• 中文核心期刊
  • 中国科技核心期刊
  • CSCD来源期刊
  • DOAJ 收录
  • Scopus 收录

富硒土地资源研究进展与评价方法

周国华

周国华. 富硒土地资源研究进展与评价方法[J]. 岩矿测试, 2020, 39(3): 319-336. DOI: 10.15898/j.cnki.11-2131/td.201911140158
引用本文: 周国华. 富硒土地资源研究进展与评价方法[J]. 岩矿测试, 2020, 39(3): 319-336. DOI: 10.15898/j.cnki.11-2131/td.201911140158
ZHOU Guo-hua. Research Progress of Selenium-enriched Land Resources and Evaluation Methods[J]. Rock and Mineral Analysis, 2020, 39(3): 319-336. DOI: 10.15898/j.cnki.11-2131/td.201911140158
Citation: ZHOU Guo-hua. Research Progress of Selenium-enriched Land Resources and Evaluation Methods[J]. Rock and Mineral Analysis, 2020, 39(3): 319-336. DOI: 10.15898/j.cnki.11-2131/td.201911140158

富硒土地资源研究进展与评价方法

基金项目: 

中国地质调查局地质调查项目“珠江下游及浙江基本农田土地质量地球化学调查与应用示范”(DD2016320)

中国地质调查局地质调查项目“珠江下游及浙江基本农田土地质量地球化学调查与应用示范” DD2016320

详细信息
    作者简介:

    周国华, 博士, 教授级高级工程师, 从事生态环境地球化学调查研究。E-mail:zhouguohua@igge.cn

  • 中图分类号: X142

Research Progress of Selenium-enriched Land Resources and Evaluation Methods

  • 摘要: 硒是重要的生命必需元素,开发富硒农产品是提升我国人体硒摄入水平的安全有效途径,富硒土地资源评价与利用规划是土地质量地球化学调查成果服务于特色农产品发展与脱贫攻坚的重要切入点。本文评述了近年来在土壤和作物硒含量、土壤硒成因来源、土壤硒赋存形态及其生物有效性影响因素、土壤-作物系统硒吸收运移、硒与重金属镉等元素之间的相互作用等调查研究成果。针对我国土壤硒背景值约0.20mg/kg,远低于世界土壤背景值0.40mg/kg,整体上处于低硒水平的实际情况,认为采用0.40mg/kg Se作为富硒土壤标准具有较强的科学依据;多数情况下土壤硒主要来源于成土地质背景,部分地区与人为活动密切有关;富硒土壤可分为地质高背景、次生富集作用、人为输入及其多种作用的叠加成因,元素地球化学性质决定了硒与镉等重金属元素共生的普遍性;土壤硒成因来源以及pH、Eh、有机质、铁铝氧化物等土壤理化条件决定了硒和重金属赋存形态与生物有效性,进而影响到富硒土地的可利用性,成为制定富硒土壤地方标准的理论基础与考虑因素;不同作物种类对硒吸收富集能力不同,筛选适应当地农田生态环境、富硒低镉的农作物具有实际意义;现有的部分富硒农产品标准未充分考虑人体补硒目的,并存在标准间协调性差等问题,急需加强富硒农产品标准的制定。本文提出,富硒土地资源评价不仅需要考虑土壤硒和重金属含量,而且需综合土壤硒成因来源及其生物有效性、土壤-作物系统硒迁移累积、硒与重金属镉等元素之间的相互作用机制,以及当地气候、土壤和景观条件下作物种植的适宜性,依据富硒土地资源可利用性进行分类分区、科学规划和合理种植管理。同时建议,为满足富硒土地资源调查评价与可利用性分析、富硒农产品健康效应研究的需要,需要加强土壤和作物硒含量及其形态的提取分离与分析测试方法技术研究与应用。
    要点

    (1) 成因、形态、吸收迁移机理等是富硒土地资源评价的科学基础。

    (2) 土壤硒有效性、环境质量、作物种植适宜性是富硒土地资源可利用性的关键要素。

    (3) 急需加强富硒农产品标准的制定,完善土壤和作物硒形态分析测试技术。

    HIGHLIGHTS

    (1) The origin, species, uptake and transport mechanism were bases for selenium-enriched land resource assessment.

    (2) Bio-availability, soil environmental quality and plantation suitability were the key factors for the ultilization of selenium-enriched land resources.

    (3) It was urgent to enhance research on selenium-enriched agricultural product standards and speciation analysis methods.

  • 石英岩质玉是显晶质石英质玉石的一种,粒度一般在0.01~0.6mm,其主要矿物为石英,含有少量的云母、赤铁矿、针铁矿等副矿物。不同的石英岩质玉具有不同的结构,大部分石英岩质玉质地细腻,少数质地略显粗糙。纯净的石英岩质玉为无色,当含有其他有色矿物时可呈现不同颜色。目前在世界范围内,西班牙、印度、俄罗斯、智利、中国等国均有石英岩质玉产出[1-6]

    石英岩质玉产状及成因较为多样,一般是以沉积石英砂岩为原岩经接触变质作用或区域变质作用形成的。其中接触变质作用是高温岩体入侵时产生的热源使周围岩体受到高温烘烤,发生变质结晶和重结晶从而成矿。而区域变质作用的热源则来源于强烈的岩浆活动和频繁的构造运动,在热源的激发下受变质作用影响的含水岩浆岩和基底原岩,释放出大量的水形成热液,这些含矿溶液受构造应力影响沿着韧性剪切带运移,由于温压条件的变化,热液中的SiO2过饱和析出从而逐渐富集成矿[7-12]。相比中国,国外学者的研究多着重于岩浆成因的隐晶质石英质玉[13-14],而显晶质的石英岩质玉则鲜被提及。湖南临武地区作为近年来石英岩质玉的新产地之一,前人对该矿区开展了一些研究,如李伟良等[15]、袁顺达等[16]、徐质彬等[17]通过对湖南香花岭地区的地质背景以及矿区产状的勘查与研究,对该地区成矿构造运动作了简要阐述,且对该地区石英岩质玉的成矿规律作了简单探讨。指出该地区石英岩质玉的分布与铁锂云母二长花岗岩体密切相关,矿体呈层状产出,围岩常发育硅化、绢云母化、高岭土化等蚀变现象,随矿体延伸可见部分黄铁矿、磁黄铁矿、毒砂等金属硫化物矿化[15-17]

    目前对于该地区石英岩质玉的研究主要集中于其产出的地质环境及矿区概述,而对于其矿物组成及成因探讨有待补充,具有很大的研究空间。本文通过常规宝石学测试、红外光谱测试、偏反光显微镜下观察、X射线粉晶衍射(XRD)、X射线荧光光谱(XRF)、电感耦合等离子体质谱(ICP-MS)等手段对样品进行测试,对其矿物组成进行系统分析,并讨论其成因,研究成果拟为该玉种进入市场及科学鉴定提供理论支持。

    湖南省彬州市临武县北部香花岭地区通天山附近,距临武县城区约20km,海拔近1600m,该地区三面环山,褶皱地质构造发育,地质环境较复杂为成矿提供了有利条件。研究区主要出露于寒武纪地层纪塔山群中[15-16],大地构造上位于华南新元古代—早古生代造山带中段北部,位于东北向郴(州)—临(武)深大断裂带与南北向断裂带交汇部位[17](图 1)。区域构造经历了地槽阶段、地台阶段、大陆边缘活动带三个构造发展阶段,构造运动较为复杂,岩浆活动频繁;印支期形成了以南北向为主的晚古生代沉积盖层褶皱带,燕山期进一步形成了北东向第二沉积盖层断陷盆地及大型断裂,频繁的地质活动形成研究区内三重构造叠加的构造形态。区内岩浆活动具有多期次、多阶段活动的特点,以燕山期活动最为强烈[15-17],这也为热液矿床的形成提供了条件。

