonic extraction and determined by ion selective electrode. The thermal effect of ultrasonic cavitation can cause the temperature of the extract to rise, and the test result may be unstable, and it cannot truthfully reflect the water-soluble fluorine content in the soil, which causes problems for the monitoring of fluorine in the soil environment. Therefore, how to effectively control the extraction temperature is the focus of this study.OBJECTIVESTo select the optimal temperature control method, verify the accuracy of the results, and preliminarily discuss the inevitability of temperature control.METHODSIn order to select the optimal temperature control method, the temperature change of the extraction liquid during the extraction using four temperature control methods was recorded: direct ultrasound, adding ice pack, adding ice water and cooling circulating water. In order to verify its reasonableness and validity, the applicable and representative soil active state component analysis standard material was selected as the experimental sample to determine the soil water-soluble fluorine content. To investigate the effect of temperature on the amount of water-soluble fluoride extracted from soil, the pH value of the extracted liquid was determined during the extraction process.RESULTSThe results showed that the cooling circulating water temperature control method could effectively control the extraction temperature within 25±2℃. The relative error (8.9%) was significantly less than that of direct ultrasound method (14.1%). The pH value of the extract liquid did not change significantly, and the determination results were stable and reliable.CONCLUSIONSThe temperature control method by cooling circulating water has the advantages of low cost, simple operation, accurate and reliable results, suitable for batch sample treatment, and can be widely used in soil environmental fluorine monitoring. -
稀土资源在国民经济多种领域中发挥着不可替代的作用,随之其开采利用造成的环境影响也得到了高度关注。国外较有名的Mountain Pass稀土矿和Mount Weld稀土矿目前暂无环境研究成果可参考,仅有少数与其他稀土矿山相关的环境研究结果见于报道。如对马来西亚Kinta Valley前锡矿(伴生稀土资源)的水体及水系沉积物的稀土元素含量水平研究表明,与当地河水相比,受此前矿业活动影响的湖水和湖底沉积物稀土元素含量明显偏高,且向周围环境中扩散的可能性极高[1]。一项在越南Laichau的Namxe稀土矿开展的大气、水、土壤和植物多介质放射性污染研究结果表明,大部分土壤和植物存在放射性且造成了健康风险,放射性存在的区带与矿山的稀土富集带对应[2]。此外,国外也有较多对植物-土壤中稀土元素含量的研究,如对土壤-植物、植物不同部位、不同植物之间稀土分布模式异同的探讨及规律总结[3];或出于鉴定葡萄酒产地真伪的目的,分析地域性土壤-葡萄稀土配分模式差异[4];或结合废弃锡矿区(伴生稀土资源)土壤-植物多部位稀土元素分析结果,发现超累积植物并探讨植物修复的可能性[5]。
