• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

超富集植物与重金属相互作用机制及应用研究进展

何玉君, 孙梦荷, 沈亚婷, 帅琴, 罗立强

何玉君, 孙梦荷, 沈亚婷, 帅琴, 罗立强. 超富集植物与重金属相互作用机制及应用研究进展[J]. 岩矿测试, 2020, 39(5): 639-657. DOI: 10.15898/j.cnki.11-2131/td.202004140048
引用本文: 何玉君, 孙梦荷, 沈亚婷, 帅琴, 罗立强. 超富集植物与重金属相互作用机制及应用研究进展[J]. 岩矿测试, 2020, 39(5): 639-657. DOI: 10.15898/j.cnki.11-2131/td.202004140048
HE Yu-jun, SUN Meng-he, SHEN Ya-ting, SHUAI Qin, LUO Li-qiang. Research Progress on the Interaction Mechanism between Hyperaccumulator and Heavy Metals and Its Application[J]. Rock and Mineral Analysis, 2020, 39(5): 639-657. DOI: 10.15898/j.cnki.11-2131/td.202004140048
Citation: HE Yu-jun, SUN Meng-he, SHEN Ya-ting, SHUAI Qin, LUO Li-qiang. Research Progress on the Interaction Mechanism between Hyperaccumulator and Heavy Metals and Its Application[J]. Rock and Mineral Analysis, 2020, 39(5): 639-657. DOI: 10.15898/j.cnki.11-2131/td.202004140048

超富集植物与重金属相互作用机制及应用研究进展

基金项目: 

国家重点研发计划项目(2016YFC0600603);国家自然科学基金面上项目(41877505)

国家重点研发计划项目 2016YFC0600603

国家自然科学基金面上项目 41877505

详细信息
    作者简介:

    何玉君, 硕士, 研究方向为生物地球化学。E-mail:heyujunlhyj@163.com

    通讯作者:

    罗立强, 博士, 研究员, 研究方向为生物地球化学。E-mail:lliqiang@mail.cgs.gov.cn

  • 中图分类号: S151.93;X142

Research Progress on the Interaction Mechanism between Hyperaccumulator and Heavy Metals and Its Application

  • 摘要: 社会发展过程中对矿产资源的勘查和开采利用所带来的重金属污染已对生态系统和人类健康造成严重威胁。超富集植物对重金属具有超富集、超耐受能力,是降低环境重金属污染、保障人类健康、实现绿色矿产勘查的有效途径,在植物修复、植物采矿和植物找矿中已获得了广泛应用。深入探索超富集植物的富集和耐受机制,揭示重金属-植物相互作用规律,提高植物对重金属的富集能力,是当前国际上研究热点。本文在简要介绍重金属对植物作用的基础上,阐述了重金属诱导氧化应激机制,重点关注重金属超富集植物富集机理研究,对其在解毒和耐受机制等领域的研究进展进行了评述。当前研究认为:①对超富集植物而言,根系分泌物与根际微生物的共同作用促进了重金属溶解,经共质体、质外体途径吸收后,重金属通过木质部向上转运,并隔离在液泡中,实现对重金属的超富集;②重金属通过与小分子有机酸、细胞壁、植物螯合肽结合,以及液泡隔离,可降低细胞质中游离金属离子浓度,增强植物耐受性;③重金属胁迫下,植物将激活多种特异性抗氧化酶,抵御氧化应激反应,实现对重金属的超耐受。④本文分析认为,植物中砷诱导的氧化应激反应机制可能是由砷的还原与甲基化过程及Haber-Weiss反应三部分构成。对重金属超富集植物的富集与耐受过程所涉及的生理与生化作用进行深入研究,揭示关键性影响因素与相关规律,寻找提升其特异性富集与指示能力的有效途径,将有助于超富集植物研究与应用向纵深发展。
    要点

    (1) 根系分泌物及根际微生物的共同作用促进了土壤重金属溶解。

    (2) 液泡隔离与抗氧化酶作用是超富集植物主要富集与耐受机制。

    (3) 超富集植物的选择性、指示性使其在植物修复、植物采矿、植物找矿中得到广泛应用。

    HIGHLIGHTS

    (1) The interaction between root exudates and rhizosphere microorganisms promotes the dissolution of heavy metals in soil.

    (2) Vacuole sequestration and the action of antioxidant enzymes are the main accumulation and tolerance mechanism of hyperaccumulator.

    (3) Hyperaccumulator is widely used in phytoremediation, phytomining and plant prospecting because of the selectivity and indicative properties.

  • 赣南地区以钨、锡、稀土等金属为优势矿种,金、银、铅、锌等产资源较丰富,硫铁矿资源较少[1-3]。于都银坑—宁都青塘金银多金属矿整装勘查区位于南岭成矿带与武夷成矿带的交汇部位,是南岭成矿带东段的重要有色贵多金属矿集区之一。区内以铅、锌、金、银为优势矿种,已发现有留龙中型金矿、柳木坑—牛形坝中型铅锌多金属矿、营脑中型银多金属矿、老虎头、葫芦应和小庄小型铅锌矿等;此外,区内还具有丰富的硫铁矿资源,已知有狮吼山大型硫铁-钨多金属矿床、画眉坳小型硫铁矿(伴生)及孙屋背、黄贯硫铁矿矿点。

    目前国内对硫铁矿的研究大多针对其开发与利用方面,关于矿床成因方面的研究较少。整装勘查区内以往研究工作的重点是金、银(铅、锌)多金属矿床的成矿规律及找矿预测[4-8],专门针对硫铁矿床的研究较少。梁景时等[9]根据矿床地质特征,初步推断矿床成因类型为岩浆期后热液充填交代层控矿床;赵正[10]通过对典型矿床的研究,根据锆石U-Pb和辉钼矿Re-Os同位素测年结果(157.5±3.3 Ma,159.1±1.1 Ma),认为该矿床的成矿与成岩作用同期进行。前人研究已基本厘清矿床地质特征、成岩与成矿时代及成矿地质体等相关问题,但对矿床的成矿物质来源方面的研究极少,梓山组地层中的含铁层位能为成矿提供铁物质,但无法提供成矿所需的大量的硫源及钨、铜、金等成矿元素,关于该矿床的成矿物质来源及成矿作用过程等关键问题仍需进一步研究。

    在200~600℃内,闪锌矿、磁黄铁矿与热液系统中的H2S的硫同位素分馏值很小(0.12‰~0.45‰),闪锌矿或磁黄铁矿的硫同位素组成近似代表热液系统中的总硫[11],利用硫化物中硫同位素来研究热液成矿作用方面已有较多的成功实例[12-13]。根据不同来源的流体的氢氧同位素组成差异大的特征,利用氢氧同位素体系进行热液矿床的成矿流体来源示踪是目前应用最广泛的手段[14-15]。本文通过对狮吼山矿床原生矿石中H-O-S同位素的测试,对比分析同位素组成特征,并结合已有的矿床地质特征、锆石U-Pb、辉钼矿Re-Os及铅同位素的研究[10],对矿床的成矿物质来源、成矿流体演化及成矿作用进行示踪,完善矿床成矿理论,丰富该整装勘查区内的岩浆热液成矿理论。

    研究区位于江西省宁都县青塘镇西侧,大地构造位置处于武夷隆起西缘、宁都—南城坳陷断束南端和信丰—于都坳陷褶束交接部位的青塘—银坑凹陷带的北东缘(图 1)。

    图  1  狮吼山硫铁-钨多金属矿区地质简图
    1—第四系;2—石炭系上统黄龙组;3—石炭系下统梓山组上段;4—南华系中上统沙坝黄组;5—燕山早期茶山迳岩体;6—硫铁矿矿体;7—地表氧化矿体;8—断层及编号;9—狮吼山矿区范围。
    Figure  1.  Geological sketch map of the Shihoushan pyrite-tungsten polymetallic deposit feild

    区内出露有南华系、泥盆系、石炭系和第四系地层,泥盆系—石炭系为青塘向斜盆地的两翼地层,向斜核部为上石炭统黄龙组灰岩。狮吼山矿区内出露地层简单,主要为石炭系和第四系地层。石炭系下统梓山组上段(C1z2)是矿区的主要赋矿地层,主要岩性为紫红色(含)铁质粉砂岩、钙质砂岩夹细砂岩。黄龙组(C2h)地表仅零星出露于,与下伏梓山组地层整合接触,岩性为白云质、灰质白云岩夹少量钙质砂岩,近花岗岩处灰岩受热液变质作用成为大理岩,偶夹矽卡岩。第四系分布范围较广。