    图  1  湖南省临武县香花岭地区地质略图(图片来源:袁顺达等[16])
    Figure  1.  Geological sketch of Xianghualing District, Linwu County of Hunan Province (Image source: Yuan S D, et al [16])

    选取15件湖南临武地区黑色石英岩质玉样品进行测试,样品多为大小不一的原石,经后期切割抛磨后进行测试。样品颜色均为灰色-黑色,中-细粒粒状结构,结构较细腻,抛光面均呈现玻璃-沥青光泽,不透明;部分样品可见白色针状、点状矿物,黄色、白色斑晶;个别样品可见绿色围岩,局部位置有黄色铁质浸染,表面有白色碳酸盐矿物等。本文根据样品颜色深浅程度将其分为三组,其中第一组样品(编号:LS-1-1~LS-1-4)普遍为黑色,共4件;第二组样品(编号:LS-2-1~LS-2-5)为灰黑色,共5件;第三组样品(编号:LS-3-1~LS-3-5)为灰色,共5件。如图 2所示。

    图  2  测试样品照片
    Figure  2.  Photos of experimental samples

    对样品的常规宝石学特征进行研究,采用折射仪、紫外荧光灯、硬度笔分别对样品的折射率、发光性、硬度进行测试。发光性测试时,为排除样品对紫外光的反射,每件样品均在不同方向进行三次测试;利用宝石显微镜对样品进行放大观察;密度使用净水称重法进行测量,并依照阿基米德定律将结果进行计算,排除较大异常数据后,每件样品均取三次测试结果的平均值。

    利用红外KBr压片透射法测定宝石显微镜下观察到的绿色围岩矿物种属,并为后期矿物成分分析提供帮助。实验采用美国ThermoFisher公司IS5傅里叶变换红外光谱仪进行测试,波长范围为400~4000cm-1,扫描次数为32次,分辨率为4cm-1

    对样品的矿物组成、结构等物相特征进行初步研究,并为后期测试提供有力依据。将样品制成光学薄片后,采用德国Leica DW27009型偏光镜进行薄片镜下观察。

    对样品的物相进行研究,并进行物相半定量分析,结合偏光镜下特征为矿物成因的探讨提供有力证据。实验采用日本理学Smart Lab Rigaku仪器,铜靶(Cu)测试,发射、散射狭缝均为1°,接收狭缝0.3mm,工作电压48kV,电流1000mA,扫描速度6°(20)min,扫描范围2.6°~70°,将所得衍射结果利用Jade 9进行Rietveld全谱拟合后利用PDF 2016对其物相进行比对分析。

    对样品的主量元素含量进行分析研究,并为其原岩类型探讨提供依据。实验采用日本岛津1800型X射线荧光光谱仪对样品主量元素进行分析。

    对样品的微量元素、稀土元素地球化学特征进行分析研究,并为其成矿环境探讨提供依据。实验采用iCAP Q电感耦合等离子体质谱仪(美国ThermoFisher公司)进行分析。

    常规宝石学测试结果表明, 该地区石英岩质玉的折射率均分布在1.53~1.54之间,符合国家标准《珠宝玉石鉴定》中石英岩质玉的折射率标准。紫外荧光测试表明,样品在长波364nm、短波253nm均无发光现象。硬度测试观测到样品硬度较低,大多为5.5,低于《珠宝玉石鉴定》中石英岩质玉的硬度,是由于其内部含有大量有机质所致。部分样品可见白、绿色围岩,硬度偏低,放大可见其结晶程度较差,经红外透射法检测,绿色围岩为绿泥石。

    静水称重测试显示该地区石英岩质玉相对密度主要分布在2.65~2.82之间。其中第一组样品除LS-1-1外,由于内部含有大量铁质矿物密度较大为2.816外,其余4件样品相对密度较小,分布于2.65~2.70之间;第二组和第三组样品的相对密度相对较大,大多分布在2.71~2.82之间,结合偏光镜下观察可知,其密度范围变化是由于其变质程度所致。

    通过红外光谱对样品绿色围岩部分进行了谱学测试,结果表明样品绿色围岩部分除明显的石英特征吸收峰外,还出现了740cm-1、895cm-1绿泥石特征吸收峰,以及2511cm-1处绿泥石OH与阳离子相连形成氢键所致伸缩振动特征吸收[18],由此可证,该样品绿色围岩部分为绿泥石。

    通过偏光显微镜对湖南临武黑色石英岩质玉部分具有典型、代表性特征的样品(LS-1-1、LS-1-2、LS-1-4,LS-2-1、LS-2-2、LS-2-3、LS-2-4,LS-3-1、LS-3-2、LS-3-5)进行切片观察,主要观察样品的矿物组成及结构特征。

    该地区黑色石英岩质玉的主要矿物组分为石英,次要矿物有白云母、金云母、长石、红柱石(空晶石)、铁铝榴石、黄铁矿等[19],部分位置可见极微量的金红石、钛铁矿。部分薄片显示出典型的变质作用结构特征,铁铝榴石呈变斑晶状分布于由金云母、黑云母混合形成的基质中,基质中出现少部分片状白云母无方向性分布,形成斑状片状显微粒状变晶结构(图 3a);红柱石(空晶石)晶体为变斑晶无方向性分布于碳质基质中,呈典型斑状变晶结构(图 3b),以及大量石英碎屑斑团分布于由碳质、云母组成的基质中,组成斑点状构造(图 3c)[20]

    图  3  湖南临武地区黑色石英岩质玉在偏光镜下特征
    Qtz—石英;Phl—金云母;Alm—石榴石;Chs—红柱石(空晶石);Ms—白云母;Gr—石墨;Py—黄铁矿。a、c、d—正交偏光2.5X;b、e—正交偏光10X;f—反射50X。
    Figure  3.  Polariscope features of the black quartzite jade in Linwu District, Hunan Province

    部分样品薄片呈现沉积岩结构特性,放大观察可见白云母、石英、长石等矿物出现由变质作用所致的变形现象[21],以及少量的红柱石等变质矿物。垂直层理方向观察,大量碳质定向分布形成层理,呈现细粒片状、粒状变晶结构,板状、千枚状构造(图 3d),平行层理方向观察,主要由大量石英、长石、白云母以及黏土矿物组成,具变余泥质结构。此外,薄片中还观察到大量的片状、鳞片状石墨充填于矿物间隙中,单偏光下不透光(图 3e)[20]。各别样品有少量黄铁矿呈变斑晶出现,形成斑状变晶结构,黄铁矿晶型较完整(图 3f);基质中放大可见石英、云母、长石等均呈现他形片状、粒状,其中白云母变形作用最为明显,多呈现出柱状、针状,为泥质岩浅变质作用特点[18-19]

    对其中6件样品进行X射线粉晶衍射测试,测试结果见表 1,样品主要矿物为石英,次要矿物为云母、长石及少量的红柱石、石榴石、黄铁矿等。样品的石英含量均在41.2%~47.5%之间,云母含量低于其他泥质变质岩,为15.7%~22.4%,长石相对较少,黏土矿物以绿泥石和高岭石为主,各别样品高岭石衍射峰值面积较小,故分析时将所有黏土矿物进行了统一量化。此外,利用Jade 9进行物相检索时发现了极弱的白云石衍射峰,由于衍射强度较低且衍射峰较少,半定量时未作考虑。据前人研究,区域变质岩中的常见特征矿物有石英、硬绿泥石、红柱石、石榴子石、十字石等,且常见片状、鳞片状或粒状变晶结构以及各种变余结构,石榴子石等矿物呈变斑晶产出时,可见斑状变晶结构。综合X射线粉晶衍射半定量分析结果与薄片镜下观察特征,可知样品的矿物组分含量和结构构造特征基本符合区域变质岩特征,可初步判断该地区黑色石英岩质玉属于区域变质岩[20-22]