中国稀土矿山规模大且分布广,已报道了大量关于稀土矿山稀土及重金属污染的研究成果[6-10]。白云鄂博是世界最大的稀土矿山,已有多年开采历史,研究表明其尾矿对周边环境造成了耕地退化、粮食减产绝产、牲畜死亡等多种潜在环境威胁[11-13]。已知部分稀土元素对生物有抑制生长及毒害作用[14-15],而白云鄂博矿区周边土壤、空气,甚至是人发、尿液中的稀土元素含量都远高于地壳及其他地区相应样品的稀土背景值[16-19],尽管目前没有报道显示人群出现与稀土过量相关的疾病,但这些环境介质中的高稀土含量仍应当引起重视。此外,环境中的重金属含量长期达到一定剂量也会对生物体产生毒害作用[20]。一项研究指出白云鄂博矿区人群与对照组人群相比,晨尿样本中含有更高的重金属含量,且重金属含量随稀土元素含量增长而升高[19],因此白云矿山及周边的重金属污染也值得进一步关注。白云鄂博矿区矿业活动仍在进行并将持续开展,考虑到稀土开发的环境成本是影响稀土价格的一个重要因素[21],对矿山土壤、植物中的稀土及重金属元素含量进行调查很有必要,对于探明稀土矿区稀土及重金属污染意义重大。基于以上目的,近年来一些学者对白云鄂博矿区大气[16, 22-23]、土壤[17, 24]、植物[6]已开展稀土或重金属元素含量的研究。例如,张立锋等[6]研究了白云鄂博东矿坑50m 100m范围内铁花、沙蒿、沙打旺、沙朋、青蒿、小叶杨、猪毛菜七种植物根、茎、叶及整株不同季节稀土元素含量变化规律,发现七种植物稀土含量基本不受季节影响,其中铁花为稀土总量最高者(1023.25mg/kg),大部分植物最富集稀土的部位是叶或花。王哲等[25]对白云鄂博矿区11种优势植物开展了重金属及稀土元素含量水平研究,以筛选适合的重金属及稀土修复植物,发现稀土含量最高者(9888.64mg/kg)为风毛菊的地上部。除此之外,前人对白云矿区草本植物稀土含量特征的研究并不多,已有研究获得的结果差异较大,且重点关注的是不同植物或植物不同部位的稀土含量差异。白云鄂博主矿、东矿、东介勒格勒等矿体含矿性差异很大,现有研究尚缺乏对白云鄂博多处主要矿段的植物稀土含量的空间对比,因此不同区域植物的稀土含量是否有差异值得研究。
基于以上现实问题考虑,本文分别采集了白云鄂博主矿、东矿、东介勒格勒的铁花植株及对应的土壤样品,以及背景区本巴台的土壤、岩石、牛粪样品,采用电感耦合等离子体质谱法(ICP-MS)对主要矿段的土壤、植物稀土及重金属元素含量开展了对比研究,拟为矿区环境调查提供基础数据。
1. 研究区概况
白云鄂博矿区是世界上最大的铁、铌、稀土复合矿山[26-27]。矿区稀土资源的开采利用始于20世纪50年代,为露天开采作业,如今已经形成以资源开采、冶炼为主的工业模式[3]。白云鄂博蕴藏的稀土资源占世界已探明稀土资源总量的38%以上[18],处于世界第一位,铌和钍资源居世界第二位。矿区东西长为16~18km,南北宽2~3km,面积48km2,为一个狭长的稀土、铁、铌矿化带[27]。白云鄂博是典型的轻稀土矿床,其稀土资源以Ce为主,La、Ce、Nd氧化物含量占稀土氧化物总量的88.5%到92.4%[28]。稀土资源主要分布在矿区的主矿体、东矿体、西矿体三个铁矿体、东部接触带、东矿下盘白云岩中,稀土矿体围岩主要为云母岩、石英岩、长石板岩、云母板岩、碳质板岩等[26]。矿区内主矿矿化最为强烈,东矿次之,西矿及东介勒格勒有较大的远景储量,但目前暂时无法加以利用[29]。
2. 实验部分
2.1 样品采集及处理
2019年8月19日至8月31日,项目组在内蒙古白云鄂博稀土矿区及周边选取11个采样点位,共采集17件植物、土壤、岩石及牛粪样品。其中本巴台为白云鄂博主矿区西边80km处一个伟晶岩群(可视为背景区域),东介勒格勒为位于东矿南侧的1km处的一个小矿体。沿主矿及东矿采集植物样品9件,包括:8件铁花样品(编号B8919、B8920、B8921-1、B8922-1、B8924-1、B8925-1、B8926-1、B8929),1件风毛菊样品(编号B8918);以及与植物配套的根系土壤样品5件(编号B8921-2、B8922-2、B8924-2、B8925-2、B8926-2)。于本巴台采集原生晕岩石样品1件(编号B8915),次生晕土壤样品1件(编号B8916-1),牛粪样品1件(编号B8916-2)。矿区采样点分布图如图 1所示,采样记录具体见表 1。
图 1 白云鄂博主矿区采样点分布图(据柯昌辉等[30])1—第四系;2—白垩系固阳组;3—长城系尖山组;4—长城系都拉哈拉组;5—新太古界乌拉山群;6—二叠纪二长花岗岩;7—黑云母花岗闪长岩;8—中元古代白云石碳酸岩;9—花岗岩脉;10—石英斑岩脉;11—闪长岩/闪长玢岩脉;12—碳酸岩脉;13—碱性岩脉;14—钠角闪石岩脉;15—钠辉石钠角闪石碱性岩脉;16—铁矿化体;17—低品位铁矿化带;18—矿区采样点及编号。