    区域构造以北北东-北东向断裂构造为主,褶皱构造较发育。狮吼山矿区受茶山迳岩株侵入的影响,构造特征表现为一弧形的单斜构造:矿区南部,地层走向北东向,倾向北北西,倾角较缓;岩体西侧,地层走向北西,倾向北东东。结合矿区勘查资料,矿区构造细分为成矿前层间断裂构造、成矿期裂隙构造和成矿后断裂构造。

    茶山迳岩体与狮吼山硫铁多金属矿床成矿作用关系密切,出露面积约0.8 km2,岩性主要为中(粗)粒斑状黑云二长花岗岩,地表岩石风化较强,主要矿物成分:石英25%~30%,钾长石20%~25%,斜长石15%~20%,黑云母1%~5%;次生绢云母、白云母5%~10%,绿泥石1%~5%;副矿物有锆石、磷灰石等。

    矿区已探明工业矿体共14条,以似层状、透镜状产出于梓山组上段含铁、含钙砂岩层位。矿体形态受岩体侵入的影响明显,在沿走向及倾向上表现为膨大缩小、分支复合及尖灭再现等现象。原生矿石以磁黄铁矿、黄铁矿为主,并伴生有黄铜矿、斑铜矿、白钨矿;氧化矿石主要分布于地表,以疏松多孔状褐铁矿为主。根据矿物组合、形成时间及相互关系,成矿可分为矽卡岩阶段、石英-硫化物阶段和石英-碳酸盐阶段,石英-硫化物阶段为主成矿期。矿石中有益组分为S、全铁(TFe)、Cu、WO3,部分矿体的伴生金和银含量达工业指标。

    此次工作主要对狮吼山矿区矿石矿物进行H-O-S同位素样品采集和测试工作。由于硫铁矿矿石极易氧化,为保证样品未受风化和氧化作用影响,采集工作集中于矿区#2和#3斜井的160中段进行。在已有的V11矿体H-O-S测试数据的基础上,补充对V1矿体进行采样。通过对比分析两次测试数据的差异,便于判断数据的可靠性和代表性。此次样品采集对象为矿石矿物,主要为团块状或致密块状的磁黄铁矿矿石,在采集氢、氧同位素样品时,着重采集胶结有石英的矿石。此次共采集氢氧同位素样品5件、硫同位素样品3件,统一编号、密封包装并送样测试。

    样品测试工作由核工业北京地质研究院分析测试研究中心完成。首先,所有样品进行粉碎、粗选、清洗工作,在显微镜下挑选磁黄铁矿、黄铁矿、石英单矿物,纯度达99%以上。硫同位素测试仪器为Finnigan MAT-251型质谱仪,制备样品的氧化剂选用Cu2O,采用国际标准CDT表达测试结果,分析精度优于±0.2‰。氢氧同位素测试仪器为MAT-253质谱仪:氢同位素分析采用锌还原法测定,同位素分析精度为±1‰;氧同位素采用五氟化溴法测定,同位素分析精度为±0.2‰。通过对比两次测试结果(表 1表 2),H-O-S同位素变化范围较一致,说明数据具有代表性。

    表  1  狮吼山硫铁多金属矿床矿石硫化物的硫同位素组成
    Table  1.  Sulfur isotopic compositions of ore sulfides from the Shihoushan pyrite polymetallic deposit
    样品编号 采样对象 测试矿物 采样位置 δ34SVCDT(‰) 数据来源
    KD-b1 致密块状磁黄铁矿矿石 磁黄铁矿 160中段V1 -1.99
    KD-b2 致密块状磁黄铁矿矿石 磁黄铁矿 160中段V1 -0.87 本文
    KD-b4 团块状磁黄铁矿矿石 磁黄铁矿 160中段V1 -1.18
    SHS-05 团块状磁黄铁矿矿石 磁黄铁矿 160中段V11 -1.30
    SHS-06 团块状磁黄铁矿矿石 磁黄铁矿 160中段V11 -2.50 文献[10]
    SHS-07 团块状磁黄铁矿矿石 磁黄铁矿 160中段V11 -2.10
    SHS2#-5 团块状磁黄铁矿矿石 磁黄铁矿 160中段V11 -1.90
    SHS2#-2 磁黄铁矿-黄铁矿矿石 黄铁矿 160中段V11 -0.20
    SHS2#-6a 磁黄铁矿-黄铁矿矿石 黄铁矿 160中段V11 -2.10 文献[10]
    SHS3#-2 磁黄铁矿-黄铁矿矿石 黄铁矿 160中段V11 -5.20
    SHS3#-3 磁黄铁矿-黄铁矿矿石 黄铁矿 160中段V11 -5.50
    下载: 导出CSV 
    | 显示表格
    表  2  狮吼山硫铁多金属矿床氢氧同位素组成
    Table  2.  Hydrogen and oxygen isotopic compositions of the Shihoushan pyrite polymetallic deposit
    样品编号 矿石类型 测试矿物 采样位置 δDv-SNOW(‰) δ18Ov-pdb(‰) δ18Ov-SNOW(‰) t(℃) δ18OH2O(‰) 数据来源
    KD-b4 团块状磁黄铁矿 石英 160中段V1 -74.4 -21.5 8.8 360 3.76
    Shs-Q01 团块状磁黄铁矿 石英 160中段V1 -69.0 -18.7 11.6 360 6.56
    Shs-Q02 团块状磁黄铁矿 石英 160中段V1 -71.3 -17.1 13.3 360 8.26 本文
    Shs-Q03 团块状磁黄铁矿 石英 160中段V1 -63.7 -17.5 12.8 360 7.76
    Shs-Q05 团块状磁黄铁矿 石英 160中段V1 -66.3 -14.5 15.9 360 10.86
    SHS2#-2 团块状磁黄铁矿 石英 160中段V11 -55.0 / 9.4 360 4.36
    SHS2#-4 团块状磁黄铁矿 石英 160中段V11 -49.0 / 13 360 7.96 文献[10]
    SHS2#-5 团块状磁黄铁矿 石英 160中段V11 -57.0 / 11.5 360 6.46
    SHS3#-1 团块状磁黄铁矿 石英 160中段V11 -48.0 / 13.7 360 8.66
    下载: 导出CSV 
    | 显示表格

    在已有矿区V11矿体的硫同位素测试结果的基础上,此次补充对V1矿体进行的3件硫同位素样品测试工作,测试分析结果见表 1。狮吼山硫铁多金属矿床硫同位素值δ34S变化范围为-5.50‰~-0.20‰,平均值为-2.26‰(n=11),极差5.30‰。其中,磁黄铁矿硫同位素值δ34S集中在-2.50‰~-0.87‰,平均值为-1.69‰(n=7),极差为1.63‰;黄铁矿硫同位素值δ34S变化范围较宽,在-5.50‰~-0.20‰之间,平均值为-3.25‰(n=4),极差为5.30‰。

    结合矿床的矿物组合特征,硫化物矿物主要为磁黄铁矿-黄铁矿-黄铜矿(-辉钼矿)的简单组合,未出现硫酸盐,硫化物中δ34S的平均值基本可代表热液中总硫的同位素组成[11, 16]。从硫同位素组成频率直方图看出(图 2a),δ34S主要集中在-3.0‰~0.0‰,峰值-2.0‰~-1.0‰,接近于地幔δ34S平均值(0‰±3‰)[17];硫同位素总体呈塔式分布,显示具有深部来源硫的特点,主要来源于岩浆硫。狮吼山矿区黄铁矿硫同位素变化范围宽(-6.0‰~0.0‰),主要分为两个部分:-3.0‰~0.0‰和-6.0‰~-5.0‰。前者为磁黄铁矿中硫分同位素布范围,代表该矿床主要成矿流体的硫同位素含量;后者偏离中心较远,说明该黄铁矿可能为后期流体形成的,预示着该区存在多种来源的成矿流体作用。

    图  2  狮吼山硫铁多金属矿床硫同位素组成频率直方图(a)和各类硫铁矿床硫同位素组成对比图(b)
    b图底图来自文献[18],骆驼山、峙门口和桂北地区硫铁矿床硫同位素数据分别引自文献[19-21]。
    Figure  2.  Frequency distribution diagrams of sulfur isotopic composition from the Shihoushan pyrite polymetallic deposit(a) and diagrams of sulfur isotopic composition in different pyrite deposits(b)

    通过与全球重要的硫同位素储库对比可知(图 2b),矿床硫同位素组成在花岗岩的范围内,稍宽于玄武岩的范围,显示流体的深源性;与典型硫铁矿床对比显示,该区硫同位素组成与以深源硫为主要硫源的骆驼山硫铁矿床相近,而与以火山热水沉积(峙门口)和沉积岩(桂北地区)为主要硫源的矿床有较大的差别。硫同位素组成特征显示:狮吼山硫铁多金属矿床的硫源主要为岩浆硫,并表现出遭受到后期的叠加和改造作用,这可能是燕山早期中酸性岩浆在侵位过程中与地层发生交代反应的结果。