    表  1  湖南临武地区黑色石英岩质玉的矿物相半定量分析结果
    Table  1.  Semi-quantitative analysis of mineral phases of the black quartzite jade in Linwu District, Hunan Province
    样品编号 矿物含量(%)
    石英 云母 长石 红柱石 石榴石 黄铁矿 钛铁矿 磷灰石 黏土矿物
    LS-1-1 47.1 22.4 9.8 2.2 3.8 2.6 1.1 0.9 10.1
    LS-1-2 41.2 15.7 12.2 7.1 2.7 1.1 2.0 1.4 16.6
    LS-1-4 43.2 20.3 15.3 1.9 / 2.8 1.3 2.0 13.2
    LS-2-3 43.5 17.4 9.8 4.6 6.3 1.2 3.5 2.2 10.5
    LS-3-1 45.6 18.4 16.1 1.0 1.1 2.1 1.8 1.5 12.4
    LS-3-2 47.5 20.3 8.2 5.3 1.1 2.3 1.3 0.5 13.5
    平均值 44.7 19.1 11.9 3.7 3.0 2.0 1.8 1.4 12.7
    下载: 导出CSV 
    | 显示表格

    样品X射线荧光光谱仪检测结果见表 2。结果表明,该地区石英岩质玉的主要成分为SiO2(59.49%~70.45%),以及少量的Al2O3(14.90~24.68%),Fe2O3相对较少(4.02%~7.19%),此外含有少量的K2O(2.38%~3.10%)、CaO(0.39%~1.33%)、TiO2(0.58%~1.00%)、Na2O(0.32%~0.91%)、MgO(约0.56%~0.79%)、MnO(0.14%~0.17%)、Cr2O3(0.01%)。

    表  2  湖南临武地区黑色石英岩质玉的主量元素测试结果及变质岩原岩性质判别函数(DF值)计算结果
    Table  2.  Analytical results of major elements and DF values of the black quartzite jade in Linwu District, Hunan Province
    样品编号 含量(%) DF值
    SiO2 TiO2 Al2O3 Cr2O3 Fe2O3 MgO MnO CaO Na2O K2O 总量
    LS-1-1 70.45 0.58 14.90 0.01 4.02 0.60 0.17 1.33 0.91 2.38 95.35 -2.82
    LS-1-2 59.49 0.86 24.68 0.01 7.19 0.56 0.14 0.39 0.32 3.10 96.74 -1.95
    LS-1-3 65.47 1.00 22.97 0.01 4.89 0.79 0.16 0.49 0.60 2.67 99.05 -3.07
    下载: 导出CSV 
    | 显示表格

    对三个有典型代表性特征的样品(LS-1-1、LS-2-4、LS-3-1)采用电感耦合等离子体质谱法进行了微量元素测试(表 3),将测试结果与原始地幔数据进行标准化处理后进行投图(图 4a)。可见大离子亲石元素(Sr、Ba)轻微亏损,U较为富集,三个样品的富集亏损程度较为相似。除此之外,三个样品均显示出较强烈的Ti元素亏损,平均值仅为1.227μg/g;Zr、Hf富集程度在三个样品中有轻微差异。

    表  3  湖南临武地区黑色石英岩质玉的地球化学特征
    Table  3.  Geochemical characteristics of the black quartzite jades in Linwu District, Hunan Province
    微量元素 微量元素含量测定值(μg/g)
    LS-1-1 LS-2-4 LS-3-1
    Rb 122 170 147
    Ba 306 485 346
    Th 15.7 18.6 21.6
    U 5.41 5.47 7.33
    Ta 1.92 2.05 2.21
    Nb 23.6 20.8 21.4
    La 42.4 46.7 52.0
    Ce 82.0 97.1 102
    Sr 150 96.4 82.8
    Nd 37.1 39.0 43.4
    Zr 119 98.0 291
    Hf 3.16 2.63 7.91
    Sm 6.96 7.18 8.22
    Ti 1.37 1.18 1.13
    Y 22.8 18.0 32.9
    Yb 2.88 2.22 4.51
    Lu 0.50 0.38 0.75
    稀土元素 稀土元素含量测定值(μg/g)及相关参数
    LS-1-1 LS-2-4 LS-3-1
    La 42.4 46.7 52.0
    Ce 82.0 97.1 102
    Pr 9.34 9.10 10.3
    Nd 37.1 39.0 43.4
    Sm 6.96 7.18 8.22
    Eu 1.64 1.41 1.11
    Gd 5.93 5.76 6.60
    Tb 0.63 0.79 1.02
    Dy 5.05 3.96 6.20
    Ho 0.93 0.70 1.27
    Er 2.71 2.10 3.96
    Tm 0.43 0.33 0.68
    Yb 2.88 2.22 4.51
    Lu 0.50 0.38 0.75
    Y 22.8 18.0 32.9
    ΣREE 198 216 242
    LREE 179 200 217
    HREE 19.0 16.2 25.0
    LREE/HREE 9.41 12.4 8.69
    LaN/YbN 10.6 15.1 8.26
    δEu 0.76 0.65 0.44
    δCe 0.97 1.08 1.02
    下载: 导出CSV 
    | 显示表格
    图  4  样品的(a)微量元素原始地幔标准化蛛网图和(b)稀有元素标准化分布模型图
    Figure  4.  Arachnoid map of (a) the primary mantle standardization of trace elements and (b)standardized distribution model of rare elements of samples in Linwu District, Hunan Province

    利用球粒陨石元素丰度对样品的稀土元素测试结果(表 3)进行标准化处理(图 4b),LREE相对HREE富集,La相对Yb富集。样品稀土元素蛛网图模式曲线呈现W型右缓倾,总体呈现出Eu负异常,总体观察除LS-1-1呈现Tb负异常外,三个样品模式曲线呈现特征基本相同。

    根据X射线荧光光谱测试结果可知,样品中SiO2含量均在53.5%以上。根据变质岩变质岩的函数式——DF判别式进行变质岩原岩性质判别:

    DF=10.44-0.21SiO2-0.32Fe2O3-0.98MgO+0.55CaO+1.46Na2O+0.54K2O[23]

    研究表明当DF>0时样品为正变质岩,原岩为岩浆岩;当DF < 0时则为副变质岩,原岩为沉积岩[23-24]。计算结果表明该地区黑色石英岩质玉的DF < 0(表 2),可知研究区样品为副变质岩,原岩为沉积岩。

    前人研究表明,岩石中的Al2O3/TiO2比值对于原岩性质判定具有指示性作用,当该比值小于14时物源可能为铁镁质沉积物,当比值介于19~29时物源则可能为长英质岩石沉积物[25-26]。计算结果表明三个样品的Al2O3/TiO2比值分别为25.69、28.70、22.97,均在长英质岩石沉积物范围之内。此外,样品薄片观察可见大量变余泥质结构、千枚状构造,均为泥岩浅变质常见结构构造类型,且样品含有一定量的红柱石、铁铝榴石等变质矿物[20],均可证明样品原岩为富铝的泥质、泥沙质沉积岩。综上所述,样品物质来源主要为沉积来源,属富铝泥质沉积岩系列,原岩为富铝的泥质、泥砂质以石英、长石为主要组成矿物的沉积岩。

    研究区在区域构造上属于燕山构造带[15],变质作用与区域构造关系密切,前人研究表明,沉积岩的Al2O3/(Al2O3+Fe2O3)比值对岩石生成的构造环境有指示性作用[27-28]。该比值为0.1~0.4的沉积岩构造环境多为洋脊海岭环境;该比值为0.4~0.7的沉积岩构造环境多为远洋深海环境;该比值为0.7~0.9的沉积岩构造环境多为大陆边缘环境[28-29]。经计算,本研究样品该比值分别为0.79、0.77、0.82,均在大陆边缘环境范围。另外,区域变质岩的成矿条件主要分为两种:一种是随着温度升高,原岩中的矿物经过脱水、再结晶作用成矿;另一种则是热液交代[30-32],结合偏光镜下观察结果,样品中石英、云母等矿物多呈他形粒状、片状,符合热液交代变质作用特征,可证样品成矿方式属于后者[31-34]