本巴台采样点B8915及B8916距离主矿区80km,未在图中显示。Figure 1. Map of sampling sites in main mining area of Bayan Obo (According to Ke, et al[30])表 1 白云鄂博矿区各类型样品稀土元素和重金属含量测试结果Table 1. Contents of rare earth elements and heavy metals of samples collected from Bayan Obo mining area样品编号 样品类型 采样位置 矿区稀土元素含量(mg/kg) La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y B8915 岩石 本巴台 7.3 8.21 1.27 4.47 0.78 0.07 0.58 0.1 0.62 0.13 0.39 0.07 0.52 0.08 3.71 B8916-1 土壤 本巴台(距白云鄂博矿区约80km) 83.4 153 17.5 63.6 9.45 1.76 6.48 1 5.84 1.13 3.31 0.47 3.26 0.49 32.7 B8916-2 牛粪 本巴台(距白云鄂博矿区约80km) 18.8 35 3.74 13.5 1.98 0.35 1.16 0.17 0.96 0.18 0.47 0.06 0.42 0.06 5.84 B8918 风毛菊 高磁异常区 387 703 70.5 238 23.2 4.55 8.52 0.77 2.73 0.36 0.58 0.05 0.31 ND 10.1 B8919 铁花 主矿南侧板岩 425 783 79.6 267 27 5.03 9.61 0.9 3.31 0.44 0.76 0.07 0.37 ND 11.7 B8920 铁花 主矿1626平台北侧 651 1163 118 397 38.8 7.31 13.7 1.25 4.43 0.6 0.96 0.08 0.50 0.05 15.4 B8921-1 铁花 主矿北侧 695 1174 112 360 34.1 6.35 12.2 1.17 4.19 0.55 0.88 0.08 0.45 ND 13.8 B8921-2 土壤 主矿北侧 9039 15368 1383 4358 402 77.2 132 14.9 53.5 6.75 11.4 0.93 5.56 0.61 141 B8922-1 铁花 主矿北侧 380 652 64.5 216 20.2 3.85 8.18 0.72 2.57 0.35 0.59 0.05 0.30 ND 8.55 B8922-2 土壤 主矿北侧 7188 12992 1198 3773 365 70.3 138 13.9 48.6 6.16 11.5 0.88 5.26 0.59 135 B8924-1 铁花 东矿西侧 553 1009 100 327 32.6 6.07 12.1 1.15 4.01 0.52 0.96 0.07 0.42 ND 12.3 B8924-2 土壤 东矿西侧 8880 16851 1608 5175 503 92.4 168 17.2 59 7.57 13.3 1.02 6.10 0.67 155 B8925-1 铁花 东矿北侧 569 1025 102 338 32.7 6.06 12.2 1.14 3.98 0.54 0.95 0.07 0.43 ND 12.7 B8925-2 土壤 东矿北侧 9044 17174 1622 5247 519 95.3 150 18.4 62.3 7.85 15.1 1.05 6.26 0.68 165 B8926-1 铁花 东矿东侧 416 746 75.5 250 23.8 4.44 9.36 0.82 2.89 0.39 0.61 0.05 0.29 ND 10 B8926-2 土壤 东矿东侧 4689 8856 870 2876 286 54.5 108 10.8 39.6 5.35 9.53 0.86 4.92 0.56 116 B8929 铁花 东介勒格勒 430 761 75 240 23.4 4.3 8.79 0.82 2.79 0.36 0.70 ND 0.30 ND 8.96 样品编号 样品类型 采样位置 矿区稀土元素总量(mg/kg) ΣLREE/ ΣHREE 矿区重金属元素含量(mg/kg) ΣREE ΣLREE ΣHREE Cr Mn Ni Cu Zn Cd Pb As 重金属总量 B8915 岩石 本巴台 28.30 22.1 6.2 3.56 170 123 65.5 12.6 6.18 0.06 55.8 0.91 481.95 B8916-1 土壤 本巴台(距白云鄂博矿区约80km) 383.39 328.71 54.68 6.01 71.3 743 35.7 29.8 87.4 0.15 21.7 12.7 1720.75 B8916-2 牛粪 本巴台(距白云鄂博矿区约80km) 82.69 73.37 9.32 7.87 15.4 277 7.09 16.9 53.8 0.26 5.38 2.97 520.80 B8918 风毛菊 高磁异常区 1449.67 1426.25 23.42 60.9 5.68 447 3.41 12.7 122 0.29 23.1 3.70 1579.88 B8919 铁花 主矿南侧板岩 1613.79 1586.63 27.16 58.42 5.34 579 5.05 12.6 146 0.49 32.4 4.75 1866.63 B8920 铁花 主矿1626平台北侧 2412.08 2375.11 36.97 64.24 7.46 705 5.08 11 137 0.43 32.2 3.57 2407.74 B8921-1 铁花 主矿北侧 2414.77 2381.45 33.32 71.47 6.44 548 3.4 8.64 70.9 0.21 19.5 2.72 2080.81 B8921-2 土壤 主矿北侧 30993.85 30627.2 366.65 83.53 54.3 6194 26 28.3 465 1.81 181 26.6 23807.01 B8922-1 铁花 主矿北侧 1357.86 1336.55 21.31 62.72 2.77 326 2.14 7.04 64.6 0.21 14.8 