• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

X射线荧光光谱-X射线粉晶衍射-偏光显微镜分析12种产地铜精矿矿物学特征

闵红, 刘倩, 张金阳, 周海明, 严德天, 邢彦军, 李晨, 刘曙

闵红, 刘倩, 张金阳, 周海明, 严德天, 邢彦军, 李晨, 刘曙. X射线荧光光谱-X射线粉晶衍射-偏光显微镜分析12种产地铜精矿矿物学特征[J]. 岩矿测试, 2021, 40(1): 74-84. DOI: 10.15898/j.cnki.11-2131/td.202004020038
引用本文: 闵红, 刘倩, 张金阳, 周海明, 严德天, 邢彦军, 李晨, 刘曙. X射线荧光光谱-X射线粉晶衍射-偏光显微镜分析12种产地铜精矿矿物学特征[J]. 岩矿测试, 2021, 40(1): 74-84. DOI: 10.15898/j.cnki.11-2131/td.202004020038
MIN Hong, LIU Qian, ZHANG Jin-yang, ZHOU Hai-ming, YAN De-tian, XING Yan-jun, LI Chen, LIU Shu. Study on the Mineralogical Characteristics of 12 Copper Concentrates by X-ray Fluorescence Spectrometry, X-ray Powder Diffraction and Polarization Microscope[J]. Rock and Mineral Analysis, 2021, 40(1): 74-84. DOI: 10.15898/j.cnki.11-2131/td.202004020038
Citation: MIN Hong, LIU Qian, ZHANG Jin-yang, ZHOU Hai-ming, YAN De-tian, XING Yan-jun, LI Chen, LIU Shu. Study on the Mineralogical Characteristics of 12 Copper Concentrates by X-ray Fluorescence Spectrometry, X-ray Powder Diffraction and Polarization Microscope[J]. Rock and Mineral Analysis, 2021, 40(1): 74-84. DOI: 10.15898/j.cnki.11-2131/td.202004020038

X射线荧光光谱-X射线粉晶衍射-偏光显微镜分析12种产地铜精矿矿物学特征

基金项目: 

国家重点研发计划项目(2018YFF0215400,2017YFF0108905)

国家重点研发计划项目 2018YFF0215400

国家重点研发计划项目 2017YFF0108905

详细信息
    作者简介:

    闵红, 高级工程师, 从事矿产品检测及标准化研究。E-mail: minhong@customs.gov.cn

    通讯作者:

    刘曙, 正高级工程师, 从事矿产品检测及标准化研究。E-mail: liu_shu@customs.gov.cn

  • 中图分类号: P575.5;P575.4

Study on the Mineralogical Characteristics of 12 Copper Concentrates by X-ray Fluorescence Spectrometry, X-ray Powder Diffraction and Polarization Microscope

  • 摘要: 我国是世界上最大的铜精矿进口国,研究不同产地铜精矿的矿物学特征,能支撑铜精矿原产地分析及相关固体废物属性鉴定。本文研究对象为来自8个国家12个矿区的进口铜精矿样品,采用X射线荧光光谱(XRF)、X射线粉晶衍射(XRD)以及偏光显微镜进行综合分析,探寻这些矿区铜精矿的元素组成、矿物组合特征,探讨不同成因类型铜精矿的矿物学差异。X射线荧光光谱分析表明铜精矿样品主要元素为Cu、Fe、S、O,普遍含有Zn、Si、Al、Mg、Ca、Pb;X射线粉晶衍射物相分析表明铜精矿样品主要物相为黄铜矿,其次常含有黄铁矿和闪锌矿等物相;偏光显微镜光片鉴定表明铜精矿样品金属矿物中黄铜矿的含量在88%~98%之间,观察到黄铜矿与闪锌矿、黄铁矿、磁黄铁矿共生,闪锌矿与斑铜矿、砷黝铜矿共生,黄铜矿、砷黝铜矿和斑铜矿共生等连生体矿相。结合铜精矿不同成矿类型分析表明,斑岩型、矽卡岩型、火山成因块状硫化型铜矿床样品中常见黄铜矿、黄铁矿、闪锌矿,并分别含有黑云母、草酸钙石、硫酸铅特征矿物;铁氧化物铜金矿床样品主要矿物为黄铜矿,常见磁黄铁矿、滑石特征矿物。通过本文采用多种技术表征不同产地铜精矿样品元素含量、物相组成、矿相组成的差异,能够全面分析不同产地铜精矿样品的矿物学特征,对进口铜精矿的风险识别和管控具有重要意义。
    要点

    (1) 12种不同产地铜精矿主要元素为Cu、Fe、S、O,普遍含有Zn、Si、Al、Mg、Ca、Pb。

    (2) 12种不同产地铜精矿主要物相为黄铜矿,常与黄铁矿、闪锌矿共生。

    (3) 不同成矿类型的铜精矿矿物学特征不同,可用于原产地分析。

    HIGHLIGHTS

    (1) The main elements of 12 copper concentrates were Cu, Fe, S, O with minor elements of Zn, Si, Al, Mg, Ca, Pb.

    (2) The main phases of 12 copper concentrates were chalcopyrite, associated with pyrite and sphalerite.

    (3) Different types of copper concentrates have different mineralogical characteristics, which can be used for source discrimination.

  • 凹凸棒黏土又名坡缕石,是具有层链状过渡结构的含水富镁硅酸盐为主的黏土矿物[1],由Si—O四面体双链组成两个连续的四面体片和一个不连续的八面体片赋予了凹凸棒黏土具有独特的吸附性、流变性、载体性、催化性、可塑性、抗盐性和吸水性等物理化学性质[2],在食品行业广泛用于食品脱色以及去除油脂中黄曲霉素、农药等有害成分,在医药行业广泛用于药用辅料及载体[3-5]。美国、日本和欧盟已将凹凸棒黏土作为口服制剂用于治疗消化道疾病的非外方药收载于各国药典中,中国虽然已将凹凸棒黏土列入《国家级药物制剂新产品开发指南》,但仍然没有收入中国药典,与美国、西班牙、希腊等凹凸棒黏土生产大国相比,中国凹凸棒黏土的研究与应用起步较晚。矿床成因的不同导致凹凸棒黏土中的微量元素组成存在差异,其中Be、Cr、Ni、As、Cd、Sb、Hg、Pb会对健康和环境产生不利影响。中国国家标准《食品安全国家标准食品添加剂凹凸棒黏土》(GB 29225—2012)对食品添加剂凹凸棒黏土中As和Pb的含量规定了限量标准As≤3μg/g,Pb≤40μg/g。美国药典(USP30)对医药级凹凸棒黏土中As和Pb的含量规定了限量标准As≤2μg/g,Pb≤10μg/g。V、Mn、Co、Cu、Zn、Mo、Sn、Ba作为凹凸棒黏土的微量元素影响其性能和应用范围[6-8],在美国药典(USP233)通则中将这些微量元素作为无机杂质制定了允许日接触量。因此,建立凹凸棒黏土中微量元素的分析方法对于其作为食品助剂和药用辅料的开发利用具有十分重要的意义。