    此次工作在前人研究基础上,补充采集了5件样品进行氢氧同位素测试,测试结果见表 2。石英单矿物中δD值为-74.4‰~-48.0‰,平均值为-61.5‰(n=9),极差26.3‰;δ18Ov-SNOW值为8.8‰~15.9‰,平均值为12.2‰(n=9),极差7.1‰。成矿流体中氢同位素即为寄主矿物石英的氢同位素值,而流体中氧同位素需根据石英中氧同位素值和包裹体均一温度计算得到。结合赵正[10]对狮吼山矿区不同成矿阶段的包裹体测温结果,此次样品主要为磁黄铁矿化石英团块或石英脉,因此,式中温度采用磁黄铁矿化期石英包裹体的均一温度,最能反映成矿流体温度。根据矿物-水体系的同位素分馏方程(1000 lnα石英-H2O=3.38×106/T2-3.40[11])计算得到:δ18OH2O值的变化范围为3.76‰~10.86‰,平均值为7.19‰,极差7.1‰。

    不同成因流体的氢氧同位素组成具有明显差异,可根据矿石矿物中的氢氧同位素组成有效地分析成矿流体来源。狮吼山硫铁矿矿床磁黄铁矿石中石英单矿物的δD-δ18O同位素组成与岩浆水的氢氧同位素组成范围(δD=-80‰~-50‰,δ18O=5‰~7‰)相近[14],但δ18O值的变化范围较岩浆水宽,说明成矿过程还有其他流体的加入。在δ18O-δD图解中(图 3),狮吼山硫铁多金属矿床样品投点于大气降水、原生岩浆水、变质水及岩浆水与变质水重叠区域,个别样品投点于岩浆水与雨水线之间靠近岩浆水的区域,但集中于岩浆水和岩浆水与变质水重叠区域,反映了该矿床成矿流体类型多样,是以岩浆水和变质水为主要成矿流体,后期可能有天水的混入。

    图  3  狮吼山硫铁多金属矿床成矿流体氢氧同位素组成图解(底图据路远发[22])
    Figure  3.  Hydrogen and oxygen isotope diagram of the ore-forming fluid from the Shihoushan pyrite polymetallic deposit

    稳定同位素H-O-S对成矿流体具良好的示踪作用,其组成能显示出流体来源及演化过程。通过对比不同类型的成矿热液特征(表 3),狮吼山硫铁矿床中包裹体特征(类型、体系、均一温度及盐度)具原生岩浆热液和变质热液的部分特征,与前面分析的H-O-S稳定同位素分析结果一致,进一步说明了该区成矿流体为岩浆热液与变质热液混合的结果。通过对比不同成因的硫铁矿床成矿流体特征,该区成矿流体与火山热水(峙门口)、沉积岩建造水(桂北地区)及热卤水(向山式)等成矿流体特征差异较大,与骆驼山矽卡岩型多金属硫铁矿床的特征相似。结合赵正[10]对狮吼山矿区铅同位素研究,206Pb/204Pb、207Pb/204Pb和208Pb/204Pb比值分别为18.078~18.782、15.621~15.645和38.523~38.593,这些值变化不大、相对比较均一,属于岩浆热液成因的矿石铅范围,主要来源于深部岩浆。H-O-S-Pb同位素组成特征综合显示成矿流体主要来源于深部岩浆水,成矿作用过程中有变质热液的混入。

    表  3  不同成因类型的硫铁矿床成矿流体特征对比
    Table  3.  Camparison of characteristics of ore fluids from different type pyrite deposits
    特征 原生岩浆硫铁 变质流体 硫铁矿床
    骆驼山式硫铁矿 向山式硫铁矿 狮吼山式硫铁矿
    包裹体类型 液相和含子矿物包裹体 气液包裹体和CO2包裹体 液相为主,少量为气相CO2包裹体 液相包裹体 富气相包裹体和含子晶包裹体
    流体体系 H2O-NaCl H2O-NaCl±CO2±CH4 H2O-NaCl-CO2 H2O-NaCl H2O-NaCl±CO2
    温度(℃) >400 >200 370~520 90~270 180~500
    盐度(wt%NaCl) 变化范围大 一般中低盐度 早期低→晚期高 8.01~21.1 1.05~4.24
    δ34S(‰) -3~5 -20~22 0.24~6.46 10~23 -5.50~1.68
    δ18O(‰) 5~7 -16~25 -0.03~1.93 -11.01~1.60 3.76~10.86
    δ18D(‰) -80~-50 -140~-20 -85‰~-80‰ -51.6~-72.0 -74.4~-48.0
    流体来源 岩浆水 变质水 以岩浆流体为主,晚期混入大气水 大气降水和热卤水 岩浆水与变质水混合成矿,晚期混入大气水
    成矿类型 / / 岩浆热液交代型 热水沉积型 岩浆期后热液充填交代型
    数据来源 徐兆文等[21]和张德会等[14] 徐兆文等[21]和张德会等[14] 梁新辉[23]和邢矿[24] 熊先孝等[25] 本文和赵正[10]
    下载: 导出CSV 
    | 显示表格

    狮吼山矿床成矿作用与燕山早期茶山迳岩体岩浆侵位活动关系密切,同位素测年显示成矿作用与成岩作用同期发生,矿床为茶山迳岩体岩浆侵位活动的产物。矿体主要赋存梓山组上段含铁、含钙层位,以透镜体状、似层状为主,层控性特征显示矿床具有充填交代的成因。因此,成矿是岩浆热液与地层共同作用的结果。上述分析综合表明:狮吼山硫铁矿床成矿流体主要来自深部岩浆水,岩浆在上升侵位过程中与梓山组地层中钙质砂岩、含铁砂岩发生接触交代作用,产生一定规模的变质流体,并在后期有少量天水的加入;当不同性质的流体相混合时,流体间不混溶作用使成矿物质在岩体与梓山组含钙层位的接触部位大量富集沉淀,形成矽卡岩型硫铁-钨多金属矿床。

    通过矿床地质特征研究表明,狮吼山硫铁-钨多金属矿床产出于燕山早期茶山迳侵入体与石炭系梓山组上段含钙层位的接触部位,矿体具有明显的层控性,充分说明了岩浆和地层共同参与成矿作用。矿石矿物δ34S值变化范围为-5.50‰~-0.20‰,集中于-3.0‰~0.0‰,显示硫源主要为岩浆硫,较宽的范围显示成矿流体遭受到后期的叠加和改造作用。矿石中石英单矿物中δD-δ18OH2O值变化范围分别为-74.4‰~-48.0‰和3.76‰~10.86‰,主要集中于岩浆水与变质水重叠区域,充分说明了该矿床成矿流体以岩浆水和变质水为主,而较宽的变化范围预示可能有天水的混入。

    结合矿床地质特征、H-O-S-Pb同位素组成特征及同位素测年数据,综合认为:狮吼山硫铁-钨多金属矿床成矿流体主要来自深部岩浆水,岩浆上升侵位过程中,与地层中钙质砂岩、含铁砂岩发生接触交代作用,并形成一定规模变质流体;当两种或多种(后期混入少量的天水)含矿热液相混合,流体的不混溶作用使成矿物质在岩体与梓山组上段含铁、含钙层位的接触部位大量富集沉淀,形成似层状矽卡岩型工业矿体。该矿床成因类型为岩浆期后热液充填交代型矿床。

  • 图  1   砷诱导氧化应激机制

    Figure  1.   Mechanism of arsenic induced oxidative stress

    图  2   植物体内重金属元素超富集的主要过程与机制[50]

    Mx+代表金属离子。

    Figure  2.   Main mechanisms and processes involved in heavy metal hyperaccumulation by plants[50]

    图  3   重金属液泡积累机制,液泡膜转运蛋白直接将重金属元素带入液泡[99]

    PCs—植物螯合肽:MTs—金属硫蛋白;Acids—小分子有机酸,Mx+—金属离子。

    Figure  3.   Mechanisms of vacuolar accumulation of heavy metals. Transporters residing at the tonoplast directly carry heavy metals into the vacuolar lumen[99](PCs: phytochelatins, MTs: metallothioneins, Acids: low molecular organic acids, Mx+: metal ions)