    本文利用偏反光显微镜观察、X射线粉晶衍射、X射线荧光光谱、电感耦合等离子体质谱法等技术手段对湖南临武地区黑色石英岩质玉矿物组成进行系统分析,并对其成因作了探讨。结果表明,该地区矿物组成较为复杂,除主要矿物石英外,还有较多的金云母、白云母、长石等次要矿物,以及少量的铁铝榴石、红柱石、黄铁矿、钛铁矿、磷灰石、黏土矿物、有机碳等。部分样品可见较明显的区域变质岩结构特征及完整的变斑晶矿物,同时存在沉积岩结构特征,放大后可见矿物变形,为典型的泥岩浅变质证据。依据主量和微量元素分析结果并结合前人研究,可证样品为副变质岩系列的区域变质岩,原岩主要为富铝的泥质、砂质且富含石英、长石的沉积岩,经过热液交代型区域变质作用后富集成矿,构造环境主要为大陆边缘。

    本研究明确了该地区石英岩质玉的宝石学特征、矿物组成,初步探讨其矿物成因,为该产地石英岩质玉的科学鉴定及进入市场提供了理论支持。石英岩质玉的产地较多,不同产地石英岩质玉在矿物组成及成矿特征上会有差异,今后可进一步对其他产地的石英岩质玉进行系统性分析研究,完善石英岩质玉的商业规范。

  • 图  1   土壤硒化学形态及其生物有效性的主控因素(引自Fordyce,2013[4])

    Figure  1.   Schematic diagram showing the main controls on the chemical speciation and bioavailability of selenium in soils (Cited from Fordyce, 2013[4])

    图  2   富硒土地资源评价与规划利用工作流程示意图

    Figure  2.   Brief chart of selenium-enriched land resources assessment and land-use planning

  • World Health Organization.Trace elements in human nutrition and health[M].Geneva:World Health Organization, 1996.

    Sharma V K, McDonald T J, Sohn M, et al.Assessment of toxicity of selenium and cadmium selenium quantum dots:A review[J].Chemosphere, 2017, 188:403-413. https://www.sciencedirect.com/science/article/pii/S004565351731353X

    Smits J E, Krohn R M, Akhtar E, et al.Food as med-icine:Selenium enriched lentils offer relief against chronic arsenic poisoning in Bangladesh[J].Environmental Research, 2019, 176:108561. https://doi.org/10.1016/j.envres.2019.108561.

    Fordyce F M.Selenium deficiency and toxicity in the environment[M]//Selinus O.Essentials of medical geology (revised edition).British Geological Survey, 2013: 373-416.

    谭见安.中华人民共和国地方病与环境图集[M].北京:科学出版社, 1989.

    Tan J A.The atlas of endemic diseases and their environments in the People's Republic of China[M].Beijing:Science Press, 1989.

    Dinh Q T, Cuia Z W, Huang J, et al.Selenium distribution in the Chinese environment and its relationship with human health:A review[J].Environment International, 2018, 112:294-309.

    Dai Z H, Imtiaz M, Rizwan M, et al.Dynamics of sele-nium uptake, speciation, and antioxidant response in rice at different panicle initiation stages[J].Science of the Total Environment, 2019, 691:827-834.

    Andrade F R, da Silva G N, Guimarães K C, et al.Selenium protects rice plants from water deficit stress[J].Ecotoxicology and Environmental Safety, 2018, 164:562-570. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b15c712a4fa2e381ed129545e16fd6af

    Ulhassan Z, Ali G R, Skhawat A, et al.Dual behavior of selenium:Insights into physico-biochemical, an atomical and molecular analyses of four Brassica napus cultivars[J].Chemosphere, 2019, 225:329-341. https://www.sciencedirect.com/science/article/pii/S0045653519304643

    Kolbert Z, Molnár Á, Feigl G, et al.Plant selenium toxicity:Proteome in the crosshairs[J].Journal of Plant Physiology, 2019, 232:291-300. https://www.sciencedirect.com/science/article/pii/S0176161718306370

    国土资源部中国地质调查局.中国耕地地球化学调查报告(2015年)[R].北京: 中国地质调查局, 2015.

    China Geological Survey, Ministry of Land and Resources.Geochemical survey report of cultivation land in China (2015)[R].Beijing: China Geological Survey, 2015.

    王云, 魏复盛.土壤环境元素化学[M].北京:中国环境科学出版社, 1995:217-230.

    Wang Y, Wei F S.Environmental element chemistry in soil[M].Beijing:China Environmental Science Press, 1995:217-230.

    Reimann C, Birke M, Demetriades A, et al.Chemistry of Europe's agricultural soils-Part A: Methodology and interpretation of the GEMAS data set[R].Hannover, 2014: 389-399.

    Swaine J D.The trace-element content of soil[J].Journal of Geophysical Research Oceans, 1956, 101(12):28615-28625. http://d.old.wanfangdata.com.cn/Periodical/trtb201606020

    魏复盛, 吴燕玉, 郑春江, 等.中国土壤元素背景值[M].北京:中国环境科学出版社, 1990.

    Wei F S, Wu Y Y, Zheng C J, et al.Soil element background in China[M].Beijing:China Environmental Science Press, 1990.

    鄢明才, 迟清华.中国东部地壳与岩石的化学组成[M].北京:科学出版社, 1997.

    Yan M C, Chi Q H.Crustal and rock chemical component in East China[M].Beijing:Science Press, 1997.

    王学求, 刘东盛, 韩志轩, 等.全国地球化学基准网建立与土壤地球化学基准值特征[J].中国地质, 2016, 43(5):1469-1480. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201605001

    Wang X Q, Liu D S, Han Z X, et al.China soil geochemical baselines networks:Data characteristics[J].Geology in China, 2016, 43(5):1469-1480. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201605001

    杨光圻, 王淑贞, 周瑞华, 等.湖北恩施地区原因不明脱发脱甲症病因的研究[J].中国医学科学院学报, 1981(增刊):1-6. http://www.cnki.com.cn/Article/CJFD1981-ZYKX1981S2000.htm

    Yang G Q, Wang S Z, Zhou R H, et al.Study on the cause of unknown alopecia and fingernail loose in Enshi, Hubei[J].Acta Academiae Medicinae Sinicae, 1981(Supplement):1-6. http://www.cnki.com.cn/Article/CJFD1981-ZYKX1981S2000.htm

    徐春燕, 丁晓英, 闫加力.湖北省富硒资源的地质特征及利用区划[J].世界地质, 2018, 37(1):340-347. http://d.old.wanfangdata.com.cn/Periodical/sjdz201801012

    Xu C Y, Ding X Y, Yan J L.Geological characteristics and usage regionalization of Se-enriched resources in Hubei[J].Global Geology, 2018, 37(1):340-347. http://d.old.wanfangdata.com.cn/Periodical/sjdz201801012

    袁知洋, 项剑桥, 吴冬妹, 等.恩施富硒土壤区主要农作物硒镉特征以及和根系土硒镉关系研究[J].资源环境与工程, 2017, 31(6):706-712. http://d.old.wanfangdata.com.cn/Periodical/hbdk201706008

    Yuan Z Y, Xiang J Q, Wu D M, et al.The characteristics of selenium and cadmium in crops and its root soil in the area of Se and Cd-enriched soil in Enshi[J].Resources Environment and Engineering, 2017, 31(6):706-712. http://d.old.wanfangdata.com.cn/Periodical/hbdk201706008

    Fang W X, Wu P W.Elevated selenium and other min-eral element concentrations in soil and plant tissue in bone coal sites in Haoping area, Ziyang County, China[J].Plant and Soil, 2004, 261:135-146.