    目前,有关凹凸棒黏土中微量元素的测定主要采用原子吸收光谱法(AAS)[9]、原子荧光光谱法(AFS)[10]和电感耦合等离子体发射光谱法(ICP-OES)[11]。国家标准《食品安全国家标准食品添加剂中重金属限量试验》(GB 5009.74—2014)和《食品安全国家标准食品添加剂中砷的测定》(GB 5009.76—2014)均采用传统的比色法测定凹凸棒黏土中的重金属Pb和As,无需复杂仪器和设备,具有简单、快速、灵敏高的特点,但只能进行限量分析,不能用于定量分析。陈明岩等[9]采用AAS法测定了凹凸棒黏土中的毒害元素Pb和Cd,采用AFS法测定了毒害元素As和Hg,具有灵敏度高的分析特点,但这两种方法分析凹凸棒黏土中的4种元素不具有高通量分析特性,且AFS的检出限无法满足凹凸棒黏土中超痕量Hg的测定。凌霞等[11]采用ICP-OES测定凹凸棒黏土中的14种金属元素,并与AAS和AFS进行了对比分析,ICP-OES具有明显优势,但对于凹凸棒黏土中痕量以及超痕量元素的分析,该方法的检出限无法满足要求。电感耦合等离子体质谱法(ICP-MS)比ICP-OES、AAS具有更高的灵敏度和更低的检出限,在岩石矿物分析中得到了广泛应用[12-15]。与其他分析技术一样,ICP-MS所存在的干扰仍然是产生分析误差的主要影响因素。碰撞/反应池(CRC)技术为ICP-MS消除质谱干扰提供了通用方法,但碰撞模式仅能消除多原子离子干扰,无法消除同量异位素、双电荷所形成的质谱干扰[16],而反应模式由于不可预知的反应过程和形成的副产物离子可能产生新的质谱干扰,影响分析结果的准确性,提高化学反应的选择性是避免反应模式发生副反应的有效方法[17-19]

    电感耦合等离子体串联质谱法(ICP-MS/MS)通过串联双四极杆质量过滤器(Q1、Q2)极大地提高了反应模式的选择性,充分发挥了反应模式的潜能,利用质量转移反应几乎可以消除所有质谱干扰[20-23]。本文采用硝酸-盐酸-氢氟酸组成的混合酸经微波消解对凹凸棒黏土样品进行前处理后,利用ICP-MS/MS测定消解液中的Be、V、Cr、Mn、Co、Ni、Cu、Zn、As、Mo、Cd、Sn、Sb、Ba、Hg、Pb,在NH3/He和O2反应模式下利用质量转移和原位质量法消除干扰,以期为凹凸棒黏土中多种微量元素的准确检测提供高通量分析方法。

    Agilent 8800型电感耦合等离子体串联质谱仪:装配整套惰性样品导入系统(美国Agilent公司);MARs 5微波消解系统(美国CEM公司);Milli-Q超纯水机(美国Millipore公司)。

    ICP-MS/MS参数:射频功率1600W;载气流速0.6L/min;补偿气流速0.6L/min;采样深度8.0mm;测量模式,MS/MS;反应气,O2和NH3/He(1:9,V/V);反应气O2流速 0.35mL/min,NH3/He流速4.0mL/min;分析同位素:9Be、51V、52Cr、55Mn、59Co、60Ni、63Cu、66Zn、75As、95Mo、111Cd、118Sn、121Sb、137Ba、202Hg、208Pb。

    微波消解参数:功率1600W,斜坡升温120℃,升温时间5min;功率1600W,斜坡升温150℃,升温时间3min,保持时间5min;功率1600W,斜坡升温185℃,升温时间5min,保持时间15min。

    1000mg/L的Be、V、Cr、Mn、Co、Ni、Cu、Zn、As、Mo、Cd、Sn、Sb、Ba、Hg、Pb、Au单元素标准溶液(购自国药集团化学试剂有限公司)。

    10mg/L的Li、Sc、Ge、Y、In、Tb、Bi内标溶液(p/n 5183-4681,购自美国Agilent公司)。

    65%硝酸、37%盐酸、40%氢氟酸:均购自德国Merck公司。整个实验用水为Milli-Q超纯水机制备的超纯水。

    由于尚未研制出凹凸棒黏土国家标准参考物质,本实验采用与凹凸棒黏土基质组成相似的玄武岩成分分析标准物质(GBW07105)评价方法的准确性。该标准物质购自中国地质科学院地球物理地球化学勘查研究所。

    江苏盱眙凹凸棒黏土品位高、储量大,市场份额居全国和全球之首,本实验样品编号分别为1、2的两个凹凸棒黏土样品来自江苏盱眙。将凹凸棒黏土研磨过74μm筛,在105℃烘箱中烘2h后,放入干燥器中备用。称取烘干的凹凸棒黏土样品0.2g(精确到0.0001g),加入2mL超纯水润湿,依次加入3mL硝酸、1mL盐酸和2mL氢氟酸,浸泡12h,按设定的微波消解参数进行消解。消解结束后合并澄清透明的样品消解液和洗涤液于20mL聚乙烯容量瓶中,用超纯水定容至20g,制得100倍稀释样品溶液,采用相同的方法制得空白溶液,待测。

    分别配制0.0μg/L、0.05~5.0μg/L(0.05μg/L的As、Cd、Sb、Hg,0.5μg/L的Be、Mo、Sn、Pb,5μg/L的V、Cr、Mn、Co、Ni、Cu、Zn、Ba)、0.2~20μg/L(0.2μg/L的As、Cd、Sb、Hg,2.0μg/L的Be、Mo、Sn、Pb,20μg/L的V、Cr、Mn、Co、Ni、Cu、Zn、Ba)、1.0~100μg/L(1.0μg/L的As、Cd、Sb、Hg,10μg/L的Be、Mo、Sn、Pb,100μg/L的V、Cr、Mn、Co、Ni、Cu、Zn、Ba)、5.0~500μg/L(5.0μg/L的As、Cd、Sb、Hg,50μg/L的Be、Mo、Sn、Pb,500μg/L的V、Cr、Mn、Co、Ni、Cu、Zn、Ba)系列混合标准溶液,在优化的实验条件下,采用ICP-MS/MS进行测定,以分析元素的信号强度(cps,每秒计数)与内标元素的信号强度(cps)的比值对标准溶液所对应的分析元素的浓度建立回归曲线,得到分析元素的标准曲线,在相同条件下对样品溶液和空白溶液进行测定,计算样品溶液中各元素的含量。所有分析溶液在测定前均使用标准内标混合“T”形接头在线添加1mg/L的Li、Sc、Ge、Y、In、Tb、Bi内标溶液;为消除Hg的记忆效应,所有分析溶液在测定前加入200μg/L的Au标准溶液。