    表  1   植物中微量元素的作用与机制

    Table  1   Function and mechanism of micronutrients in plants

    微量元素 作用(适量) 过量
    (干重浓度)
    毒性机制 毒性症状
    Zn[13] 促进植物形成花粉;氧化还原酶、转移酶、
    水解酶、裂解酶、异构酶、连接酶组成成分
    >20mg/kg 增强脂质过氧化酶活性 引起遗传变异,抑制植物
    生长
    Cu[13] 多种酶辅因子;参与细胞壁代谢,叶绿体、
    线粒体电子传递;氧化磷酸化和铁动员,
    氮同化,脱落酸合成等
    >20μg/g 抑制酶活性及蛋白质
    功能,引起氧化应激
    抑制胚芽发育、种子活性、
    植株发育,导致萎黄、坏死
    Mn[13] 参与ATP酰基脂质、蛋白质、脂肪酸生物
    合成,参与RuBP羧化酶反应,光合作用
    的氧化还原过程
    >(10~100)μg/g 干扰其他营养元素吸收
    利用,诱导氧化应激
    影响能量代谢,降低光合
    作用速率
    Se[24, 28] 保护细胞膜,防止不饱和脂肪酸氧化 >2mg/kg 非特异性硒蛋白积累,
    氧化应激
    抑制植物生长
    Ni[29-30] 脲酶组成成分 >(10~50)mg/kg 破坏叶绿素结构,降低
    叶绿素含量
    抑制光合作用、氮代谢、
    酶活性,产生活性氧,生长
    速率下降
    Co[30] 诱导淀粉积累 >368mg/kg 破坏叶绿素结构,降低
    叶绿素含量
    降低生长速率,光合作用
    速率下降
    下载: 导出CSV

    表  2   在不同培养条件下生长的不同植物中,重金属激活抗氧化酶差异

    Table  2   Heavy metal-induced activation of antioxidant enzymes in different plant species grown in different condition

    植物名称 胁迫元素与浓度 胁迫时间 基质 抗氧化酶 活性变化情况
    江南星厥[109]
    (Microsorum fortunei)
    Cd:1000μmol/L 15d 水培 CAT、POD、GST、CCP 降低
    水合欢[110]
    (Neptunia olerace)
    Cd:50、100、180mg/kg Pb:500、1000、1800mg/kg 37d 土培 根中CAT、茎中SOD、叶中POD 先降低后升高
    根和茎中SOD、茎中CAT、叶中POD
    大聚藻[111]
    (Myriophyllum aquaticum)
    Cd:10、20、40、80、160mg/kg 28d 水培 SOD、POD、PRO 升高
    印度芥菜[112] Cu、Zn、Pb、Cd:50μmol/L 96h 水培 SOD、CAT、APX 根部升高,地上部分先升高后降低(高于对照组)
    墨旱莲[113]
    (Eclipta prostrata)
    Pb:100、200、400、800、1600mg/kg 30d 土培 SOD、CAT、APX、GR 升高
    印度芥菜、紫花苜蓿[114] Cd:7 5、150、300、600mg/kg 14d 土培 SOD 紫花苜蓿茎中升高
    CAT 两者根、茎中均有升高
    注:CAT—过氧化氢酶(catalase);POD—过氧化物酶(peroxidase);GST—谷胱甘肽硫转移酶(glutathione-S-transferase);CCP—细胞色素c过氧化物酶(cytochrome c peroxidase);SOD—超氧化物歧化酶(superoxide dismutase);PRO—脯氨酸(proline);APX—抗坏血酸过氧化物酶(ascorbate peroxidase);GR—谷胱甘肽还原酶(glutathione reductase)。
    下载: 导出CSV

    表  3   部分重金属超富集植物及其富集能力和应用

    Table  3   Accumulation ability of several hyperaccumulators and their application

    元素 超富集植物名称 生长条件 植物中重金属浓度(干重) 应用
    Ni 褐蓝菜[75] 100μmol/L水培,>60天 根:33.6μmol/g
    叶:130μmol/g
    /
    Odontarrhena chalcidica
    (庭芥属)[116]
    蛇纹石(serpentine)土壤,6.5个月 地上部分:13μg/g 植物采矿
    小野芥菜[116]
    (Noccaea goesingensis)
    蛇纹石土壤,11个月 地上部分:8μg/g 植物采矿
    Senecio conrathii(菊科)[117] 总Ni:503μg/g,可溶性
    Ni:0.1μg/g,土壤
    叶:1558μg/g 植物修复
    髭脉桤叶树[118]
    (Clethra barbinervis)
    500μmol/L水培,12周 根:1310μg/g
    茎:542μg/g
    叶:804μg/g
    /
    少根紫萍[30]

    (Landoltia punctata)
    10mg/L水培,10天 叶:2013mg/kg 植物修复
    Co 髭脉桤叶树[118] 500μmol/L水培,12周 根:1810μg/g
    茎:246μg/g
    叶:1770μg/g
    /
    少根紫萍[30] 10mg/L水培,10天 叶:1998mg/kg 植物修复
    Cd 伴矿景天[82] 总Cd:36~157mg/kg,
    CaCl2可提取态Cd:
    1.83~14.2mg/kg,土壤
    地上部分:574~1470mg/kg 植物修复
    多穗稗[65] 100mg/L水培,62天 根:299mg/kg
    叶:233mg/kg
    植物修复
    东南景天[79] 25μmol/L水培,30天 根:150μg/g;
    地上部分:500μg/g
    植物修复
    宝山堇菜[119]
    (Viola baoshanensis)
    100μmol/L水培,2天 根:3500mg/kg
    地上部分:1750mg/kg
    植物修复
    狐尾藻[111]
    (Myriophyllum aquaticum)
    40mg/L水培,28天 17970mg/kg 植物修复
    龙葵[66] 20mg/kg,土壤,14天 根:95μg/g
    地上部分:128μg/g
    植物修复
    Zn 褐蓝菜[75] 100μmol/L水培,60天 根:46.4μmol/g
    叶:161μmol/g(干重)
    /
    伴矿景天[82] 总Zn:1930~6200mg/kg,
    CaCl2可提取态
    Zn:24~162mg/kg,土壤
    地上部分:9020~14600mg/kg 植物修复
    As 凤尾蕨[120] 10mg/kg,土壤,30天 根:1885mg/kg
    叶:2562mg/kg
    植物修复
    Pb 墨旱莲[113]
    (Eclipta prostrata)
    1600mg/kg,土壤,30天 根:7229μg/g
    地上部分:12484μg/g
    植物修复
    下载: 导出CSV
  • Jiang P, Hou Z G, Bolin J M, et al.RNA-Seq of human neural progenitor cells exposed to lead (Pb) reveals transcriptome dynamics, splicing alterations and disease risk associations[J].Toxicological Sciences, 2017, 159(1):251-265. doi: 10.1093/toxsci/kfx129

    Moynihan M, Peterson K E, Cantoral A, et al.Dietary predictors of urinary cadmium among pregnant women and children[J].Science of the Total Environment, 2017, 575:1255-1262. doi: 10.1016/j.scitotenv.2016.09.204

    Lintern M, Anand R, Ryan C, et al.Natural gold particles in Eucalyptus leaves and their relevance to exploration for buried gold deposits[J].Nature Communications, 2013, 4(4):2614. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aec86ceeb26cae2fedad81514fb248d4

    Vardanyan N, Sevoyan G, Navasardyan T, et al.Recovery of valuable metals from polymetallic mine tailings by natural microbial consortium[J].Environmental Technology, 2019, 40(26):3467-3472. doi: 10.1080/09593330.2018.1478454

    袁玲, 孟扬, 左玉明.黄金矿山尾矿资源回收和综合利用[J].黄金, 2010, 31(2):52-56. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=huangj201002014

    Yuan L, Meng Y, Zuo Y M.Recovery and comprehensive utilization of gold tailings[J].Gold, 2010, 31(2):52-56. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=huangj201002014

    Baker A J M.Accumulators and excluders-strategies in the response of plants to heavy metals[J].Journal of Plant Nutrition, 1981, 3(1-4):643-654. doi: 10.1080/01904168109362867

    Krämer U.Metal hyperaccumulation in plants[J].Annual Review of Plant Biology, 2010, 61:517-534. doi: 10.1146/annurev-arplant-042809-112156

    Kumar S S, Malyan S K, Kadier A, et al.Phytoremediation and rhizoremediation: Uptake, mobilization and sequestration of heavy metals by plants[M]//Singh D P, Singh H B, Prabha R.Plant-microbe interactions in agro-ecological perspectives: Volume 2: Microbial interactions and agro-ecological impacts.Singapore: Springer, 2017: 367-394.