2.08 1388.64 B8922-2 土壤 主矿北侧 25946.19 25586.3 359.89 71.09 38.1 5297 26.6 32.6 583 1.73 202 28.9 24340.93 B8924-1 铁花 东矿西侧 2059.2 2027.67 31.53 64.31 4.3 732 3.57 8.37 102 0.29 45 2.80 2299.33 B8924-2 土壤 东矿西侧 33537.26 33109.4 427.86 77.38 40.4 9774 29.1 48.5 749 2.23 431 31.3 28893.53 B8925-1 铁花 东矿北侧 2104.77 2072.76 32.01 64.75 4.24 631 3.2 7.31 75.2 0.19 32 2.38 2282.52 B8925-2 土壤 东矿北侧 34127.94 33701.3 426.64 78.99 39.5 9454 29.2 37.7 778 2.21 420 32.1 31107.71 B8926-1 铁花 东矿东侧 1540.15 1515.74 24.41 62.1 5.05 439 3.82 7.12 71.3 0.14 23.6 1.37 1877.40 B8926-2 土壤 东矿东侧 17927.12 17631.5 295.62 59.64 58.7 5062 45.9 65 602 1.35 221 20.6 22317.55 B8929 铁花 东介勒格勒 1556.42 1533.7 22.72 67.5 2.98 380 2.34 5.22 51.2 0.09 18.9 1.58 1573.31 注:ND代表低于检出限(0.05mg/kg),未检出。 植物样品使用预先清洁过的陶瓷剪刀将地上部分整株采集,带回实验室于烘箱中65℃烘干72h。完全干燥后使用Grinder GT200陶瓷振动球磨仪将植株样品粉碎,收集5g以上样品粉末用于测试稀土及重金属元素含量。
土壤样品使用预先清洁过的塑料铲子采集于一次性密实袋中,须于野外完全风干,带回实验室后过200目筛,收集土壤粉末5g以上用于测试稀土及重金属元素含量。
岩石样品与牛粪样品均于野外直接采集,其中岩石样品使用陶瓷震动球磨仪粉碎为待测粉末,牛粪样品须烘干72h(同植物样品)后粉碎待测。
2.2 样品测试
所有粉末样品送至国家地质实验测试中心采用电感耦合等离子体质谱仪(PE300Q,美国PerkinElmer公司)进行稀土元素(如La、Ce、Eu、Gd、Tb、Lu、Y等)及重金属元素(如Cr、Mn、Cu、Zn、Cd、Pb、As等)含量测试。上机测试前,样品的处理过程如下:称取岩石及土壤样品0.05g,置于聚四氟乙烯罐中用于封闭熔样,加入2mL氢氟酸、1mL 7.5mol/L硝酸,盖上上盖,入钢套封闭,190℃保温30h。冷却后取出内罐,在电热板上170℃蒸发至干。加入0.5mL硝酸二次蒸干,此步骤重复两次。加入5mL 7.5mol/L硝酸,将样品罐装入钢套中封闭150℃保温3h,冷却后将其内的溶液转移至50mL容量瓶中并用超纯水定容至刻度。植物和牛粪样品称取0.1g,加入1.5mL硝酸微热预消解一夜,放入聚四氟乙烯内罐中加入1mL双氧水加钢套熔样24h,冷却后使用超纯水定容至25mL。上述溶液即为ICP-MS测试用。方法依据为《硅酸盐岩岩石化学分析方法第30部分: 44个元素量测定》(GB/T 14506.30—2010),精密度(RSD)低于2%~10%,检出限为0.05×10-6。
测试过程中通过测定国家一级土壤成分分析标准物质进行质量监控,各元素测试结果与标准结果吻合。此外,使用重复样及密码样对所测样品进行质量监控,重复样品检测结果差值均小于5%,符合测试质量要求。
3. 结果与讨论
3.1 研究区岩石—土壤—植物—牛粪样品中稀土和重金属含量特征
3.1.1 研究区稀土和重金属含量测试结果
白云鄂博矿区采集的各类型样品的稀土及重金属含量测试结果及统计结果见表 1。白云矿区所采集土壤的稀土总量为17927.12~34127.94mg/kg,本巴台土壤稀土总量为383.39mg/kg。白云鄂博矿区土壤的稀土总量及ΣLREE/ΣHREE值均远高于本巴台土壤,说明白云鄂博成矿及土壤风化过程中,土壤稀土元素经历了强烈的分馏,轻稀土得到显著的富集。植物的稀土总量最高达到2414.77mg/kg,其中轻稀土总量为2381.45 mg/kg,为采于主矿北侧的一个铁花样品。前人对矿区各类型矿石研究结果显示,主矿现存9种类型矿石样品的稀土总量平均为44400mg/kg[31],东矿深部8种类型256件矿石样品的稀土总量平均为60700mg/kg[32],可知白云鄂博矿区内各类型样品的稀土总量高低关系为:矿石>土壤>植物。
白云鄂博矿区土壤样品的重金属总量(22317.55~31107.71mg/kg)为本巴台土壤重金属总量(1721mg/kg)的12.97~18.08倍。白云鄂博植物样品的重金属总量介于1388.64~2407.74mg/kg,于主矿所采集的一个铁花样品具有最高的重金属总量(2408mg/kg),风毛菊和铁花植物样品的总重金属含量无明显差异。白云鄂博主矿及东矿所采集的土壤的稀土及重金属含量均远高于本巴台土壤样品的相应含量,说明白云鄂博稀土矿在成矿过程中,土壤中的稀土和重金属元素都得到了富集。
本次仅在本巴台地区尝试性采集牛粪样品一件,其稀土含量与土壤、植物等相比处于较低水平。
3.1.2 与前人研究及其他矿区研究结果对比