    凹凸棒黏土的主要基质组成为SiO2、MgO和Al2O3,加入硝酸利用传统电热板消解,需加热煮沸30min并不断补充硝酸,由于硝酸不能完全消解凹凸棒黏土,需过滤洗涤得到消解液[11]。已有研究表明,金属杂质离子通过类质同象置换赋存于结构单元层中,消解不彻底会导致部分元素不能释放完全[24];氢氟酸非常适合消解硅酸盐样品,由硝酸-氢氟酸组成的混合酸增加了凹凸棒黏土中元素的释放能力,经微波消解能彻底分解凹凸棒黏土样品[9],但对于元素Hg的测定背景偏高且稳定性差;采用硝酸-盐酸-氢氟酸为消解试剂,多数金属离子能与氯离子配位,表现为更好的稳定性[25]。从表 1可以看出,所有分析元素的提取率高(≥97.0%),而氯离子形成的质谱干扰在MS/MS模式下通过优选反应气体能可靠地消除。因此,本实验选择硝酸-氢氟酸-盐酸为消解试剂,经微波消解后与已有方法[9]相比较,样品溶液中所有分析元素的稳定性好。

    表  1  不同消解酸对分析元素的提取率
    Table  1.  Extraction rate of analytes by different digestion acids
    元素 分析元素的提取率(%) 元素 分析元素的提取率(%)
    硝酸 硝酸-氢氟酸 硝酸-盐酸-氢氟酸 硝酸 硝酸-氢氟酸 硝酸-盐酸-氢氟酸
    Be 55.3 97.2 98.6 As 48.4 101.0 98.1
    V 68.3 101.0 97.5 Mo 73.5 97.4 102.0
    Cr 76.5 96.9 101.0 Cd 81.2 96.6 98.2
    Mn 90.3 101.0 102.0 Sn 89.7 98.1 97.0
    Co 71.8 98.5 99.3 Sb 63.0 102.0 101.0
    Ni 75.8 96.6 101.0 Ba 80.3 97.7 98.3
    Cu 57.6 100.0 102.0 Hg 72.8 83.6 98.0
    Zn 74.0 97.5 98.4 Pb 40.6 103.0 97.5
    下载: 导出CSV 
    | 显示表格

    在质谱分析过程中,凹凸棒黏土中的常量元素与等离子气以及样品消解溶剂会形成大量干扰离子,对质荷比(m/z)≤80的同位素51V、52Cr、55Mn、59Co、60Ni、63Cu、66Zn、75As构成了严重干扰;对于9Be+主要受到双电荷离子18O++的干扰;对于m/z>80同位素95Mo、111Cd、118Sn、121Sb、137Ba、202Hg、208Pb,在测定过程中分别受到氧化物离子79Br16O+95Mo16O+100Mo18O+105Pd16O+121Sb16O+186W16O+192Os16O+的干扰。由于同位素18O丰度低且很难形成双电荷离子18O++9Be和118Sn受到的干扰可以忽略不计;而凹凸棒黏土中Mo、Sb的含量处于微量水平,Br、Pd、W、Os的含量处于痕量水平,在本实验条件下,Mo、Sb、Br、Pd、W、Os形成氧化物的产率低(分别为5.60%、26.2%、9.36%、1.06%、5.59%、7.23%),所受到的干扰也可忽略不计。因此,本实验对于分析元素Be、Mo、Cd、Sn、Sb、Ba、Hg、Pb采用单四极杆(SQ,Q1仅具有离子导入功能)模式的无气方式(CRC中无气体)进行测定;对于分析元素V、Cr、Mn、Co、Ni、Cu、Zn、As采用串联质谱(MS/MS,Q1、Q2均具有离子过滤功能)模式进行测定。

    在ICP-MS/MS分析中,O2和NH3/He(其中He为缓冲气)均为消除质谱干扰最常用的反应气,两种反应气都能采用质量转移或原位质量法消除干扰[26-28]。在MS/MS模式下,Q1能对来自等离子体的离子过滤,阻止大量干扰离子进入CRC,使CRC内发生的反应变得简单可控,然后利用Q2对来自CRC出口的离子再次过滤,消除干扰更彻底[29]。本实验分别选择O2和NH3/He为反应气,在MS/MS模式下考察元素V、Cr、Mn、Co、Ni、Cu、Zn、As在两种反应气下消除质谱干扰的效果,测定结果见表 2

    表  2  在MS/MS模式下分析元素的背景等效浓度
    Table  2.  Background equivalent concentrations (BECs) of analytes in the MS/MS mode
    同位素 主要干扰 O2反应模式 NH3/He反应模式
    产物离子 产率(%) BEC(ng/L) 产物离子 产率(%) BEC(ng/L)
    51V 35Cl16O, 36Ar15N, 36Ar14NH, 37Cl14N 51V16O+ 63.3 3.70 51V+ 53.2 0.34
    52Cr 40Ar12C, 35Cl16OH, 36Ar16O, 38Ar14N 52Cr16O+ 17.5 20.2 52Cr(14NH3)2+ 0.63 19.7
    55Mn 40Ar14NH, 40Ar15N, 36Ar19F, 23Na16O2 55Mn16O+ 16.0 9.15 55Mn(14NH3)+ 0.34 26.4
    59Co 24Mg35Cl, 40Ar19F, 40Ca19F, 40Ar18OH 59Co16O+ 23.0 2.88 59Co(14NH3)2+ 5.02 3.52
    60Ni 23Na36ArH, 23Na37Cl, 44Ca16O, 59CoH 60Ni16O+ 13.0 7.12 60Ni(14NH3)3+ 3.91 3.84
    63Cu 28Si35Cl, 23Na40Ar, 12C16O35Cl 63Cu16O+ 0.85 46.1 63Cu(14NH3)2+ 5.38 40.9
    66Zn 29Si37Cl, 34S16O2, 48Ca18O, 40Ar26Mg 66Zn16O+ 2.68 155 66Zn(14NH3)+ 2.05 82.0
    75As 40Ar35Cl, 36Ar39K, 36Ar38ArH, 59Co16O 75As16O+ 56.7 8.63 75As(14NH3)+ 15.1 41.5
    下载: 导出CSV 
    | 显示表格

    表 2所示,51V+在O2反应模式下采用质量转移法获得的产率高达63.3%,背景等效浓度(BEC)低至3.7ng/L,表明采用O2质量转移法能有效消除干扰[30];在NH3/He反应模式下,采用原位质量法获得51V+的产率略低于O2反应模式,但BEC比O2反应模式低了一个数量级,优选NH3/He原位质量法测定V;对于52Cr+55Mn+75As+,在NH3/He反应模式下的产率太低而BEC比O2反应模式高[31],优选O2质量转移法测定Cr、Mn、As;59Co+在O2反应模式下采用质量转移法获得的产率远高于NH3/He反应模式,而BEC略低于NH3/He反应模式,优选O2质量转移法测定Co;60Ni+在O2质量转移法的产率和BEC均比NH3/He质量转移法高,由于NH3/He反应模式下的产率也能满足测定要求,两种模式都可用于Ni的测定,从消除质谱干扰效果来看,优选NH3/He质量转移法测定Ni;对于63Cu+66Zn+的测定,在O2反应模式下的产率并不具有优势[32],而BEC高于NH3/He反应模式,优选NH3/He质量转移法测定Cu和Zn。因此,本实验对于Cr、Mn、Co、As的测定采用O2反应模式,而对于V、Ni、Cu、Zn的测定采用NH3/He反应模式。