    黄森.贵州地区富硒土壤地球化学特征及成因探讨[J].云南化工, 2018, 45(7):147-148. http://d.old.wanfangdata.com.cn/Periodical/ynhg201807063

    Huang S.Geochemical characteristics and genesis of Se rich soil in Guizhou area[J].Yunnan Chemical Technology, 2018, 45(7):147-148. http://d.old.wanfangdata.com.cn/Periodical/ynhg201807063

    任海利, 高军波, 龙杰, 等.贵州开阳地区富硒地层及风化土壤地球化学特征[J].地球与环境, 2012, 40(2):161-170. http://d.old.wanfangdata.com.cn/Periodical/dzdqhx201202005

    Ren H L, Gao J B, Long J, et al.Geochemical characteristics of selenium-rich strata and weathered soil from Kaiyang County, Guizhou Province[J].Earth and Environment, 2012, 40(2):161-170. http://d.old.wanfangdata.com.cn/Periodical/dzdqhx201202005

    罗思亮.台山市土壤Se来源的研究[J].安徽农业科学, 2013, 41(12):5333-5334. http://www.cnki.com.cn/Article/CJFDTotal-AHNY201312058.htm

    Luo S L.Source analysis of selenium in soil in Taishan City[J].Journal of Anhui Agricultural Science, 2013, 41(12):5333-5334. http://www.cnki.com.cn/Article/CJFDTotal-AHNY201312058.htm

    宋明义, 李恒溪, 魏迎春, 等.浙江省龙游志棠地区硒的地球化学研究[J].贵州地质, 2005, 22(3):176-180. http://d.old.wanfangdata.com.cn/Periodical/gzdz200503006

    Song M Y, Li H X, Wei Y C, et al.Geochemistry of the selenium, Zhitang Town, Longyou County, Zhejiang Province[J].Guizhou Geology, 2005, 22(3):176-180. http://d.old.wanfangdata.com.cn/Periodical/gzdz200503006

    吴俊.福建省寿宁县富硒土壤地球化学特征[J].物探与化探, 2018, 42(2):386-391. http://d.old.wanfangdata.com.cn/Periodical/wtyht201802024

    Wu J.Geochemical characteristics of selenium-rich soil in Shouning County of Fujian Province[J].Geophysical and Geochemical Exploration, 2018, 42(2):386-391. http://d.old.wanfangdata.com.cn/Periodical/wtyht201802024

    杨生吉.福建周宁县表层土壤硒含量分布及影响因素[J].资源环境与工程, 2019, 33(1):42-45. http://d.old.wanfangdata.com.cn/Periodical/hbdk201901008

    Yang S J.Distribution of soil selenium in Zhouning County of Fujian and its influencing factors[J].Resources Environment and Engineering, 2019, 33(1):42-45. http://d.old.wanfangdata.com.cn/Periodical/hbdk201901008

    李兆谊, 罗映林, 赵喜林, 等.桂东南地区兴业县富Se土壤地球化学特征及来源浅析[J].南方农业, 2018, 12(20):189-191. http://d.old.wanfangdata.com.cn/Periodical/nfny201820097

    Li Z Y, Luo Y L, Zhao X L, et al.Selenium-rich geochemical characteristics and source discussion in south-east Guangxi, Xingyue County[J].South China Agriculture, 2018, 12(20):189-191. http://d.old.wanfangdata.com.cn/Periodical/nfny201820097

    黄子龙, 林清梅, 范汝海.广西全州县富硒土壤地球化学特征[J].物探与化探, 2018, 42(2):381-385. http://d.old.wanfangdata.com.cn/Periodical/wtyht201802023

    Huang Z L, Lin Q M, Fan R H.Geochemical characteristics of selenium-rich soil in Quanzhou County of Guangxi[J].Geophysical and Geochemical Exploration, 2018, 42(2):381-385. http://d.old.wanfangdata.com.cn/Periodical/wtyht201802023

    Tabelin C B, Igarashi T, Villacorte-Tabelin M, et al.Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks:A review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies[J].Science of the Total Environment, 2018, 645:1522-1553. https://www.sciencedirect.com/science/article/pii/S0048969718325476

    Xu Y F, Li Y H, Li H R, et al.Effects of topography and soil properties on soil selenium distribution and bioavailability (phosphate extraction):A case study in Yongjia County, China[J].Science of the Total Environment, 2018, 633:240-248. https://www.sciencedirect.com/science/article/pii/S0048969718309495

    Mervi S, Juhani V, Stellan H, et al.Sorption and speci-ation of selenium in boreal forest soil[J].Journal of Environmental Radioactivity, 2016, 64:220-231. https://www.ncbi.nlm.nih.gov/pubmed/27521902

    陈秋菊, 甘义群, 张若雯.江汉平原沙洋地区表层土壤中硒的分布特征及富硒原因分析[J].安全与环境工程, 2019, 26(4):8-14. http://d.old.wanfangdata.com.cn/Periodical/dzktaq201904003

    Chen Q J, Gan Y Q, Zhang R W.Distribution characteristics of selenium in surface soil of Shayang area in Jianghan Plain and the cause analysis of selenium richness[J].Safety and Environmental Engineering, 2019, 26(4):8-14. http://d.old.wanfangdata.com.cn/Periodical/dzktaq201904003

    Matos R P, Lima V M P, Windmöller C C, et al.Correlation between the natural levels of selenium and soil physicochemical characteristics from the Jequitinhonha Valley (MG), Brazil[J].Journal of Geochemical Exploration, 2017, 172:195-202. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=21a5a4ae012b866562d2815ff15313ab

    杨志强, 李杰, 郑国东, 等.广西北部湾沿海经济区富硒土壤地球化学特征[J].物探与化探, 2014, 38(6):1260-1264, 1269. http://d.old.wanfangdata.com.cn/Periodical/wtyht201406030

    Yang Z Q, Li J, Zheng G D, et al.Geochemical characteristics of selenium-rich soil in Beibu Gulf coastal economic zone of Guangxi[J].Geophysical and Geochemical Exploration, 2014, 38(6):1260-1264, 1269. http://d.old.wanfangdata.com.cn/Periodical/wtyht201406030

    韩笑, 周越, 吴文良, 等.富硒土壤硒含量及其与土壤理化性状的关系——以江西丰城为例[J].农业环境科学学报, 2018, 37(6):1177-1183. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh201806018

    Han X, Zhou Y, Wu W L, et al.Selenium contents of farmland soils and their relationship with main soil properties in Fengcheng, Jiangxi[J].Journal of Agro-Environment Science, 2018, 37(6):1177-1183. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh201806018

    周国华, 孙彬彬, 方金梅.福建龙海生态地球化学研究[M].北京:地质出版社, 2018:169.

    Zhou G H, Sun B B, Fang J M.Eco-geochemistry research in Longhai, Fujian Province[M].Beijing:Geological Publishing House, 2018:169.