    Sheoran V, Sheoran A S, Poonia P.Phytomining of gold:A review[J].Journal of Geochemical Exploration, 2013, 128:42-50. doi: 10.1016/j.gexplo.2013.01.008

    Lintern M J, Anand R R.Dispersion of gold and other metals by trees, gravels and soils near Boddington gold deposit, western Australia[J].Journal of Geochemical Exploration, 2017, 181:10-21. doi: 10.1016/j.gexplo.2017.06.016

    Harguinteguy C A, Cofré M N, Cirelli A F, et al.The macrophytes Potamogeton pusillus L. and Myriophyllum aquaticum (Vell.) Verdc. as potential bioindicators of a river contaminated by heavy metals[J].Microchemical Journal, 2016, 124:228-234. doi: 10.1016/j.microc.2015.08.014

    Hakeem K, Rehman K.Crop production and global environmental issues[M]//Shahid M, Khalid S, Abbas G, et al.Heavy metal stress and crop productivity.Cham: Springer, 2015.

    Tripathi D K, Singh S, Singh S, et al.Micronutrients and their diverse role in agricultural crops:Advances and future prospective[J].Acta Physiologiae Plantarum, 2015, 37:139. doi: 10.1007/s11738-015-1870-3

    Kopittke P M, Blamey F P C, Mckenna B A, et al.Toxicity of metals to roots of cowpea in relation to their binding strength[J].Environmental Toxicology and Chemistry, 2011, 30(8):1827-1833. doi: 10.1002/etc.557

    Gupta D, Corpas F, Palma J.Heavy metal stress in plants[M]//Gupta D K, Vandenhove H, Inouhe M.Role of phytochelatins in heavy metal stress and detoxification mechanisms in plants.Heidelberg: Springer, 2013.

    Whitacre D.Reviews of environmental contamination and toxicology volume 232[M]//Shahid M, Pourrut B, Dumat C, et al.Heavy-metal-induced reactive oxygen species: Phytotoxicity and physicochemical changes in plants.Cham: Springer, 2014.

    Galloa M, Morseb D, Hollnagel H C, et al.Oxidative stress and toxicology of Cu2+ based on surface areas in mixed cultures of green alga and cyanobacteria:the pivotal role of H2O2[J].Aquatic Toxicology, 2020, 222:105450. doi: 10.1016/j.aquatox.2020.105450

    Jomova K, Valko M.Advances in metal-induced oxidative stress and human disease[J].Toxicology, 2011, 283(2-3):65-87. doi: 10.1016/j.tox.2011.03.001

    Thounaojam T C, Panda P, Mazumdar P, et al.Excess copper induced oxidative stress and response of antioxidants in rice[J].Plant Physiology and Biochemistry, 2012, 53:33-39. doi: 10.1016/j.plaphy.2012.01.006

    Küpper H, Andresen E.Mechanisms of metal toxicity in plants[J].Metallomics, 2016, 8(3):269-285. doi: 10.1039/C5MT00244C

    Santos E F, Santini J M K, Paixao A P, et al.Physiologica l highlights of manganese toxicity symptoms in soybean plants:Mn toxicity responses[J].Plant Physiology and Biochemistry, 2017, 113:6-19. doi: 10.1016/j.plaphy.2017.01.022

    Tavanti R F R, Queiroz G D, Silva A C D, et al.Changes in photosynthesis and antioxidant metabolism of cotton (Gossypium hirsutum L.) plants in response to manganese stress[J].Archives of Agronomy and Soil Science, 2019. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/03650340.2019.1637857

    Yu Y, Fu P N, Huang Q P, et al.Accumulation, sub-cellular distribution, and oxidative stress of cadmium in Brassica chinensis supplied with selenite and selenate at different growth stages[J].Chemosphere, 2019, 216:331-340. doi: 10.1016/j.chemosphere.2018.10.138

    Hoewyk D V.A tale of two toxicities:Malformed selenoproteins and oxidative stress both contribute to selenium stress in plants[J].Annals of Botany, 2013, 112(6):965-972. doi: 10.1093/aob/mct163

    Kaur M, Sharma S.Influence of selenite and selenate on growth, leaf physiology and antioxidant defense system in wheat (Triticum aestivum L.)[J].Journal of the Science of Food and Agriculture, 2018, 98(15):5700-5710. doi: 10.1002/jsfa.9117

    Knauert S, Knauer K.The role of reactive oxygen species in copper toxicity to two freshwater green algae[J].Journal of Phycology, 2010, 44(2):311-309. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1529-8817.2008.00471.x

    Opdenakker K, Remans T, Keunen T, et al.Exposure of Arabidopsis thaliana to Cd or Cu excess leads to oxidative stress mediated alterations in MAPKinase transcript levels[J].Environmental and Experimental Botany, 2012, 83:53-61. doi: 10.1016/j.envexpbot.2012.04.003

    Kolbert Z, Lehotai N, Molnár A, et al."The roots" of selenium toxicity:A new concept[J].Plant Signaling & Behavior, 2016, 11(10):1241935. doi: 10.1080/15592324.2016.1241935

    Pas L V D, Robert A I.Towards an understanding of the molecular basis of nickel hyperaccumulation in plants[J].Plants, 2019, 8:11. doi: 10.3390/plants8010011

    Guo L, Ding Y Q, Xu Y L, et al.Responses of Landoltia punctata to cobalt and nickel:Removal, growth, photosynthesis, antioxidant system and starch metabolism[J].Aquatic Toxicology, 2017, 190:87-93. doi: 10.1016/j.aquatox.2017.06.024

    Tan L L, Xue X G, Du J, et al.Probing the molecular toxic mechanism of lead(Ⅱ) ions with glutathione peroxidase 6 from Arabidopsis thaliana[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2020, 226:117597. doi: 10.1016/j.saa.2019.117597

    Abbas G, Murtaza B, Bibi I, et al.Arsenic uptake, toxicity, detoxification, and speciation in plants:Physiological, biochemical, and molecular aspects[J].International Journal of Environmental Research and Public Health, 2018, 15:59. doi: 10.3390/ijerph15010059

    Kehrer J P.The Haber-Weiss reaction and mechanisms of toxicity[J].Toxicology, 2000, 149(1):43-50. http://www.onacademic.com/detail/journal_1000034185137910_b550.html

    Kumar A, Prasad M N V.Plant-lead interactions:transport, toxicity, tolerance, and detoxification mechanisms[J].Ecotoxicology and Environmental Safety, 2018, 166:401-418. doi: 10.1016/j.ecoenv.2018.09.113

    Ugya A Y, Imam T S, Li A F, et al.Antioxidant response mechanism of freshwater microalgae species to reactive oxygen species production:A mini review[J].Chemistry and Ecology, 2020, 36(2):174-193. doi: 10.1080/02757540.2019.1688308

    Ghosh P, Rathinasabapathi B, Lena Q M. Phosphorus solubilization and plant growth enhancement by arsenic-resistant bacteria[J].Chemosphere, 2015, 134:1-6. doi: 10.1016/j.chemosphere.2015.03.048

    Kumar S, Dubey R S, Tripathi R D, et al.Omics and biotechnology of arsenic stress and detoxification in plants:Current updates and prospective[J].Environment International, 2015, 74:221-230. doi: 10.1016/j.envint.2014.10.019

    Tripathi R D, Tripathi P, Dwivedi S, et al.Arsenomics:Omics of arsenic metabolism in plants[J].Frontiers in Physiology, 2012, 3:275. http://europepmc.org/articles/PMC3429049/

    Swaran J S F.Arsenic-induced oxidative stress and its reversibility[J].Free Radical Biology & Medicine, 2011, 51(2):257-281. http://www.ncbi.nlm.nih.gov/pubmed/21554949

    Sharma I.Arsenic induced oxidative stress in plants[J].Biologia, 2012, 67(3):447-453. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.2478/s11756-012-0024-y

    Malik J A, Goel S, Kaur N, et al.Selenium antagonises the toxic effects of arsenic on mungbean (Phaseolus aureus Roxb.) plants by restricting its uptake and enhancing the antioxidative and detoxification mechanisms[J].Environmental and Experimental Botany, 2012, 77:242-248. doi: 10.1016/j.envexpbot.2011.12.001

    Tamás L, Zelinová V.Mitochondrial complex Ⅱ-deri-ved superoxide is the primary source of mercury toxicity in barley root tip[J].Journal of Plant Physiology, 2017, 209:68-75. doi: 10.1016/j.jplph.2016.10.014

    Chen Q, Zhang Z Y, Liu Y Y, et al.Hemin-mediated alleviation of zinc, lead and chromium toxicity is associated with elevated photosynthesis, antioxidative capacity; suppressed metal uptake and oxidative stress in rice seedlings[J].Plant Growth Regulation, 2017, 81(2):253-264. doi: 10.1007/s10725-016-0202-y

    Gupta D K, Pena B, Romero P M C, et al.NADPH oxidases differentially regulate ROS metabolism and nutrient uptake under cadmium toxicity[J].Plant, Cell & Environment, 2017, 40(4):509-526. http://www.ncbi.nlm.nih.gov/pubmed/26765289