    图 1可以看出,Cr、Mn、Co、As通过Q1消除了大量干扰,进入CRC后与O2反应生成相应的氧化物离子消除干扰;V、Ni、Cu、Zn通过Q1消除大量干扰进入CRC后,由于V不与NH3发生反应,利用干扰离子与NH3反应采用原位质量法进行测定,而Ni、Cu、Zn则通过与NH3发生质量转移反应生成团簇离子消除干扰。

    图  1  不同反应模式下消除质谱干扰的工作原理
    Figure  1.  Working principle of eliminating spectral interference in different reaction modes

    样品组成与标准溶液以及空白溶液存在基质差异,所产生的基体效应会导致分析信号长时间漂移,元素Hg存在记忆效应会导致分析信号强度严重下降,二者都会影响分析过程的稳定性[33-35]。为消除Hg的记忆效应,所有溶液均加入200μg/L的Au标准溶液[25];为消除基体效应,所有溶液均利用内标元素T形混合接头在线加入1mg/L的内标溶液,根据质量相近、性质相似的内标元素选择原则,分析元素Be选择Li为内标元素,分析元素V、Cr、Mn、Co、Ni、Cu、Zn、As选择Sc为内标元素,分析元素Mo、Cd、Sn、Sb、Ba选择Y为内标元素,分析元素Hg、Pb选择Bi为内标元素。向样品溶液中加入10μg/L的Be、V、Cr、Mn、Co、Ni、Cu、Zn、Mo、Sn、Ba、Pb和1μg/L的As、Cd、Sb、Hg混合标准溶液,每间隔10min测定1次,2h内总共测定12次,考察了16种元素在分析过程中的稳定性,结果如图 2所示。所有分析元素的归一化信号强度均在1.0±0.1范围内,表明信号强度的波动小,分析过程的稳定性好。

    图  2  样品溶液中16种分析元素2h的稳定性情况
    Figure  2.  Two-hour stability plot for 16 analytes in sample solution

    反应气流速决定CRC中反应气浓度,影响反应产物的种类和浓度。当反应气流速过低时,由于反应不完全导致干扰消除不彻底,而反应气流速过高则会降低分析离子的传输效率,从而降低分析灵敏度[36-38]。因此,必须对反应气流速进行优化。根据凹凸棒黏土典型的分子组成(MgAl)5Si8O20(OH)2(H2O)4·4H2O,用3%(V/V)硝酸+1%(V/V)盐酸+2%(V/V)氢氟酸为介质配制含600mg/L的Si、150mg/L的Al、100mg/L的Mg混合标准溶液,用来模拟样品溶液,加入10μg/L的V、Cr、Mn、Co、Ni、Cu、Zn、As标准溶液,考察O2反应气流速对Cr、Mn、Co、As加标回收率以及NH3/He反应气流速对V、Ni、Cu、Zn加标回收率的影响,结果如图 3所示。

    图  3  不同反应气流速下分析元素的加标回收率
    Figure  3.  Spiked recoveries for analytes under different reaction gas flow rates

    图 3a可以看出,随着O2流速的增大,干扰逐渐消除,4个分析元素的加标回收率逐渐减小;当流速达到0.30mL/min时,4个分析元素的回收率接近100%,随后趋于平稳。为确保分析元素的干扰消除得更彻底,本实验选择O2流速为0.35mL/min。由图 3b可以看出,随着NH3/He流速的增大,团簇离子逐渐形成,4个分析元素的干扰逐渐变小,相应的加标回收率也逐渐减小。当NH3/He流速达到3.0mL/min时,Ni的回收率接近100%,而其余三个元素的回收率仍然偏高;当NH3/He流速达到3.5mL/min时,Ni、Cu、Zn的回收率接近100%,而V的回收率偏高;当NH3/He流速达到4.0mL/min时,4个分析元素的回收率接近100%,随后趋于平稳,表明干扰已基本消除。因此,本实验选择NH3/He流速为4.0mL/min。

    根据配制的分析元素系列标准溶液建立校准曲线,并进行线性回归,ICP-MS/MS自带的MassHunter工作站自动输出线性度,结果见表 3。所有元素在各自的线性范围内线性关系良好,线性相关系数≥0.9997。取空白溶液连续分析11次,计算各元素的标准偏差,以3倍标准偏差除以标准曲线的斜率为仪器的检出限(LOD),以10倍标准偏差除以标准曲线的斜率为分析元素的定量限(LOQ)[39]。从表 3可以看出,本方法的LOD为0.13~51.6ng/L,LOQ在0.43~172ng/L之间,可满足凹凸棒黏土中微量以及痕量元素的分析要求。

    表  3  分析元素的线性范围、检出限与定量限
    Table  3.  Linearity, limits of detection (LODs), and limits of quantification (LOQs) for analytes
    元素 线性范围(μg/L) 相关系数(R) LOD (ng/L) LOQ (ng/L) 元素 线性范围(μg/L) 相关系数(R) LOD (ng/L) LOQ (ng/L)
    Be 0.002~50 0.9999 0.71 2.38 As 0.006~5.0 1.0000 1.90 6.34
    V 0.001~500 1.0000 0.13 0.43 Mo 0.015~50 1.0000 4.22 14.1
    Cr 0.010~500 0.9998 2.86 9.52 Cd 0.003~5.0 0.9998 0.94 3.12
    Mn 0.011~500 1.0000 3.25 10.8 Sn 0.022~50 1.0000 6.75 22.5
    Co 0.001~500 0.9999 0.44 1.46 Sb 0.020~5.0 0.9999 6.10 23.3
    Ni 0.017~500 0.9999 4.95 16.5 Ba 0.017~500 0.9997 5.21 17.4
    Cu 0.022~500 0.9997 6.32 21.1 Hg 0.004~5.0 1.0000 1.33 4.43
    Zn 0.17~500 0.9998 51.6 172 Pb 0.006~50 0.9999 1.84 6.12
    下载: 导出CSV 
    | 显示表格

    由于尚未研制出凹凸棒黏土国家标准参考物质,本实验选择与凹凸棒黏土成分组成相似的国家标准参考物质玄武岩(GBW07105)重复测定6次(Mn和Ba测定前稀释10倍。),验证本方法的准确性与精密度,结果见表 4。玄武岩各分析元素的测定值与标准参考物质的认定值基本一致,相对误差在-9.60%~8.21%之间,表明本方法的准确性好;各元素的相对标准偏差(RSD)≤5.93%,表明本方法的精密度高。