张立锋等[6]于白云鄂博矿区采集七种植物,研究结果表明稀土含量最高者为铁花(整株),稀土总量为1023.25mg/kg。王哲等[25]在白云鄂博矿区采集11种植物的稀土总量变化范围是291.91~9888.64mg/kg,最高者为风毛菊的地上部分。本研究中所采集的风毛菊和铁花样品整株稀土总量(1357.86~2414.77mg/kg)高于张立锋等[6]在白云鄂博东矿采集的7种植物的稀土总量,低于王哲等[25]研究中的5种植物地上部分稀土总量,但高于其余6种植物地上部分稀土总量。此前,本文作者团队在甲基卡锂矿采集了康定小叶冬青植物样品,其地下部分和地上部分稀土总量分别变化于0.46~28.52mg/kg及0.57~17.3mg/kg,本次白云鄂博几种植物稀土含量均远高于甲基卡植物稀土含量,其中轻稀土元素含量与甲基卡植物对比差异更为明显,体现在:白云鄂博植物样品的各轻稀土含量达到甲基卡植物轻稀土含量的115~380倍(与甲基卡植物地下部分相比)和161~546倍(与甲基卡植物地上部分相比),重稀土元素含量则分别达到甲基卡地下部分及地上部分的6.84~52.11倍及9.27~78.27倍。另外,此前本文作者团队在贵州织金富稀土的磷矿采集的草本植物地下部分稀土总量为178.68mg/kg,相较甲基卡矿区植物要高,但仍低于本次白云鄂博所采集植物的各项稀土含量。上述对比说明植物中稀土元素含量对土壤中稀土元素含量水平的指示作用较强。
本项目课题组此前曾在川西甲基卡锂矿区试验性采集了数件牛粪样品,与此次在本巴台所采集样品对比发现两地区牛粪样品的稀土含量差异很大。本巴台牛粪样品的各项稀土元素含量均高于甲基卡锂矿区多件牛粪样品均值,且轻稀土元素富集更为明显,轻稀土元素含量达到甲基卡均值的1.90~4.25倍;反之,锂含量(8.33mg/kg)低于甲基卡牛粪样品锂含量均值(11.58mg/kg),该现象在一定程度上说明牛粪样品中的稀土元素及锂元素含量水平可以反映特定地区稀土元素及锂元素的富集情况。
3.2 土壤—植物系统稀土元素和重金属分布特征
多名学者研究了岩石—土壤—植物的稀土元素分布特征,发现岩石—土壤—植物具有一致的稀土元素含量模式[33-34]。此次工作中白云鄂博4种类型样品的稀土元素配分曲线(图 2a)显示,岩石、土壤、植物、牛粪的稀土元素配分模式相似,均显示出富集轻稀土、贫重稀土的特征,其中本巴台岩石样品有明显的Eu亏损特征。矿区各类样品均表现出相对富集轻稀土的特征,且含量最高的稀土元素均为Ce,与前人研究结果一致[10]。前人研究指出白云稀土矿中Ce含量最高,ΣCeO2超过95%,具有显著的富Ce低Y的特征[35]。本研究中土壤和植物中Ce平均质量分数分别为49.95%及48.55%,与该区前人研究结果较为相近[6]。土壤—植物重金属含量特征(图 2b)显示,两类样品重金属含量趋势相似,土壤—植物的元素继承性吸收特征明显。岩石和牛粪样品均采自本巴台,牛粪样品的Mn、Zn、Cu、As含量均几乎同等程度地低于岩石样品,Pb、Cr、Ni含量模式与岩石相似但是高于岩石样品(图 2b)。
白云鄂博矿区三处矿体矿化程度差别较大,含矿性强弱为:主矿体>东矿体>东介勒格勒小矿体,于三处矿体采集铁花植株,发现三处铁花稀土总量排序为:主矿体>东矿体>东介勒格勒,与三处矿体本身含矿性变化一致,说明铁花的稀土含量基本上受不同区域稀土含矿性控制(图 3)。
在5个采样点采集的土壤—植物样品的稀土元素和重金属元素含量特征显示(图 4中a和b),植物的稀土元素和重金属总量基本受土壤中相应元素含量的控制。植物的稀土元素及重金属元素含量均低于土壤,不同地点含量模式相似,说明植物对土壤中多种稀土元素和重金属元素的吸收与土壤中相应元素含量密切相关。
土壤样品的稀土总量和重金属总量呈显著正相关关系(图 5a),相关系数(R2)达到0.9191,植物样品此种关系相对较弱(图 5b),但也呈正相关关系,R2为0.7707。前人对白云鄂博矿区人群尿液的研究也发现此关系[23],说明矿区土壤、植物以及人体代谢物中的重金属含量与稀土含量有明显正相关关系。上述关系出现的原因可能是稀土成矿过程中的重金属元素也同时得到了富集,或者稀土矿区开采造成了周边环境重金属污染,稀土资源越富集,开采程度越高,重金属污染越严重。
3.3 土壤重金属含量与现行环境标准对比
中国2018年颁发的《土壤环境质量农用地土壤污染风险管控标准(试行)》(GB 15618—2018)中对农用地Cd、Cr、Pb、Zn、Cu、As、Ni等重金属含量有明确的要求,包括筛选值及管制值两种标准。若农用地土壤重金属含量低于筛选值,则由其引起的风险可忽略不计;当高于筛选值、低于或等于管制值,说明存在土壤污染风险,可能存在可食用农产品不符合食品质量标准的风险,应加强农用地及其农产品质量监测。若高于管制值,说明食用农产品有风险的可能性极高,应当采取禁止种植可食农产品、退耕还林等严格管制措施。白云鄂博矿区地处脆弱草原生态区,采取农用地质量标准中对大部分重金属较为严格的限值,即pH < 5.5的重金属筛选值,风险管制值不考虑土壤pH。该标准中给出的具体筛选值及管制值与本研究测试结果对比情况见表 2。