    Zhang H H, Li X, Xu Z S, et al.Toxic effects of heavy metals Pb and Cd on mulberry (Morus alba L.) seedling leaves:Photosynthetic function and reactive oxygen species (ROS) metabolism responses[J].Ecotoxicology and Environmental Safety, 2020, 195:110469. doi: 10.1016/j.ecoenv.2020.110469

    Mitch M L.Phytoextraction of toxic metals:A review of biological mechanisms[J].Journal of Environmental Quality, 2002, 31(1):109-120. http://europepmc.org/abstract/MED/11837415

    Fayigaa A O, Maa L Q, Cao X D, et al.Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pteris vittata L[J].Environmental Pollution, 2004, 132(2):289-296. doi: 10.1016/j.envpol.2004.04.020

    Rascio N, Izzo F N.Heavy metal hyperaccumulating plants:How and why do they do it? and what makes them so interesting?[J].Plant Science, 2011, 180:169-181. doi: 10.1016/j.plantsci.2010.08.016

    Freeman J L, Quinn C F, Lindblom S D, et al.Selenium protects the hyperaccumulator Stanleya pinnata against black-tailed prairie dog herbivory in native seleniferous habitats[J].American Journal of Botany, 2009, 96(6):1075-1085. doi: 10.3732/ajb.0800287

    Sheoran V, Sheoran A S, Poonia P.Phytomining:A review[J].Minerals Engineering, 2009, 22(12):1007-1019. doi: 10.1016/j.mineng.2009.04.001

    Li T Q, Tao Q, Liang C F, et al.Complexation with dissolved organic matter and mobility control of heavy metals in the rhizosphere of hyperaccumulator Sedum alfredii[J].Environmental Pollution, 2013, 182:248-255. doi: 10.1016/j.envpol.2013.07.025

    Salinitroa M, Entb A N D, Tognacchini A, et al.Stress responses and nickel and zinc accumulation in different accessions of Stellaria media (L.) Vill.in response to solution pH variation in hydroponic culture[J].Plant Physiology and Biochemistry, 2020, 148:133-141. doi: 10.1016/j.plaphy.2020.01.012

    Peng C, Xu C, Liu Q, et al.Fate and transformation of CuO nanoparticles in the soil-rice system during the life cycle of rice plants[J].Environmental Science & Technology, 2017, 51(9):4907-4917. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3a03e6f916726717f3a110e2db6fffbf

    Liu X, Fu J W, Guan D X, et al.Arsenic induced phytate exudation, and promoted FeAsO4 dissolution and plant growth in As-hyperaccumulator Pteris vittata[J].Environmental Science & Technology, 2016, 50(17):9070-9077. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e844969c9b56ea80aee1cdf676f646e3

    Ge Y, Priester J H, Werfhorst L C V D, et al.Soybean plants modify metal oxide nanoparticle effects on soil bacterial communities[J].Environmental Science & Technology, 2014, 48(22):13489-13496. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=40a30aba396d9dc05ea443482f74ed99

    Ali H, Khan E, Sajad M A.Phytoremediation of heavy metals-Concepts and applications[J].Chemosphere, 2013, 91(7):869-881. doi: 10.1016/j.chemosphere.2013.01.075

    Mahrousa N N, Columbusa M P, Southam G, et al.Changes in microbial community structure and increased metal bioavailability in a metal-contaminated soil and in the rhizosphere of corn (Zea mays)[J].Rhizosphere, 2019, 11:100169. doi: 10.1016/j.rhisph.2019.100169

    曾远, 罗立强.土壤中特异性微生物与重金属相互作用机制与应用研究进展[J].岩矿测试, 2017, 36(3):209-221. doi: 10.15898/j.cnki.11-2131/td.201701170009

    Zeng Y, Luo L Q.Research progress on the application and interaction mechanism between specific microorganisms and heavy metals in soil[J].Rock and Mineral Analysis, 2017, 36(3):209-221. doi: 10.15898/j.cnki.11-2131/td.201701170009

    He H D, Ye Z H, Yang D J, et al.Characterization of endophytic Rahnella sp.JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus[J].Chemosphere, 2013, 90(6):1960-1965. doi: 10.1016/j.chemosphere.2012.10.057

    He B Y, Yu D P, Chen Y, et al.Use of low-calcium cultivars to reduce cadmium uptake and accumulation in edible amaranth (Amaranthus mangostanus L.)[J].Chemosphere, 2017, 171:588-594. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=90945c9a80906fe9bd334d6d5a7dc7ae

    Wu Z C, Zhao X H, Sun X C, et al.Xylem transport and gene expression play decisive roles in cadmium accumulation in shoots of two oilseed rape cultivars (Brassica napus)[J].Chemosphere, 2015, 119:1217-1223. doi: 10.1016/j.chemosphere.2014.09.099

    Tao Q, Jupa R, Luo J P, et al.The apoplasmic pathway via the root apex and lateral roots contributes to Cd hyperaccumulation in the hyperaccumulator Sedum alfredii[J].Journal of Experimental Botany, 2017, 68(3):739-751. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a418367952ea1179ba9bcaee10182fca

    Hendel A M, Zubko M, Karcz J, et al.Fate of neutral-charged gold nanoparticles in the roots of the Hordeum vulgare L.cultivar Karat[J].Scientific Reports, 2017, 7(1):3014. doi: 10.1038/s41598-017-02965-w

    Attwood T S, Unrine J M, Stone J W, et al.Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings[J].Nanotoxicology, 2012, 6(4):353-360. doi: 10.3109/17435390.2011.579631

    Solis D F A, Gonzalez C M C, Carrillo G R, et al. Accumulation and localization of cadmium in Echinochloa polystachya grown within a hydroponic system[J].Journal of Hazardous Materials, 2007, 141(3):630-636. doi: 10.1016/j.jhazmat.2006.07.014

    Bao T, Sun T H, Sun L.Low molecular weight organic acids in root exudates and cadmium accumulation in cadmium hyperaccumulator Solanum nigrum L.and nonhyperaccumulator Solanum lycopersicum L.[J].African Journal of Biotechnology, 2011, 10(75):17180-17185. http://www.researchgate.net/publication/272690006_Low_molecular_weight_organic_acids_in_root_exudates_and_cadmium_accumulation_in_cadmium_hyperaccumulator_Solanum_nigrum_L._and_non-hyperaccumulator_Solanum_lycopersicum_L

    Lu L L, Tian S K, Zhang J, et al.Efficient xylem transport and phloem remobilization of Zn in the hyperaccumulator plant species Sedum alfredii[J].New Phytologist, 2013, 198(3):721-731. doi: 10.1111/nph.12168

    Kozhevnikova A D, Seregin I V, Erlikh N T, et al. Histidine-mediated xylem loading of zinc is a species-wide character in Noccaea caerulescens[J].New Phytologist, 2014, 203(2):508-519. doi: 10.1111/nph.12816

    Yoneyama T, Ishikawa S, Fujimaki S.Route and regulation of zinc, cadmium, and iron transport in rice plants (Oryza sativa L.) during vegetative growth and grain filling:Metal transporters, metal speciation, grain Cd reduction and Zn and Fe biofortification[J].International Journal of Molecular Sciences, 2015, 16(8):19111-19129. doi: 10.3390/ijms160819111

    Gao J, Sun L, Yang X E, et al.Transcriptomic analysis of cadmium stress response in the heavy metal hyperaccumulator Sedum alfredii Hance[J].Plos One, 2013, 8(6):e64643. doi: 10.1371/journal.pone.0064643

    Palusińska M, Barabasz A, KozakK, et al.Zn/Cd status-dependent accumulation of Zn and Cd in root parts in tobacco is accompanied by specific expression of ZIP genes[J].BMC Plant Biology, 2020, 20(1):37. http://www.researchgate.net/publication/338758611_ZnCd_status-dependent_accumulation_of_Zn_and_Cd_in_root_parts_in_tobacco_is_accompanied_by_specific_expression_of_ZIP_genes

    Morel M, Crouzet J, Gravot A, et al.AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis[J].Plant Physiology, 2009, 149(2):894-904. doi: 10.1104/pp.108.130294

    Ueno D, Yamaji N, Kono I, et al.Gene limiting cadmium accumulation in rice[J].Proceedings of the National Academy of Sciences, 2010, 107(38):16500-16505. doi: 10.1073/pnas.1005396107

    Kutrowska A, Szelag M.Low-molecular weight organic acids and peptides involved in the long-distance transport of trace metals[J].Acta Physiologiae Plantarum, 2014, 36(8):1957-1968. doi: 10.1007/s11738-014-1576-y