    表  4  玄武岩国家标准参考物质(GBW07105)的分析结果(n=6)
    Table  4.  Analysis results of basalt national standard reference material (GBW07105)
    元素 认定值(μg/g) 测定值(μg/g) 相对误差(%) RSD (%) 元素 认定值(μg/g) 测定值(μg/g) 相对误差(%) RSD (%)
    Be 2.50±0.40 2.26±0.10 -9.60 4.42 As 9.10±1.20 8.73±0.49 -4.07 5.61
    V 167±11.0 174±6.44 4.19 3.70 Mo 2.60±0.20 2.53±0.15 -2.69 5.93
    Cr 134±11.0 139±3.78 3.73 2.72 Cd 67.0±16.0* 72.5±3.01* 8.21 4.15
    Mn 1310±61.0 1330±51.0 1.53 3.83 Sn 2.00±0.40 1.97±0.11 -1.50 5.58
    Co 46.5±3.40 47.2±2.30 1.51 4.87 Sb 80.0* 82.3±4.70* 2.88 5.71
    Ni 140±7.00 143±5.92 2.14 3.70 Ba 527±26.0 538±19.6 2.09 3.64
    Cu 49.0±3.00 51.6±2.83 5.31 5.48 Hg 6.00±2.00* 5.51±0.28* -8.17 5.08
    Zn 150±10.0 158±5.07 5.33 3.21 Pb 7.00 7.23±0.34 3.29 4.70
    注:标注“*”的元素含量单位为ng/g。
    下载: 导出CSV 
    | 显示表格

    采用ICP-MS/MS分析来自江苏盱眙的两个凹凸棒黏土样品(样品编号1、2),并采用标准加入法进行对比分析,每个样品重复测定6次,利用t检测法对两种方法的分析结果进行统计分析。从表 5可以看出,两个凹凸棒黏土样品16种微量元素含量均低于100μg/g,其中As、Cd、Sb、Hg的含量均低于1μg/g;在95%置信度水平下,除样品2中的元素Ni以外,两种方法的分析结果无显著性差异(p>0.05),表明本方法准确可靠。参照国家标准《食品安全国家标准食品添加剂凹凸棒黏土》(GB 29225—2012)中As≤3μg/g、Pb≤40μg/g的限量标准,两个凹凸棒黏土中重金属含量完全满足食品加工要求。

    表  5  凹凸棒黏土样品的分析结果(n=6)
    Table  5.  Analysis results of attapulgite samples (n=6)
    元素 样品1 样品2
    本方法(μg/g) 标准加入法(μg/g) t检验 本方法(μg/g) 标准加入法(μg/g) t检验
    Be 1.85±0.08 1.79±0.10 p=0.14 3.21±0.14 3.15±0.20 p=0.28
    V 13.6±0.57 13.8±0.43 p=0.25 28.2±1.06 29.1±1.11 p=0.09
    Cr 31.9±1.55 32.5±1.26 p=0.24 25.6±0.78 26.2±0.84 p=0.11
    Mn 72.3±2.80 71.1±2.49 p=0.23 5.79±0.21 6.02±0.43 p=0.13
    Co 3.84±0.16 3.90±0.21 p=0.29 2.02±0.11 1.97±0.15 p=0.26
    Ni 28.6±1.14 27.7±1.30 p=0.12 37.0±1.27 35.4±1.39 p=0.03
    Cu 10.5±0.30 10.7± 0.14 p=0.08 9.56±0.39 9.71±0.45 p=0.28
    Zn 34.4±1.25 35.0±1.23 p=0.21 46.3±1.80 44.8±2.03 p=0.10
    As 24.9±1.10* 25.3±1.37* p=0.29 18.3±0.76* 17.6±0.80* p=0.08
    Mo 4.78±0.12 4.85±0.10 p=0.15 2.05±0.09 2.12±0.13 p=0.15
    Cd 18.3±0.66* 18.0±0.72* p=0.23 31.9±1.15* 33.0±1.28* p=0.07
    Sn 2.45±0.13 2.52±0.16 p=0.21 1.74±0.08 1.80±0.09 p=0.13
    Sb 62.1±2.09* 61.0±1.85* p=0.18 91.0±3.32* 93.1±4.05* p=0.17
    Ba 20.8±0.73 21.2±0.53 p=0.15 16.7±0.50 17.2±0.58 p=0.07
    Hg 4.56±0.15* 4.60±0.18* p=0.34 7.88±0.31* 7.64±0.40* p=0.14
    Pb 2.27±0.10 2.33±0.12 p=0.18 3.06±0.12 3.16±0.15 p=0.11
    注:标注“*”的元素含量单位为ng/g。
    下载: 导出CSV 
    | 显示表格

    建立了ICP-MS/MS测定凹凸棒黏土中16种微量元素的分析方法,采用硝酸-氢氟酸-盐酸为混合酸对凹凸棒黏土进行微波消解,能提高分析元素在样品溶液中的稳定性,所有元素的提取率均处于较高水平(≥97.0%),进而采用ICP-MS/MS进行测定。与传统的ICP-MS法相比较,本方法发挥了ICP-MS/MS反应模式的优势,应用O2反应模式和NH3/He反应模式消除质谱干扰更彻底,提高了元素分析的准确性,能快速测定凹凸棒黏土样品中的多种微量元素,同时为其他镁铝硅酸盐矿石中微量元素的测定提供借鉴。

    本方法应用于江苏盱眙凹凸棒黏土中微量元素的测定结果显示,江苏盱眙凹凸棒黏土中重金属As和Pb的含量低于美国药典的限量标准,已满足口服药物制剂的要求。该方法分别利用O2和NH3/He作为反应气消除质谱干扰,需要进行气体切换并设置不同的ICP-MS/MS工作参数,可通过后续实验条件的研究进一步优化调整,采用一种通用型反应气体消除质谱干扰,从而简化分析流程、缩短分析时间。

    致谢: 感谢上海海关工业品与原材料检测技术中心在铜精矿代表性样品取制样、实验分析环节给予的支持,感谢中国地质大学(武汉) 资源学院在铜精矿样品光片鉴定方面给予的支持。
  • 图  1   铜精矿样品主要元素含量折线图

    Figure  1.   Linear chart of content of main elements in copper concentrates

    图  2   铜精矿样品X射线粉晶衍射图像

    Figure  2.   X-ray powder diffraction pattern of copper concentrates

    图  3   铜精矿单体矿物显微矿相图像

    Cpy—黄铜矿;Bro—斑铜矿;Cov—铜蓝;Py—黄铁矿;Sph—闪锌矿;Ten—砷黝铜矿;En—硫砷铜矿;Mol—辉钼矿;Po—磁黄铁矿;Cac—辉铜矿;Mag—磁铁矿。
    a和b为Cu-7样品;c和d为Cu-1样品;e为Cu-5样品;f为Cu-8样品。