表 2 最新农用地土壤质量标准中土壤重金属筛选值及管制值与本研究土壤重金属含量对比Table 2. Comparison of latest threshold values of heavy metals from Chinese quality standards for agricultural land and heavy metals contents in soils in this study元素 筛选值(mg/kg) 管制值(mg/kg) 本研究土壤样品(mg/kg) Cd 0.3 1.5 1.35~2.23 Cr 150 800 38.1~58.7 Pb 70 400 181~431 Zn 200 - 465~778 Cu 50 - 28.3~65.0 As 40 200 20.6~32.1 Ni 60 - 26.0~45.9 注:“-”表示国家标准中未给出该元素限制值。 本研究中所采集的土壤与农用地标准相比(图 6),多种重金属元素存在累积情况。土壤样品除Cr、Ni、As含量均低于筛选值,没有污染风险外,其余重金属元素存在一定的污染风险。1件土壤的Cu含量超过了风险筛选值,为东矿东侧的样品B8926-2。所采集土壤的Zn含量普遍偏高,6件样品中有5件超过了风险筛选值,达到筛选值的2.33~3.89倍。5件样品Cd含量超出风险筛选值,其中4件超出管制值,达到管制值的1.15~1.49倍。采自矿区的5件样品Pb含量均超出风险筛选值,其中2件样品(东矿西、东矿北)超过管制值。综上,除采于矿区80km外的本巴台土壤,采于白云鄂博各矿体周边的土壤均存在不同程度的重金属富集现象,以Zn、Cd、Pb为主,受风力、降雨等自然搬运营力的影响,容易进一步影响周边土壤及水环境,对于主矿及东矿的矿业及农牧业活动值得进一步关注。
4. 结论
本文采用ICP-MS方法对白云鄂博矿区不同区域及周边的岩石—土壤—植物—牛粪样品开展稀土元素及重金属元素含量分布特征研究,研究结果表明土壤、植物、牛粪、岩石样品的稀土配分模式均显示出轻稀土富集、重稀土亏损的特征,矿区土壤和植物中含量最高的稀土元素均为Ce,质量分数分别达到49.95%及48.55%,与白云鄂博矿富集轻稀土Ce的特征一致。植物中稀土元素含量受矿区不同矿体含矿性控制,不同区域铁花植物稀土元素含量顺序为:主矿>东矿>东介勒格勒,与三个矿体含矿性强弱顺序一致。白云鄂博矿区主矿体和东矿体附近土壤存在一定程度的Zn、Cd、Pb累积,且部分地区Cd、Pb存在超出管制值的现象。
本研究取得的结果为矿区环境调查提供了基础数据。铁花植物的稀土含量对矿体稀土含矿性反映较好,可以考虑继续开展植物研究以总结含矿地区植物的稀土异常。此外,考虑到矿区土壤存在一定程度的Zn、Cd、Pb累积,须适度加强对矿区矿业活动及其附近农牧业活动的关注。
-
表 1 直接超声土壤中水溶性氟的测定
Table 1 Determination of water-soluble fluorine in soil by direct ultrasound method
样品 水溶性氟的分次测定值(mg/kg) 水溶性氟平均值(mg/kg) 相对误差(%) 1# 2# 3# 4# 5# 6# GBW07460 (陕西黄绵土) 9.4 9.9 8.9 9.0 9.5 10.0 9.4 14.1 样品一 14.6 13.6 12.5 13.1 11.2 9.6 12.4 - 样品二 5.7 6.3 4.7 6.8 4.3 5.2 5.5 - 表 2 循环冷却水温度控制方式土壤水溶性氟的测定
Table 2 Determination of water-soluble fluorine in soils by temperature control of cooling circulating water
样品 水溶性氟含量(mg/kg) 相对误差(%) 分次测定值 平均值 GBW07460 (陕西黄绵土) 7.7 7.9 7.9 8.3 7.8 7.6 7.9 8.9 样品一 8.4 8.6 8.1 8.9 8.3 9.1 8.6 - 样品二 4.0 3.5 3.8 3.7 4.1 3.6 3.8 - -
Zhang H M, Su B Y, Liu P H, et al. Experimental study of fluorine transport rules in unsaturated stratified soil[J]. Journal of China University of Mining & Technology, 2007, 17(3): 382-386. http://www.cnki.com.cn/Article/CJFDTotal-ZHKD200703019.htm
Li Y Y, Wang S L, Sun H L, et al. Immobilization of fluoride in the sediment of mine drainage stream using loess, northwest China[J]. Environmental Science and Pollution Research, 2020, 27: 6950-6959. doi: 10.1007/s11356-019-07433-8
崔俊学. 广东某地潮土和水稻土中氟形态转化及吸附研究[D]. 成都: 成都理工大学, 2010. Cui J X. Study on species transformation and adsorption of fluorine in fluro-aquic soil and paddy soil of the Guangdong[D]. Chengdu: Chengdu University of Technology, 2010.
王凌霞. 茶园土壤氟的形态分布特征及降低水溶态氟措施研究[D]. 武汉: 华中农业大学, 2011. Wang L X. Species of fluorine in tea garden soils and methodology of reducing soil water soluble fluorine content[D]. Wuhan: Huazhong Agricultural University, 2011.