    Deng T H B, Tang Y T, Ent A V D, et al.Nickel translocation via the phloem in the hyperaccumulator Noccaea caerulescens (Brassicaceae)[J].Plant and Soil, 2016, 404(1):35-45. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=85119aa52a5bedc95fdc83ed187e48c4

    Dan Y B, Zhang W L, Xue R M, et al.Characterization of gold nanoparticle uptake by tomato plants using enzymatic extraction followed by single-particle inductively coupled plasma-mass spectrometry analysis[J].Environmental Science & Technology, 2017, 49(5):3007-3014. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=809dad9164c921979f01c071084ecd61

    Feichtmeier N S, Walther P, Leopold K.Uptake, effects, and regeneration of barley plants exposed to gold nanoparticles[J].Environmental Science & Pollution Research International, 2015, 22(11):8549-8558. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4357b695661430297a547e179ff456e7

    Tao Q, Jupa R, Liu Y K, et al.Abscisic acid-mediated modifications of radial apoplastic transport pathway play a key role in cadmium uptake in hyperaccumulator Sedum alfredii[J].Plant Cell And Environment, 2019, 42(5):1425-1440. doi: 10.1111/pce.13506

    Li T Q, Tao Q, Shohag M J I, et al.Root cell wall polysaccharides are involved in cadmium hyperaccumulation in Sedum alfredii[J].Plant and Soil, 2015, 389:387-399. doi: 10.1007/s11104-014-2367-3

    Chi K Y, Zou R, Wang L, et al.Cellular distribution of cadmium in two amaranth (Amaranthus mangostanus L.) cultivars differing in cadmium accumulation[J].Environmental Science and Pollution Research, 2019, 26:22147-22158. doi: 10.1007/s11356-019-05390-w

    Mori S, Uraguchi S, Ishikawa S, et al.Xylem loading process is a critical factor in determining Cd accumulation in the shoots of Solanum melongena and Solanum torvum[J].Environmental and Experimental Botany, 2009, 67:127-132. doi: 10.1016/j.envexpbot.2009.05.006

    Hu P J, Wang Y D, Przybyłowicz W J, et al.Elemental distribution by cryo-micro-PIXE in the zinc and cadmium hyperaccumulator Sedum plumbizincicola grown naturally[J].Plant and Soil, 2015, 388:267-282. doi: 10.1007/s11104-014-2321-4

    Wang W J, Zhang M Z, Liu J.Subcellular distribution and chemical forms of Cd in Bougainvillea spectabilis Willd. as an ornamental phytostabilizer:An integrated consideration[J].International Journal of Phytoremediation, 2018, 20(11):1087-1095. doi: 10.1080/15226514.2017.1365335

    Rozas M M, Madejon E, Madejon P.Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species:An assessment in sand and soil conditions under different levels of contamination[J].Environmental Pollution, 2016, 216:273-281. doi: 10.1016/j.envpol.2016.05.080

    Hou X L, Han H, Cai L P, et al.Pb stress effects on leaf chlorophyll fluorescence, antioxidative enzyme activities, and organic acid contents of Pogonatherum crinitum seedlings[J].Flora, 2018, 240:82-88. doi: 10.1016/j.flora.2018.01.006

    Sghaier O M, Merono R M, Zapico E F, et al.Synthesis of a new Cd(Ⅱ)-Ni(Ⅱ) hetero-metallic coordination polymer base on citric acid ligand.X-ray structure, thermal stability, XPS and fluorescence studies[J].Journal of Molecular Structure, 2016, 1105:105-111. doi: 10.1016/j.molstruc.2015.10.028

    Zhang Y L, He S R, Zhang Z, et al.Glycine transforma-tioninduces repartition of cadmium and lead in soil constituents[J].Environmental Pollution, 2019, 251:930-937. doi: 10.1016/j.envpol.2019.04.099

    Chen S, Lin R Y, Lu H L, et al.Effects of phenolic acids on free radical scavenging and heavy metal bioavailability in kandelia obovata under cadmium and zinc stress[J].Chemosphere, 2020, 249:126341. doi: 10.1016/j.chemosphere.2020.126341

    Xin J P, Zhang Y, Tian R N.Tolerance mechanism of Triarrhena saccharifiora (Maxim.) Nakai.seedlings to lead and cadmium:Translocation, subcellular distribution, chemical forms and variations in leaf ultrastructure[J].Ecotoxicology and Environmental Safety, 2018, 165:611-621. doi: 10.1016/j.ecoenv.2018.09.022

    Adediran G A, Ngwenya B T, Mosselmans J F W, et al.Mechanisms behind bacteria induced plant growth promotion and Zn accumulation in Brassica juncea[J].Journal of Hazardous Materials, 2015, 283:490-499. doi: 10.1016/j.jhazmat.2014.09.064

    Sun J L, Luo L Q.Subcellular distribution and chemical forms of Pb in corn:strategies underlying tolerance in Pb stress[J].Journal of Agricultural and Food Chemistry, 2018, 66(26):6675-6682. doi: 10.1021/acs.jafc.7b03605

    Ameen N Z, Amjad M, Murtaza B, et al.Biogeochemical behavior of nickel under different abiotic stresses:Toxicity and detoxification mechanisms in plants[J].Environmental Science and Pollution Research, 2019, 26(11):10496-10514. doi: 10.1007/s11356-019-04540-4

    Sunitha M S, Prashant S, Kumar S A, et al.Cellular and molecular mechanisms of heavy metal tolerance in plants:A brief overview of transgenic plants over expressing phytochelatins synthase and metallothionein genes[J].Plant Cell Biotechnology and Molecular Biology, 2013, 13(3):99-104.

    Helaoui S, Boughattas I, Hattab S, et al.Physiological, biochemical and transcriptomic responses of Medicago sativa to nickel exposure[J].Chemosphere, 2020, 249:126121. doi: 10.1016/j.chemosphere.2020.126121

    Chaudhary K, Agarwal S, Khan S.Role of phytochelatins (PCs), metallothioneins (MTs), and heavy metal atpase (HMA) genes in heavy metal tolerance[M]//Prasad R.Mycoremediation and environmental sustainability: Volume 2.Cham: Springer International Publishing, 2018: 39-60.

    Navarrete A, González A, Gómez M, et al.Copper excess detoxification is mediated by a coordinated and complementary induction of glutathione, phytochelatins and metallothioneins in the green seaweed Ulva compressa[J].Plant Physiology and Biochemistry, 2019, 135:423-431. doi: 10.1016/j.plaphy.2018.11.019

    Cao Z Z, Qin M L, Lin X Y, et al.Sulfur supply reduces cadmium uptake and translocation in rice grains (Oryza sativa L.) by enhancing iron plaque formation, cadmium chelation and vacuolar sequestration[J].Environmental Pollution, 2018, 238:76-84. doi: 10.1016/j.envpol.2018.02.083

    Bhargava A, Carmona F F, Bhargava M, et al.Appro-aches for enhanced phytoextraction of heavy metals[J].Journal of Environmental Management, 2012, 105:103-120. http://www.cabdirect.org/abstracts/20123223844.html

    Sharma S S, Dietz K J, Mimura T.Vacuolar compart-mentalization as indispensable component of heavy metal detoxification in plants[J].Plant, Cell & Environment, 2016, 39:1112-1126. http://www.ncbi.nlm.nih.gov/pubmed/26729300

    Liu H, Zhao H X, Wu L H, et al.Heavy metal ATPase 3(HMA3) confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola[J].New Phytologist, 2017, 215(2):687-698. doi: 10.1111/nph.14622

    Song W Y, Park J, Cózat D G M, et al.Arsenic tolerance in arabidopsis is mediated by two ABCC-type phytochelatin transporters[J].Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(49):21187-21192. doi: 10.1073/pnas.1013964107

    Park J, Song W Y, Ko D, et al.The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury[J].The Plant Journal, 2012, 69(2):278-288. doi: 10.1111/j.1365-313X.2011.04789.x

    Zhang W W, Hu Y J, Cao Y R, et al.Tolerance of lead by the fruiting body of Oudemansiella radicata[J].Chemosphere, 2012, 88(4):467-475. doi: 10.1016/j.chemosphere.2012.02.079

    Srivastava R K, Pandey P, Rajpoot R, et al.Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings[J].Protoplasma, 2014, 251(5):1047-1065. doi: 10.1007/s00709-014-0614-3

    Tang K, Zhan J C, Yang H R, et al.Changes of resveratrol and antioxidant enzymes during UV-induced plant defense response in peanut seedlings[J].Journal of Plant Physiology, 2010, 167(2):95-102. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e146b78a8d1cf5b81c94f5cc1e187e9c

    Xu X H, Yang B S, Qin G H, et al.Growth, accumulation, and antioxidative responses of two Salix genotypes exposed to cadmium and lead in hydroponic culture[J].Environmental Science and Pollution Research, 2019, 26:19770-19784. doi: 10.1007/s11356-019-05331-7