    Figure  3.   Photomicrographs of monomer minerals in copper concentrates

    图  4   铜精矿连生体矿物显微矿相图像

    a为Cu-3样品;b和c为Cu-11样品;d为Cu-1样品;e为Cu-8样品;f为Cu-7样品。

    Figure  4.   Photomicrographs of locked minerals in copper concentrates

    表  1   不同铜精矿样品产地及成矿类型信息

    Table  1   Origin and metallogenic type information of different copper concentrates

    样品编号 国别 矿区(英文名) 矿区(中文名) 成矿类型[28]
    Cu-1 澳大利亚 Eloise 埃洛伊斯 铁氧化物铜金型(IOCG)
    Cu-2 巴西 Sossego 索赛戈 铁氧化物铜金型(IOCG)
    Cu-3 厄立特里亚 Bisha 比萨 火山成因块状硫化物型(VMS)
    Cu-4 印度尼西亚 Grasberg 格拉斯伯格 斑岩型
    Cu-5 美国 Pinto Valley 平托谷 斑岩型
    Cu-6 墨西哥 Cananea 卡纳内阿 斑岩型
    Cu-7 智利 Collahuasi 科亚瓦西 斑岩型
    Cu-8 智利 Escondida 埃斯康迪达 斑岩型
    Cu-9 智利 Los Pelambres 洛斯帕布兰雷斯 斑岩型
    Cu-10 智利 Andina 安迪纳 斑岩型
    Cu-11 秘鲁 Antamina 安塔米纳 矽卡岩型
    Cu-12 秘鲁 Cerro Verde 赛罗佛尔迪 斑岩型
    下载: 导出CSV

    表  2   铜精矿样品中Cu/Fe、Cu/S及(CaO+MgO)/(SiO2+Al2O3)的比值

    Table  2   Ratio of Cu/Fe, Cu/S and (CaO+MgO)/(SiO2+Al2O3) of copper concentrates

    样品编号 国别 矿区 Cu/Fe Cu/S (CaO+MgO)/(SiO2+Al2O3)
    Cu-6 智利 Los Pelambres 1.5030 0.9688 0.0291
    Cu-11 智利 Escondida 1.3392 0.9292 0.0320
    Cu-10 印度尼西亚 Grasberg 1.1429 1.0024 0.1250
    Cu-5 智利 Collahuasi 1.0949 0.9908 0.0354
    Cu-2 巴西 Sossego 1.0748 1.1420 0.2441
    Cu-7 智利 Andina 1.0376 1.0724 0.0425
    Cu-8 美国 Pinto Valley 1.0004 1.1107 0.0400
    Cu-4 秘鲁 Antamina 0.9918 1.0244 0.4327
    Cu-9 墨西哥 Cananea 0.9875 1.0363 0.0228
    Cu-12 秘鲁 Cerro Verde 0.9327 1.0632 0.0512
    Cu-1 澳大利亚 Eloise 0.8749 1.2258 0.1551
    Cu-3 厄立特里亚 Bisha 0.7991 0.9652 0.4007
    下载: 导出CSV

    表  3   铜精矿样品X射线粉晶衍射物相分析结果

    Table  3   X-ray powder diffraction phase analysis of copper concentrates

    样品编号 国别 矿区 成矿类型 X射线粉晶衍射谱图物相分析结果
    Cu-1 澳大利亚 Eloise IOCG型 黄铜矿、石英、磁黄铁矿
    Cu-2 巴西 Sossego IOCG型 黄铜矿、石英、滑石
    Cu-3 厄立特里亚 Bisha VMS型 黄铜矿、黄铁矿、闪锌矿、滑石、硫酸铅矿
    Cu-4 印度尼西亚 Grasberg 斑岩型 黄铜矿、黄铁矿、闪锌矿、石英、黑云母、斑铜矿
    Cu-5 美国 Pinto Valley 斑岩型 黄铜矿、黄铁矿、闪锌矿、石英、勃姆石
    Cu-6 墨西哥 Cananea 斑岩型 黄铜矿、黄铁矿、闪锌矿、石英、黑云母、勃姆石
    Cu-7 智利 Collahuasi 斑岩型 黄铜矿、黄铁矿、闪锌矿、石英、黑云母、勃姆石、斑铜矿
    Cu-8 智利 Escondida 斑岩型 黄铜矿、黄铁矿、闪锌矿、石英、黑云母、勃姆石
    Cu-9 智利 Los Pelambres 斑岩型 黄铜矿、黄铁矿、闪锌矿、石英、黑云母
    Cu-10 智利 Andina 斑岩型 黄铜矿、黄铁矿、闪锌矿、石英、黑云母
    Cu-11 秘鲁 Antamina 矽卡岩型 黄铜矿、闪锌矿、黄铁矿、草酸钙石
    Cu-12 秘鲁 Cerro Verde 斑岩型 黄铜矿、黄铁矿、闪锌矿、石英、黑云母
    下载: 导出CSV

    表  4   铜精矿偏光显微镜金属矿物鉴定结果

    Table  4   Metal minerals in copper concentrate based on polarizing microscope observation

    样品编号 国别 矿区 成矿类型 偏光显微镜观察光片鉴定结果
    Cu-1 澳大利亚 Eloise IOCG型 黄铜矿98%+磁黄铁矿1%+黄铁矿+闪锌矿
    Cu-2 巴西 Sossego IOCG型 黄铜矿98%+黄铁矿+斑铜矿+铜蓝
    Cu-3 厄立特里亚 Bisha VMS型 黄铜矿97%+黄铁矿2%+闪锌矿+铜蓝
    Cu-4 印度尼西亚 Grasberg 斑岩型 黄铜矿88%+斑铜矿7%+黄铁矿4%+闪锌矿+铜蓝+磁黄铁矿+辉钼矿
    Cu-5 美国 Pinto Valley 斑岩型 黄铜矿98%+黄铁矿1%+铜蓝+磁铁矿+辉钼矿
    Cu-6 墨西哥 Cananea 斑岩型 黄铜矿95%+闪锌矿2%+黄铁矿1%+铜蓝1% +辉钼矿+辉铜矿
    Cu-7 智利 Collahuasi 斑岩型 黄铜矿91%+黄铁矿5%+斑铜矿2%+铜蓝1%+闪锌矿+辉钼矿+砷黝铜矿+硫砷铜矿
    Cu-8 智利 Escondida 斑岩型 黄铜矿88%+黄铁矿5%+斑铜矿3%+铜蓝3%+闪锌矿+磁铁矿+辉钼矿+砷黝铜矿
    Cu-9 智利 Los Pelambres 斑岩型 黄铜矿93%+黄铁矿3%+斑铜矿2%+铜蓝1%+闪锌矿+辉钼矿+砷黝铜矿
    Cu-10 智利 Andina 斑岩型 黄铜矿99%+黄铁矿+闪锌矿+斑铜矿+铜蓝+辉铜矿
    Cu-11 秘鲁 Antamina 矽卡岩型 黄铜矿98%+闪锌矿1%+黄铁矿+斑铜矿+辉钼矿+辉铜矿+砷黝铜矿
    Cu-12 秘鲁 Cerro Verde 斑岩型 黄铜矿97%+铜蓝1%+黄铁矿1%+闪锌矿+辉钼矿
    下载: 导出CSV