    曹容浩.福建省龙海市表层土壤硒含量及影响因素研究[J].岩矿测试, 2017, 36(3):282-288. doi: 10.15898/j.cnki.11-2131/td.201606130084

    Cao R H.Study on selenium content of surface soils in Longhai, Fujian and its influencing factors[J].Rock and Mineral Analysis, 2017, 36(3):282-288. doi: 10.15898/j.cnki.11-2131/td.201606130084

    方金梅.福州市土壤硒形态分析及其迁移富集规律[J].岩矿测试, 2008, 27(2):103-107. http://www.ykcs.ac.cn/article/id/ykcs_20080238

    Fang J M.Selenium speciation analysis and its transformation and enrichment in soils of Fuzhou City[J].Rock and Mineral Analysis, 2008, 27(2):103-107. http://www.ykcs.ac.cn/article/id/ykcs_20080238

    Li Z, Liang D L, Peng Q, et al.Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability:A review[J].Geoderma, 2017, 295:69-79. https://www.sciencedirect.com/science/article/abs/pii/S0016706116305018

    Cheng H X, Li M, Zhao C D, et al.Overview of trace metals in the urban soil of 31 metropolises in China[J].Journal of Geochemical Exploration, 2014, 139:31-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7ec857151ed5b7b54c611ee72486c68a

    张秀芝, 马忠社, 王荫楠, 等.河北平原土壤Se异常成因及其生态效应[J].地球与环境, 2012, 40(4):541-547. http://www.cnki.com.cn/Article/CJFDTotal-DZDQ201204013.htm

    Zhang X Z, Ma Z S, Wang Y N, et al.The origin and ecological effects of selenium abnormity in soil in Hebei Plain[J].Earth and Environment, 2012, 40(4):541-547. http://www.cnki.com.cn/Article/CJFDTotal-DZDQ201204013.htm

    谢薇, 杨耀栋, 侯佳渝, 等.天津市蓟州区富硒土壤成因与土壤硒来源研究[J].物探与化探, 2019, 43(6):1373-1381. http://d.old.wanfangdata.com.cn/Periodical/wtyht201906026

    Xie W, Yang Y D, Hou J Y, et al.Studies on causes and influential factors of selenium-enriched soils in Jizhou District of Tianjin[J].Geophysical and Geochemical Exploration, 2019, 43(6):1373-1381. http://d.old.wanfangdata.com.cn/Periodical/wtyht201906026

    Shaheen S M, Kwon E E, Biswas J K, et al.Arsenic, chromium, molybdenum, and selenium:Geochemical fractions and potential mobilization in riverine soil profiles originating from Germany and Egypt[J].Chemosphere, 2017, 180:553-563. https://www.sciencedirect.com/science/article/abs/pii/S0045653517305908

    Tolu J, Tullo P D, Hécho I L, et al.A new methodology involving stable isotope tracer to compare simultaneously short- and long-term selenium mobility in soils[J].Analytical and Bioanalytical Chemistry, 2014, 406:1221-1231. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=edc68c25eb7148dee69c569aa0790c5b

    Di T P, Pannier F, Thiry Y, et al.Field study of time-dependent selenium partitioning in soils using isotopically enriched stable selenite tracer[J].Science of the Total Environment, 2016, 562:280-288. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8bc23d3cb009f492bb988bf38b4523e1

    Li J, Peng Q, Liang D L, et al.Effects of aging on the fraction distribution and bioavailability of selenium in three different soils[J].Chemosphere, 2016, 144:2351-2359. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9367c2f16a801e8f9d250b836a3d20a0

    Almahayni T, Bailey E, Crout N M J, et al.Effects of incubation time and filtration method on Kd of indigenous selenium and iodine in temperate soils[J].Journal of Environmental Radioactivity, 2017, 177:84-90.

    Jia M M, Zhang Y X, Huang B, et al.Source appor-tionment of selenium and influence factors on its bioavailability in intensively managed greenhouse soil:A case study in the east bank of the Dianchi Lake, China[J].Ecotoxicology and Environmental Safety, 2019, 170:238-245.

    Statwick J, Sher A A.Selenium in soils of western Colorado[J].Journal of Arid Environments, 2017, 137:1-6. https://www.sciencedirect.com/science/article/abs/pii/S0140196316301811

    郝应龙, 李崇博, 安永刚, 等.乌鲁木齐市某蔬菜基地富硒土壤地球化学特征及生物效应研究[J].新疆地质, 2019, 37(2):167-171. http://d.old.wanfangdata.com.cn/Periodical/xjdz201902004

    Hao Y L, Li C B, An Y G, et al.Study on geochemical characteristics and bio-effects of selenium-rich soil in a vegetable base in Urumqi, Xinjiang[J].Xinjiang Geology, 2019, 37(2):167-171. http://d.old.wanfangdata.com.cn/Periodical/xjdz201902004

    Joy E J M, Broadley M R, Young S D, et al.Soil type influences crop mineral composition in Malawi[J].Science of the Total Environment, 2015, 505:587-595. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bb7a1cd293c0e4300bbb6012115fd08a

    Silva J E C, Wadt L H O, Silva K E, et al.Natural variation of selenium in Brazil nuts and soils from the Amazon Region[J].Chemosphere, 2017, 188:650-658. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c5cd845ab18fd63c22402f3fd7979115

    尹宗义, 任蕊, 晁旭, 等.三原-阎良地区富硒土壤中硒形态特征研究[J].陕西地质, 2016, 34(1):31-37. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=ZXQX201602230

    Yin Z Y, Ren R, Chao X, et al.Selenium speciation in selenium-rich soil of Sanyuan-Yanliang Area[J].Geology of Shaanxi, 2016, 34(1):31-37. https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=ZXQX201602230

    杨奎, 李湘凌, 张敬雅, 等.安徽庐江潜在富硒土壤硒生物有效性及其影响因素[J].环境科学研究, 2018, 31(4):715-724. http://d.old.wanfangdata.com.cn/Periodical/hjkxyj201804014

    Yang K, Li X L, Zhang J Y, et al.Selenium bioavailability and the influential factors in potentially selenium enriched soils in Lujiang County, Anhui Province[J].Research of Environmental Sciences, 2018, 31(4):715-724. http://d.old.wanfangdata.com.cn/Periodical/hjkxyj201804014

    Supriatin S, Weng L P, Comans R N J.Selenium speciation and extractability in Dutch agricultural soils[J].Science of the Total Environment, 2015, 532:368-382. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2cc428ada54a92cff6da00c8c64cd5f3

    Fordyce F M, Brereton N, Hughes J, et al.An initial study to assess the use of geological parent materials to predict the Se concentration in overlying soils and in five staple foodstuffs produced on them in Scotland[J].Science of the Total Environment, 2010, 408(22):5295-5305. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1b4c41d3811354b30356583d4f324872

    Supriatin S, Weng L P, Comans R N J.Selenium-rich dissolved organic matter determines selenium uptake in wheat grown on low-selenium arable land soils[J].Plant Soil, 2016, 408:73-94. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ef6fb5905782569263b15a3986e70874

    Chistophersen O A, Lyons G, Haug A, et al.Selenium[M]//Alloway B J.Heavy metals in soils: Tarce metals and metalloids in soils and their bioavailability.Springer Science, 2013: 429-463.

    Dinh Q T, Li Z, Tran T A T, et al.Role of organic acids on the bioavailability of selenium in soil:A review[J].Chemosphere, 2017, 184:618-635. https://www.ncbi.nlm.nih.gov/pubmed/28624740

    Chang C Y, Yin R S, Wang X, et al.Selenium translocation in the soil-rice system in the Enshi seleniferous area, central China[J].Science of the Total Environment, 2019, 669:83-90. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=790ae9d421d2cb0c71ae69033e30ac91

    Xiao K C, Tang J J, Chen H, et al.Impact of land use/land cover change on the topsoil selenium concentration and its potential bioavailability in a karst area of southwest China[J].Science of the Total Environment, 2020, 708:1-8. https://www.sciencedirect.com/science/article/pii/S0048969719351939

    Wang D, Dinh Q T, Thu T T A, et al.Effect of selenium-enriched organic material amendment on selenium fraction transformation and bioavailability in soil[J].Chemosphere, 2018, 199:417-426. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=61990379ebd79879307b56e3f583720f

    Supriatin S, Terrones C A, Bussink W, et al.Drying effects on selenium and copper in 0.01M calcium chloride soil extractions[J].Geoderma, 2015, 255-256:104-114. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fc6c5edf02608cb7ad163004b68bf11f

    Lessa J H L, Araujo A M, Silva G N T, et al.Adsorption-desorption reactions of selenium(Ⅵ) in tropical cultivated and uncultivated soils under Cerrado biome[J].Chemosphere, 2016, 164:271-277.