桂建业, 韩占涛, 张向阳, 等. 土壤中氟的形态分析[J]. 岩矿测试, 2008, 27(4): 284-286. doi: 10.3969/j.issn.0254-5357.2008.04.010 Gui J Y, Han Z T, Zhang X Y, et al. Speciation analysis of fluorine in soil samples[J]. Rock and Mineral Analysis, 2008, 27(4): 284-286. doi: 10.3969/j.issn.0254-5357.2008.04.010
袁立竹, 王加宁, 马春阳, 等. 土壤氟形态与氟污染土壤修复[J]. 应用生态学报, 2019, 30(1): 10-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201901002.htm Yuan L Z, Wang J N, Ma C Y, et al. Fluorine speciation in soil and the remediation of fluorine contaminate soil[J]. Chinese Journal of Applied Ecology, 2019, 30(1): 10-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201901002.htm
李静, 谢正苗, 徐建明, 等. 我国氟的土壤健康质量指标及评价方法的初步探讨[J]. 浙江大学学报, 2005, 31(5): 593-597. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJNY200505015.htm Li J, Xie Z M, Xu J M, et al. Preliminary study on guideline on soil health quality index of fluorine and method of its evaluation in China[J]. Journal of Zhejiang University, 2005, 31(5): 593-597. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJNY200505015.htm
Li Y P, Wang S L, Nan Z R, et al. Accumulation, fractionation and health risk assessment of fluoride and heavy metals in soil-crop systems in northwest China[J]. Science of the Total Environment, 2019, 663: 307-314. doi: 10.1016/j.scitotenv.2019.01.257
梁秀娟, 方樟, 季超, 等. 高氟湖库底泥中氟的存在形态分析[J]. 吉林大学学报(地球科学版), 2010, 40(3): 651-656. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201003026.htm Liang X J, Fang Z, Ji C, et al. Analysis on the existing forms of fluorine in the bottom mud of high-fluorine lakes and reservoirs[J]. Journal of Jilin University (Earth Science Edition), 2010, 40(3): 651-656. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201003026.htm
王恒, 石慧, 徐师, 等. 超声提取-离子色谱法测定银精矿中水溶性氟[J]. 冶金分析, 2019, 39(4): 60-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201904010.htm Wang H, Shi H, Xu S, et al. Determination of water-soluble fluoride in silver concentrate by ion chromatography with ultrasonic extraction[J]. Metallurgical Analysis, 2019, 39(4): 60-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201904010.htm
胡松青, 李琳, 陈玲, 等. 功率超声作用下溶液温度变化的数学模拟[J]. 华南理工大学学报(自然科学版), 2007, 35(4): 58-61. doi: 10.3321/j.issn:1000-565X.2007.04.013 Hu S Q, Li L, Chen L, et al. Mathematical simulation of temperature variation of solution irradiated by power ultrasound[J]. Journal of South China University of Technology (Natural Science Edition), 2007, 35(4): 58-61. doi: 10.3321/j.issn:1000-565X.2007.04.013
Mohamed E G, Jamal F. Thermodynamic properties and solubility of potassium fluoride in aqueous solutions at various temperatures[J]. Journal of Fluorine Chemistry, 2020, 235: 1-5. http://www.sciencedirect.com/science/article/pii/S0022113920301093
Lippert F, Martinez-Mier E A, Soto-Rojas A E. Effects of fluoride concentration and temperature of milk on caries lesion rehardening[J]. Journal of Dentistry, 2012, 40: 810-813. doi: 10.1016/j.jdent.2012.06.001
周艺, 陈新, 李程, 等. 去离子水浸提土壤中水溶性氟最佳条件的研究[J]. 中国卫生检验杂志, 2010, 20(8): 2073-2074, 2083. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWJZ201008104.htm Zhou Y, Chen X, Li C, et al. Study on optimized extracting conditions of water-soluble fluorine in soil by water[J]. Chinese Journal of Health Laboratory Technology, 2010, 20(8): 2073-2074, 2083. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWJZ201008104.htm
许建林. 利用超声波测量土壤团聚体稳定性的关键技术研究[D]. 杨凌: 西北农林科技大学, 2015. Xu J L. Key technological study on measuring soil aggregate stability using ultrasonic systems[D]. Yangling: Northwest A & F University, 2015.
刘妹, 顾铁新, 程志中, 等. 10个土壤有效态成分分析标准物质研制[J]. 岩矿测试, 2011, 30(5): 536-544. doi: 10.3969/j.issn.0254-5357.2011.05.004 Liu M, Gu T X, Cheng Z Z, et al. The reference materials for available nutrients of agricultural soils[J]. Rock and Mineral Analysis, 2011, 30(5): 536-544. doi: 10.3969/j.issn.0254-5357.2011.05.004
蒋倩, 韩勇, 孙晓丽, 等. 酸性土壤水溶性氟浸提方法的研究[J]. 土壤, 2012, 44(1): 140-143. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201201023.htm Jiang Q, Han Y, Sun X L, et al. Study on the extraction method for water-extracted fluorine in acid soils[J]. Soils, 2012, 44(1): 140-143. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201201023.htm
查立新, 马玲, 刘文长, 等. 振荡提取和超声提取用于土壤样品中元素形态分析[J]. 岩矿测试, 2011, 30(4): 393-399. doi: 10.3969/j.issn.0254-5357.2011.04.003 Zha L X, Ma L, Liu W Z, et al. Morphological analysis of elements in soils using mechanical shaking extraction and ultrasonic vibration extraction[J]. Rock and Mineral Analysis, 2011, 30(4): 393-399. doi: 10.3969/j.issn.0254-5357.2011.04.003