    Shahid M, Dumat C, Pourrut B, et al.Influence of EDTA and citric acid on lead-induced oxidative stress to Vicia faba roots[J].Journal of Soils and Sediments, 2014, 14:835-843. doi: 10.1007/s11368-013-0724-0

    Cherif J, Mediouni C, Ammar W B, et al.Interactions of zinc and cadmium toxicity in their effects on growth and in antioxidative systems in tomato plants (Solarium lycopersicum)[J].Journal of Environmental Sciences, 2011, 23(5):837-844. doi: 10.1016/S1001-0742(10)60415-9

    Yan Y Y, Yang B, Lan X Y, et al.Cadmium accumulation capacity and resistance strategies of a cadmium-hypertolerant fern-Microsorum fortunei[J].Science of the Total Environment, 2019, 649:1209-1223. doi: 10.1016/j.scitotenv.2018.08.281

    黑泽文, 向慧敏, 章家恩, 等.水合欢对重金属Cd、Pb的耐受性及吸收富集特性[J].生态毒理学报, 2019, 14(3):286-296. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cyyhj201903029

    Hei Z W, Xiang H M, Zhang Z E, et al.Tolerance and accumulation ability of Neptunia olerace to Cd and Pb stress in soil[J].Asian Journal of Ecotoxicology, 2019, 14(3):286-296. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cyyhj201903029

    Guo H, Jiang J W, Gao J Q, et al.Evaluation of cadmium hyperaccumulation and tolerance potential of Myriophyllum aquaticum[J].Ecotoxicology and Environmental Safety, 2020, 195:110502. doi: 10.1016/j.ecoenv.2020.110502

    Małecka A, Konkolewska A, Han A, et al.Insight into the phytoremediation capability of Brassica juncea (v.Malopolska):Metal accumulation and antioxidant enzyme activity[J].International Journal of Molecular Sciences, 2019, 20:4355. doi: 10.3390/ijms20184355

    Chandrasekhara C, Ray J G.Lead accumulation, growth responses and biochemical changes of three plant species exposed to soil amended with different concentrations of lead nitrate[J].Ecotoxicology and Environmental Safety, 2019, 171:26-36. doi: 10.1016/j.ecoenv.2018.12.058

    Zhang C L, Chen Y Q, Xu W H, et al.Resistance ofAlfalfa and Indian mustard to Cd and the correlation of plant Cd uptake and soil Cd form[J].Environmental Science and Pollution Research, 2019, 26:13804-13811. doi: 10.1007/s11356-018-3162-0

    Reeves R D, Baker A J M, Tanguy Jaffre, et al.A global database for plants that hyperaccumulate metal and metalloid trace elements[J].New Phytologist, 2018, 218:407-411. doi: 10.1111/nph.14907

    Rosenkranz T, Hipfinger C, Ridard C, et al.A nickel phytomining field trial using Odontarrhena chalcidica and Noccaea goesingensis on an Austrian serpentine soil[J].Journal of Environmental Management, 2019, 242:522-528. doi: 10.1016/j.jenvman.2019.04.073

    Siebert S J, Schutte N C, Bester S P, et al.Senecio conrathii N.E.Br.(Asteraceae), a new hyperaccumulator of nickel from serpentinite outcrops of the Barberton Greenstone Belt, South Africa[J].Ecological Research, 2018, 33:651-658. doi: 10.1007/s11284-017-1541-5

    Yamaguchi T, Tomioka R, Takenaka C.Accumulation of cobalt and nickel in tissues of Clethra barbinervis in a metal dosing trial[J].Plant and Soil, 2017, 421:273-283. doi: 10.1007/s11104-017-3455-y

    Shu H Y, Zhang J, Liu F Y, et al.Comparative transcriptomic studies on a cadmium hyperaccumulator Viola baoshanensis and its non-tolerant counterpart V.inconspicua[J].International Journal of Molecular Sciences, 2019, 20:1906. doi: 10.3390/ijms20081906

    Potdukhe R M, Bedi P, Sarangi B K, et al.Root transcripts associated with arsenic accumulation in hyperaccumulator Pteris vittata[J].Journal of Biosciences, 2018, 43(1):105-115. doi: 10.1007/s12038-018-9735-8

    张云霞, 宋波, 宾娟, 等.超富集植物藿香蓟(Ageratum conyzoides L.)对镉污染农田的修复潜力[J].环境科学, 2019, 40(5):2453-2459. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201905055

    Zhang Y X, Song B, Bin J, et al.Remediation potential of Ageratum conyzoides L.on cadmium contaminated farmland[J].Environmental Science, 2019, 40(5):2453-2459. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201905055

    Willscher S, Jablonski L, Fona Z, et al.Phytoremediation experiments with Helianthus tuberosus under different pH and heavy metal soil concentrations[J].Hydrometallurgy, 2017, 168:153-158. doi: 10.1016/j.hydromet.2016.10.016

    Kabas S, Mella F S, Huynh T, et al.Metal uptake and organic acid exudation of native Acacia species in mine tailings[J].Australian Journal of Botany, 2017, 65(4):357-367. doi: 10.1071/BT16189

    Wang L W, Hou D Y, Shen Z T, et al.Field trials of phytomining and phytoremediation:A critical review of influencing factors and effects of additives[J].Critical Reviews in Environmental Science and Technology, 2019, 51. doi: 10.1080/10643389.2019.1705724

    Bhargava A, Fuentes F, Shukla S, et al.Genetic variability in vegetable Chenopodium for morphological and quality traits over different cuttings[J].Ciencia e Investigacion Agraria, 2019, 46(2):179-186. doi: 10.7764/rcia.v46i2.2145

    Ruiz O N, Daniell H.Genetic engineering to enhance mercury phytoremediation[J].Current Opinion in Biotechnology, 2009, 20:213-219. doi: 10.1016/j.copbio.2009.02.010

    Valdez E G, Alarcóna A, Cerrato R F, et al.Induced accumulation of Au, Ag and Cu in Brassica napus grown in a mine tailings with the inoculation of Aspergillus niger and the application of two chemical compounds[J].Ecotoxicology and Environmental Safety, 2018, 154:180-186. doi: 10.1016/j.ecoenv.2018.02.055

    Harris A T, Naidoo K, Nokes J, et al.Indicative assessment of the feasibility of Ni and Au phytomining in Australia[J].Journal of Cleaner Production, 2009, 17(2):194-200. doi: 10.1016/j.jclepro.2008.04.011

    刘婷婷, 彭程, 王梦, 等.海州香薷根细胞壁对铜的吸附固定机制研究[J].环境科学学报, 2014, 34(2):514-523. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxxb201402033

    Liu T T, Peng C, Wang M, et al.Mechanism of fixation and adsorption of copper on root cell wall of Elsholtzia splendens[J].Acta Scientiae Circumstantiae, 2014, 34(2):514-523. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkxxb201402033

    何宇宁, 徐仲瑞, 熊治廷.铜胁迫对不同抗性种群海州香薷酸性转化酶基因启动子甲基化的影响[J].植物科学学报, 2017, 35(4):574-582. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whzwxyj201704013

    He Y N, Xu Z R, Xiong Z T.DNA methylation patterns of acid invertase gene promoters from Cu-tolerant and non-tolerant populations of Elsholtzia haichowensis under copper stress[J].Plant Science Journal, 2017, 35(4):574-582. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=whzwxyj201704013

    Farjandi F, Faiziev A, Fozilov M, et al.The application of biogeochemistry for gold exploration in the Masjed-Daghi, Julfa, NW Iran[J].Arabian Journal of Geosciences, 2013, 6(5):1435-1446. doi: 10.1007/s12517-011-0448-7

  • 期刊类型引用(2)

    1. 贺根文,路思明,彭琳琳,于长琦,李伟,刘翠辉. 赣南狮吼山硫铁多金属矿区花岗岩地球化学、年代学特征及其成因. 吉林大学学报(地球科学版). 2020(05): 1491-1504 . 百度学术
    2. 彭琳琳,李伟,刘翠辉,陈伟,谭友,卢国安. 赣南锡矿类型、成矿规律及找矿远景分析. 东华理工大学学报(自然科学版). 2020(05): 463-471 . 百度学术

    其他类型引用(0)

图(3)  /  表(3)
计量
  • 文章访问数:  13541
  • HTML全文浏览量:  5587
  • PDF下载量:  112
  • 被引次数: 2
出版历程
  • 收稿日期:  2020-04-13
  • 修回日期:  2020-05-19
  • 录用日期:  2020-05-28
  • 发布日期:  2020-08-31

目录

/

返回文章
返回