    姜超强, 沈嘉, 祖朝龙.水稻对天然富硒土壤硒的吸收及转运[J].应用生态学报, 2015, 26(3):809-816. http://d.old.wanfangdata.com.cn/Periodical/yystxb201503022

    Jiang C Q, Shen J, Zu C L.Selenium uptake and transport of rice under different Se-enriched natural soils[J].Chinese Journal of Applied Ecology, 2015, 26(3):809-816. http://d.old.wanfangdata.com.cn/Periodical/yystxb201503022

    李瑜.安康富硒土壤中不同农作物富硒能力比较研究[J].陕西农业科学, 2015, 61(11):13-14. http://d.old.wanfangdata.com.cn/Periodical/sxnykx201511003

    Li Y.Comparison on Se uptake ability of different crops in Se-rich soil at Ankong[J].Shaanxi Journal of Agricultural Sciences, 2015, 61(11):13-14. http://d.old.wanfangdata.com.cn/Periodical/sxnykx201511003

    李正文, 张艳玲, 潘根兴, 等.不同水稻品种籽粒Cd、Cu和Se的含量差异及其人类膳食摄取风险[J].环境科学, 2003, 24(3):112-115. http://d.old.wanfangdata.com.cn/Periodical/hjkx200303022

    Li Z W, Zhang Y L, Pan G X, et al.Grain contents of Cd, Cu and Se by 57 rice cultivars and the risk significance for human dietary uptake[J].Environmental Science, 2003, 24(3):112-115. http://d.old.wanfangdata.com.cn/Periodical/hjkx200303022

    王家伟, 陈雄波, 黄起东, 等.不同水稻品种对硒的吸收转化试验[J].农业工程, 2016, 6(4):82-84. http://d.old.wanfangdata.com.cn/Periodical/nygch201604027

    Wang J W, Chen X B, Huang Q D, et al.Test on absorption and transformation of selenium in different rice varieties[J].Agricultural Engineering, 2016, 6(4):82-84. http://d.old.wanfangdata.com.cn/Periodical/nygch201604027

    Natasha, Shahid M, Niazi N K, et al.A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health[J].Environmental Pollution, 2018, 234:915-934. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5debd9cfc7370ab143540aafe16e32da

    姜超强, 沈嘉, 徐经年, 等.不同富硒土壤对烤烟生长及硒吸收转运的影响[J].西北植物学报, 2014, 34(11):2303-2308. http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201411021

    Jiang C Q, Shen J, Xu J N, et al.Effects of Se-enriched soils on the plant growth, selenium uptake and transport in flue-cured tobacco[J].Acta Botany Boreal-Occident Sinica, 2014, 34(11):2303-2308. http://d.old.wanfangdata.com.cn/Periodical/xbzwxb201411021

    王雅玲, 潘根兴, 刘洪莲, 等.皖南茶区土壤硒含量及其与茶叶中硒的关系[J].农业生态环境, 2005, 21(2):54-57. http://d.old.wanfangdata.com.cn/Periodical/ncsthj200502012

    Wang Y L, Pan G X, Liu H L, et al.Soil and tea selenium in tea gardens in south Anhui[J].Rural Eco-Environment, 2005, 21(2):54-57. http://d.old.wanfangdata.com.cn/Periodical/ncsthj200502012

    Miguel N A, Carmen C V.Selenium in food and the human body:A review[J].Science of the Total Environment, 2008, 400:115-141. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_684a79b215da568e22abd01c52158e7b

    Yin H Q, Qi Z Y, Li M Q, et al.Selenium forms and methods of application differentially modulate plant growth, photosynthesis, stress tolerance, selenium content and speciation in Oryza sativa L.[J].Ecotoxicology and Environmental Safety, 2019, 169:911-917. https://www.ncbi.nlm.nih.gov/pubmed/30597791

    Shultz C D, Bailey R T, Gates T K, et al.Simulating selenium and nitrogen fate and transport in coupled stream-aquifer systems of irrigated regions[J].Journal of Hydrology, 2018, 560:512-529. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=021279d571e489abde1e015aeeb24aba

    de Feudis M, D'Amato R, Businelli D, et al.Fate of selenium in soil:A case study in a maize (Zea mays L.) field under two irrigation regimes and fertilized with sodium selenite[J].Science of the Total Environment, 2019, 659:131-139.

    Hussein H A A, Darwesh O M, Mekki B B, et al.Evaluation of cytotoxicity, biochemical profile and yield components of groundnut plants treated with nano-selenium[J].Biotechnology Reports, 2019, 24. https://doi.org/10.1016/j.btre.2019.e00377.

    Ullah H, Liu G J, Yousaf B, et al.Developmental sele-nium exposure and health risk in daily foodstuffs:A systematic review and meta-analysis[J].Ecotoxicology and Environmental Safety, 2018, 149:291-306. https://www.sciencedirect.com/science/article/pii/S0147651317308096

    郑小江, 胡蔚红, 孙必发, 等.富硒食品标准标签研究[J].中国标准化, 2003(5):19-21. http://d.old.wanfangdata.com.cn/Periodical/zgbzh200305009

    Zheng X J, Hu W H, Sun B F, et al.Study on the standard and label of selenium-rich food[J].Standardization in China, 2003(5):19-21. http://d.old.wanfangdata.com.cn/Periodical/zgbzh200305009

    辜世伟, 胡云均, 刘方菁, 等.不同加工精度对稻谷中镉含量的影响[J].中国粮油学报, 2019(8):33-39. http://d.old.wanfangdata.com.cn/Periodical/zglyxb201908003

    Gu S W, Hu Y J, Liu F J, et al.Effect of different processing precision on cadmium content in paddy rice[J].Journal of the Chinese Cereals and Oil Association, 2019(8):33-39. http://d.old.wanfangdata.com.cn/Periodical/zglyxb201908003

    World Health Organization.Environmental health criterion 58-Selenium[R].Geneva: World Health Organization, 1987.

    Liang R Y, Shuai S A, Shi Y J, et al.Comprehensive assessment of regional selenium resources in soils based on the analytic hierarchy process:Assessment system construction and case demonstration[J].Science of the Total Environment, 2017, 605-606:618-625. https://www.sciencedirect.com/science/article/pii/S0048969717315693

    Zhou X B, Li Y Y, Lai F.Effects of different water management on absorption and accumulation of selenium in rice[J].Saudi Journal of Biological Sciences, 2018, 25:1178-1182. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqsystbcxb201801051

    Wang D, Xue M Y, Wang Y K, et al.Effects of straw amendment on selenium aging in soils:Mechanism and influential factors[J].Science of the Total Environment, 2019, 657:871-881. https://www.sciencedirect.com/science/article/pii/S0048969718348617

    宋明义, 黄春雷, 董岩翔, 等.浙江富硒土壤成因分类及开发利用现状[J].上海地质, 2010, 31(增刊1):107-110. http://d.old.wanfangdata.com.cn/Periodical/shdz2010z1028

    Song M Y, Huang C L, Dong Y X, et al.Genetic classification and utilization situation of selenium-rich soil in Zhejiang Province[J].Shanghai Geology, 2010, 31(Supplement 1):107-110. http://d.old.wanfangdata.com.cn/Periodical/shdz2010z1028

    谢邦廷, 贺灵, 江官军, 等.中国南方典型富硒区土壤硒有效性调控实验[J].岩矿测试, 2017, 36(3):273-281. doi: 10.15898/j.cnki.11-2131/td.201610100152

    Xie B T, He L, Jiang G J, et al.Regulation and evaluation of selenium availability in Se-rich soils in southern China[J].Rock and Mineral Analysis, 2017, 36(3):273-281. doi: 10.15898/j.cnki.11-2131/td.201610100152

    Shahid M A, Balal R M, Khan N, et al.Selenium impedes cadmium and arsenic toxicity in potato by modulating carbohydrate and nitrogen metabolism[J].Ecotoxicology and Environmental Safety, 2019, 180:588-599. https://www.sciencedirect.com/science/article/pii/S0147651319305780

    Ren M M, Qin Z J, Li X, et al.Selenite antagonizes the phytotoxicity of Cd in the cattail Typha angustifolia[J].Ecotoxicology and Environmental Safety, doi.org/10.1016/j.ecoenv.2019.109959.