杜肖, 罗长艳, 王成会. 超声波作用下温度变化对电导率测量的影响[J]. 声学技术, 2017, 36(5): 85-86. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-OGSM201709001045.htm Du X, Luo C Y, Wang C H. Influence of temperature variation on conductivity measurement under ultrasonic irradiation[J]. Technical Acoustics, 2017, 36(5): 85-86. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-OGSM201709001045.htm
张威, 傅新锋, 张甫仁. 地下水中氟含量与温度、pH值、(Na++K+)/Ca2+的关系——以河南省永城矿区为例[J]. 地质与资源, 2004, 13(2): 109-111. doi: 10.3969/j.issn.1671-1947.2004.02.007 Zhang W, Fu X F, Zhang F R. The relationship between the high fluorine content of groundwater and the pH value, water temperature and the ratio of (Na++K+)/Ca2+[J]. Geology and Resources, 2004, 13(2): 109-111. doi: 10.3969/j.issn.1671-1947.2004.02.007
高永慧, 耿小丕. 超声波清洗液温度变化规律的研究[J]. 承德石油高等专科学校学报, 2005, 7(3): 39-41. doi: 10.3969/j.issn.1008-9446.2005.03.010 Gao Y H, Geng X P. Temperature change of ultrasonic wave cleaning fluid[J]. Journal of Chengde Petroleum College, 2005, 7(3): 39-41. doi: 10.3969/j.issn.1008-9446.2005.03.010
孙娟, 徐荣, 窦艳艳, 等. 超声浸取-离子选择电极法测定土壤中水溶性氟[J]. 环境监控与预警, 2015, 7(5): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-HTJK201506007.htm Sun J, Xu L, Dou Y Y, et al. Determination of water-soluble fluoride in soil by ion selective electrode method with ultrasonic extraction[J]. Environmental Monitoring and Forewarning, 2015, 7(5): 18-21. https://www.cnki.com.cn/Article/CJFDTOTAL-HTJK201506007.htm
徐荣, 孙娟, 胡晓乐. 铁和铝离子对土壤水溶性氟化物检测的干扰研究[J]. 环境监控与预警, 2018, 10(3): 21-24. doi: 10.3969/j.issn.1674-6732.2018.03.005 Xu R, Sun J, Hu X L. Research on the interference of iron and aluminum ions to the detection of water soluble fluoride in soil[J]. Environmental Monitoring and Forewarning, 2018, 10(3): 21-24. doi: 10.3969/j.issn.1674-6732.2018.03.005
洪秀萍, 张引, 梁汉东, 等. 酸性水动态淋滤与静态浸泡土壤中氟的实验研究[J]. 地球与环境, 2015, 43(3): 356-360. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201503014.htm Hong X P, Zhang Y, Liang H D, et al. Characteristics of fluorine in soil in both dynamic leaching and static immersion experiments[J]. Earth and Environment, 2015, 43(3): 356-360. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201503014.htm
Li Y P, Wang S L, Daniel P, et al. Accumulation and interaction of fluoride and cadmium in the soil-wheat plant system from the wastewater irrigated soil of an oasis region in northwest China[J]. Science of the Total Environment, 2017, 595: 344-351. doi: 10.1016/j.scitotenv.2017.03.288
李永华, 王五一, 杨林生, 等. 陕南土壤中水溶态硒、氟的含量及其在生态环境的表征[J]. 环境化学, 2005, 24(3): 279-283. doi: 10.3321/j.issn:0254-6108.2005.03.012 Li Y H, Wang W Y, Yang L S, et al. Concentration and environmental significance of water soluble-Se and water soluble-F in soils of South Shaanxi Province[J]. Environmental Chemistry, 2005, 24(3): 279-283. doi: 10.3321/j.issn:0254-6108.2005.03.012
朱亚鹏, 苏春利, 梁川, 等. 沉积物岩性及水化学性质对水土界面氟迁移行为的影响[J]. 地质科技情报, 2015, 34(5): 160-165. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201505025.htm Zhu Y P, Su C L, Liang C, et al. Effects of sediment lithology and groundwater hydrochemical characteristics on fluorine transport at water-soil interface[J]. Geological Science and Technology Information, 2015, 34(5): 160-165. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201505025.htm
刘庆, 杨军耀, 王亚琴, 等. 氟在库水与库底沉积物之间的作用过程及机理[J]. 水电能源科学, 2019, 37(1): 57-60. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201901015.htm Liu Q, Yang J Y, Wang Y Q, et al. Study on action process and mechanism of fluorine between reservoir water and bottom sediments[J]. Water Resources and Power, 2019, 37(1): 57-60. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201901015.htm
Shi M J, Gao Z J, Feng J G, et al. Characteristics and effects of fluorine release from shallow high-fluoride soils[J]. Environmental Earth Sciences, 2019, 78: 604. doi: 10.1007/s12665-019-8618-0
王渊. 粤东某地氟病区氟的来源与迁移转化途径研究[J]. 安全与环境工程, 2019, 26(6): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201906001.htm Wang Y. Preliminary study on the origin, migration and transformation of fluorine in a fluorine disease area in eastern Guangdong Province[J]. Safety and Environmental Engineering, 2019, 26(6): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201906001.htm
-
期刊类型引用(1)
1. 李欣尉,李超,周利敏,赵鸿. 贵州正安县奥陶系—志留系界线碳质泥岩Re-Os同位素精确厘定及其古环境反演. 岩矿测试. 2020(02): 251-261 . 本站查看
其他类型引用(1)