    表  5   不同成矿类型铜精矿样品的元素含量及矿物学特征

    Table  5   Element content and mineralogical characteristics of copper concentrate samples of different metallogenic types

    成矿类型 样品编号 XRF分析特征元素含量 XRD分析特征物相 PM分析特征矿相 XRD结合PM分析共性特征
    斑岩型 Cu-4、Cu-5、Cu-6、Cu-7、Cu-8、Cu-9、Cu-10、Cu-12 Si(3%~6%)Al(1%~3%) 黑云母 斑铜矿、辉钼矿 主要为黄铜矿,常见黄铁矿和闪锌矿
    矽卡岩型 Cu-11 Ca(1.34%)Mg(0.274%) 草酸钙石 铜蓝、辉钼矿
    IOCG型 Cu-1 Mg(0.23%)Al(0.37%)Si(1.37%) 磁黄铁矿 磁黄铁矿
    Cu-2 Mg(2.13%)Al(1.18%)Si(5.66%) 滑石 斑铜矿、铜蓝
    VMS型 Cu-3 Pb(3.29%) 硫酸铅矿 铜蓝
    下载: 导出CSV
  • Mitchell A H G.Mineral deposits and global tectonic settings[M].London: Academic Press Inc.Ltd, 1981.

    Hutchison C S. Economic deposits and their tectonic setting[M]. New York: Macmillan, 1983.

    Jankovic S. The copper deposits and geotectonic setting of the Thethyan Eurasian metallogenic belt[J]. Mineralium Deposita, 1977, 12(1): 37-47. doi: 10.1007/BF00204503

    Bradley D, Cand Leach D L. Tectonic controls of Mississippi Valley-type lead-zinc mineralization in orogenic forelands[J]. Mineralium Deposita, 2003, 38(6): 652-667. doi: 10.1007/s00126-003-0355-2

    Brzovic A, Villaescusa E. Rock mass characterization and assessment of block-forming geological discontinuities during caving of primary copper ore at the El Teniente mine, Chile[J]. International Journal of Rock Mechanics & Mining Sciences, 2007, 44(4): 565-583. http://www.sciencedirect.com/science/article/pii/S1365160906001493

    Lena V S, Emerson R, Craig A, et al. Spatial and temporal zoning of hydrothermal alteration and mineralization in the Sossego iron oxide copper gold deposit, Carajás Mineral Province, Brazil: Paragenesis and stable isotope constraints[J]. Mineralium Deposita, 2008, 43: 129-159. doi: 10.1007/s00126-006-0121-3

    Machault J, Barbanson L, Augé T, et al. Mineralogical and microtextural parameters in metals ores traceability studies[J]. Ore Geology Reviews, 2014, 63: 307-327. doi: 10.1016/j.oregeorev.2014.05.019

    Rozendaal A, Horn R. Textural, mineralogical and chemical characteristics of copper reverb furnace smelter slag of the Okiep Copper District, South Africa[J]. Minerals Engineering, 2013, 52: 184-190. doi: 10.1016/j.mineng.2013.06.020

    Soysouvanh V, Ariffin K S, Wantanabe K. Ore mineralogy and geochemistry of the Phu Kham Porphyry copper-gold deposit, Hosted within N-E Fault Zone, Lao PDR[J]. Procedia Chemistry, 2016, 19: 961-968. doi: 10.1016/j.proche.2016.03.142

    Velasco F, Herrero J M, Suárez S, et al. Supergene features and evolution of gossans capping massive sulphide deposits in the Iberian Pyrite Belt[J]. Ore Geology Reviews, 2013, 53: 181-203. doi: 10.1016/j.oregeorev.2013.01.008

    梅燕雄, 裴荣富, 杨德凤, 等. 全球成矿域和成矿区带[J]. 矿床地质, 2009, 28(4): 383-389. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200904000.htm

    Mei Y X, Pei R F, Yang D F, et al. Global metallogenic domains and districts[J]. Mineral Deposits, 2009, 28(4): 383-389. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200904000.htm

    张强, 钟琼, 贾振宏, 等. 世界铜矿资源与矿山铜生产状况分析[J]. 矿产与地质, 2014, 28(2): 196-201. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD201402012.htm

    Zhang Q, Zhong Q, Jia Z H, et al. An analysis on global copper ore resource and copper production of mines[J]. Mineral Resources and Geology, 2014, 28(2): 196-201. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD201402012.htm

    刘喜锋, 贾玉衡, 刘琰. 新疆若羌-且末戈壁料软玉的地球化学特征及成因类型研究[J]. 岩矿测试, 2019, 38(3): 316-325. doi: 10.15898/j.cnki.11-2131/td.2015.05.003

    Liu X F, Jia Y H, Liu Y. Geochemical characteristics and genetic types of Gobi nephrite in Ruoqiang-Qiemo, Xinjiang[J]. Rock and Mineral Analysis, 2019, 38(3): 316-325. doi: 10.15898/j.cnki.11-2131/td.2015.05.003

    Seetha D, Velraj G. FT-IR, XRD, SEM-EDS, EDXRF and chemometric analyses of archaeological artifacts recently excavated from Chandravalli in Karnataka State, South India[J]. Radiation Physics and Chemistry, 2019, 162: 114-120. doi: 10.1016/j.radphyschem.2019.03.017

    Murat H, Necdet T. A combined polarizing microscope, XRD, SEM, and specific gravity study of the petrified woods of volcanic origin from the Camlidere-Celtikci-Gudul fossil forest, in Ankara, Turkey[J]. Journal of African Earth Sciences, 2009, 53: 141-157. doi: 10.1016/j.jafrearsci.2009.01.001

    孟长峰, 薛俊辉. X射线荧光光谱-X射线衍射研究宁夏贺兰石岩石矿物学特征[J]. 岩矿测试, 2018, 37(1): 50-55. doi: 10.15898/j.cnki.11-2131/td.2015.05.003

    Meng C F, Xue J H. Study on petrological and mineralogical characteristics of the Ningxia Helan stone by X-ray fluorescence spectrometry and X-ray diffraction[J]. Rock and Mineral Analysis, 2018, 37(1): 50-55. doi: 10.15898/j.cnki.11-2131/td.2015.05.003

    刘倩, 秦晔琼, 刘曙, 等. X射线荧光光谱结合BP神经网络识别进口铜精矿产地[J]. 光谱学与光谱分析, 2020, 40(9): 2884-2890. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202009043.htm

    Liu Q, Qin Y Q, Liu S, et al. X-ray fluorescence spectroscopy combined with BP neural network to identify imported copper concentrate origin[J]. Spectroscopy and Spectral Analysis, 2020, 40(9): 2884-2890. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN202009043.htm