    Dai H P, Wei S H, Skuza L D, et al.Selenium spiked in soil promoted zinc accumulation of Chinese cabbage and improved its antioxidant system and lipid peroxidation[J].Ecotoxicology and Environmental Safety, 2019, 180:179-184. https://www.sciencedirect.com/science/article/abs/pii/S0147651319305469

    Anirban B, Saroni B, Arabinda D, et al.Spatial vari-ability and competing dynamics of arsenic, selenium, iron and bioavailable phosphate from ground water and soil to paddy plant parts[J].Groundwater for Sustainable Development, 2018, 7:328-335.

    王建伟, 王朝辉, 毛晖, 等.硒锌钼对黄土高原马铃薯和小白菜产量及营养元素与硒镉含量的影响[J].农业环境科学学报, 2012, 31(11):2114-2120. http://www.cnki.com.cn/Article/CJFDTotal-NHBH201211010.htm

    Wang J W, Wang Z H, Mao H, et al.Effect of Se, Zn and Mo on yield and contents of nutrient elements and selenium and cadmium of potato and cabbage on the loess plateau[J].Journal of Agro-Environment Science, 2012, 31(11):2114-2120. http://www.cnki.com.cn/Article/CJFDTotal-NHBH201211010.htm

    梁程, 林匡飞, 张雯, 等.不同浓度硫处理下硒镉交互胁迫对水稻幼苗的生理特性影响[J].农业环境科学学报, 2012, 31(5):857-866. http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201205002

    Liang C, Lin K F, Zhang W, et al.Effects of sulfur and selenium treatment on plant growth and some physiological characteristics of rice under cadmium stress[J].Journal of Agro-Environment Science, 2012, 31(5):857-866. http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201205002

    铁梅, 刘阳, 李华为, 等.硒镉处理对萝卜硒镉吸收的影响及其交互作用[J].生态学杂志, 2014, 33(6):1587-1593. http://d.old.wanfangdata.com.cn/Periodical/stxzz201406024

    Tie M, Liu Y, Li H W, et al.Uptake of Se and Cd in radish and their effects on growth[J].Chinese Journal of Ecology, 2014, 33(6):1587-1593. http://d.old.wanfangdata.com.cn/Periodical/stxzz201406024

    Zhang Z Z, Yuan L X, Qi S H, et al.The threshold effect between the soil bioavailable molar Se:Cd ratio and the accumulation of Cd in corn (Zeamays L.) from natural Se-Cd rich soils[J].Science of the Total Environment, 2019, 688:1228-1235.

    Feng R W, Wei C Y, Tu S X, et al.A dual role of Se on Cd toxicity:Evidences from the uptake of Cd and some essential elements and the growth responses in paddy rice[J].Biology Trace Element Resource, 2013, 151:113-121.

    Li Y Y, Hu W J, Zhao J T, et al.Selenium decreases methylmercury and increases nutritional elements in rice growing in mercury-contaminated farmland[J].Ecotoxicology and Environmental Safety, 2019, 182:109447.doi.org/10.1016/j.ecoenv.2019.109447. https://www.sciencedirect.com/science/article/pii/S014765131930778X

    Wang X N, Wang S, Pan X L, et al.Heteroaggregation of soil particulate organic matter and biogenic selenium nanoparticles for remediation of elemental mercury contamination[J].Chemosphere, 2019, 221:486-492. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=311e52f042111dc60dd157c64f0266c6

    Wang X N, Pan X L, Gadd G M.Soil dissolved organic matter affects mercury immobilization by biogenic selenium nanoparticles[J].Science of the Total Environment, 2019, 658:8-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0757818a40173b24f1b33eebc9b62dac

    Wang X N, Zhang D Y, Pan X L, et al.Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil[J].Chemosphere, 2017, 170:266-273. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f87b2db845a755593dc815810444bcea

    Yu Y, Yuan S L, Zhuang J, et al.Effect of selenium on the uptake kinetics and accumulation of and oxidative stress induced by cadmium in Brassica Chinensis[J].Ecotoxicology and Environmental Safety, 2018, 162:571-580. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9ec53ed23293a8713d508350e7c26bf0

    薛超群, 郭敏.氢化物发生-原子荧光光谱法测定土壤样品中不同价态的硒[J].岩矿测试, 2012, 31(6):980-984. http://www.ykcs.ac.cn/article/id/ykcs_20120613

    Xue C Q, Guo M.Analysis of different valence states of selenium in geological samples by hydride generation-atomic fluorescence spectrometry[J].Rock and Mineral Analysis, 2012, 31(6):980-984. http://www.ykcs.ac.cn/article/id/ykcs_20120613

    秦冲, 施畅, 万秋月, 等.高效液相色谱-电感耦合等离子体质谱联用检测土壤中的无机硒形态[J].岩矿测试, 2018, 37(6):664-670. doi: 10.15898/j.cnki.11-2131/td.201803200024

    Qin C, Shi C, Wan Q Y, et al.Speciation analysis of inorganic selenium in soil by high performance liquid chromatography-inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2018, 37(6):664-670. doi: 10.15898/j.cnki.11-2131/td.201803200024

    Wang M K, Cui Z W, Xue M Y, et al.Assessing the uptake of selenium from naturally enriched soils by maize (Zeamays L.) using diffusive gradients in thin-films technique (DGT) and traditional extractions[J].Science of the Total Environment, 2019, 689:1-9.

    Vinceti M, Filippini T, Malagoli C, et al.Amyotrophic lateral sclerosis incidence following exposure to inorganic selenium in drinking water:A long-term follow-up[J].Environmental Research, 2019, 179:108742. doi.org/10.1016/j.envres.2019.108742. https://www.ncbi.nlm.nih.gov/pubmed/31629180

    龚如雨, 钟松臻, 张宝军, 等.富硒非富硒大米有机硒的组成及硒的可利用度分析[J].食品研究与开发, 2017, 38(20):11-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spyjykf201720003

    Gong R Y, Zhong S Z, Zhang B J, et al.Composition of the organic selenium (Se) and the accessible Se in Se-enriched and non Se-enriched rice[J].Food Research and Development, 2017, 38(20):11-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spyjykf201720003

    Lusa M, Help H, Honkanen A P, et al.The reduction of selenium(Ⅵ) by boreal Pseudomonas sp.strain T5-6-Ⅰ-Effects on selenium(Ⅳ) uptake in Brassica Oleracea[J].Environmental Research, 2019, 177:108642. doi.org/10.1016/j.envres.2019.108642.

    Both E B, Stonehouse G C, Lima L W, et al.Selenium tolerance, accumulation, localization and speciation in a cardamine hyperaccumulator and a non-hyperaccumulator[J].Science of the Total Environment, doi.org/10.1016/j.scitotenv.2019.135041.

    Qin H B, Zhu J M, Lin Z Q, et al.Selenium speciation in seleniferous agricultural soils under different cropping systems using sequential extraction and X-ray absorption spectroscopy[J].Environmental Pollution, 2017, 225:361-369. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7ef417f598f4f30687b6adceb6285715

    Alexander P, Miriam S, Susanne V A, et al.Charac-terization of selenium speciation in selenium-enriched button mushrooms (Agaricus bisporus) and selenized yeasts (dietary supplement) using X-ray absorption near-edge structure (XANES) spectroscopy[J].Journal of Trace Elements in Medicine and Biology, 2019, 51:164-168.

图(3)
计量
  • 文章访问数:  3569
  • HTML全文浏览量:  968
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-13
  • 修回日期:  2020-01-07
  • 录用日期:  2020-04-15
  • 发布日期:  2020-04-30

目录

/

返回文章
返回