    刘喜锋, 张红清, 刘琰, 等. 世界范围内代表性碧玉的矿物特征和成因研究[J]. 岩矿测试, 2018, 37(5): 479-489. doi: 10.15898/j.cnki.11-2131/td.201712010187

    Liu X F, Zhang H Q, Liu Y, et al. Mineralogical characteristics and genesis of green nephrite from the world[J]. Rock and Mineral Analysis, 2018, 37(5): 497-489. doi: 10.15898/j.cnki.11-2131/td.201712010187

    李欣桐, 先怡衡, 樊静怡, 等. 应用扫描电镜-X射线衍射-电子探针技术研究河南淅川绿松石矿物学特征[J]. 岩矿测试, 2019, 38(4): 373-381. doi: 10.15898/j.cnki.11-2131/td.201809090102

    Li X T, Xian Y H, Fan J Y, et al. Application of XRD-SEM-XRD-EMPA to study the mineralogical characteristics of turquoise from Xichuan, Henan Province[J]. Rock and Mineral Analysis, 2019, 38(4): 373-381. doi: 10.15898/j.cnki.11-2131/td.201809090102

    Hupp N, Donovan J. Quantitative mineralogy for facies definition in the Marcellus shale (Appalachian Basin, USA) using XRD-XRF integration[J]. Sedimentary Geology, 2018, 371: 16-31. doi: 10.1016/j.sedgeo.2018.04.007

    吕新明, 田延河, 宁海龙, 等. 波长色散X射线荧光光谱仪和多晶X射线衍射仪联用技术鉴定进口铜矿和含铜物料[J]. 中国无机分析化学, 2018, 8(4): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201804006.htm

    Lv X M, Tian Y H, Ning H L, et al. Indentification of imports of copper materials by wavelength dispersive X-ray fluorescence (XRF) spectrometer and polycrystalline X-ray diffraction (XRD) spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(4): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFX201804006.htm

    宋义, 古松海, 孙鑫, 等. 铜精矿与铜冶炼渣的物相鉴别[J]. 冶金分析, 2015, 35(3): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201503006.htm

    Song Y, Gu S H, Sun X, et al. Phase identification of copper concentrate and copper smelting slag[J]. Metallurgical Analysis, 2015, 35(3): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201503006.htm

    咸洋, 闵红, 朱之秀, 等. 多技术联用鉴别含铜物料固体废物属性[J]. 机械工程材料, 2018, 12(42): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201812005.htm

    Xian Y, Min H, Zhu Z X, et al. Solid waste characteristic identification of copper-containing materials with a variety of techniques[J]. Materials for Mechanical Engineering, 2018, 12(42): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201812005.htm

    Deckart K, Silva W, Sprohnle C, et al. Timing and dur-ation of hydrothermal activity at the Los Bronces porphyry cluster: An update[J]. Mineralium Deposita, 2014, 49: 535-546. doi: 10.1007/s00126-014-0512-9

    Seedorff E, Dilles H, Proffett M, et al. Porphyry deposits: Characteristics and origin of hypogene features[J]. Society of Economic Geologists, 2005, 100: 251-298. http://ci.nii.ac.jp/naid/10030173981

    毛景文, 罗茂澄, 谢桂青, 等. 斑岩铜矿床的基本特征和研究勘查新进展[J]. 地质学报, 2014, 88(12): 2153-2175. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201412002.htm

    Mao J W, Luo M C, Xie G Q, et al. Basic characteristics and new advances in research and exploration on porphyry copper deposits[J]. Acta Geologica Sinica, 2014, 88(12): 2153-2175. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201412002.htm

    瞿泓滢, 裴荣富, 梅燕雄, 等. 国外超大型-特大型铜矿床成矿特征[J]. 中国地质, 2013, 40(2): 371-390. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201302003.htm

    Qu H Y, Pei R F, Mei Y X, et al. Metallogenic characteristics of superlarge and exceptional superlarge Cu deposits abroad[J]. Geology in China, 2013, 40(2): 371-390. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201302003.htm

    周平, 唐金荣, 杨宗喜, 等. 铜矿资源战略分析[M]. 北京: 地质出版社, 2012.

    Zhou P, Tang J R, Yang Z X, et al. Strategic analysis of copper resources[M]. Beijing: Geological Publishing House, 2012.

    胡树起, 马生明, 刘崇民. 斑岩型铜矿勘查地球化学研究现状及进展[J]. 物化与化探, 2011, 35(4): 431-437. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201104002.htm

    Hu S Q, Ma S M, Liu C M. The present situation and research advances of exploration geochemistry for porphyry copper deposits[J]. Geophysical & Geochemical Exploration, 2011, 35(4): 431-437. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201104002.htm

    Lee C T A, Tang M. How to make porphyry deposits[J]. Earth and Planetary Science Letters, 2020, 628(11): 58-68.

    翟裕生, 姚书振, 蔡克勤. 矿床学[M]. 北京: 地质出版社, 2011.

    Zhai Y S, Yao S Z, Cai K Q. Deposits[M]. Beijing: Geological Publishing House, 2011.

    Lena V S, Roberto P, Murray W, et al. Mineral chemistry of ore and hydrothermal alteration at the Sossego iron oxide-copper-gold deposit, Carajas mineral province, Brazil[J]. Ore Geology Reviews, 2008, 37: 317-336. http://www.sciencedirect.com/science/article/pii/S0169136808000048

    刘心同, 孙健. 铜矿贸易与质量检测[M]. 青岛: 中国海洋出版社, 2016.

    Liu X T, Sun J. Copper ore trade and quality inspection[M]. Qingdao: China Ocean Press, 2016.

    Chen H Y. External sulphur in IOCG mineralization: Implications on definition and classification of the IOCG clan[J]. Ore Geology Reviews, 2013, 51: 74-78. doi: 10.1016/j.oregeorev.2012.12.002

    Franklin J M, Gibson H L, Jonasson I R, et al. Volcan-ogenic massive sulfide deposits[J]. Economic Geologists, 2005, 100: 523-560.

  • 期刊类型引用(3)

    1. 付永东. 绿色地质矿产资源勘查及开采技术研究. 西部资源. 2024(01): 116-119 . 百度学术
    2. 王成辉,王登红,刘善宝,张永生,王春连,王九一,周雄,代鸿章,于扬,孙艳,邢恩袁. 战略新兴矿产调查工程进展与主要成果. 中国地质调查. 2022(05): 1-14 . 百度学术
    3. 龚磊,王新峰,宋绵,胡啟锋,缪赛,陈浩习. 江西兴国县潜在偏硅酸矿泉水水化学特征及水质健康功能评价. 岩矿测试. 2021(06): 894-906 . 本站查看

    其他类型引用(1)

图(4)  /  表(5)
计量
  • 文章访问数:  3646
  • HTML全文浏览量:  1248
  • PDF下载量:  70
  • 被引次数: 4
出版历程
  • 收稿日期:  2020-04-01
  • 修回日期:  2020-05-30
  • 录用日期:  2020-11-01
  • 发布日期:  2021-01-27

目录

/

返回文章
返回